THE DEVELOPMENT OF A RAINFALL-RUNOFF-ROUTING (RRR) MODEL

DAVID J. KEMP

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF ADELAIDE

CONTENTS

1.	IN	TRODUCTION	1
	1.1	The Need	1
	1.2	Objectives	4
	1.3	Methodology	5
	1.4	Content	6
2.	Α	REVIEW OF STORM RUNOFF MODELS	8
	2.1	Introduction	8
	2.2	Early Models – The Unit Hydrograph	9
	2.3	Accounting for Spatial Variability	10
	2.4	Runoff Routing Models	10
	2.5	Hydrodynamic Models	14
	2.6	Convoluted Unit Hydrograph Models	17
	2.7	Future Directions	19
	2.8	Summary	20
3.	D	ESCRIPTION OF THE MODELS	21
	3.1	Introduction to Modelling	21
	3.2 3.2 3.2 3.2 3.2 3.2 3.2	2.2 Rainfall Definition	22 23 23 24 26 27 27
	3.3 3.3 3.3 3.3 3.3 3.3 3.3	 The Runoff Routing Module Rainfall Loss Module Reservoir Routing Module 	28 29 32 32 32 33

	3.	RORB4.1Background of the RORB Model4.2RORB Model Procedure4.3Calibrating the RORB Model	34 34 34 36
	3.	WBNM.5.1Background of the WBNM Model.5.2Catchment Sub-Division and Storage Allocation.5.3Loss Model	36 36 37 38
	3. 3.	KINDOG.6.1Background of the KINDOG model.6.2KINDOG Model Structure.6.3Loss Model.6.4Calibration	38 38 40 41
4.	R	RELATIONSHIPS BETWEEN THE MODELS	42
	4.1	Relationship of the Storage Parameters in RORB and RAFTS	42
	4.	Relationship Between the Storage Lags in RAFTS and ILSAX2.1The basis of the RAFTS Lag parameter B2.2Derivation of the RAFTS Lag Parameter B, Based on ILSAX2.3Flows In Excess of the Pipe System Capacity	44 44 49 53
	4.3	Relationship Between RORB and WBNM	54
	4.4	Summary	54
5.	E	FFECT OF MODEL STRUCTURE ON PREDICTED FLOWS	56
	5.1	Introduction	56
	5.1 5.2	Introduction Previous Investigations	56 57
	5.2 5.3 5.3		
	5.2 5.3 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Previous Investigations Theoretical Investigation of the Effect of the Number of Sub-areas in a WBNM Model 3.1 Introduction 3.2 The Ratio α	57 59 59 60
	5.2 5.3 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Previous Investigations Theoretical Investigation of the Effect of the Number of Sub-areas in a WBNM Model 3.1 Introduction 3.2 The Ratio α 3.3 Summary RAFTS 4.1 Introduction 4.2 Confirming the Effect 4.3 The Reasons for the Effect	57 59 60 65 66 66 68 70
6.	5.2 5.3 5.3 5.4 5.4 5.5 5.5 5.5	Previous Investigations Theoretical Investigation of the Effect of the Number of Sub-areas in a WBNM Model 3.1 Introduction 3.2 The Ratio α 3.3 Summary PAFTS 4.1 Introduction 4.2 Confirming the Effect 4.3 The Reasons for the Effect 4.4 The Implications	 57 59 60 65 66 68 70 74
6.	5.2 5.3 5.3 5.4 5.4 5.5 5.5 5.5	Previous Investigations Theoretical Investigation of the Effect of the Number of Sub-areas in a WBNM Model 3.1 Introduction 3.2 The Ratio α 3.3 Summary PAFTS 4.1 Introduction 4.2 Confirming the Effect 4.3 The Reasons for the Effect 4.4 The Implications Summary	 57 59 60 65 66 68 70 74 77

e	5.2.4 Frederick Street Catchment Summary	89
	Paddocks Catchment5.3.1The ILSAX Model5.3.2The Storms Modelled5.3.3Initial Calibration5.3.4Calibration with PEST5.3.5Paddocks Catchment Summary	89 91 92 92 94 98
6.4	Conclusions	98
7. I	RAFTS MODELLING OF SOUTH AUSTRALIAN CATCHMENTS	100
7.1	Introduction	100
7.2	Rural Catchments - Single Node Model	101
	Glenelg Catchment7.3.1Frederick Street7.3.2Maxwell Terrace and Torrens Square	102 103 105
7.4	Paddocks Catchment	107
7.5	Happy Valley Catchments	109
7.6	Comparison of Urban Bi Values With Theoretical Values	113
7.7	Conclusions	114
8.	THE RRR MODEL	116
8. 8.1	THE RRR MODEL Introduction	116 116
8.1 8.2		
8.1 8.2	Introduction The Limitations of RORB, WBNM and RAFTS 3.2.1 RORB 3.2.2 WBNM	116 116 116 117
8.1 8.2 8.3 8.3 8.4	Introduction The Limitations of RORB, WBNM and RAFTS 3.2.1 RORB 3.2.2 WBNM 3.2.3 RAFTS	116 116 117 117
8.1 8.2 8.3 8.4 8.5	Introduction The Limitations of RORB, WBNM and RAFTS 3.2.1 RORB 3.2.2 WBNM 3.2.3 RAFTS Storage Lag in Runoff Routing Models The Evidence for Runoff Process Related Storage Lag 3.4.1 Investigations into Channel Storage as a Representation of Catchment Storage 3.4.2 The Lidsdale Catchments	 116 116 117 117 118 123 126
8.1 8.2 8.3 8.4 8.5	Introduction The Limitations of RORB, WBNM and RAFTS 3.2.1 RORB 3.2.2 WBNM 3.2.3 RAFTS Storage Lag in Runoff Routing Models The Evidence for Runoff Process Related Storage Lag 3.4.1 Investigations into Channel Storage as a Representation of Catchment Storage 3.4.3 The Lidsdale Catchments 3.4.3 The Common Unitgraph The RRR Model (Single Sub-catchment) 3.5.1 Identified Runoff Processes	 116 116 117 117 118 123 126 128 128 131
8.1 8.2 8.3 8.3 8.4 8.5 8.5	Introduction The Limitations of RORB, WBNM and RAFTS 3.2.1 RORB 3.2.2 WBNM 3.2.3 RAFTS Storage Lag in Runoff Routing Models The Evidence for Runoff Process Related Storage Lag 3.4.1 Investigations into Channel Storage as a Representation of Catchment Storage 3.4.2 The Lidsdale Catchments 3.4.3 The Common Unitgraph The RRR Model (Single Sub-catchment) 3.5.1 Identified Runoff Processes 3.5.2 Other Models	 116 116 117 117 118 123 126 128 128 131 136

	8.9 Su	Immary of Trial Application of the RRR Model	149
	8.10 8.10.1 8.10.2	5	150 150 151
		The RRR Model - Multiple Sub - CatchmentsRural CatchmentsUrban CatchmentsMixed Urban and Rural Catchments	151 152 157 158
	8.12	Conclusions	158
9.	CON	FIRMATION OF THE RRR MODEL	160
	9.1 Ini	troduction	160
	9.2 Ur 9.2.1 9.2.2 9.2.3 9.2.4	Jamison Park	161 162 165 169 174
	9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9 9.3.10 9.3.11 9.3.12	Comparison With KINDOG and RORB The Influence of Model Complexity	175 175 176 183 184 189 196 201 208 215 221 228 235 236
10		RR MODEL PARAMETERS AND CATCHMENT CHARACTERISTICS	230
	10.1	Introduction	238
	10.2 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7	 Lenswood Creek Aldgate Creek Western Branch Woodside Weir First Creek 	238 239 241 242 243 243 244
	10.3 Slope	Correlation of Storage Parameters with Catchment Area, Mainstream Length and Ec 244	jual Area
	10.4 10.4.1	Correlation with Other Catchment Characteristics Storage Parameters	247 251

10.4.1	Storage Parameters	
--------	--------------------	--

10.4	4.2 Losses	254
10.5	Comparison of RRR Flows and Flood Frequency Analysis	256
10.6	Derivation of Design Losses and Correlation with Catchment Characteristics	263
10.7	Summary	266
11.	APPLICATION OF THE RRR MODEL	269
11.1	Introduction	269
11.2 11.3	Keswick Creek 2.1 The Advantages of the RRR Model 2.2 Approach 2.3 Features of the Catchment Incorporated in the Model 2.4 Parameters 2.5 Model Calibration 2.6 Model Verification 2.7 Model Results Brownhill Creek 3.1 Introduction 3.2 Approach 3.3 Features of the Catchment Incorporated in the Model 3.4 Parameters 3.5 Model Calibration and Verification 3.6 Flood Frequency Analysis at Scotch College 3.7 Other Historical Evidence 3.8 Selection of Design Loss Parameters	270 271 272 273 277 282 286 292 293 293 294 295 296 297 299 302 303 308 308
11.4	Probable Maximum Flood (PMF)	309
11.5	The Olary Floods	313
11.6	Summary	317
12.	SUMMARY AND CONCLUSIONS	318
Summ	ary	318
RRR a	s an Appropriate Model	319
Functionality Is There a Simpler Structure? The Number of Parameters		319 320 321
The fa	ctors that Affect Catchment Response	323
Eve Cor	tions of RRR and Further Work Required ent Versus Continuous Modelling relation with Catchment Characteristics chment Scale	324 324 324 324
Origin	al Findings and their Implications	325

Conclusions		326
13. REFER	RENCES	328
APPENDIX 1	Electronic Files Associated with the Thesis	
APPENDIX 2	Glenelg Catchment ILSAX Calibration Results	
APPENDIX 3	Paddocks Catchment ILSAX Calibration Results	
APPENDIX 4	Glenelg Catchment RAFTS Calibration Results	
APPENDIX 5	Paddocks Catchment RAFTS Calibration Results	
APPENDIX 6	Happy Valley RAFTS Calibration Results	
APPENDIX 7	Urban Catchments RRR Verification Results	
APPENDIX 8	Rural catchments RRR Verification	
APPENDIX 9	RRR Model Parameter Correlations	
APPENDIX 10	Keswick and Brownhill Creeks	
APPENDIX 11	Papers Published Relating to Thesis	

FIGURES

Figure 3-1 ILSAX Infiltration Curves (after O'Loughlin, 1993)	24
Figure 3-2 RAFTS Model Structure (after WP Software, 1994)	29
Figure 4-1 Measured Bi Parameter for Urban Areas	47
Figure 4-2 Comparison of RAFTS Bi and Bufill and Boyd Bi	48
Figure 5-1 Location of the Aroona Dam Catchment	63
Figure 5-2 RORB Model Layout for the Aroona Dam Catchment	64
Figure 5-3 Aroona Creek Catchment $lpha$ Values	65
Figure 5-4 Aldgate Creek 17/6/77 Showing the Effect of Number of Nodes in the RAFTS Mod	el66
Figure 5-5 Aldgate Creek RAFTS Sub-division	68
Figure 5-6 Aldgate Creek RAFTS Model Ratio of Peak Flow to Peak Flow for One Node Mod	el 69
Figure 5-7 Aldgate Creek RAFTS Model Ratio of Time to Peak with Time to Peak for One Nor	de
Model	69
Figure 5-8 Aldgate Creek - RAFTS Model Results Showing the Effect of the Number of Nodes	s 70
Figure 5-9 Aroona Dam 24/12/88, Best Fit BX = 0.46	76
Figure 5-10 Windy Creek 24/12/88, BX = 0.46	76
Figure 5-11 Windy Creek 24/12/88, Best Fit BX = 0.35	77
Figure 6-1 Location of the Glenelg and Paddocks Catchments	79
Figure 6-2 The Glenelg Catchment (after Argue et al, 1994)	80
Figure 6-3 View of the Glenelg Catchment	81
Figure 6-4 Frederick Street, Glenelg Catchment Storms Runoff Ratio	87
Figure 6-5 Frederick Street, Storm of 18/12/92	89
Figure 6-6 Frederick Street Catchment ILSAX Results	89
Figure 6-7 Paddocks Catchment (after Engineering & Water Supply Dept, 1993)	90
Figure 6-8 View of the Paddocks Catchment	91
Figure 6-9 Paddocks Catchment Volumetric Runoff	93
Figure 6-10 Paddocks Catchment Initial ILSAX Results	94
Figure 6-11 Paddocks Catchment ILSAX Fitted by PEST on Storm 30/08/93	97
Figure 6-12 Paddocks Catchment ILSAX Results When Fitted by PEST	98
Figure 7-1 Frederick Street, Glenelg RAFTS fit for 3/07/92	105

Figure 7-2 Paddocks Catchment RAFTS fit 08/10/92	108
Figure 7-3 Sauerbier Creek Catchment	109
Figure 7-4 View of the Sauerbier Creek Catchment	110
Figure 7-5 Sauerbier Creek Model Layout	110
Figure 7-6 RAFTS Model fit for Sauerbier Creek 13/12/93	112
Figure 8-1 Travel Time Results and Catchment for Research Creek (After Pilgrim, 1982)	125
Figure 8-2 Structure of the RRR Model	131
Figure 8-3 Runoff Generation Mechanisms (after Jayatilaka & Connell, 1996)	133
Figure 8-4 Schematic Showing Capillary Fringe Mechanism, (a) prior to rainfall, (b) shortly af	ter
onset (after Jayatilaka & Connell, 1996)	134
Figure 8-5 The RRR Model in XP-RAFTS Format	138
Figure 8-6 Catchments Chosen for Initial RRR Modelling	140
Figure 8-7 Aldgate Creek, 1973 Event	141
Figure 8-8 Aldgate Creek Catchment	142
Figure 8-9 RRR Model Applied to Aldgate Creek	143
Figure 8-10 Comparison of RORB and RRR on Aldgate Creek	144
Figure 8-11 Kanyaka Creek March 1989	145
Figure 8-12 Kanyaka Creek Catchment	146
Figure 8-13 RRR Model Applied to Kanyaka Creek	147
Figure 8-14 Kanyaka Creek March 1989, Comparison of RORB and RRR	148
Figure 8-15 RRR Model Applied to Glenelg Catchment	149
Figure 8-16 Aldgate Creek RRR Model Sub-division	155
Figure 8-17 Comparison of RRR and RAFTS Models - Aldgate Creek	156
Figure 8-18 Comparison of RRR and RAFTS Models - Aldgate Creek	156
Figure 9-1 Glenelg Catchment RRR Results	165
Figure 9-2 Glenelg Catchment RRR Fit 03/07/92	165
Figure 9-3 Paddocks Catchment - RRR Fit for Storm of 21/05/93	166
Figure 9-4 Paddocks Catchment - RRR Fit for Storm of 19/12/92 (Omitted)	167
Figure 9-5 Paddocks Catchment RRR Results	168
Figure 9-6 Location of the Jamison Park Catchment	169
Figure 9-7 View of the Jamison Park Catchment	169
Figure 9-8 Jamison Park RRR Results	173
Figure 9-9 Jamison Park RRR Fit 21/03/83	174

Figure 9-11 Nount Lofty Ranges Catchments Locations176Figure 9-12 Celia Creek Catchment Location176Figure 9-13 Bura Creek Catchment Location176Figure 9-13 Bura Creek Catchment Location176Figure 9-14 Typical Hydrograph Data Obtained for Each Storm Event178Figure 9-16 River Torrens Catchment185Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River RRR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-19 Torrens River Verification Hydrographs190Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catchment194Figure 9-23 Inverbrackie Creek Verification Results195Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Catchment196Figure 9-28 Echunga Creek Verification Results199Figure 9-31 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Catchment209Figure 9-35 Scott Creek Catchment209Figure 9-35 Scott Creek Catchment209Figure 9-36 Celia Creek Verification Results - 1 Pluviometers206Figure 9-37 Celia Creek Catchment209Figure 9-39 Celia Creek Catchment209Figure 9-30 Celia Creek Verifi	Figure 9-10 Comparison of ILSAX and RRR on Jamison Park Catchment	174
Figure 9-12 Cella Creek Catchment Location176Figure 9-13 Burra Creek Catchment Location176Figure 9-14 Typical Hydrograph Data Obtained for Each Storm Event178Figure 9-15 View of the Torrens Catchment185Figure 9-16 River Torrens Catchment185Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River Calibration Hydrographs188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catchment190Figure 9-23 Inverbrackie Creek Verification Hydrographs193Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-25 Lehunga Creek Verification Results199Figure 9-26 Echunga Creek Verification Results199Figure 9-32 Scott Creek Verification Hydrographs200Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-35 Scott Creek Verification Results - 1 Pluviometers206Figure 9-35 Scott Creek Catchment209Figure 9-35 Scott Creek Verification Results213Figure 9-37 Celia Creek Catchment209Figure 9-37 Celia Creek Catchment209Figure 9-37 Celia Creek Catchment209 </td <td></td> <td></td>		
Figure 9-13 Burra Creek Catchment Location176Figure 9-14 Typical Hydrograph Data Obtained for Each Storm Event178Figure 9-15 View of the Torrens Catchment185Figure 9-16 River Torrens Catchment185Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River RR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catchment190Figure 9-23 Inverbrackie Creek Verification Hydrographs193Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Verification Results199Figure 9-27 Echunga Creek Catchment196Figure 9-27 Echunga Creek Verification Results199Figure 9-28 Echunga Creek Verification Results199Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Catchment209Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Catchment201Figure 9-36 Celia Creek Verification Hydrographs201Figure 9-37 Celia Creek Catchment209Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Cr		
Figure 9-14 Typical Hydrograph Data Obtained for Each Storm Event178Figure 9-15 View of the Torrens Catchment185Figure 9-16 River Torrens Catchment185Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River RR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catchment190Figure 9-23 Inverbrackie Creek Verification Hydrographs193Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Catchment196Figure 9-27 Echunga Creek Catchment198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-33 Scott Creek Verification Result - 2 Pluviometers206Figure 9-33 Scott Creek Catchment207Figure 9-34 Scott Creek Verification Hydrographs207Figure 9-35 Scott Creek Verification Result - 2 Pluviometer205Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Catchment209Figure 9-30 Celia Creek Catchment205Figure 9	5	
Figure 9-15 View of the Torrens Catchment185Figure 9-16 River Torrens Catchment185Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River RR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Calibration Hydrographs193Figure 9-22 Inverbrackie Creek Verification Hydrographs194Figure 9-23 Inverbrackie Creek Verification Results195Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Catchment196Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results199Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-33 Scott Creek Catchment205Figure 9-34 Scott Creek Verification Results - 1 Pluviometer205Figure 9-35 Scott Creek Catchment209Figure 9-35 Scott Creek Catchment209Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Catchment212Figure 9-36 Celia Creek Catchment212Figure 9-37 Celia Creek Catchment213Figure 9-38 Celia Creek Catchment214Figure	с С	
Figure 9-17 Torrens River Calibration Hydrographs187Figure 9-18 Torrens River RRR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catibration Hydrographs193Figure 9-22 Inverbrackie Creek Verification Hydrographs194Figure 9-23 Inverbrackie Creek Verification Results195Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Cathment196Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-33 Scott Creek Verification Results - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs212Figure 9-36 Celia Creek Verification Hydrographs212Figure 9-37 Celia Creek Cathment209Figure 9-38 Celia Creek Verification Hydrographs212Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Ce		185
Figure 9-18 Torrens River RRR Verification Results188Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Calibration Hydrographs193Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Calibration Hydrographs198Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results199Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Calibration Hydrographs204Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Results - 1 Pluviometer206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Verification Results - 1 Pluviometers206Figure 9-37 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs215Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-30 Celia Creek Verification Hydrog	Figure 9-16 River Torrens Catchment	185
Figure 9-19 Torrens River Verification Hydrographs189Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Calibration Hydrographs193Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Catchment198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Results - 1 Pluviometer205Figure 9-36 Celia Creek Verification Results - 2 Pluviometers207Figure 9-37 Celia Creek Verification Results - 2 Pluviometers206Figure 9-36 Celia Creek Verification Results213Figure 9-37 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Results213Figure 9-30 View of the Burra Creek Catchment215Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-17 Torrens River Calibration Hydrographs	187
Figure 9-20 View of the Inverbrackie Creek Catchment190Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Catlibration Hydrographs193Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-25 Lechunga Creek Catchment196Figure 9-26 Echunga Creek Catlibration Hydrographs198Figure 9-27 Echunga Creek Calibration Hydrographs199Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results199Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-35 Scott Creek Verification Hydrographs206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Verification Hydrographs207Figure 9-37 Celia Creek Catchment209Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-18 Torrens River RRR Verification Results	188
Figure 9-21 Inverbrackie Creek Catchment190Figure 9-22 Inverbrackie Creek Calibration Hydrographs193Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Hydrographs206Figure 9-35 Scott Creek Catchment207Figure 9-36 Celia Creek Verification Hydrographs207Figure 9-37 Celia Creek Cathment209Figure 9-38 Celia Creek Verification Hydrographs212Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-19 Torrens River Verification Hydrographs	189
Figure 9-22 Inverbrackie Creek Calibration Hydrographs193Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Calibration Hydrographs204Figure 9-32 Scott Creek Calibration Results - 1 Pluviometer205Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Calibration Hydrographs207Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-20 View of the Inverbrackie Creek Catchment	190
Figure 9-23 Inverbrackie Creek Verification Hydrographs194Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-24 Inverbrackie Creek Verification Results196Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catibration Hydrographs198Figure 9-27 Echunga Creek Verification Results199Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Catchment209Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Verification Results212Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-21 Inverbrackie Creek Catchment	190
Figure 9-24 Inverbrackie Creek Verification Results195Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Catchment202Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Catchment209Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Verification Results212Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-22 Inverbrackie Creek Calibration Hydrographs	193
Figure 9-25 View of the Echunga Creek Catchment196Figure 9-26 Echunga Creek Catibration Hydrographs198Figure 9-27 Echunga Creek Calibration Hydrographs199Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catibration Hydrographs204Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Results - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Verification Hydrographs207Figure 9-37 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-23 Inverbrackie Creek Verification Hydrographs	194
Figure 9-26 Echunga Creek Catchment196Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Results200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Calibration Hydrographs207Figure 9-37 Celia Creek Calibration Hydrographs213Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-24 Inverbrackie Creek Verification Results	195
Figure 9-27 Echunga Creek Calibration Hydrographs198Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Calibration Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Calibration Hydrographs207Figure 9-36 Celia Creek Calibration Hydrographs207Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-25 View of the Echunga Creek Catchment	196
Figure 9-28 Echunga Creek Verification Results199Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Calibration Hydrographs207Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-39 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-26 Echunga Creek Catchment	196
Figure 9-29 Echunga Creek Verification Hydrographs200Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Verification Hydrographs209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-27 Echunga Creek Calibration Hydrographs	198
Figure 9-30 View of the Scott Creek Catchment202Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Verification Hydrographs209Figure 9-37 Celia Creek Catchment209Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-28 Echunga Creek Verification Results	199
Figure 9-31 Scott Creek Catchment202Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-29 Echunga Creek Verification Hydrographs	200
Figure 9-32 Scott Creek Calibration Hydrographs204Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-30 View of the Scott Creek Catchment	202
Figure 9-33 Scott Creek Verification Results - 1 Pluviometer205Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-31 Scott Creek Catchment	202
Figure 9-34 Scott Creek Verification Result - 2 Pluviometers206Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-32 Scott Creek Calibration Hydrographs	204
Figure 9-35 Scott Creek Verification Hydrographs207Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-33 Scott Creek Verification Results - 1 Pluviometer	205
Figure 9-36 Celia Creek Catchment209Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-34 Scott Creek Verification Result - 2 Pluviometers	206
Figure 9-37 Celia Creek Calibration Hydrographs212Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-35 Scott Creek Verification Hydrographs	207
Figure 9-38 Celia Creek Verification Results213Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-36 Celia Creek Catchment	209
Figure 9-39 Celia Creek Verification Hydrographs214Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-37 Celia Creek Calibration Hydrographs	212
Figure 9-40 View of the Burra Creek Catchment215Figure 9-41 Burra Creek Catchment216	Figure 9-38 Celia Creek Verification Results	213
Figure 9-41 Burra Creek Catchment216	Figure 9-39 Celia Creek Verification Hydrographs	214
5	Figure 9-40 View of the Burra Creek Catchment	215
Figure 9-42 Burra Creek Calibration Hydrographs218	Figure 9-41 Burra Creek Catchment	216
	Figure 9-42 Burra Creek Calibration Hydrographs	218

Figure 9-43 Burra Creek Verification Results	218
Figure 9-44 Burra Creek Verification Hydrographs	220
Figure 9-45 Burra Creek Verification 12/04/89 With Parameters from 09/04/89	221
Figure 9-46 Inverbrackie Creek KINDOG and RORB Calibration Results	224
Figure 9-47 KINDOG API - Initial Loss Relationship	225
Figure 9-48 Inverbrackie Creek RRR, KINDOG and RORB Verification Results	227
Figure 9-49 Model 1 (left) and Model 2	229
Figure 9-50 Model 3	229
Figure 9-51 Model 5	230
Figure 9-52 Event 7/10/92 - Effect of Model Complexity	232
Figure 9-53 Event 13/09/92 - Effect of Model Complexity	232
Figure 9-54 Event 22/06/87 - Effect of Model Complexity	233
Figure 9-55 Event 21/07/95 - Effect of Model Complexity	233
Figure 9-56 Event 23/05/88 - Effect of Model Complexity	234
Figure 9-57 Event 02/08/96 - Effect of Model Complexity	234
Figure 9-58 Sample Parameter Entry for the Spreadsheet Model	235
Figure 9-59 Sample Plotted Hydrographs from the Spreadsheet Model	236
Figure 10-1 Mount Lofty Ranges Catchments	238
Figure 10-2 Correlation of Characteristic Storage Parameters with Catchment Area	246
Figure 10-3 Correlation of Characteristic Velocity with Catchment Area and Equal Area Slope	e 246
Figure 10-4 Correlation of cp1 and cp2	247
Figure 10-5 Comparison of Calibrated RRR Model and Flood Frequency Flows	263
Figure 11-1 Keswick Creek at Goodwood Road, October 1997	270
Figure 11-2 Keswick Creek Catchment with the RRR Model Sub-areas	271
Figure 11-3 Rainfall (mm) Recorded for Storm of 31/10/97	288
Figure 11-4 Keswick Creek Maximum Potential Flow - 50 year ARI	293
Figure 11-5 Keswick Creek Maximum Potential Flow - 100 year ARI	293
Figure 11-6 Keswick Creek Maximum Potential Flow - 200 year ARI	293
Figure 11-7 Brownhill Creek Catchment (After ID&A, 1998)	294
Figure 11-8 Brownhill Creek at Scotch College Flood Frequency	301
Figure 11-9 Scotch College RRR Model Sensitivity Check	304
Figure 11-10 Brownhill Creek Maximum Potential Flow - 50 Year ARI	309
Figure 11-11 Brownhill Creek Maximum Potential Flow - 100 Year ARI	309

Figure 11-12 Brownhill Creek Maximum Potential Flow - 200 Year ARI	309
Figure 11-13 Brownhill Creek PMF	312
Figure 11-14 Location of the Olary Creek Catchment	313
Figure 11-15 Olary Creek at Wawirra, on the Broken Hill Road, February 1997	314
Figure 11-16 Olary Creek Hydrograph and RRR Prediction	315

TABLES

Table 3-1 Definition of AMC in ILSAX	25
Table 4-1 Lag Parameters for Urban Catchments, from Bufill and Boyd (1992)	47
Table 5-1 Expected Values of the Ratio α For Two Sub-Catchments	62
Table 5-2 Aroona Dam Catchment $lpha$	64
Table 6-1 Glenelg Catchment, Monitoring Stations	81
Table 6-2 GUT factors determined for the Glenelg catchment.	84
Table 6-3 Frederick Street Catchment Storms Modelled for 1992 and 1993	86
Table 6-4 Frederick Street Catchment - Summary of Sensitivity Runs.	87
Table 6-5 Frederick Street Catchment - Summary of ILSAX Fitting	88
Table 6-6 Paddocks Catchment, Monitoring Stations	91
Table 6-7 Storms Modelled in the Paddocks Catchment.	93
Table 6-8 Paddocks Catchment ILSAX Fit, No Sensitivity Adjustment	94
Table 6-9 Paddocks Catchment Results of PEST Calibration of ILSAX	96
Table 6-10 Paddocks Catchment ILSAX Fits With Mean Parameter Values From PEST	97
Table 7-1 Catchments and Events for Comparison of RORB and RAFTS	101
Table 7-2 Comparison of RAFTS and RORB on Rural Catchments	102
Table 7-3 Summary of RAFTS Fits for the Frederick St Catchment.	104
Table 7-4 RAFTS fits for Maxwell Terrace and Torrens Square	107
Table 7-5 Paddocks Catchment RAFTS Fits	108
Table 7-6 Saubier Creek Storms Fitted	111
Table 7-7 Saubier Creek Fitted Parameters	113
Table 7-8 Comparison of Calibrated and Theoretical B Values	114
Table 8-1 Theoretical m Values For Regular Cross Sections (After Laurenson and Mein, 1	990).124
Table 8-2 Aldgate Creek RRR Model Fitted Parameters, September 1973.	142
Table 8-3 Aldgate Creek 1973 RORB Model Parameters	143
Table 8-4 Kanyaka Creek RRR Model Fitted Parameters, March 1989.	147
Table 8-5 Kanyaka Creek RORB Model Fitted Parameters, March 1989	147
Table 8-6 Aldgate Creek Multiple Sub-catchment RRR model	154
Table 9-1 Frederick Street Catchment RRR Model Channel Lag Parameters	163
Table 9-2 Frederick Street RRR Model Calibrated Losses	164

Table 9-3 Frederick Street, Glenelg Catchment RRR Fits	164
Table 9-4 Paddocks Catchment RRR Channel Lag Parameters	166
Table 9-5 Paddocks Catchment RRR Fit Summary	168
Table 9-6 Jamison Park ILSAX Fit Summary	170
Table 9-7 Jamison Park RRR Loss Model Calibration	171
Table 9-8 Jamison Park RRR Fit Summary	171
Table 9-9 Jamison Park Derived Loss Model	172
Table 9-10 Jamison Park RRR Fit Summary With Derived Loss Model	173
Table 9-11 River Torrens Catchment RRR Calibrated Parameter Values	186
Table 9-12 River Torrens Verification Parameters	187
Table 9-13 River Torrens Verification Results	188
Table 9-14 Inverbrackie Creek RRR Model Calibrated Parameter Values	192
Table 9-15 Inverbrackie Creek Verification Parameters	193
Table 9-16 Inverbrackie Creek Verification Results	195
Table 9-17 Echunga Creek RRR Model Calibration Parameter Values	197
Table 9-18 Echunga Creek Verification Parameters	199
Table 9-19 Echunga Creek RRR Verification Results	199
Table 9-20 Scott Creek RRR Model Calibrated Parameter Values	202
Table 9-21 Scott Creek Verification Parameters	204
Table 9-22 Scott Creek RRR Verification Results	205
Table 9-23 Scott Creek RRR Verification Results (2 Pluviometers)	206
Table 9-24 Celia Creek RRR Model Calibrated Parameter Vaules (6 sub-catchment model)	210
Table 9-25 Celia Creek Verification Parameters	212
Table 9-26 Celia Creek Verification Results	213
Table 9-27 Burra Creek RRR Model Calibrated Parameter Values	216
Table 9-28 Burra Creek Verification Parameters	218
Table 9-29 Burra Creek Verification Results	218
Table 9-30 Burra Creek Fit for 12/04/89 with Parameters From 9/09/89	219
Table 9-31 Comparison of RRR and KINDOG Calibration	223
Table 9-32 Calibration Parameters for the KINDOG Model	225
Table 9-33 Summary of RRR, KINDOG and RORB Verification	228
Table 9-34 Peak Flow Verification Summary	228
Table 9-35 Mean Errors for Each Storm and Model	230

Table 9-36 Model Mean Parameter Values	230
Table 9-37 Verification Mean Errors	231
Table 9-38 Verification Peak Flows	231
Table 10-1 Cox Creek RRR Calibration Results	239
Table 10-2 Lenswood Creek RRR Calibration Results	241
Table 10-3 Aldgate Creek RRR Calibration Results	242
Table 10-4 Western Branch RRR Calibration Results	242
Table 10-5 Woodside Weir RRR Calibration Results	243
Table 10-6 First Creek RRR Calibration Results	244
Table 10-7 Sixth Creek RRR Calibration Results	244
Table 10-8 Mount Lofty Ranges RRR Storage Parameter Summary	245
Table 10-9 Correlation Matrix for RRR Storage Parameters	245
Table 10-10 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Land Use	248
Table 10-11 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Soils	248
Table 10-12 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Geology	249
Table 10-13 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Rainfall and Farm Dams	249
Table 10-14 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Topographic	250
Table 10-15 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Stream, Physical and Hillslope Connectivity	250
Table 10-16 Catchment Characteristics Determined for the Mount Lofty Ranges Catchments	-
Groundwater	251
Table 10-17 Correlation of RRR Storage Parameters with Winter Runoff, Soil and Topograph	ical
Characteristics	251
Table 10-18 Correlation of RRR Storage Parameters with Land Use, Groundwater State, Far	m
Dam Density and Stream Density	253
Table 10-19 Correlation of RRR Loss Parameters with Winter Runoff, Soil and Topographica	1
Characteristics	254

Table 10-20 Correlation of RRR Loss Parameters with Land Use, Groundwater State, Farm D)am
Density and Stream Density	256
Table 10-21 Stations for Flood Frequency Analysis	257
Table 10-22 Annual Maximum Flows (m³/sec) used in Flood Frequency Analysis (Onkaparing	ја
Catchment)	258
Table 10-23 Annual Maximum Flows (m ³ /sec) used in Flood Frequency Analysis (Torrens	
Catchment)	259
Table 10-24 Results of Flood Frequency Analysis	261
Table 10-25 Proportional Losses Assumed for Comparison	262
Table 10-26 Comparison of Flood Frequency and Calibrated RRR Model	262
Table 10-27 RRR Model Design Loss Parameters – Catchments with Frequency Analysis	264
Table 10-28 Correlation of RRR Design Loss Parameters with Winter Runoff, Soil and	
Topographical Characteristics.	265
Table 10-29 Correlation of RRR Loss Parameters with Land Use, Groundwater State, Farm E)am
Density and Stream Density	265
Table 11-1 Glenside Storage Basin Flow Confirmation (1 hour duration design storm)	274
Table 11-2 Calibrated Storage Parameters for Adelaide Hills Catchments	279
Table 11-3 Calibrated Losses for Adelaide Hills Catchments	280
Table 11-4 Comparison of Predicted Flows at Ridge Park	281
Table 11-5 Adopted Losses for Calibration	282
Table 11-6 Keswick Creek Catchment Rainfall Stations	283
Table 11-7 Keswick Creek Catchment Gauging Stations	283
Table 11-8 Sensitivity Trial Values	284
Table 11-9 Predicted Flows with Sensitivity Adjustments	285
Table 11-10 Losses Adopted After Calibration	286
Table 11-11 Comparison of Flows at Goodwood Road	290
Table 11-12 Keswick Creek Predicted Peak Flow Sensitivity to Loss	291
Table 11-13 Sensitivity of Model to Overflow Storage Delay Time	292
Table 11-14 Adopted Losses for Design Runs	292
Table 11-15 Losses for Calibration	296
Table 11-16 Scotch College Rainfall Stations	297
Table 11-17 Scotch College Gauging Station	297
Table 11-18 Results of Calibration at Scotch College	298

Table 11-19 Brownhill Creek Rainfall Stations	298
Table 11-20 Brownhill Creek Gauging Stations	299
Table 11-21 Ranked Flows at Scotch College for Flood Frequency Analysis	300
Table 11-22 Flood Frequency at Scotch College	300
Table 11-23 Stirling Rainfalls for 2 July 1981	302
Table 11-24 Recurrence Interval of 2 July 1981 Rainfall	302
Table 11-25 Flows at Scotch College predicted by Regional Flood Frequency Analysis	303
Table 11-26 Trial Loss Parameter Values for the Rural Catchment	305
Table 11-27 Brownhill Creek at Scotch College - Design Flows	307
Table 11-28 Predicted Flows for 20 Yr ARI, 36 Hour Storm	307
Table 11-29 Adopted Losses for Design Runs	308
Table 11-30 Predicted Peak Flows at Selected Locations	309
Table 11-31 Brownhill Creek Short Duration PMP Estimates	310
Table 11-32 Design Losses for Frequent Events	311
Table 11-33 PMF Losses fror Brownhill Creek	311
Table 11-34 Brownhill Creek PMF	312

Abstract

Most mathematical models used in Australia to simulate runoff events from catchments were developed in the 1960s and 1970s. Models in use include the ILSAX model for urban catchments, and runoff routing models such as RORB, RAFTS and WBNM for both urban and rural catchments.

Research in the past decades has been generally directed towards the calibration and determination of regional parameters without review of the basic structure of the models. There has been limited success in the development of generalised parameters, with no consistent factors being found which govern catchment response apart from the length of the main stream within the catchment, and average annual rainfall.

This study commences with an investigation into intrinsic links between the runoff routing models. A relationship between RORB and RAFTS is determined but the relationship does not apply to RAFTS models having more than one node or sub-area. It is shown that the cause is the non-linearity of the model storages affecting the total storage and thus storage lag in the model as the number of nodes or sub-areas changes. Examination of other runoff routing models reveals that all the runoff routing models have similar problems. RORB, RAFTS and WBNM are not internally consistent and regional relationships will give appropriate results only if applied to a model having the same number of sub-areas as the model used to determine the relationship.

It is suggested that the limited success in deriving generalised relationships for storage parameters arises because they are capable of modelling only one runoff process. Hydrologists are aware that a continuum of processes occurs, for which different responses are likely. The continuum of processes is however generally dominated by one process for an individual catchment. Present model usage has favoured this type of catchment.

A new model (named the Rainfall Runoff Routing or RRR model) is developed to overcome the limitations of internal consistency and the single runoff process. The application of the new model is verified on a range of catchments in South Australia, New South Wales and the Northern Territory, and the model is applied successfully to two catchments having mixed urban and rural land use. The model is also applied to a group of catchments in the Mount Lofty Ranges, and generalised

parameter values found. The storage lag due to hillside processes appears to be related to the water holding capacity and the depth of the soil within the catchment.

Three identified processes were found to occur during runoff events, namely baseflow, slow and fast runoff. The climatic zone in which the catchment is situated, the initial state of the catchment and the magnitude of the rainfall event can all influence the processes that occur in a catchment.

It is concluded that the RRR model with these three processes being modelled will provide more consistent regional storage parameters than other runoff routing models.

STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

DAVID KEMP 29/07/02

ACKNOWLEDGEMENTS

As is always the case with the production of a thesis (or any other such work) I am deeply indebted to all those who have in the past applied themselves to the question of how to model the complexities of the processes that occur as rainfall is translated to runoff at a catchment scale.

It is on the basis of the work of these others that I am able to try and advance the knowledge that we have of the subject.

I wish to acknowledge the input of my supervisor, Mr Trevor Daniell. Without Trevor I would not have started the formal process of researching and documenting the work. The encouragement and review along the way is also much appreciated.

There are those that have provided input to discussion of various complexities, and reviewing documentation along the way, including Bill Lipp of Transport SA and Chris Wright of the Bureau of Meteorology.

Then there are those that have provided data, including Robin Leaney of South Australia's Department of Water, Land and Biodiversity Conservation, Geoff O'Loughlin, Ross Knee, John Childs and the Urban Runoff Quantity/Quality Monitoring Group.

Thanks also to George Kuczera, who reviewed the KINDOG verification.

SYMBOLS AND ABBREVIATIONS

α	In WBNM the ratio of interbasin lag to ordered basin lag
А	catchment area (km ²)
А	channel cross section area (m ²)
Ad	area of downstream sub-catchment of a catchment having two sub-catchments
	(km²)
Ai	area of sub-catchment i (km ²)
Ar	channel area (m ²)
AMC	Antecedent Moisture Condition
ARBM	Australian Representative Basins Model
Au	area of upstream sub-catchment of a catchment having two sub-catchments (km ²)
b	exponent in the relationship K=aA ^b
В	storage delay time coefficient
В	width of the catchment element (m)
BFI	baseflow index
Bi	impervious area B value
Вр	pervious area B value
BS	moisture in the baseflow store (mm)
BX	a calibration factor in the RAFTS model
С	a catchment lag parameter, equal to RORB kc/dav
cd2	number of type 2 conceptual storages in the RORB model
Cg	the sub-surface supply parameter in the KINDOG model
circ	catchment area / perimeter ²
CL	Continuing Loss (mm/hr)
Ср	catchment characteristic lag parameter in the RRR model
Cr	channel conveyence coefficient in the KINDOG model
Cs	the surface supply parameter in the KINDOG model
d	the longest flow path length in a catchment (km)
dav	average flow distance of the channel network (km)
dg	depth of flow at the gutter face (mm)
dp	depth of flow at the edge of pavement (mm)
f	soil infiltration capacity (mm/hr)

F	flow correction factor
f _c	final soil infiltration rate (mm/hr)
Fi	A factor depending on the type of reach in the RORB model
f _o	initial soil infiltration rate (mm/hr)
for	fraction of forest
GIS	Geographical Information System
GUT	gutter flow factor used in ILSAX
Hg	depth in the sub-surface store (mm)
HYDSYS	a HYDrological data storage SYStem
I	rainfall intensity (mm/hr)
1	channel inflow (m ³ /s)
IBFL	a modifier of the B parameter to account for older sub-catchments
IL	initial loss (mm)
ILSAX	ILLUDAS-SA, with something extra
k	a shape factor
k	a dimensional empirical coefficient
k	sub-catchment storage delay time (hrs)
k	channel storage lag in the RRR model (hrs)
К	catchment lag (hrs)
К	channel conveyence (m ³ /s)
K _B	ordered basis lag in the WBNM model
kc	RORB storage parameter
Kd	storage lag of the downstream sub-area of a catchment having two sub-areas
KD	dimensionless storage delay time
Kı	interbasin lag in the WBNM model
Ki	impervious area storage lag (hours)
Ki	lag of an individual sub-catchment I
KINDOG	A catchment model incorporating KINematic wave
K _M	average storage delay time
Кр	pervious area storage lag (hours)
kp	process lag in the RRR model
k _{pi}	urban unconnected area process lag parameter
kr	relative delay time

k _{ri}	relative delay time of storage i
KS	surface store recession constant
K _{split}	the true lag of a split catchment RAFTS model
Ku	storage lag of the upstream sub-area of a catchment having two sub-areas
k*	k₀/dav
L	flow path length (m)
L	channel reach length (m)
Lg	gutter flow length (m)
Li	length of channel reach represented storage i (km)
Imns	Inn / the mainstream length
Inn	length of streams having an order of one less than the outlet
Lo	overland flow length (km)
Lp	pipe flow length (m)
Irat	ratio of the largest RORB sub-catchment to the total area
LRRM	Laurenson Runoff Routing Method
m	a dimensionless exponent
medrn	median annual rainfall
minel	elevation of the catchment outlet
n	Manning's n, a measure of channel or pipe roughness
n	storage non-linearity exponent (used in RAFTS)
n	number of hydrograph ordinates
Ν	number of reservoirs
ng	Manning's n of the gutter
ni	Manning's roughness for the impervious area
nn	number of streams of order one less than the outlet
NN	the number of nodes in a RAFTS model
n _p	Manning's n of the pavement
np	Manning's roughness for the pervious area
ns	number of sub-catchments upstream of the point of interest
0	channel outflow (m ³ /s)
OF	an objective function used to measure the goodness of fit
Р	wetted perimeter (m)
ре	ratio of mean annual rainfall to evaporation

pem	the ratio of median annual rainfall to evaporation
PERN	a modifier of the B parameter to account for catchment roughness
PEST	Parameter ESTimation program
PHI	the objective function used by PEST
PL	Proportional Loss
q	instantaneous runoff rate (m ³ /sec)
Q	discharge (m ³ /sec)
Q _c (t)	calculated hydrograph at time t (m ³ /s)
q _m	total mean flow ((m ³ /s)
Q _o (t)	observed hydrograph at time t (m³/s)
Q _{op}	peak flow of the observed hydrograph (m ³ /s)
Qp	peak flow (m ³ /s)
q split	the flow from one part of a split-sub-catchment RAFTS model
RAFTS	Runoff Analysis and Flow Training Simulator
RF	annual rainfall (mm)
ri	the hydraulic radius of the ith pipe (m)
rla	RORB length over area
rlen	length of the reaches in the RORB model
rlm	RORB length over the mainstream length
rlt	RORB stream length / total stream length
r _m	the mean hydraulic radius (m)
RORB	RunOff Routing developed on a Burroughs computer
rr	relief ratio (maximum elevation - minimum elevation over main stream length)
rrd	number of raindays per year
RSWM	Regional Stormwater Drainage Model
S	storage volume (hrs x m ³ /sec), used in RAFTS
S	slope (m/m)
S	slope (m/m)
S	storage (m ³)
sa	the number of sub-catchments in the RORB model
Sc	slope of catchment (%)
Sg	gutter slope (m/m)
Sg	rate of sub-surface supply (mm/hr)

Si	the slope of the ith pipe (m/m)
So	overland flow slope (m/m)
S ₀	Soil sorptivity
Sp	pipe slope (m/m)
SS	surface supply rate in the KINDOG model
SS	moinsture in the surface store (mm)
strm	stream order at the outlet
SWMM	StormWater Management Model
t	time from the start of rainfall (minutes)
t1	lag of sub-catchment 1 (hrs)
t2	lag of sub-catchment 2 (hrs)
tend	the end time of calculations (minutes)
toverland	overland flow time (minutes)
t _{r2}	translation time between sub-catchments (hrs)
trm	mean translation time for all sub-catchments
TRRL	Transportation and Road Research Laboratory (UK)
U	fraction of catchment urbanised
Vc	channel characteristic velocity in the RRR model (m/s)
Vd	runoff volume of the downstream sub-area of a catchment having two sub-areas
	(m ³)
Vu	runoff volume of the upstream sub-area of a catchment having two sub-areas (m ³)
WBNM	Watershed Bounded Network Model
у	channel flow depth (m)
Уo	original channel flow depth (m)
Z	reciprocal of channel side slope (m/m)
ZG	reciprocal of gutter cross-slope (m/m)
Zp	reciprocal of pavement cross-slope (m/m)
γ	hillslope flow exponenent in KINDOG
φ	final infiltration rate (mm/hr)