The impact of acetohydroxyacid synthase inhibiting herbicides on symbiotic nitrogen fixation of grain and pasture legumes

Ryan L. Farquharson

Thesis submitted for the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences at the University of Adelaide

Discipline of Soil and Land Systems

Waite Campus

The University of Adelaide

July 2009

Table of contents

List of	figures	6
List of	tables	11
Acrony	rms and abbreviations	16
Scientif	fic and common names	17
Abstra	ct	18
Declara	ation	18
Acknow	wledgements	20
CHAF	PTER 1 INTRODUCTION	23
1.1	Aims	26
1.2	Thesis structure	26
CHAF	PTER 2 LITERATURE REVIEW	28
2.1	Introduction	28
2.1.1	Weed control	29
2.1.2	2 Description of group B herbicides	31
2.1.3	Group B herbicide mode of action	35
2.1.4	Persistence and degradation of AHASIH in the soil	41
2.2	Nitrogen fixation by legumes	43
2.2.1	Symbiotic N ₂ fixation	44
2.3	AHAS inhibiting herbicides and nitrogen fixation	47
2.3.1	Effects on nitrogen fixation	48
2.3.2	2 Effects on the legume	49
2.3.3	B Effects of herbicides on rhizobia	60
2.3.4	Effects on nodulation	63
2.4	Summary and critical knowledge gaps	66
2.5	Thesis objectives	67

CHAPTER 3 THE IMPACT OF 'IN-CROP' GROUP B HERBICIDES ON THE GROWTH, NODULATION AND NITROGEN FIXATION OF GRAIN LEGUMES 68

3.1	Introduction	68
3.2	Materials and Methods	69
3.2.1	Inoculum	70
3.2.2	Plant growth	72
3.2.3	Herbicide treatments	73
3.2.4	Harvest	75
3.2.5	Nitrogen analysis	75
3.2.6	Calculations and statistical analysis	76
3.3	Results	78
3.3.1	Chickpea / Imazethapyr (Table 3.4)	80
3.3.2	Chickpea / Flumetsulam (Table 3.5)	83
3.3.3	Pea / Imazamox (Table 3.6)	86
3.3.4	Pea / Flumetsulam (Table 3.7)	89
3.3.5	Pea / Imazethapyr (Table 3.8)	91
3.3.6	Faba Bean / Imazethapyr (Table 3.9)	93
3.3.7	Vetch / Flumetsulam (Table 3.10)	95

3.4 Summary of results

99

CHAPTER 4 THE IMPACT OF 'IN-CROP' GROUP B HERBICIDES ON THE GROWTH, NODULATION AND NITROGEN FIXATION OF PASTURE LEGUMES 104

Introduction	104
Materials and Methods	105
Results	109
Lucerne (Super 7) / Imazamox (Table 4.4)	111
Lucerne / Flumetsulam (Table 4.5)	113
Lucerne / Imazethapyr (Table 4.6)	116
Burr medic / Flumetsulam (Table 4.7)	118
Burr medic / Imazamox (Table 4.8)	120
Subterranean clover / Imazethapyr	124
Subterranean clover / Imazamox	124
Subterranean clover / Flumetsulam (Table 4.9)	124
	Introduction Materials and Methods Results Lucerne (Super 7) / Imazamox (Table 4.4) Lucerne / Flumetsulam (Table 4.5) Lucerne / Imazethapyr (Table 4.6) Burr medic / Flumetsulam (Table 4.7) Burr medic / Imazamox (Table 4.8) Subterranean clover / Imazethapyr Subterranean clover / Imazamox Subterranean clover / Flumetsulam (Table 4.9)

4.3.	Balansa clover / Imazamox	126
4.3.	0 Balansa clover / Flumetsulam (Table 4.11)	128
		120
4.4	Summary of results	129
CHA	PTER 5 DISCUSSION OF SCREENING EXPERIMENTS	133
5.1	Effect of AHAS inhibiting herbicides on plant growth and $N_{2}\ fixation$	136
5.2	Effect of AHAS inhibiting herbicides on nodulation	137
5.3	Effect of AHAS inhibiting herbicides on rhizobia	139
5.4	Conclusions from screening experiments	141
5.5	Methodological considerations	142
5.6	Exploring mechanisms	146
CHA	PTER 6 HERBICIDE TOLERANT MEDICAGO LITTORALIS	147
6.1	Introduction	148
6.2	Methods	149
6.2.	Rhizobia experiment – impacts of chlorsulfuron on in vitro growth of rhizobia	149
6.2.	Plant experiment – impacts of chlorsulfuron on growth, nodulation and nitrogen fi	xation of
tole	ant and intolerant medic	150
6.3	Results	155
6.3.	In vitro exposure of rhizobia to chlorsulfuron	155
6.3.	2 Effect of chlorsulfuron on Herald and FEH-1	155
6.3.	B Plant growth and nitrogen status	156
6.3.	Nodulation	164
6.3.	5 Nitrogen Fixation	169
6.4	Discussion	172
6.4.	General Plant Effects	172
6.4.	2 Growth of rhizobia <i>in vitro</i>	175
6.4.	B Pre-exposure effects on rhizobia	176
6.4	Nodulation	170
6.4	5 Nitrogen fixation and acetylene reduction activity	180
6.4	5 Conclusions	184
6.4	Implications for the use of herbicide tolerant legumes	185
6.4.	3 Future work	186

CHAPTER 7	MORPHOLOGY AND PROTEOME OF MEDICAGO	
TRUNCATUL	A ROOTS IN RESPONSE TO GROUP B HERBICIDES	187

7.1	Introduction	187
7.2	Methods	189
7.2.1	Plant growth	189
7.2.2	Root harvest and protein extraction	190
7.2.3	Gel electrophoresis	191
7.2.4	Gel staining	192
7.2.5	Gel analysis	192
7.2.6	Gel Statistics	193
7.2.7	Protein identification	194
7.3	Results	197
7.3.1	Root growth and morphology	197
7.3.2	Proteome	203
7.4	Discussion	207
7.4.1	Root growth and morphology	207
7.4.2	Differentially expressed proteins	208
7.4.3	Implications	213
7.4.4	General experimental considerations	214
7.4.5	Conclusion	215

CHAPTER 8 GENERAL DISCUSSION 217

8.1	Summary of experimental work	218
8.1.	1 Screening experiments:	218
8.1.2	2 Herbicide tolerant <i>Medicago littoralis</i> FEH-1:	218
8.1.3	3 Proteomics and root morphology:	219
8.2	Mechanisms	220
8.3	Conclusions	228
8.4	4 Implications 22	
8.5	5 Future work 2	
Reply	to examiners reports	234
Refere	References	

List of figures

Figure 1.1 Thesis structure
Figure 2.1 Herbicides by class (Go to www.plantprotection.org/hrac for full size poster)
Figure 2.2 Chlorsulfuron chemical structure
Figure 2.3 Imazethapyr chemical structure
Figure 2.4 Imazamox chemical structure
Figure 2.5 Flumetsulam chemical structure
Figure 2.6: Branched-chain amino acid biosynthesis: enzymes, genes (italicised) and products
Figure 2.8: Structure of determinate and indeterminate nodules (Hansen, 1994)46
Figure 3.1 Chickpea / imazethapyr experiment showing lower root mass, stunted lateral roots and deformed meristematic region of roots in herbicide treated plants
Figure 3.2 Pea / imazamox experiment showing reductions in shoot biomass100
Figure 3.3 Leaf yellowing of pea plants induced by flumetsulam application (right) compared with a control plant (left)101
Figure 6.1 Incubation jars for acetylene reduction assays
Figure 6.2 Plant dry weight. Shoot dry weight above the x-axis, roots plus nodules below the x-axis. (A) Variety by herbicide interactions ($p<0.001$, $lsd5\% = 0.015$ g for shoots and 0.008 g for roots plus nodules). (B) Inoculation by herbicide interactions ($p<0.001$, $lsd5\% = 0.024$ g for shoots and 0.013 g for roots plus nodules). Error bars
indicate standard error of mean158

Figure 6.3 Partitioning of biomass between shoots and recovered roots plus nodules. (A) Variety by Herbicide interaction (p<0.001, lsd5% = 0.020). (B) Main effect of inoculation treatment (p<0.001, lsd5% = 0.023). Bars indicate standard error of mean. 159

Figure 6.12 Effects of chlorsulfuron (bottom row) on the shoots of Herald (left) and FEH-1 (right) plants compared to zero herbicide controls (top row)......173

Figure 6.14 (A) Relationship between shoot dry weight and acetylene reduction activity, grouped by herbicide treatment. Parallel lines grouped by herbicide accounted for 76.5% of the variation. A common coefficient of 0.0988 (p<0.001), and constants of 0.1211 (p<0.001) for unsprayed and 0.0672 (p<0.001) for sprayed plants provided the best model. (B) Relationship between shoot dry weight and acetylene reduction activity, grouped by variety. Separate lines grouped by variety accounted for 72.8% of the variation. FEH-1 had a constant of 0.0875 (p<0.001) and a coefficient of 0.1058 (p<0.001), whereas Herald had a constant of 0.0655 (p<0.001) and a coefficient of 0.1913 (p<0.001). (C) Relationship between the total plant nitrogen, and acetylene reduction activity per inoculated plant, grouped by variety. For FEH-1, a constant of 5.6 (p<0.001) and a regression coefficient of 4.9 (p<0.001). For Herald, a constant of 4.4 (p<0.001) and a coefficient of 9.83 (p<0.001). 77% of the variation accounted for.

Figure 7.4 Methylene blue stained root tips of *Medicago truncatula* A17 grown on agar plates with no herbicide (O), flumetsulam (F) and metsulfuron methyl (M). A functioning meristem is evident in the control root, with a concentration of small undifferentiated cells. No meristem is evident in the herbicide treated roots, and the vascular bundle extends to the root tip. Loss of the root cap can also be seen. Dark staining structures in the epidermal cells of the flumetsulam treated root are evident. 200

Figure 7.6 *Medicago truncatula* A17 grown on agar plates for 18 days with no herbicide (O), flumetsulam (O) and metsulfuron methyl (M). Note the differences in primary root lengths, and the number and length of lateral roots. Plates are 15cm in diameter......202

Figure 7.7 The number of visible lateral roots (>1 mm) of 18 day old plants grown on agar plates without herbicide (O), with flumetsulam in the media (F) and with metsulfuron methyl in the media (M). Bars indicate the standard error of the mean. .203

Figure 7.8 2-dimensional gels of proteins extracted from *Medicago truncatula* A17 grown on agar plates with no herbicide (O), flumetsulam (F) and metsulfuron methyl(M). The first dimension (horizontal) separates proteins based on their isoelectric point(4-7). Separation on the second dimension (vertical) is based in protein size......204

List of tables

Table 2.1 Group B (acetohydroxyacid synthase inhibiting) herbicides (Weedscience). 31
Table 2.2 ALS/AHAS isozymes in E. coli from Chipman et al. (1998) 39
Table 2.3 Effects of imazethapyr, flumetsulam, chlorsulfuron, triasulfuron and metsulfuron methyl on pasture and grain legumes 51
Table 3.1 Recommended application rates of herbicide as the commercial formulation (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike herbicide and imazamox 70% w/w as Raptor herbicide) and the amounts of commercial formulation used in the rhizobia cultures

Table 3.5 Treatment effects and interactions for the chickpea / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are

Table 3.7 Treatment effects and interactions for the pea / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%......90

Table 4.2 Recommended application rates of herbicide as the commercial formulation (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike

Table 6.1 Inoculation treatments	15	5]	1
----------------------------------	----	----	---

Table 6.4 Significant main effects and interactions between variety, rhizobia and herbicide treatments on nodulation (p<0.05) as determined by analysis of variance.

Table 6.5 Significant main effects and interactions of variety, rhizobia and herbicide treatments on acetylene reduction activity and amount of nitrogen fixed (p<0.05) as determined by analysis of variance. *Trends of interest are shown in parentheses. Where interactions are significant, the individual main effects are not presented. 169

Acronyms and abbreviations

a.i.	active ingredient
A500	absorbance at 500nm
AA	amino acid
AHAS	acetohydroxyacid synthase
AHASIH	acetohydroxyacid synthase inhibiting herbicide
ALS	acetolactate synthase
ANOVA	analysis of variance
AOX	alternative oxidase
BCAA	branched chain amino acid
BNF	biological nitrogen fixation
CFU	colony forming units
cs	chlorsulfuron
DNA	deoxyribonucleic acid
ELISA	enzyme-linked immunosorbent assay
F	flumetsulam
FAD	flavin adenine dinucleotide
GST	glutathione s-transferase
IM	imazethapyr
IX	imazamox
LSD	least significant difference
MM	metsulfuron methyl
N	nitrogen
N ₂	molecular nitrogen
[N]	nitrogen concentration
na	not applicable
ns	not significant
PAL	phenylalanin ammonia-lyase
PBS	phosphate buffered saline
ppm	parts per million
PSPE	post-sowing pre-emergence
RBP	RuBisCO binding protein
REML	restricted maximal likelihood
RNA	ribonucleic acid
rpm	revolutions per minute
RuBisCO	ribulose bisphosphate carboxylase
SU	sulfonylurea
TAL	tyrosine ammonia-lyase

Scientific and common names

Legumes	
Cicer arietinum	chickpea
Glycine max	soybean
Lens culinaris	lentil
Lupinus albus	lupin
Medicago littoralis	strand medic
Medicago sativa	lucerne, alfalfa
Medicago truncatula	barrel medic
Ornithopus compressus	serradella
Pisum sativum	field pea
Trifolium michelianum	balansa clover
Trifolium subterraneum	subterraneum clover
Vicia faba	faba bean
Vicia sativum	vetch
Other plants	
Amsinckia intermedia	burrweed
Arachis hypogaea	peanuts
Capsella bursa-pastoris	shepherd's purse
Carthamus lanatus	thistle
Erodium spp	storksbill
Galium tricornutum	three-horned bedstraw
Juncus bufonius	toad rush
Lathyrus	lathyrus
Lemna minor	duckweed
Rapistrum rugosum	wild turnip, turnip weed
Raphanus raphanistrum	wild radish
Sisymbrium orientale	Indian hedge mustard
Trigonella foenum-graecum	fenugreek
Urtica incisa	pettle
	neme

Abstract

Group B herbicides inhibit the acetohydroxyacid synthase (AHAS - also known as acetolactate synthase) enzyme in the pathway of branched chain amino acid synthesis. These herbicides have gained widespread use in Australia, however potential impacts on nitrogen fixation by legumes have not been comprehensively assessed. Group B herbicides recommended for in-crop application to grain and pasture legume species were assessed for impacts on growth, nodulation and nitrogen fixation. Although it was demonstrated that nitrogen fixation can be affected by these herbicides, the range of responses indicated that multiple mechanisms could be responsible. These could include a reduction nitrogen fixation directly coupled to reduced plant growth; more specific and direct disruption of nitrogen fixation related to the inhibition of nodulation; or other mechanisms yet to be defined that could include affects on the rhizobia. To begin to understand these mechanisms, a herbicide tolerant *Medicago littoralis* cultivar 'FEH-1' was compared to Herald. Decreased nodulation, nitrogen fixation and acetylene reduction activity due to herbicide application were primarily related to the susceptibility of the plant to the herbicide. Thus herbicide tolerant legumes have the potential to alleviate suboptimal nitrogen fixation due to group B herbicides. A proteomics study of the response of root tips of model legume Medicago truncatula A17 to flumetsulam and metsulfuron methyl was conducted to identify more specifically the herbicide impacts on plant physiology. An increased abundance of stress response proteins and a decline in the abundance of some metabolic proteins was found, including a reduction in the abundance of glutamine synthetase which is expected to have direct consequences for the regulation of nitrogen fixation. Observations of root morphology revealed changes to root hairs and the development of lateral roots related to the disruption of meristems, with likely consequences for infection and nodule development. The results from this thesis confirm the potential for acetohydroxyacid synthase inhibiting herbicides to reduce nitrogen fixation of legumes. In addition to a general effect on nitrogen fixation via coupling to reduced plant growth, more specific biochemical and morphological mechanisms that disrupt nodulation are plausible.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying

Ryan Farquharson

July 2009

Acknowledgements

Grains Research and Development Corporation, CSIRO Land and Water and the University of Adelaide are gratefully acknowledged for funding and facilitating this project.

Barry Rolfe and the ARC Centre of Excellence for Integrative Legume Research supported the proteomics work. The technical assistance of Peta Holmes in particular is much appreciated.

Technical assistance from Belinda Harris, Liang Guo, Guangmei Zhang, Marie O'Hanlon, Maryam, Felicity Brake and Andrew Patterson made the arduous tasks less arduous. Colin Rivers provided assistance with Kjeldahl digests, the autosampler and general help around the university laboratory and field lab. Neil Schubert provided assistance around the SARDI lab and glasshouse. Andreas Flench and Paul Ingram from SARDI glasshouse services assisted with soil and glasshouse logistics.

Herbicides were provided by Dow Agroscience Australia and Robert Dorigo (Broadstrike, flumetsulam), Dupont Australia (chlorsulfuron and metsulfuron methyl), BASF Australia (imazethapyr as Spinnaker, imazamox as Raptor).

Chris Preston and group for access to the herbicide spraying facility, technical grade chlorsulfuron, advice on ALS assays.

Greg Gemmel and Elizabeth Hartley, ALIRU for providing authenticated, true to type rhizobia strains.

SARDI seed services provided legume seed.

Jake Howie and John Heap are acknowledged for their advice on FEH-1 and together with Ram Nair provided access to the new cultivar. Nigel Charman for input into the FEH-1 experiment.

I thank Annette Anderson for helping get my feet on the ground in a new city, and provision of references and advice at the start of the project.

Elizabeth Drew can't be thanked enough for assistance with acetylene reduction assays, out of hours help, advice and comments on the thesis and emotional support along the way.

Gupta Vadakattu and David Roget are acknowledged for their general advice on herbicides and N_2 fixation, particularly in the field.

Many thanks to Prof. John Howieson for his thorough and constructive examination of my thesis which resulted in a number of improvements.

Steve Wakelin, Naomi Gray, Tanja Jankovic, Adrienne Greg – cohabitants of the Taylor lab and Sally Smith, Rob Murray, Cameron Grant, Debbie Miller, Murray Unkovich and Annie McNeil from the University, thanks for your help and smiling faces along the way.

Adelaide Creek – I liked it so much I decided to stay.

Jeff Baldock, Ross Ballard, Steve Rogers - the most patient of supervisors. Thanks for your guidance and your generosity with your time and expertise.

The special people you meet along the way:

Warwick Dougherty and Therese McBeath, the office buddies now friends for life. Told you I'd finish.

The Prescott group (an outlet for healthy cynicism) Various flat mates – the good (Therese, Karen, Jon), the brotherly (Jean-Patrick), the welcoming (Myrna) and the insane.

The Fernandez family for a home away from home.

And last but not least, my family.

To my wífe.

They told us to collaborate...

And we did.