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Juncus bufonius toad rush  

Lathyrus lathyrus 

Lemna minor duckweed 

Rapistrum rugosum wild turnip, turnip weed 

Raphanus raphanistrum wild radish  

Sisymbrium orientale Indian hedge mustard  

Trigonella foenum-graecum fenugreek 

Urtica incisa nettle  

Zea mays maize 
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Abstract 

Group B herbicides inhibit the acetohydroxyacid synthase (AHAS - also known as 

acetolactate synthase) enzyme in the pathway of branched chain amino acid synthesis.  

These herbicides have gained widespread use in Australia, however potential impacts on 

nitrogen fixation by legumes have not been comprehensively assessed.  Group B 

herbicides recommended for in-crop application to grain and pasture legume species 

were assessed for impacts on growth, nodulation and nitrogen fixation.  Although it was 

demonstrated that nitrogen fixation can be affected by these herbicides, the range of 

responses indicated that multiple mechanisms could be responsible.  These could 

include a reduction nitrogen fixation directly coupled to reduced plant growth; more 

specific and direct disruption of nitrogen fixation related to the inhibition of nodulation; 

or other mechanisms yet to be defined that could include affects on the rhizobia.  To 

begin to understand these mechanisms, a herbicide tolerant Medicago littoralis cultivar 

‘FEH-1’ was compared to Herald.  Decreased nodulation, nitrogen fixation and 

acetylene reduction activity due to herbicide application were primarily related to the 

susceptibility of the plant to the herbicide.  Thus herbicide tolerant legumes have the 

potential to alleviate suboptimal nitrogen fixation due to group B herbicides.  A 

proteomics study of the response of root tips of model legume Medicago truncatula 

A17 to flumetsulam and metsulfuron methyl was conducted to identify more 

specifically the herbicide impacts on plant physiology.  An increased abundance of 

stress response proteins and a decline in the abundance of some metabolic proteins was 

found, including a reduction in the abundance of glutamine synthetase which is 

expected to have direct consequences for the regulation of nitrogen fixation.  

Observations of root morphology revealed changes to root hairs and the development of 

lateral roots related to the disruption of meristems, with likely consequences for 

infection and nodule development.  The results from this thesis confirm the potential for 

acetohydroxyacid synthase inhibiting herbicides to reduce nitrogen fixation of legumes.  

In addition to a general effect on nitrogen fixation via coupling to reduced plant growth, 

more specific biochemical and morphological mechanisms that disrupt nodulation are 

plausible. 
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