Huntingtin function during zebrafish

(Danio rerio) development

A thesis submitted in requirement for the degree of Doctor of Philosophy, December 2009

Tanya L. Henshall, B.Sc (Hons)

School of Molecular and Biomedical Science, Discipline of Genetics, ARC Special Centre for the Molecular Genetics of Development,

The University of Adelaide.

Table of Contents

List of Figures and Tables	v		
Statement of Originalityvii			
Acknowledgements	ix		
Abbreviations	xi		
Abstract	XV		
Chapter 1: Introduction	1		
1.1 Polyglutamine diseases	1		
1.2 Huntington's disease	1		
1.3 Huntingtin	2		
1.4 Overview of the proposed cellular functions of huntingtin	5		
1.5 Huntingtin function during development - analysis of huntingtin knockout models	9		
1.6 Cause of pathogenicity in Huntington's disease	11		
1.7 Advantages of using zebrafish as a model system for investigation of gene function	13		
1.8 Using development as a tool to assess gene function	15		
1.9 Project aims: Investigation of huntingtin function using zebrafish as a model system.	17		
Chapter 2: Materials and methods	19		
2.1 Materials	19		
2.2 Methods	27		
Chapter 3: The zebrafish model of reduced huntingtin expression	35		
3.1 Introduction	35		
3.2 Results	39		
3.3 Conclusion	56		
	(1		
Chapter 4: Huntingtin and neural crest derived structures	01		
4.1 Introduction	01		
4.2 Kesuits	01		
4.5 Conclusion	/4		
Chapter 5: A rate-limiting role for huntingtin in anterior neural plate formation	77		
5.1 Introduction	77		
5.2 Results	77		
5.3 Conclusion	89		
Chapter 6: Discussion	93		
Appendix A	97		
	0.0		
Keterences	99		

List of Figures and Tables

ges14 nent16
nent16
20
41
45
46
48
n the
50
51
zebrafish53
55
63
65
66
s68
71
dMO1
72
impaired
73
e anterior
79
rior neural
80
81
ative tissue,
83
85
87
88
97

*Many figures from this list contain data and/or images which are reproduced from [229]

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Tanya Henshall and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

* Henshall, T. L., Tucker, B., Lumsden, A. L., Nornes, S., Lardelli, M. T. and Richards, R. I., Selective neuronal requirement for huntingtin in the developing zebrafish. *Hum Mol Genet* 2009 18: 4830-4842.

Tanya Lynn Henshall

Acknowledgements

Firstly, I would like to thank my supervisors, Professor Robert Richards and Dr Michael Lardelli for the support and encouragement throughout this PhD.

Many thanks to members of the Richards and Lardelli labs for all of their friendship and continued support. In particular I would like to thank Amanda Lumsden, Morgan Newman, Sonia Dayan and Saumya Samaraweera. I know we will always be great friends!

I would also like to acknowledge the help of my friends and family (especially my Mum and Dad) for all of their support. Without your love, I would most certainly not have achieved as much as I have. Thank you all so much.

Tanya xox

Abbreviations

aa	amino acid
acridine orange	acridine orange hemi (zinc chloride) salt
amp	ampicillin
BCIP	5-bromo-4-chloro-3-indolyl phosphate
bh	basihyal (cartilage)
bp	base pairs
BDNF	brain derived neurotrophic factor
cDNA	complementary DNA
ch	ceratohyal (cartilage)
сMO	standard control morpholino
Ct	cycle threshold
DASPEI	2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide
DEPC	diethylpyrocarbonate
DF	degrees of freedom
DiI	1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate
	(DiIC ₁₈ (3))
DMF	dimethylformamide
DMSO	dimethylsulphoxide
DNA	deoxyribonucleic acid
dNTPs	deoxynucleotide triphosphates
dpf	days post fertilization
EDTA	ethylenediamine tetra-acetic acid
ef1a	elongation factor 1a
EGFP	enhanced green fluorescent protein
emx3	empty spiracles homeobox 3
ES	embryonic stem (as in ES cells)
EtBr	ethidium bromide
fgf8	fibroblast growth factor 8
GABA	γ-aminobutyric acid
HAP	huntingtin associated protein
HD	Huntington's disease

hdMO	morpholino antisense to zebrafish htt mRNA (as in hd MO1 and
	hdMO2)
HIP	huntingtin interacting protein
htt	huntingtin
hpf	hours post fertilization
hs	hyosymplectic cartilage
Kb	kilobase pairs
kDa	kilodalton
m	Meckel's cartilage
mcMO1	5 base mismatch of the hdMO1 antisense sequence
μΜ	micromolar
ml	millilitre
MLK2	mixed lineage kinase 2
mM	millimolar
morpholino/MO	morpholino oligonucleotide
MQ	milli-Q
mRNA	messenger RNA
NBT	nitro blue tetrazolium chloride
ng	nanogram
nl	nanolitre
NMDA	<i>N</i> -methyl-D-aspartic acid
nM	nanomolar
ntl	no tail
oligo	oligonucleotide primer
omp	olfactory marker protein
ORF	open reading frame
OSN	olfactory sensory neuron
otx2	orthodenticle homolog 2
p(3-7)	pharyngeal arch (3-7)
PBS	phosphate buffered saline
PBS-T	PBS with 0.1% tween-20
pbx2	pre-B-cell leukemia transcription factor 2
PCR	polymerase chain reaction
pmol	picomoles
polyQ htt	huntingtin with a pathogenic number of glutamine repeats

pq	palatoquadrate (cartilage)
PTU	1-phenyl-2-thiourea
qPCR	quantitative real-time PCR
RA	retinoic acid
REST/NRSF	RE-1 silencing transcription factor/neuron-restrictive silencer factor
RNA	ribonucleic acid
rpm	revolutions per minute
SDS	sodium dodecyl sulphate
six1	sine oculis homeobox homologue
SSC	sodium chloride/sodium citrate buffer
TBS-T	tris-buffered saline with 0.1% Tween-20
TUNEL	terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end
	labeling
UTR	untranslated region

Abstract

Huntington's disease shares a common molecular basis with eight other neurodegenerative diseases: expansion of an existing polyglutamine tract. In each case, this repeat tract occurs within otherwise unrelated proteins. These proteins show widespread and overlapping patterns of expression in the brain and yet the diseases are distinguished by neurodegeneration in a specific subset of neurons that are most sensitive to the mutation. It has therefore been proposed that expansion of the polyglutamine region in these genes may result in perturbation of the normal function of the respective proteins, and that this perturbation in some way contributes to the neuronal specificity of these diseases. The normal functions of these proteins have therefore become a focus of investigation as potential pathogenic pathways. Here, synthetic antisense morpholinos have been used to inhibit the translation of huntingtin protein during early zebrafish development. The results obtained show the effects of huntingtin loss-of-function on the developing nervous system, including distinct defects in morphology of the lateral line neuromasts, olfactory placode and branchial arches. The potential common origins of these defects were explored, revealing impaired formation of the anterior-most region of the neural plate as indicated by reduced pre-placodal and telencephalic gene expression with no effect on mid- or hindbrain formation. These investigations demonstrate a specific 'rate-limiting' role for huntingtin in formation of the telencephalon and the pre-placodal region, and differing levels of requirement for huntingtin function in specific nerve cell types.