ISOLATION, STRUCTURAL ELUCIDATION AND ANTIBACTERIAL ACTIVITY OF THE CHEMICAL CONSTITUENTS OF SCAEVOLA SPINESCENS

Michele Mejin, BSc in Biohealth Science (Hons)

A thesis submitted to the University of Adelaide in fulfillment of the requirement for the degree of Master of Science

Department of Chemistry
School of Chemistry and Physics
Faculty of Sciences,
The University of Adelaide
Adelaide, South Australia, 5005

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF FIGURES iii
LIST OF TABLES vi
LIST OF ABBREVIATIONS vii
ABSTRACT viii
STATEMENT xi
ACKNOWLEDGEMENTS xii
CHAPTER 1 INTRODUCTION 1
1.1 GENERAL INTRODUCTION 2
1.2 GOODENIACEAE 4
1.3 SCAEVOLA SPECIES 4
1.3.1 Distribution 4
1.3.2 Morphology 5
1.3.3 Uses 6
1.4 CHEMICAL CONSTITUENTS 7
1.4.1 Coumarins 7
1.4.2 Terpenoids 9
1.4.3 Iridoids 13
1.4.4 Alkaloids 16
1.4.5 Flavonoids 18
1.5 BIOLOGICAL ACTIVITIES 20
1.5.1 Antiviral 20
1.5.2 Anti-tumor and cytotoxicity 20
1.5.3 Antibacterial 21
1.6 AIMS 24
CHAPTER 2 ISOLATION / STRUCTURE ELUCIDATION 25
2.1 GENERAL INTRODUCTION 26
2.2 PLANT COLLECTION 27
2.3 PLANT PREPARATION 29
2.4 EXTRACTION 29
2.4.1 Hexane extract. 31
2.4.2 Ethyl acetate extract 60
2.4.3 Methanol extract 75
2.4.4 Aqueous extract. 93
CHAPTER 3 ANTIBACTERIAL ASSAY 101
3.1 INTRODUCTION. 102
3.2 HEXANE EXTRACT 104
3.3 ETHYL ACETATE EXTRACT 105
3.4 METHANOL EXTRACT 109
3.5 AQUEOUS EXTRACT. 112
3.6 DISCUSSION 118
CHAPTER 4 EXPERIMENTAL 120
4.1 GENERAL EXPERIMENTAL PROCEDURES 121
4.2 PLANT MATERIAL 122
4.3 EXTRACTION AND ISOLATION 122
4.3.1 Hexane extract 123
4.3.2 Ethyl acetate extract. 127
4.3.3 Methanol extract 130
4.3.4 Aqueous extract 134
4.4 BACTERIA AND GROWTH CONDITIONS 138
4.5 BROTH MICRO-DILUTION ASSAY FOR MINIMUM INHIBITORY AND BACTERICIDAL CONCENTRATION (MIC AND MBC) 138
CHAPTER 5 CONCLUSION AND FUTURE WORK 142
REFERENCES 147
APPENDICES 152
APPENDIX A Lorentzian / Gaussian resolution enhancement using SpinWorks 3 152

LIST OF FIGURES

Figure 1.1: Distribution of Scaevola spinescens ${ }^{10}$ 4
Figure 1.2: Morphology feature of Scaevola spinescens ${ }^{10}$ 5
Figure 1.3: Basic ring structure of flavonoid. 18
Figure 2.1: Picture of collection site (Photo: Michele Mejin, 2007) 28
Figure 2.2: Picture of the aerial parts of the plant taken at the collection site (Photo: Michele mejin, 2007) 28
Figure 2.3: Picture of the aerial parts of the plant sent for herbarium identification (Photo: Michele Mejin, 2007) 29
Figure 2.4: Flow chart of sample extraction 30
Figure 2.5: Fractionation from 8 g of hexane extract. 32
Figure 2.6: Purification of H1007, H1008, H1103, H101003 and H1205 33
Figure 2.7: Fragment to build the $1^{\text {st }}$ ring for [49] based on HMBC correlations 35
Figure 2.8: Closure of the $1^{\text {st }}$ ring for [49] based on COSY and HMBC correlations 36
Figure 2.9: Closure of the $2^{\text {nd }}$ ring for [49] based on COSY and HMBC correlations 37
Figure 2.10: Closure of the $3^{\text {rd }}$ ring for [49] based on HMBC correlations 38
Figure 2.11: Closure of the $4^{\text {th }}$ ring for [49] based on HMBC correlations 39
Figure 2.12: Closure of the $5^{\text {th }}$ ring for [49] based on COSY and HMBC correlations. 40
Figure 2.13: Stereochemical assignments of the methyl hydrogens for [40] based on ROESY correlations 41
Figure 2.14: Stereochemical assignments of the hydrogens at $\delta_{\mathrm{H}} 3.19$ and $\delta_{\mathrm{H}} 0.78$ for [49] based on ROESY correlations 42
Figure 2.15: Stereochemical assignments of the hydrogens at $\delta_{\mathrm{H}} 0.91, \delta_{\mathrm{H}} 0.96$ and $\delta_{\mathrm{H}} 1.41$ for [49] based on ROESY correlations 43
Figure 2.16: Stereochemical assignments of the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ and $\delta_{\mathrm{H}} 0.91$ for [49] based on ROESY correlations 43
Figure 2.17: Comparison of stereochemistry between [49], [26] and [29] 45
Figure 2.18: Fragment to build the $1^{\text {st }}$ ring for [50] based on HMBC correlations 48
Figure 2.19: Closure of the $1^{\text {st }}$ ring for [50] based on COSY and HMBC correlations. 50
Figure 2.20: Closure of the $2^{\text {nd }}$ ring for [50] based on COSY and HMBC correlations 51
Figure 2.21: Closure of the $3^{\text {rd }}$ ring for [50] based on HMBC correlations 52
Figure 2.22: Closure of the $4^{\text {th }}$ ring for [50] based on HMBC correlations 53

Figure 2.23: Closure of the $5^{\text {th }}$ ring for [50] based on COSY and HMBC correlations...... 54
Figure 2.24: Stereochemical assignments of the methyl hydrogens for [50] based on ROESY correlations.

Figure 2.25: Stereochemical assignments of the hydrogens at $\delta_{\mathrm{H}} 3.16$ and $\delta_{\mathrm{H}} 0.77$ for [50]
based on ROESY correlations.. 56
Figure 2.26: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 0.77, \delta_{\mathrm{H}} 0.961$ and $\delta_{\mathrm{H}} 1.42$ for for [50] based on ROESY correlations... 57
Figure 2.27: Stereochemical assignments of methyl hydrogens at $\delta_{\mathrm{H}} 0.89$ and $\delta_{\mathrm{H}} 0.964$ for [50] based on ROESY correlations.
Figure 2.28: Fractionation from 15 g of ethyl acetate extract.................................... 61
Figure 2.29: Fractionation from 690 mg of fraction EA10..................................... 62
Figure 2.30: Fractionation from 416 mg of fraction EA11.. 62
Figure 2.31: Fragment to build the $1^{\text {st }}$ ring for [51] based on HMBC correlations............ 64
Figure 2.32: Closure of the $1^{\text {st }}$ ring for [51] based on COSY and HMBC correlations...... 65
Figure 2.33: Closure of the $2^{\text {nd }}$ ring for [51] based on COSY and HMBC correlations..... 66
Figure 2.34: Closure of the $3^{\text {rd }}$ ring for [51] based on COSY and HMBC correlations..... 67
Figure 2.35: Closure of the $4^{\text {th }}$ ring for [51] based on COSY and HMBC correlations...... 67
Figure 2.36: Closure of the $5^{\text {th }}$ ring for [51] based on COSY and HMBC correlations...... 69

Figure 2.39: Stereochemical assignments of the hydrogens at $\delta_{H} 0.87, \delta_{\mathrm{H}} 1.11, \delta_{\mathrm{H}} 1.36$ and $\delta_{H} 1.56$ for [51] based on ROESY correlations................................ 72
Figure 2.40: Stereochemical assignments of the hydrogens at $\delta_{\mathrm{H}} 0.87$ and $\delta_{\mathrm{H}} 0.95$ and $\delta_{\mathrm{H}} 2.19$ for [51] based on ROESY correlations..................................... 72
Figure 2.41: Fractionation from 71 g of methanol extract.. 77
Figure 2.42: Closure of $1^{\text {st }}$ ring for [56] based on COSY and HMBC correlations.......... 80
Figure 2.43: Closure of $2^{\text {nd }}$ ring for [56] based on COSY and HMBC correlations......... 80
Figure 2.44: Closure of $3^{\text {rd }}$ ring for [56] based on HMBC correlations........................ 81
Figure 2.45: ROESY correlations for [56] to show relative stereochemistry................ 82
Figure 2.46: Closure of the $1^{\text {st }}$ ring for [57] based on COSY and HMBC correlations...... 85
Figure 2.47: Closure of the $2^{\text {nd }}$ ring for [57] based on HMBC correlations................... 86

Figure 2.48: Closure of the $3^{\text {rd }}$ ring for [57] based on COSY and HMBC correlations..... 87
Figure 2.49: Fusing of the $3^{\text {rd }}$ ring to the $2^{\text {nd }}$ ring for [57] based on HMBC correlation.... 87
Figure 2.50: Closure of a sugar unit ring for [57] based on COSY coupling.................. 88
Figure 2.51: Stereochemical assignments for [57] based on ROESY correlations.......... 89
Figure 2.52: Connection between the $4^{\text {th }}$ and the $1^{\text {st }}$ ring for [57] based on ROESY and HMBC correlations.. 90

Figure 2.53: Fractionation from 46 g of decoction aqueous extract............................ 94
Figure 2.54: Fractionation from 71 g of soxhlet aqueous extract............................... 96
Figure 2.55: Closure of a ring for [60] based on COSY coupling............................... 98
Figure 2.56: Assignment of relative stereochemistry for [60] based on COSY coupling... 99
Figure 2.57: Different representations indicating the stereochemistry for [60]................... 99
Figure 3.1: Antibacterial testing on the crude extract of hexane as well as its sub-fractions (MIC value) (MBC value)... 104

Figure 3.2: Antibacterial testing on the crude extract of ethyl acetate as well as its sub-fractions (MIC value) (MBC value)

Figure 3.3: Antibacterial testing on the crude extract of methanol as well as its sub-fractions (MIC value) (MBC value)
Figure 3.4: Antibacterial testing on the extracts from liquid-liquid partitioning of the aqueous decoction as well as its sub-fractions (MIC)
Figure 3.5: Antibacterial testing on the extracts from liquid-liquid partitioning of the aqueous soxhlet as well as its sub-fractions (MIC)117

Figure 4.1: Template for broth micro-dilution assay ${ }^{57}$ (adapted from Cos et al)........... 140
Figure 4.2: Template for duplicate plate (not treated with resazurin) to be tested for $M B C^{63}$ (adapted from Ndi et al).. 141

LIST OF TABLES

Table 1.1: Summary of coumarins found in Scaevola species 9
Table 1.2: Classification of terpenoids 9
Table 1.3: Summary of terpenoids found in Scaevola species 13
Table 1.4: Summary of iridoids found in Scaevola species 16
Table 1.5: Presence of alkaloids in Scaevola species 17
Table 1.6: Flavonoids found in Scaevola species ${ }^{39}$ 19
Table 1.7: List of microorganisms commonly used 22
Table 1.8: Pure compounds isolated from the crude fractions that may contribute to antibacterial activity ${ }^{7}$ 23
Table 2.1: Spectral data for [49] 40
Table 2.2: ROESY correlations for [49] 44
Table 2.3: Comparison of the ${ }^{13} \mathrm{C}$ chemical shift between [49], and taraxerol [26] 45
Table 2.4: Spectral data for [50] 54
Table 2.5: ROESY correlations for [50] 58
Table 2.6: Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [50] and myricadiol [24] 59
Table 2.7: Spectral data for [51] 70
Table 2.8: ROESY correlations for [51] 73
Table 2.9: Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [51] and ursolic acid [15] 74
Table 2.10: ROESY correlations for [56] 81
Table 2.11: Spectral data for [56] 82
Table 2.12: ${ }^{1} \mathrm{H}$ chemical shift values between [56] and [58] 83
Table 2.13: ${ }^{13} \mathrm{C}$ chemical shift values between [56] and [58] 83
Table 2.14: Spectral data for [57] 91
Table 2.15: ROESY correlations for [57] 91
Table 2.16: ${ }^{13} \mathrm{C}$ chemical shift values between [57] and [44] 92
Table 2.17: Spectral data for [60] 99
Table 3.1: Antibacterial testing on the crude extracts of Scaevola spinescens 103

LIST OF ABBREVIATIONS

${ }^{\circ} \mathrm{C}$	degrees Celsius
v / v	volume per volume
ppm	parts per million
Hz	hertz
RNA	ribonucleic acid
CFU	colony forming units
TLC	Thin layer chromatography
UV	Ultraviolet
MP	melting point
FTIR	Fourier Transform InfraRed
NMR	Nuclear magnetic resonance
$1 D$	one-dimensional
2 D	two-dimensional
DEPT	Distortionless Enhancement by Polarization Transfer
COSY	Correlation Spectroscopy
HSQC	Heteronuclear Single Quantum Coherence
HMBC	Heteronuclear Multiple Bond Correlation
ROESY	Rotational nuclear Overhauser Effect Spectroscopy
m	multiplet
s	singlet
d	doublet
t	triplet
q	quadruplet
$\delta_{\text {C }}$	chemical shift for ${ }^{13}$ C
δ_{H}	American Type Culture Collection
ATCC	inhibitory concentrations
IC 50	${ }^{1} \mathrm{H}$

ABSTRACT

Scaevola spinescens, an Australian indigenous plant has been used by Australian Aboriginal people in their traditional medicines for treating colds, stomach ache, urinary problems and pain in the alimentary tract, skin rashes, boils and sores. An infusion of leaves and twigs of Scaevola spinescens and Codonocarpus cotinifolius has been reputed to cure cancer. Therefore, this plant has been deemed desirable for investigation to identify possible active compounds that contribute to these medicinal therapies used by the Aboriginal people.

Previous work has shown that coumarins, terpenoids, iridoids and flavonoids are the classes of compounds isolated from Scaevola spinescens. So far, chemical constituents of Scaevola spinescens have only been isolated from hexane and methanol fractions. One of the aims of this research was to isolate more of the chemical constituents of Scaevola spinescens. Therefore in this research, the ethyl acetate and aqueous fractions were also included to broaden the range of compounds being isolated.

In this research, eleven compounds have been isolated from Scaevola spinescens. Five of the isolated compounds are known - myricadiol, 20-epi-ursolic acid, decursinol, luteolin-7-Oglucoside, and 2-deoxy-D-chiro-inositol. A novel compound identified as 18-epi-taraxerol has been isolated from Scaevola spinescens in this study. The structures of these compounds were determined using 1D and 2D NMR, UV-Visible spectroscopy, FTIR and high-resolution mass spectrometry. The structures of the five remaining compounds are yet to be determined.

Myricadiol

20-epi-ursolic acid

Decursinol

Luteolin-7-O-glucoside

18-epi-taraxerol

2-deoxy-D-chiro-inositol

The antiviral, antitumor and antibacterial activity of Scaevola spinescens extracts has been previously investigated. Previous work has shown that Scaevola spinescens was active against human cytomegalovirus (HCMV). However, previous work done on the antitumor activity of Scaevola spinescens was inconclusive. Previous work done on the antibacterial activity showed that some of the methanol fractions from Scaevola spinescens might contain antibacterial agents. However, these active compounds that contribute to the antibacterial activity were yet to be identified.

In this work, the organic (hexane, ethyl acetate and methanol) and aqueous crude extracts of Scaevola spinescens were screened for antibacterial activity against Gram-positive (Staphylococcus aureus ATCC 25923 and Streptococcus pyogenes ATCC 10389) and Gramnegative (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922) bacteria using a broth micro-dilution assay to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).

The hexane, ethyl acetate and methanol crude extracts were found to have antibacterial activity against Gram-positive bacteria specifically Streptococcus pyogenes while the aqueous fractions showed significant antibacterial activity against Staphylococcus aureus. No antibacterial activity was observed against Gram-negative bacteria.

A promising antibacterial activity was observed on one of the isolated compounds, 20-epiursolic acid. This compound showed good antibacterial activity against Streptococcus pyogenes and Staphylococcus aureus with MIC in the range 1.87 to $7.5 \mu \mathrm{~g} / \mathrm{ml}$.

The research presented within this thesis shows that 20-epi-ursolic acid isolated from Scaevola spinescens might be a potential candidate as an antibacterial agent. This is supported by the results obtained from preliminary antibacterial screening on the organic and aqueous crude extracts.

STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Michele Mejin

February, 2009

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the people that have given me support from the beginning of my research, along the way and up till the completion of my thesis. Their assistance and support has been the key to my successful thesis.

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Simon Pyke for his invaluable help and guidance during the course of my research, especially in the area of NMR. It is a completely new area of study for me and I'm grateful for his patience in teaching me the basic skill of NMR as well as data interpretation for structural elucidation. His optimism has been a great encouragement for me to face any obstacle along the way.

I would also like to express my sincere gratitude to Dr. Susan Semple, who has been supervising me in my anti-microbial work. Her constant guidance and advice in microbiology aspects has been a great help.

I would like to express my appreciation to Mr. Philip Clements for his assistance in running my 2D NMR experiments as well as his patience in processing my NMR data. Appreciation is also expressed to Mr. Marshall Hughes and Mr. Edwin Lowe for their assistance in obtaining my mass spectrometry data.

In here, I would also like to express my utmost gratitude to the Sarawak Government and my employer, Sarawak Biodiversity Centre for their sponsorship as well as their encouragement for further studies. Without them, this would have been impossible. I thank them with sincere heart.

In addition to all of the above people, I would also like to thank my family, especially my mum and dad, not forgetting my two lovely siblings, Rachel and Malcolm for their unconditional love and encouragement from a far. I would also like to thank Andrew and his parents for their unconditional love and understanding throughout the period of accomplishing this thesis.

Last but not least, I would like to thanks all my friends that have been supportive in giving their encouragement, advice and critics that help in accomplishing my thesis. Special thanks to Sally Nobbs, for her help in my NMR work. Also Belinda Ng and Hii Mei Mei for being here all along. Not forgetting my lovely labmates, Rhiannon Jones, Jessica Smith, Melissa Perrotta and Justin Nash. It has been fun working with them. For those that I've met throughout my 2 years of research work, especially new friends that I've made in the chemistry department as well as in my integrated bridging programme (IBP). I thank you all for putting spice into my research life.

Above all, I would like to thank GOD for making all this possible for me. He had this all planned out for me.

CHAPTER 1 Introduction

1.1 General Introduction

The Chinese pharmacopeia was the earliest record of medicinal usage of plants, being published in approximately 3000BC. ${ }^{1}$ Herbal medicine might have started long before 3000BC and been verbally passed down from older generation to younger generation in any tribal group or race.

The tribal Aboriginal people in central and north Australia still practice traditional medicine and this knowledge is now recorded. ${ }^{1}$ With the knowledge contributed by the Aboriginal communities of the Northern Territory, an Aboriginal pharmacopeia was published in 1988. ${ }^{1}$ Traditional medicine is usually associated with various remedies using different parts of a plant. Different tribes of Aboriginal people have different ways of preparing their remedies. Hence, the same plant is often used medicinally in completely different ways by different Aboriginal people. ${ }^{1}$

Plants used in traditional medicine are more likely to have pharmacologically active compounds compared to random selections of plant material. Therefore, ethnomedicine plays a role in drug discovery. Relatively little research has been done on the plants used by the Aboriginal people. The ethnomedicine information gathered from these people can be used to drive research towards drug development. Various drugs used in today's medicines are derived from plants (eg. morphine, salicin, rotundine and codeine). ${ }^{2}$

One of the native Australian plants of interest is Scaevola spinescens. This small woody bush with its spiny fan flowers has been used by the Aboriginal people in their traditional medicine. Based on the ethnomedicine information, Scaevola spinescens has been deemed desirable for further studies.

The plant is thought to have antiviral properties. Therefore, studies on the antiviral activity of the plant have been done to verify this statement. ${ }^{3,4}$ This statement is based on the cure used by the Aboriginal people in treating the common cold.

Besides antiviral properties, the plant is also thought to have antibacterial and antifungal properties. This is because most of the cures used by the Aboriginal people are related to bacterial and fungal infections. These activities have been investigated by Kerr et al ${ }^{5}$ and Nobbs ${ }^{6}$. Nevertheless, further investigation on these activities can be done to identify active compounds that contribute to the antibacterial and/or antifungal activities.

Another interesting study done on the biological activity of the plant is the anti-tumor activity. This started with the remedy used by the Aboriginal medicine men, which is an infusion of this plant together with the Desert Poplar, Codonocarpus cotinifolius. To verify this activity in the plant, the Chemistry Centre of Western Australia (CCWA) has conducted research on this plant, which was funded by the Australian Government. ${ }^{7}$ The funding was terminated in 1991 when CCWA was unable to prove scientifically that the plant extract had anti-cancer properties. Nevertheless, this has not restrained researchers from further investigating the antitumor activity in the plant. This form of activity was also studied by Kerr et al ${ }^{5}$ and Nobbs ${ }^{6}$ using different approaches. Kerr et al investigated the anti-tumor activity of the plant using the Crown Gall Tumor Assay ${ }^{5}$ whereas Nobbs used the cytotoxicity approach, testing on different types of cancer cell lines ${ }^{6}$. Although there are promising results from their studies, further investigations need to be done to verify these results.

Generally, there has been a wide range of studies done on this plant from antiviral activity to antibacterial and anti-tumor activity. So far, the antibacterial activity of the aqueous extract has not been studied. There is a possibility that the aqueous extract of the plant might have antibacterial activity. This is said based on the cures claimed by the Aboriginal people, using aqueous decoctions of the plant as their remedy.

Until 1996 when Kerr and colleagues managed to isolate myricadiol and other taraxerenes in methanol extracts of Scaevola spinescens, there had been little work on profiling the chemical constituents of the plant. ${ }^{5}$ There is a possibility that these compounds can be used as potential anti-cancer drugs or as a starting point for development of synthesized anti-cancer drugs. This is based on the observation made by Kerr in 1999^{8}. So far, the chemical constituents in methanol extract have been studied by both Kerr^{8} and Nobbs ${ }^{6}$. No chemical profile on an aqueous extract has been done yet. Therefore, there may still be more compounds in the plant that are yet to be identified.

1.2 Goodeniaceae

Goodeniaceae is a family of 11 genera comprise of about 400 species. ${ }^{9}$ The 11 genera are Scaevola, Anthotium, Lechenaultia, Dampiera, Coopernookia, Diaspasis, Goodenia, Selliera, Velleia, Pentaptilon and Verreauxia. Most of these genera are confined to the southern hemisphere, mainly found in Australia and New Guinea. ${ }^{9}$ The plants from Goodeniaceae family are usually herbs and shrubs. ${ }^{9}$

1.3 Scaevola species

1.3.1 Distribution

There are 96 Scaevola species occurring in Australia and tropical areas of the Indo-Pacific region. ${ }^{9}$ Out of 71 species found in Australia, 70 species are endemic. ${ }^{9}$

NOTE:

This figure is included on page 4 of the print copy of the thesis held in the University of Adelaide Library.

Figure 1.1: Distribution of Scaevola spinescens ${ }^{9}$

Figure 1.1 shows the distribution of Scaevola spinescens in Australia. Scaevola spinescens is mostly found on sandy loams and hills in inland regions of Central and Western Australia as well as New South Wales. ${ }^{4}$

1.3.2 Morphology

Scaevola plants are usually perennial herbs, scramblers, shrubs or small trees of about 3 m height. These small, herbaceous plants can be distinguished by their spiny fan-shaped flower. The leaves are usually alternate and petiolate with axillary hair tufts. ${ }^{9}$

Scaevola spinescens is a rigid shrub of about 1-2 m tall, covered with scurfy hairs. It has short, spiny branchlets. The leaves, about $10-25 \mathrm{~mm}$ long, are often clustered on branchlets. It has flowers with 5 fan-shaped petals. The flowers are white to yellowish in colour and occasionally with purple veins. The $5-8 \mathrm{~mm}$ long fruit is usually ovoid, glabrous and black or dark purplish in colour. ${ }^{3,4,9-11}$

NOTE:

This figure is included on page 5 of the print copy of the thesis held in the University of Adelaide Library.

Figure 1.2: Morphology feature of Scaevola species ${ }^{9}$

Scaevola. A-D, S. myrtifolia. A, indusium; B, anther; C, corolla; D, habit (A-D, D.Whibley 1983, SYD). E, S. spinescens, habit (J.West 4008, SYD). F-H, S. pulchella. F, anther; G, indusium; H, corolla (F-H, J.Beard 2980, PERTH). I, S. browniana subsp. browniana. habit (G.Carr 47511, SYD). J, S. revoluta subsp. revoluta, habit (R.Carolin 9244, SYD). Scale bars:
$\mathbf{A}, \mathbf{G}=2 \mathrm{~mm} ; \mathbf{B}, \mathbf{D}, \mathbf{F}=1.5 \mathrm{~mm} ; \mathbf{C}=5 \mathrm{~mm} ; \mathbf{E}, \mathbf{I}, \mathbf{J}=30 \mathrm{~mm} ; \mathbf{H}=6 \mathrm{~mm}$. Drawn by D.Mackay. ${ }^{9}$

1.3.3 Uses

Scaevola species have been used in various traditional medicines. They are usually prepared in decoction form. However, some are used as an application on the surface. Different parts of the plant are used to treat various illnesses, diseases or wounds.

The study on the uses of each Scaevola species gives a general idea of their medicinal value. Scaevola species that have similar medicinal value might possess similar biological activities. These can later be linked to the chemical constituents that are responsible for any of these biological activities.

The crushed fruit of Scaevola taccada (Synonym: Scaevola frutescens and Scaevola sericea) has been used by early settlers to treat tinea. ${ }^{3}$ It is said that the leaves were taken when having indigestion. ${ }^{12}$ They were also used in a poultice to cure headache. ${ }^{12}$ In addition, there are also reports indicating the use of leaf decoction and the flesh of the seeds as a contraceptive. ${ }^{13}$ The juice from ripe fruit has been used to treat sores and infected eyes whereas a combination of juices from ripe fruit and stem has been used as a remedy for bites and stings. ${ }^{14}$ This plant has also been used as a dermatological aid in Hawaii. A mixture of pounded root bark with salt is used for cut and skin diseases. ${ }^{15}$ In Indonesia, the root is used as an antidote when poisonous fish and crabs are consumed. ${ }^{12}$

Scaevola montana is used as an agent promoting menstrual flow in New Caledonia. ${ }^{13}$

The root decoction of Scaevola spinescens has been used to treat stomach ache, urinary problems and pain in the alimentary tract. ${ }^{4,16}$ As for the stem decoction, it is said to cure boils, skin rashes and sores. ${ }^{4}$

1.4 Chemical constituents

The chemical constituents in plants vary from one species to another. Plants of similar genus usually have similar major chemical constituents and additional compounds to distinguish each species. Therefore, information on the chemical constituents of other Scaevola species can give a general overview of chemical constituents in Scaevola plants. In addition, any novel compounds found in Scaevola species as well as Scaevola spinescens can be easily identified.

Secondary metabolites found found in plants are organic compounds that are not directly involved in the normal growth, development or reproduction of the plant. These compounds may be part of a defence mechanism of the plant or in facilitating reproductive processes.

The chemistry of known organic compounds such as coumarin, terpenoids, iridoids, alkaloids and flavonoids are interrelated with biological activities. Findings on the biological activities related to any of the chemical constituents found in Scaevola species can be used as a guideline to the possible biological activities in Scaevola spinescens that possess similar chemical constituents.

1.4.1 Coumarins

Coumarins [1] are phenolic substances made of fused benzene and α-pyrone rings. They are derived from the metabolism of phenylalanine via cinnamic acid.

Xanthyletin [2], a coumarin isolated from citrus, was found to inhibit the growth of Phytophthora citrophthora. ${ }^{17}$ However, the anti-fungal activity degrades over time resulting from oxidation of xanthyletin in aqueous solution. There is a possibility that the antifungal activity can be improved by modifying the xanthyletin structure. Xanthyletin has also been found in Scaevola spinescens. ${ }^{5}$

[1]

[2]

Studies on the structure-activity relationship (SAR) of the coumarins with antibacterial activity have been done. The presence of an aromatic dimethoxy arrangement in simple coumarins has the ability to inhibit the growth of microorganism that requires special growth factors such as beta-hemolytic Streptococcus, Streptococcus pneumoniae and Haemophillus influenzae. ${ }^{18}$ In addition, a combination of two methoxy functions and at least one additional phenolic group gave promising results as a broad-spectrum antibacterial. ${ }^{18}$

Besides xanthyletin [2], nodakenetin / marmesin $[3]^{5}$ and emmarin [4] ${ }^{6}$ were also found in Scaevola spinescens. The presence of coumarins in other Scaevola species has also been reported. Imperatorin [5] and (R)-(-)-nodakenetin [6] are two fluorescent coumarin compounds identified in Scaevola frutescens. ${ }^{19}$

[3]

[5]

[4]

[6]

Table 1.1: Summary of coumarins found in Scaevola species

Compounds	Scaevola spinescens	Other Scaevola species
Xanthyletin [2]	5	
Emmarin [4]	6	
Nodakenetin [3]	5	19
(R)-(-)-nodakenetin [6]		19
Imperatorin [5]		

The references of the compounds found are as indicated in the table above
\square Found $\quad \square$ Not found

1.4.2. Terpenoids

Terpenoids are organic compounds derived from five-carbon isoprene [7] units assembled and modified in different ways. The classifications of terpenoids are summarized in the Table 1.2.

[7]

Table 1.2: Classification of terpenoids

Terpenes	Isoprene units	Carbon atoms
Monoterpenes	2	10
Sesquiterpenes	3	15
Diterpenes	4	20
Sesterterpenes	5	25
Triterpenes	6	30
Carotenoids	8	40

Sterols, which have the characteristics of a steroid skeleton, are produced from terpenoid precursors. These compounds are related to cholesterol. Sterols from plants are known as phytosterols. Examples of phytosterols are β-sitosterol [8], stigmasterol [9], ergosterol [10], (3 $\beta, 22 \mathrm{E}$)-stigmasta-5,22-dien-3-ol [11] and (3ß,24S)-stigmast-5en-3-ol [12] .

[8]

[10]
[9]

[11]

[12]

Terpenoids are variously said to have antiseptic activity, irritant properties and sedative properties. ${ }^{20}$ Besides that, various studies show that they are active against bacteria, fungi, viruses and protozoa. ${ }^{21}$ There is a wide range of pharmacological activities studied in natural triterpenoids. Based on these studies, betulinic acid [13], a pentacyclic triterpene, has been found to have significant anti-tumor, antiviral, antibacterial, anti-inflammatory, bronchovasodilator, analgesic and antiplasmodium activity. ${ }^{22,23}$

[13]

The pharmacological activity of lupeol [14] and ursolic acid [15] have also been studied. These compounds were found to possess anti-cancer effects, anti-inflammatory effects as well as hepato and cardio protective effects. ${ }^{22,23}$ Analgesic properties was also reported for ursolic acid. ${ }^{22}$ Ursolic acid [15] has been found in the methanol fraction isolated from Scaevola spinescens. ${ }^{6}$ Therefore, there is a possibility that Scaevola spinescens might have those
biological activities. In addition, lupeol derivatives [16] have moderate antibacterial activity. ${ }^{23}$ Lupenone [17] has been found in the hexane fraction isolated from Scaevola spinescens. ${ }^{5}$

[14]

[15]

[17]

Terpenoids are commonly found in Scaevola species. A mixture of six novel γ-amyrin fatty esters with $\mathrm{C}_{20}-\mathrm{C}_{30}$ acid moieties [18] have been isolated from the bark of Scaevola florinbunda. ${ }^{24}$ Other triterpenes such as γ-amyrin [19], γ-amyrin acetate [20], ursolic acid acetate [21], betulinic acid [13] and betulin [22] have also been found in Scaevola floribunda. ${ }^{24} \beta$-Amyrin [23] has been found in the methanol fraction isolated from Scaevola spinescens. ${ }^{6}$ Myricadiol (pentacylic triterpenoid, 14-taraxerene-3,28-diol) [24] and other taraxerenes [25-29] were isolated from Scaevola spinescens. ${ }^{5,6}$ These terpenoids, found in Scaevola spinescens are summarized in Table 1.3, indicating their presence in which fractions. ${ }^{5}$

[19] $\quad \mathbf{R}=\mathbf{H}$
[20] $\quad \mathbf{R}=\mathbf{C O C H}_{3}$

[21]

[24]

[22]

[23]

[25]

[26]

[27]

[28]

[29]

Table 1.3: Summary of terpenoids found in Scaevola species

Compounds	Scaevola spinescens		Other Scaevola species
	Methanol fraction	Hexane fraction	
β-sitosterol [8]	5		
(3 $\beta, 22 \mathrm{E}$)-stigmasta-5,22-dien-3-ol [11]		5	
(3ß,24S)-stigmast-5en-3-ol [12]		5	
Betulinic acid [13]			24
Ursolic acid [15]	6		
Lupenone [17]		5	
Mixture of six novel γ-amyrin fatty esters with $\mathrm{C}_{20}-\mathrm{C}_{30}$ [18]			24
γ-amyrin [19]			24
γ-amyrin acetate [20]			24
Ursolic acid acetate [21]			24
Betulin [22]			24
β-amyrin [23]		5	
Myricadiol [24]	5		
Squalene [25]	${ }_{5}$		
Taraxerol [26]	5,6	5	
Taraxerone [27]		5	
Taraxerol acetate [28]	6	5	
13-epi,18-epi-taraxerol [29]	6		

The references for the compounds found are as indicated in the table above
$\begin{array}{ll}\square & \text { Found } \\ \end{array}$

1.4.3 Iridoids

Iridoids are monoterpenes that are derived biosynthetically from geranylpyrophosphate (C_{10}) and are typically bicyclic hemiacetals or lactones. ${ }^{25}$ They are characterized by a cyclopenta-[c]-pyranoid skeleton and are often intermediates in the biosynthesis of alkaloids. ${ }^{20}$

Cantleyoside dimethyl acetal [30] and loganin [31] isolated from Pterocephalus perennis were found to have significant antibacterial and antifungal activity. ${ }^{26}$ These compounds have also been found in some Scaevola species.

[30]

[31]

Based on literature reports, iridoids are largely found in Scaevola species. Five iridoids namely loganin [31], cantleyoside dimethyl acetal [30], cantleyoside [32], sylvestroside III [33] and scaevoloside [34] were identified in Scaevola montana. ${ }^{13}$

[32]

[33]

Five iridoids were also reported in Scaevola racemigera. ${ }^{27}$ They were loganin [31], loganic acid [35], sylvestroside III [33], cantleyoside [32] and scaevoloside [34]. Loganin [31] and scaevoloside [34] were also found in Scaevola spinescens. ${ }^{6}$

[34]

[35]

Floribundal [36], a nonglycosidic bisiridoid and loganin [31] have been isolated from the heartwood of Scaevola floribunda. ${ }^{24}$ The presence of loganin [31] in these four Scaevola species shows that this compound might be a chemical precursor for other iridoids in other Scaevola species. There are possibilities that these Scaevola species might have antibacterial and antifungal activity.

[36]

Two other iridoids, scaevoloside dimethyl acetal [37] and katecateroside [38] were newly found in Scaevola spinescens. ${ }^{6}$ The presence of scaevoloside dimethyl acetal and loganin in Scaevola spinescens shows that there is a possibility that this plant might have antibacterial and antifungal activity. Therefore, the study of antibacterial activity on this plant is deemed desirable for investigation.

[37]

[38]

Table 1.4: Summary of iridoids found in Scaevola species

Compounds	Scaevola spinescens	Other Scaevola species	
Cantleyoside dimethyl acetal [30]		13,26	
Loganin [31]	6	${ }^{24,26,27}$	
Cantleyoside [32]		${ }^{13,27}$	
Sylvestroside III [33]	${ }^{6}$	${ }^{13,27}$	
Scaevoloside [34]		${ }^{13,27}$	
Loganic acid [35]		${ }^{27}$	
Floribundal [36]	${ }^{6}$	${ }^{24}$	
Scaevoloside dimethyl acetal [37]	${ }^{6}$		
Katecateroside [38]			

The references for the compounds found are as indicated in the table above
\square Found $\quad \square$ Not found

1.4.4 Alkaloids

Alkaloids have a complex structure, usually defined as nitrogen-containing, basic substances of natural origin and of limited distribution. Their nitrogen atom is part of a heterocyclic system.

The presence of alkaloid compounds in Scaevola species has been studied. Four new dimeric monoterpene alkaloids have been isolated from the aerial parts of Scaevola racemigera. ${ }^{28}$ They are Scaevodimerine A [39], Scaevodimerine B [40], Scaevodimerine C [41] and Scaevodimerine D [42].

[39]

[41]

[40]

[42]

Out of the 11 Scaevola species previously tested, only Scaevola densevestitia tested positive to Mayer's reagent and silicotungstic acid. ${ }^{29}$ Most alkaloids are precipitated from neutral or slightly acidic solution by Mayer's reagent (potassiomercuric iodide solution) to give a cream coloured precipitate. All the crude fractions from the methanol extract of Scaevola spinescens tested negative against Mayers's reagent. ${ }^{6}$ The presence of alkaloids in all of the Scaevola species tested to date is shown in Table 1.5.

Table 1.5: Presence of alkaloids in Scaevola species

Scaevola species	Presence of alkaloid
Scaevola aemula	Negative 29
Scaevola albida	Negative 29
Scaevola angustata	Negative 29
Scaevola crassifolia	Negative 29
Scaevola densevestitia	Positive 29
Scaevola hispida	Negative 29
Scaevola microcarpa	Negative 29
Scaevola oppositifolia	Negative 29
Scaevola ovalifolia	Negative 29
Scaevola parviflora	Negative 29
Scaevola racemigera	${\text { Four new dimeric monoterpene alkaloid found }[38-41]^{28}}^{\text {Scaevola sericea }}$
Scaevola spinescens	Negative 29
Segative ${ }^{6}$	

The references are as indicated in the table above

1.4.5 Flavonoids

Flavonoids are polyphenolic compounds that have a $\mathrm{C}_{6}-\mathrm{C}_{3}-\mathrm{C}_{6}$ carbon framework, or more specifically a phenylbenzopyran functionality.

Figure 1.3: Basic ring structure of flavonoid

There are different types of flavonoids such as chalcones, dihydrochalcones, aurones, flavanones, flavones, flavonols, flavanols, flavanonols, flavans, leucoanthocyanins, anthocyanidins, anthocyanins, isoflavones and isoflavanones. Each of these have different characteristics with different biological effects.

The presence of polyphenols contributes to the free radical scavenging activities which is related to the antioxidant activity. ${ }^{30}$ Some flavonoids such as quercetin [43] have been found to possess antioxidant and anti-inflammatory activity. ${ }^{31}$ For example, in the study done by Bouaziz et al, the flavonoids which are the secondary metabolites found in olive tree showed significant antioxidant activity. ${ }^{32}$ Luteolin-7-O-glucoside [44], one of the flavonoids compounds found in olive trees has also been found in Scaevola spinescens. ${ }^{6}$ Besides possessing antioxidant activity, luteolin-7-O-glucoside was found to have antibacterial and antifungal activity. ${ }^{33}$

[43]

[44]

Flavonoids were also reported to have the ability to protect against peroxynitrite toxicity ${ }^{34}$, which is associated with airway disease ${ }^{35}$ and cardiovascular disease. ${ }^{36}$

Besides luteolin-7-O-glucoside, luteolin-7-O-glucuronide methyl ester [45] has also been isolated from Scaevola spinescens. ${ }^{6}$ This indicated that Scaevola spinescens might possess
antioxidant activity as well as antibacterial and antifungal activity based on the findings found by Cho et al ${ }^{31}$ and Bouaziz et al ${ }^{32}$.

It is not uncommon for flavonoids to have conjugation with various sugars. The conjugation of flavonoids affects the mechanism by which the compound is absorbed by altering the basic physicochemical properties. ${ }^{37}$ This will give the ability of the compounds to enter cells, to interact with transporters and to interact with cellular (lipo) proteins. ${ }^{37}$

Seven flavonoids have been isolated from Hawaiian Scaevola species (Scaevola chamissoniana, Scaevola coriacea, Scaevola gaudichaudiana, Scaevola gaudichaudii, Scaevola kilaueae, Scaevola mollis, Scaevola procera) as well as the hybrid (Scaevola cerasifera). ${ }^{38}$ The seven flavonoids consist of apigenin [46] and quercetin [43] with various sugar conjugations. Flavonoid profiles for the seven species plus the hybrid are summarized in the Table 1.6.

[45]

[46]

Table 1.6: Flavonoids found in Scaevola species ${ }^{38}$

NOTE:
This figure is included on page 19 of the print copy of the thesis held in the University of Adelaide Library.

1.5 Biological activities

1.5.1 Antiviral

The ethanol extract of Scaevola spinescens has previously been tested for antiviral activity against human cytomegalovirus strain AD 169 (HCMV, Herpesviridae), Ross River Virus strain T48 (RRV, Togaviridae) and poliovirus type 1 (Picornaviridae). ${ }^{39}$ Human cytomegalovirus strain AD 169 is a DNA virus, whereas Ross River virus strain T48 and poliovirus type 1 are RNA viruses. Based on the study, the ethanol extract of Scaevola spinescens was found to be most active against human cytomegalovirus (HCMV). ${ }^{39}$

Six purified compounds from the methanol extract of Scaevola spinescens were submitted for antiviral testing against Herpes simplex type 1 (HSV1, Herpesviridae), Ross River virus strain T48 (RRV, Togaviridae) and Poliovirus type 2 (Picornaviridae). ${ }^{6}$ The compounds tested were taraxerol [26], ursolic asid [15], emmarin [4], scaevoloside [34] and loganin [31]. However, these compounds did not show any antiviral activity.

1.5.2 Anti-tumor and cytotoxicity

The compounds isolated from Scaevola spinescens by Kerr et al ${ }^{5}$ as well as the aqueous extract of Scaevola spinescens obtained from CCWA ${ }^{7}$ were found to have significant antitumor activity based on the crown gall tumor assay. ${ }^{8}$ The crown gall tumor assay (CGTA), used for investigating anti-tumor activity, is based on the inhibition of crown galls induced in wounded potato tissue by Agrobacterium tumefaciens.

The crude fractions of Scaevola spinescens have also been tested on different cancer cell lines for cytotoxicity activity. ${ }^{6}$ However, the results obtained were inconclusive as some of the fractions showed massive stimulatory effects at higher concentration instead of inhibiting the growth of these cancer cell lines.

The anti-tumor and cytotoxicity activity of Scaevola spinescens are inconclusive at this stage. An infusion of leaves and twigs of Scaevola spinescens and Codonocarpus cotinifolius has been reputed to cure cancer. Therefore, there is a possibility that the anti-tumor and cytotoxcity activity is only exerted when in the presence of active compounds from both plants.

Scaevola aemula, Scaevola albida, Scaevola angustata, Scaevola hispida, Scaevola oppositifolia and Scaevola sericea have also been tested for anti-tumor activity but no significant activity was observed. ${ }^{29}$

1.5.3 Antibacterial

Disk diffusion assay, also referred to as the Kirby-Bauer disk diffusion procedure, is a method commonly used to screen antibacterial activity by measuring the diameter of zone inhibition. By measuring the size of the zone, one can determine which drugs or extracts the microbe is sensitive to and which it is resistant to. The resistance and sensitivity of the organism to the drug is determined by comparing the zone sizes with the known values for each drug. This is because the rate of diffusion depends on the molecular weight of a drug. Larger molecular weight molecules diffuse slowly compared to lower molecular weight. This method is not used to determine whether a chemical compound tested is bactericidal (kills bacteria) or bacteriostatic (inhibits bacterial growth). Instead, these characteristics can be measured using a tube dilution assay. The tube dilution assay, unlike the disk diffusion assay, is quantitative in its measurement. By using this assay, the minimum inhibitory concentration (MIC) of a drug or extract can be determined. ${ }^{40}$

The microorganisms selected for the antibacterial tests usually range from Gram positive and negative bacteria to fungi as well as yeasts. The list of microorganisms commonly used is shown in Table 1.7.

Table 1.7: List of microorganisms commonly used

Classification	Microorganism
Gram positive	Staphylococcus aureus ${ }^{8,26,41}$
	Bacillus subtilis ${ }^{8,41}$
Gram negative	Escherichia coli ${ }^{8,26,41}$
	Pseudomonas aeruginosa ${ }^{\text {8,26,41 }}$
	Klebsiella pneumoniae ${ }^{8,26,41}$
	Salmonella typhimurium ${ }^{8,41}$
	Proteus vulgaris ${ }^{8,41}$
Fungi	Aspergillus fumigatum ${ }^{8}$
	Aspergillus niger ${ }^{8}$
Yeast	Candida albicans ${ }^{8,26}$

The compounds isolated from Scaevola spinescens by Kerr et al, ${ }^{5}$ as well as the aqueous extract of Scaevola spinescens obtained from CCWA, ${ }^{7}$ were tested for their antibacterial activity using a disk diffusion assay. ${ }^{8}$ However, the results for this bioactivity were inconclusive as some of the fractions have the ability to enhance the bacterial growth rather than inhibiting it.

Despite this, the antibacterial activity of Scaevola spinescens was also investigated by Nobbs in 2000 using a disk diffusion assay. ${ }^{6}$ Based on the study, some of the crude fractions isolated from the methanol extract showed significant antibacterial activity. ${ }^{6}$ Further isolation and purification of compounds were done on these crude fractions. However, these pure compounds were not further tested for antibacterial activity. There is the possibility that these compounds might contribute to the observed biological activity. Table $\mathbf{1 . 8}$ shows the pure compounds isolated from these crude fractions.

Table 1.8: Pure compounds isolated from the crude fractions that may contribute to antibacterial activity ${ }^{6}$

1.6 Aims

Aim 1: To isolate and identify chemical components in the hexane, ethyl acetate, methanol and aqueous extracts of Scaevola spinescens.

The objective of the first aim is to carry out chemical profiling of hexane, ethyl acetate and aqueous extracts as these extracts have not been thoroughly studied. As for the methanol extract, any new compounds discovered will be identified and added to the list of compounds found in this extract.

Aim 2: To identify which compounds have antibacterial activity.

The main objective of the second aim is to identify any possible antibacterial activity in the hexane, ethyl acetate, methanol and aqueous extracts. This will assist with the identification of chemical compounds that are responsible for antibacterial activity. Another objective of this aim is to verify the antibacterial activity in pure compounds isolated from the crude fractions that have significant antibacterial activity. This would extend the work of Nobbs.

CHAPTER 2

Isolation / Structure elucidation

2.1 General Introduction

In the isolation of chemical compounds from plant material, the general procedures are plant collection, preparation, extraction, fractionation / purification and lastly, structure elucidation.

Collection of voucher specimens is a legitimate and important part of scientific research. According to the Royal Botanic Garden Melbourne, voucher specimens provide a permanent record validating the occurrence of a plant species at a particular location and site of collection. Vouchers are also a verifiable and invaluable source of information to help in identification of plant species collected. For accurate identification, a good voucher should have well-collected specimens as well as labelling. The flower or fruits of a plant are usually critical for identification as they are a distinct feature of a plant species. Information about the habitat where the plant is collected is also crucial in the herbarium specimen documentation.

The plant material must first be preserved so that the active compounds will remain unchanged. The most common method for preserving plant material is drying. Drying also decreases the risk of external attack by moulds. In general, plant material should be dried at a temperature below $30^{\circ} \mathrm{C}$ to avoid decomposition of thermolabile compounds. ${ }^{42}$ When airdried, the plant material has to be spread out with good ventilation to facilitate drying.

Grinding improves efficiency of extraction by increasing the surface area of plant material. ${ }^{42}$ This decreases the amount of solvent needed for extraction as it allows the plant material to pack more densely. Therefore, it is essential to grind samples into finer size for better extraction results.

Some of the commonly used extraction methods are maceration, Soxhlet extraction, liquidliquid extraction and decoction. Maceration is a common method for extraction of small amount of plant material that can be carried out conveniently in Erlenmeyer flask. ${ }^{42}$ This process is usually repeated with fresh solvent until the solvent is almost colourless. Soxhlet extraction is a convenient method for extraction of small to moderate volumes of plant material. ${ }^{42}$ The amount of solvent needed for Soxhlet extraction is minimal because the extraction takes place in a system where the solvent is continually recycled. However, the heat needed to distill the solvent will likely cause thermolabile compounds to form artifacts or
decomposition products. Liquid-liquid extraction, also called solvent extraction, is a process that allows separation of two or more components due to the unequal solubility in the immiscible liquid phases. A decoction is made by boiling herb or plant material in water. This method may also cause thermolabile compounds to form artifacts or decomposition products due to the high temperature.

Fractionation / purification of compounds can be done using chromatographic techniques. The classical chromatographic techniques includes thin layer chromatography (TLC), preparative thin layer chromatography (PTLC), open column chromatography and flash column chromatography. ${ }^{42}$ The modern chromatographic techniques are high performance thin layer chromatography (HPTLC), solid-phase extraction, radial chromatography, droplet countercurrent chromatography (DCCC) and high performance liquid chromatography (HPLC). ${ }^{42}$

The purity of the isolated compound can be determined using melting point. UV-visible spectroscopy, infrared spectroscopy (IR), mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) are important techiques in structural elucidation and compound identification of the isolated compounds.

2.2 Plant collection

Scaevola spinescens is mostly found on sandy loams and hills in inland regions of Central and Western Australia as well as New South Wales. The plant had previously been collected from a site 10 km west of Morgan, on the Morgan-Eudunda Road. ${ }^{6}$ Therefore, a day trip of plant collection at the Morgan-Eudanda road was organized on $9^{\text {th }}$ April 2007. A picture of the collection site is shown in Figure 2.1. About 1.6 kg of the aerial parts of the plant (leaves and branches) was collected. A picture of the aerial parts of the plant taken at the collection site is shown in Figure 2.2. A voucher specimen was deposited at the State Herbarium of South Australia - Voucher Number AD99702040. A picture of the aerial parts of the plant sent for herbarium identification is shown in Figure 2.3.

Figure 2.1: Picture of collection site (Photo: Michele Mejin, 2007)

Figure 2.2: Picture of the aerial parts of the plant taken at the collection site (Photo: Michele Mejin, 2007)

Figure 2.3: Picture of the aerial parts of the plant sent for herbarium identification
(Photo: Michele Mejin, 2007)

2.3 Plant preparation

The plant sample was air dried before being processed into smaller pieces using a mortar and pestle. To provide fine material, a blender was then used. The total loss of moisture was about 160 g . The ground up samples were mixed then divided into two lots, one with about twothirds of the total sample (Sample A) and the other with about one-third of the total sample (Sample B).

2.4 Extraction

The extraction of samples involved two methods - Soxhlet extraction and decoction. Soxhlet extraction is a common laboratory method. In comparison, decoction was also done as it would be useful to relate it to the traditional approach of the Aboriginal people.

Sample A was sequentially extracted using Soxhlet extraction based on increasing polarity of solvent, starting from hexane, then ethyl acetate, methanol and lastly water. The solvents for each extraction were removed using a rotary evaporator. (Figure 2.4)

Sample B was extracted using a decoction method. The sample was soaked in warm water for half an hour, heated to boiling, then simmered for about 45 minutes. The sample was then filtered using a Buchner funnel and the water from the filtrate was removed using a rotary evaporator. Sample B was re-extracted twice using the same procedure to increase the yield of extracted material. (Figure 2.4)

Figure 2.4: Flow chart of sample extraction

2.4.1 Hexane Extract

Fractionation and purification of compounds from the hexane extract

A total of 8 g of hexane extract was obtained from the Soxhlet extraction. The hexane extract was then subjected to fractionation and purification by flash column chromatography. The fractionation and purification of compounds from hexane extract are summarized in Figure 2.5. Below are the details of the fractionation of compounds from the hexane extract.

- The hexane extract (8 g) was subjected to flash column chromatography (100 mm column diameter) using a series of increasing polarity solvents to yield 22 fractions, H01-H22 (Figure 2.5).
- Fraction H10 (500 mg) was then subjected to further flash column chromatography (40 mm column diameter) using a series of increasing polarity solvents to yield 10 subfractions, H1001-H1010 (Figure 2.5).
- Sub-fraction H1010 (150 mg) was subjected to further purification by flash column chromatography (20 mm column diameter) using 5\% hexane / 95\% dichloromethane as the eluting solvent to yield 5 sub-fractions, H101001-H101005 (Figure 2.5).
- Fraction H11 (980 mg) was subjected to flash column chromatography (50 mm column diameter) using a series of increasing polarity solvents to yield 14 subfractions, H1101-H1114 (Figure 2.5).
- Fraction H12 (900 mg) was subjected to flash column chromatography (50 mm column diameter) using a series of increasing polarity solvents to yield 14 subfractions, H1201-H1214 (Figure 2.5).
- Fraction H14 (580 mg) was subjected to flash column chromatography (40 mm column diameter) using a series of increasing polarity solvents to yield 16 subfractions, H1401-H1416 (Figure 2.5).

Figure 2.5: Fractionation from 8 g of hexane extract

Hexane extract

Sub-fractions with similar ${ }^{1} \mathrm{H}$ NMR profiles were combined and subjected to further purification by crystallization (Figure 2.6). Below are the details of the purication of compounds that have similar ${ }^{1} \mathrm{H}$ NMR profiles.

- Fractions H1007, H1008 and H1103 were found to have similar ${ }^{1} \mathrm{H}$ NMR profiles (Figure 2.5 and 2.6). These fractions were combined and crystallized from hot dichloromethane. The white solids (56 mg) that crystallized out of solution were then re-crystallized again from hot dichloromethane to give fine, white crystals (31 mg).
- Fractions H101003 and H1205 were also found to have similar ${ }^{1} \mathrm{H}$ NMR profiles (Figure 2.5 and 2.6). These fractions were combined and crystallized from hot dichloromethane to afford fine, white crystals (7 mg). The ${ }^{1} \mathrm{H}$ NMR profile of these crystals was found to be similar to the compound isolated from fraction H1007, H1008 and H1103 (Figure 2.5 and 2.6). These compounds were combined [49] and further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy.

Figure 2.6: Purification of H1007, H1008, H1103, H101003 and H1205

When a solution of sub-fraction H1407 was left standing, white solid (15 mg) crystallized out of solution (Figure 2.5). The white solid was re-crystallized from hot dichloromethane to give a white amorphous solid (11 mg) [50]. The ${ }^{1} \mathrm{H}$ NMR profile of compound [50] showed that it was different from the compound [49]. Therefore, compound [50] was further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy.

Compounds found in hexane extract

Compound [49]

Compound [49] (38 mg) were isolated as fine, white crystals with a melting point of 282 $283^{\circ} \mathrm{C}$. Using high-resolution EI mass spectrometry (HREIMS), the molecular formula was determined to be $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$ from the molecular ion peak at $\mathrm{m} / \mathrm{z} 426.3858$ (Calculated 426.3861). This indicated that the compound had six degrees of unsaturation. The IR spectrum indicated the presence of hydroxyl group(s) as there was an absorption at $3480 \mathrm{~cm}^{-1}$. There was also an absorption at $1641 \mathrm{~cm}^{-1}$ in the IR spectrum, which indicated the presence of double bond group (s).

Some difficulties were encountered in assigning the hydrogens and carbons of this structure. The COSY spectrum did not give much information as most of the hydrogens are overlapping in the chemical shift region of $1.2-1.6 \mathrm{ppm}$. So it was impossible to unambiguously assign the signals for each hydrogen by this method. Therefore, most of the NMR assignments were based on HMBC and ROESY correlations. Only unambiguously assigned signals were taken into consideration when determining this structure.

The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 30 unique carbons, eight methyls (δ_{C} $15.44,15.41,21.3,25.9,27.9,29.8,29.9,33.3$), ten sp^{3} methylenes ($\delta_{\mathrm{C}} 17.4,18.7,27.1,33.0$, $33.6,35.1,36.6,37.74,37.71,41.3$), four sp^{3} methines ($\delta_{\mathrm{C}} 48.7,49.2,55.5,79.0$), one sp^{2} methine ($\delta_{\mathrm{C}} 116.8$), six quaternary sp^{3} carbons ($\delta_{\mathrm{C}} 28.7,35.7,37.5,38.0,38.7,38.9$) and one quaternary sp^{2} carbon (δ_{C} 158.0). All these resonances accounted for a partial molecular formula $\mathrm{C}_{30} \mathrm{H}_{49}$. The remaining hydrogen atom and oxygen atom suggested the presence of a hydroxyl group, which is supported by the infrared spectra. The two sp^{2} carbons ($\delta_{\mathrm{C}} 116.8$ and
158.0) indicate one double-bond functionality, which accounts for one degree of unsaturation. This suggested that the compound contained 5 rings.

All the methyl, methylene and methine carbons identified in the DEPT NMR were then assigned to their directly attached protons using the HSQC experiment.

The structural determination of compound [49] was mainly based on the HMBC correlations and COSY coupling (where available). The relative stereochemistry of the structure was then investigated using the ROESY correlations. These correlations are shown in Table 2.1 and 2.2.

In the HMBC spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 33.3$ as shown in HSQC spectrum) showed correlations with the methyl carbon at $\delta_{\mathrm{C}} 29.9$, methylene carbons at δ_{C} 33.0 and $\delta_{\mathrm{C}} 36.6$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 28.7$. The methyl carbon at $\delta_{\mathrm{C}} 29.9$ had a ${ }^{1} \mathrm{H}$ chemical shift at $\delta_{\mathrm{H}} 0.91$ which was indistinguishable with the ${ }^{1} \mathrm{H}$ chemical shift for the methyl carbon at $\delta_{\mathrm{C}} 21.3$. However, in the HMBC spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ did show correlations with methylene carbons at $\delta_{\mathrm{C}} 33.0$ and $\delta_{\mathrm{C}} 36.6$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 28.7$. This indicated that the two methyl groups are likely to be attached to the quaternary carbon at δ_{C} 28.7. (Figure 2.7)

Figure 2.7: Fragment to build the $1^{\text {st }}$ ring for [49] based on HMBC correlations

In the COSY spectrum, the methylene hydrogen at $\delta_{\mathrm{H}} 1.24$ showed correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 1.01$. In the HSQC spectrum, the signal at $\delta_{\mathrm{H}} 1.24$ is attached to δ_{C} 33.0 and $\delta_{\mathrm{H}} 1.01$ to $\delta_{\mathrm{C}} 35.1$. HMBC correlations were observed between the signal at $\delta_{\mathrm{H}} 1.24$ ($\delta_{\mathrm{C}} 33.0$) with the methyl carbon at $\delta_{\mathrm{C}} 33.3$ and the quaternary carbon at $\delta_{\mathrm{C}} 35.7$. The methyl hydrogens at $\delta_{\mathrm{H}} 0.82$ ($\delta_{\mathrm{C}} 29.8$) had HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 48.7$, the methylene carbon at $\delta_{\mathrm{C}} 35.1$ and the quaternary carbon at $\delta_{\mathrm{C}} 35.7$. This indicated that the
methyl hydrogens at $\delta_{\mathrm{H}} 0.82\left(\delta_{\mathrm{C}} 29.8\right)$ are likely to be attached to the quaternary carbon at δ_{C} 35.7. The methylene hydrogen at $\delta_{\mathrm{H}} 1.31\left(\delta_{\mathrm{C}} 36.6\right)$ showed HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 48.7$ and the quaternary carbon at $\delta_{\mathrm{C}} 35.7$. The HMBC correlations, as well as the COSY correlations, supported the closure of a ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the second degree of unsaturation ($1^{\text {st }}$ ring). (Figure 2.8)

Figure 2.8: Closure of the $1^{\text {st }}$ ring for [49] based on COSY and HMBC correlations

The chemical shift of the quaternary sp^{2} carbon at $\delta_{\mathrm{C}} 158.0$ and sp^{2} methine carbon at $\delta_{\mathrm{C}} 116.8$ indicated that they must be attached together as there were no other sp^{2} carbons. In the HSQC spectrum, the sp^{2} methine carbon at $\delta_{\mathrm{C}} 116.8$ is attached to the methine hydrogen at $\delta_{\mathrm{H}} 5.53$. The sp^{2} methine hydrogen at $\delta_{\mathrm{H}} 5.53$ ($\delta_{\mathrm{C}} 116.8$) showed COSY coupling with the methylene hydrogen at δ_{H} 1.91. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 5.53$ showed a multiplicity of double of doublet with a coupling constant (J) of 3.0 Hz and 7.4 Hz . The coupling constant (J) of 3.0 Hz matches the coupling constant for the methylene hydrogen at δ_{H} 1.91. The small coupling constant (J) indicated that the methine hydrogen at $\delta_{\mathrm{H}} 5.53$ had a bigger dihedral angle with the methylene hydrogen at $\delta_{\mathrm{H}} 1.91$ than the methylene hydrogen at $\delta_{\mathrm{H}} 1.63$. This suggested that the methylene hydrogen at $\delta_{\mathrm{H}} 1.91$ is a pseudoaxial. Therefore, the other methylene hydrogen at $\delta_{\mathrm{H}} 1.63$ had to be pseudoequatorial. This is supported by the coupling constant (J) of 7.4 Hz for the methine hydrogen at $\delta_{\mathrm{H}} 5.53$, which indicated a small dihedral angle between two coupling hydrogens. In the HSQC spectrum, the signal at $\delta_{\mathrm{H}} 1.91$ is attached to the carbon at $\delta_{\mathrm{H}} 37.74$. HMBC correlations were observed between the hydrogen at $\delta_{\mathrm{H}} 5.53$ with the quaternary carbons at $\delta_{\mathrm{C}} 35.7, \delta_{\mathrm{C}} 37.5$ and $\delta_{\mathrm{C}} 38.9$. The HMBC correlation with the quaternary carbon at $\delta_{\mathrm{C}} 35.7$ indicated that this fragment is linked to the $1^{\text {st }}$ ring. This
is also supported by the HMBC correlations observed between the hydrogen at $\delta_{\mathrm{H}} 1.91$ with the methine carbon at $\delta_{\mathrm{C}} 48.7$ and the quaternary carbon at $\delta_{\mathrm{C}} 35.7$.

The methine carbon at $\delta_{\mathrm{C}} 48.7$ also showed a HMBC correlation with methyl hydrogens at δ_{H} 0.91 ($\delta_{\mathrm{C}} 21.3$). HMBC correlations were also observed between the methyl hydrogens at δ_{H} $0.91\left(\delta_{\mathrm{C}} 21.3\right)$ with the methylene carbon at $\delta_{\mathrm{C}} 33.6$ and the quaternary carbon at $\delta_{\mathrm{C}} 37.5$. This indicated that the methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ ($\delta_{\mathrm{C}} 21.3$) are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 37.5$. The HMBC correlations and COSY coupling supported the closure of a ring that fused to the $1^{\text {st }}$ ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the third degree of unsaturation ($2^{\text {nd }}$ ring). (Figure 2.9)

Figure 2.9: Closure of the $2^{\text {nd }}$ ring for [49] based on COSY and HMBC correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 1.09$ ($\delta_{\mathrm{C}} 25.9$) showed HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 49.2$, the methylene carbon at $\delta_{\mathrm{C}} 41.3$, and quaternary carbons at $\delta_{\mathrm{C}} 38.9$ and δ_{C} 158.0. The signal at $\delta_{\mathrm{H}} 1.41\left(\delta_{\mathrm{C}} 49.2\right)$ showed HMBC correlations with the methylene carbon at $\delta_{\mathrm{C}} 17.4$ and the quaternary carbon at $\delta_{\mathrm{C}} 38.9$. HMBC correlations were observed between the methylene hydrogen at $\delta_{\mathrm{H}} 1.55\left(\delta_{\mathrm{C}} 33.6\right)$ with the methyl carbon at $\delta_{\mathrm{C}} 21.3$, the methine carbon at $\delta_{\mathrm{C}} 48.7$, the methylene carbon at $\delta_{\mathrm{C}} 17.4$ and quaternary carbons at $\delta_{\mathrm{C}} 37.5$ and δ_{C} 158.0. The HMBC correlations observed supported the closure of the $3^{\text {rd }}$ ring that fused to the $2^{\text {nd }}$ ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the fourth degree of unsaturation ($3^{\text {rd }}$ ring). (Figure 2.10)

Figure 2.10: Closure of the $3^{\text {rd }}$ ring for [49] based on HMBC correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 0.98$, which are attached to $\delta_{\mathrm{C}} 27.9$ showed HMBC correlations with the methyl carbon at $\delta_{\mathrm{C}} 15.44$, methine carbons at $\delta_{\mathrm{C}} 55.5$ and $\delta_{\mathrm{C}} 79.0$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.7$. HMBC correlations were observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.80$ ($\delta_{\mathrm{C}} 15.44$) with the methyl carbon at $\delta_{\mathrm{H}} 27.9$, methine carbons at $\delta_{\mathrm{C}} 55.5$ and $\delta_{\mathrm{C}} 79.0$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.7$. The HMBC correlations observed for both methyl hydrogens indicated that they are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 38.7$.

The chemical shift of the methine carbon at $\delta_{\mathrm{C}} 79.0$ indicated that an oxygen group is likely to be attached to this methine carbon. Therefore, this accounted for one hydroxyl group.

In the HMBC spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 0.78\left(\delta_{\mathrm{C}} 55.5\right)$ showed correlations with the methyl carbons at $\delta_{\mathrm{C}} 27.9, \delta_{\mathrm{C}} 15.41$ and $\delta_{\mathrm{C}} 15.44$, the methine carbon at $\delta_{\mathrm{C}} 49.2$, the methylene carbon at $\delta_{\mathrm{C}} 18.7$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.7$. HMBC correlations were also observed between the methylene carbon at $\delta_{\mathrm{C}} 18.7$ with the hydrogens at $\delta_{\mathrm{H}} 1.34$ and δ_{H} 2.03. In the HSQC spectrum, both hydrogens are attached to a methylene carbon at δ_{C} 41.3. The methyl hydrgens at $\delta_{\mathrm{H}} 0.92$ ($\delta_{\mathrm{C}} 15.41$) showed HMBC correlations with the methine carbons at $\delta_{\mathrm{H}} 49.2$ and $\delta_{\mathrm{H}} 55.5$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.0$. This indicated that
the methyl hydrogens at $\delta_{\mathrm{H}} 0.92$ are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 38.0$. The HMBC correlations observed supported the closure of the $4^{\text {th }}$ ring that is fused to the $3^{\text {rd }}$ ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the fifth degree of unsaturation ($4^{\text {th }}$ ring). (Figure 2.11)

Figure 2.11: Closure of the $4^{\text {th }}$ ring for [49] based on HMBC correlations

The methine hydrogen at $\delta_{\mathrm{H}} 3.19$ ($\delta_{\mathrm{C}} 79.0$) showed COSY correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 1.57$. HMBC correlations were observed between the hydrogen at $\delta_{\mathrm{H}} 1.57$ with the quaternary carbon at $\delta_{\mathrm{C}} 38.0$. The methyl hydrogen at $\delta_{\mathrm{H}} 0.92$ ($\delta_{\mathrm{C}} 15.41$) also showed HMBC correlations with the methylene carbon at $\delta_{\mathrm{C}} 37.71$. In the HSQC spectrum, $\delta_{\mathrm{H}} 1.59$ and $\delta_{\mathrm{H}} 0.93$ are attached to the methylene carbon at $\delta_{\mathrm{C}} 37.71$. HMBC correlations were observed between the methylene hydrogen at $\delta_{\mathrm{H}} 1.59$ with methine carbons at $\delta_{\mathrm{C}} 79.0$ and δ_{C} 49.2. The methylene hydrogen at $\delta_{\mathrm{H}} 0.93$ showed HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 55.5$. The HMBC correlations supported the closure of a ring, which accounted for the sixth degree of unsaturation ($5^{\text {th }}$ ring). (Figure 2.12)

Figure 2.12: Closure of the $5^{\text {th }}$ ring for [49] based on COSY and HMBC correlations

Table 2.1: Spectral data for [49]

C	$\delta \mathrm{C}$	H	δ_{H}	I	M	$J(\mathrm{~Hz})$	COSY	HMBC
$\mathrm{C}_{1^{*}}$	37.71	$\mathrm{H}_{1 \alpha}$	1.59	1	m			$\mathrm{C}_{3}, \mathrm{C}_{9}$
		$\mathrm{H}_{1 \beta}$	0.93	1	m			C_{5}
C_{2}	27.1	$\mathrm{H}_{2 \alpha}$	1.60	1	m			
		$\mathrm{H}_{2 \beta}$	1.57	1	m		$\mathrm{H}_{3 \alpha}$	C_{10}
C_{3}	79.0	H_{3}	3.19	1	m		$\mathrm{H}_{24 \beta}$	$\mathrm{C}_{23}, \mathrm{C}_{2930}$
C_{4}	38.7							$\mathrm{H}_{5}, \mathrm{Me}_{23}, \mathrm{Me}_{24}$
C_{5}	55.5	H_{5}	0.78	1	dd	$2.4,12.0$	$\mathrm{H}_{28 \beta}$	$\mathrm{C}_{9}, \mathrm{C}_{4}, \mathrm{C}_{23}, \mathrm{C}_{2425}$
C_{6}	18.7	$\mathrm{H}_{6 \alpha}$	1.61	1	m			$\mathrm{C}_{5}, \mathrm{C}_{7}$
		$\mathrm{H}_{6 \beta}$	1.47	1	m			
C_{7}	41.3	$\mathrm{H}_{7 \alpha}$	2.03	1	dd	$6.6,12.0$		C_{6}
		$\mathrm{H}_{7 \beta}$	1.34	1	m			$\mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{26}, \mathrm{C}_{6}$
C_{8}	38.9							$\mathrm{H}_{15}, \mathrm{Me}_{26}, \mathrm{Me}_{23}$
C_{9}	49.2	H_{9}	1.41	1	m			$\mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{25}$
C_{10}	38.0							Me_{25}
C_{11}	17.4	$\mathrm{H}_{11 \alpha}$	1.63	1	m			$\mathrm{C}_{9}, \mathrm{C}_{12}$
C_{12}	33.6	$\mathrm{H}_{11 \beta}$	1.47	1	m			
$\mathrm{H}_{12 \alpha}$	1.61	1	m					
C_{13}	37.5		$\mathrm{H}_{12 \beta}$	1.55	1	m		
C_{14}	158.0							$\mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{13}, \mathrm{C}_{27}, \mathrm{C}_{11}$
C_{15}	116.8	H_{2}	5.53	1	dd	$3.0,7.4$	$\mathrm{H}_{11 \alpha}$,	$\mathrm{C}_{15}, \mathrm{C}_{8}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{H}_{12 \beta}, \mathrm{Me}_{26}, \mathrm{Me}_{27}$
$\mathrm{C}_{16^{*}}$	37.74	$\mathrm{H}_{16 \alpha}$	1.91	1	dd	$3.0,15.0$	$\mathrm{H}_{11 \alpha}$	$\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{28}$

C	¢C	H	δ_{H}	I	M	$J(\mathrm{~Hz})$	COSY	HMBC
		$\mathrm{H}_{16 \beta}$	1.63	1	m			
C_{17}	35.7							$\begin{aligned} & \mathrm{H}_{15 \alpha}, \mathrm{H}_{18 \alpha}, \mathrm{H}_{16 \alpha}, \mathrm{H}_{16 \beta}, \mathrm{H}_{19 a}, \\ & \mathrm{H}_{19 \beta}, \mathrm{Me}_{28} \end{aligned}$
C_{18}	48.7	H_{18}	0.96	1	m			$\mathrm{C}_{17}, \mathrm{C}_{27}$
C_{19}	36.6	$\begin{aligned} & \hline \mathrm{H}_{19 \alpha} \\ & \mathrm{H}_{19 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.31 \\ & 0.97 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{29}, \mathrm{C}_{30}, \mathrm{C}_{20} \\ & \mathrm{C}_{17}, \mathrm{C}_{20} \end{aligned}$
C_{20}	28.7							$\mathrm{H}_{19 \alpha}, \mathrm{H}_{19 \beta}, \mathrm{Me}_{29}, \mathrm{Me}_{30}$
C_{21}	33.0	$\begin{aligned} & \hline \mathrm{H}_{21 \alpha} \\ & \mathrm{H}_{21 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.33 \\ & 1.24 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		$\mathrm{H}_{16 \mathrm{~B}}$	$\mathrm{C}_{17} \mathrm{C}_{29}$
C_{22}	35.1	$\begin{aligned} & \mathrm{H}_{22 \alpha} \\ & \mathrm{H}_{22 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.36 \\ & 1.01 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		H_{19}	C_{21}
C_{23}	27.9	Me_{23}	0.98	3	s			$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{24}$
$\mathrm{C}_{24 *}$	15.44	Me_{24}	0.80	3	s			$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{23}$
$\mathrm{C}_{25}{ }^{\text {* }}$	15.41	Me_{25}	0.92	3	s			$\mathrm{C}_{5}, \mathrm{C}_{9}, \mathrm{C}_{10}$
C_{26}	25.9	Me_{26}	1.09	3	d			$\mathrm{C}_{14}, \mathrm{C}_{9}, \mathrm{C}_{7}, \mathrm{C}_{8}$
C_{27}	21.3	Me_{27}	0.91	3	s			$\mathrm{C}_{18}, \mathrm{C}_{13}, \mathrm{C}_{19}, \mathrm{C}_{12}, \mathrm{C}_{21}, \mathrm{C}_{20}$
C_{28}	29.8	Me_{28}	0.82	3	s			$\mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{22}$
C_{29}	33.3	Me_{29}	0.95	3	s		$\mathrm{H}_{17 \alpha}$	$\mathrm{C}_{19}, \mathrm{C}_{21}, \mathrm{C}_{30}, \mathrm{C}_{20}$
C_{30}	29.9	Me_{30}	0.91	3	s			$\mathrm{C}_{18}, \mathrm{C}_{13}, \mathrm{C}_{19}, \mathrm{C}_{12}, \mathrm{C}_{21}, \mathrm{C}_{20}$

* Interchangeable [49] 600MHz (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right): \delta(\mathrm{ppm})$ from internal TMS in CDCl_{3}

I = Integration
M = Multiplicity

The ROESY experiment unambiguously assigned the methyl hydrogens at $\delta_{\mathrm{H}} 0.80$ ($\delta_{\mathrm{C}} 15.44$), $\delta_{\mathrm{H}} 0.82\left(\delta_{\mathrm{C}} 29.8\right), \delta_{\mathrm{H}} 0.92\left(\delta_{\mathrm{C}} 15.41\right), \delta_{\mathrm{H}} 1.09\left(\delta_{\mathrm{C}} 25.9\right)$ to be on the same side of the molecule as there were strong ROESY correlations between these methyl hydrogens. ROESY correlations are possible for the two methyl hydrogens at $\delta_{\mathrm{H}} 1.09$ ($\delta_{\mathrm{C}} 25.9$) and $\delta_{\mathrm{H}} 0.82$ (δ_{C} 29.8) if the rings they are attached to are twisted and in a boat shape. (Figure 2.13)

Figure 2.13: Stereochemical assignments of the methyl hydrogens for [49] based on ROESY correlations

The geminal methyl groups at $\delta_{\mathrm{H}} 0.98\left(\delta_{\mathrm{C}} 27.9\right)$ showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.80\left(\delta_{\mathrm{C}} 15.44\right)$ as well as methine hydrogens at $\delta_{\mathrm{H}} 0.78\left(\delta_{\mathrm{C}} 55.5\right)$ and $\delta_{\mathrm{H}} 3.19$ ($\delta_{\mathrm{C}} 79.0$). Therefore, the hydrogens at $\delta_{\mathrm{H}} 0.78, \delta_{\mathrm{H}} 0.98$ and $\delta_{\mathrm{H}} 3.19$ were assigned to be on the same side of the molecule. This indicated that the hydroxyl group attached to methine carbon at $\delta_{\mathrm{C}} 79.0$ would be on the same side of the molecule with the methyl hydrogens at $\delta_{\mathrm{H}} 0.80$.

(Figure 2.14)

Figure 2.14: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 3.19$ and $\delta_{\mathrm{H}} 0.78$ for [49] based on ROESY correlations.

ROESY correlations were observed between both methine hydrogens at $\delta_{\mathrm{H}} 0.78$ ($\delta_{\mathrm{C}} 55.5$) and $\delta_{\mathrm{H}} 01.41\left(\delta_{\mathrm{C}} 49.2\right)$, followed by the methine hydrogen at $\delta_{\mathrm{H}} 01.41$ ($\delta_{\mathrm{C}} 49.2$) with the methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ ($\delta_{\mathrm{C}} 21.3$). ROESY correlations between the methine hydrogen at $\delta_{\mathrm{H}} 1.41$ ($\delta_{\mathrm{C}} 49.2$) with the methyl hydrogens at $\delta_{\mathrm{H}} 0.91\left(\delta_{\mathrm{C}} 21.3\right)$ were possible because of the shape of the ring, which brings these hydrogens close into space. The methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ (δ_{C} 21.3) had ROESY correlations with the methine hydrogen at $\delta_{\mathrm{H}} 0.96$ ($\delta_{\mathrm{C}} 48.7$). The ROESY correlations observed between these hydrogens showed that they were on the same side of the molecule as the methine hydrogen at $\delta_{\mathrm{H}} 0.78$. (Figure 2.15)

Figure 2.15: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 0.91, \delta_{\mathrm{H}} 0.96$ and $\delta_{\mathrm{H}} 1.41$ for [49] based on ROESY correlations

The last two methyl hydrogens at $\delta_{\mathrm{H}} 0.95\left(\delta_{\mathrm{C}} 33.3\right)$ and $\delta_{\mathrm{H}} 0.91\left(\delta_{\mathrm{C}} 29.9\right)$ were assigned based on the ROESY correlations with the adjacent methylene hydrogens. Neither one of these methyl hydrogens showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.82$ (δ_{C} 29.8). This is likely due to the shape of the ring that positioned these two methyl groups in a distance. The methylene hydrogen at $\delta_{\mathrm{H}} 1.33$ ($\delta_{\mathrm{C}} 33.0$) showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.82\left(\delta_{\mathrm{C}} 29.8\right)$ and $\delta_{\mathrm{H}} 0.91\left(\delta_{\mathrm{C}} 29.9\right)$. This indicated that the methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ ($\delta_{\mathrm{C}} 29.9$) is on the same side of the molecule with methyl hydrogens at $\delta_{\mathrm{H}} 0.82$ ($\delta_{\mathrm{C}} 29.8$). ROESY correlations were also observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.95\left(\delta_{\mathrm{C}} 33.3\right)$ with the methylene hydrogen at $\delta_{\mathrm{H}} 1.24$ ($\delta_{\mathrm{C}} 33.0$). This further supported the stereochemical assignments for both methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 33.3$) and $\delta_{\mathrm{H}} 0.91$ (δ_{C} 29.9). (Figure 2.16)

Figure 2.16: Stereochemical assignments of methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ and $\delta_{\mathrm{H}} 0.91$ for [49] based on ROESY correlations

[49]

Table 2.2: ROESY correlations for [49]

Proton	ROESY	Proton	ROESY	Proton	ROESY
$\mathrm{H}_{1 \alpha}$		$\mathrm{H}_{11 \alpha}$	Me_{27}	$\mathrm{H}_{21 \beta}$	$\mathrm{H}_{22}, \mathrm{Me}_{29}$
$\mathrm{H}_{1 \beta}$	H_{9}	$\mathrm{H}_{11 \beta}$	$\mathrm{Me}_{26}, \mathrm{Me}_{25}$	$\mathrm{H}_{22}{ }^{\text {a }}$	$\mathrm{H}_{16,}, \mathrm{H}_{22 \beta}$
$\mathrm{H}_{2 \alpha}$		$\mathrm{H}_{12} \alpha$		$\mathrm{H}_{22}{ }^{\text {a }}$	$\mathrm{H}_{22 \alpha}, \mathrm{H}_{21 \alpha}, \mathrm{H}_{21}, \mathrm{Me}_{28}$
$\mathrm{H}_{2 \beta}$		$\mathrm{H}_{12}{ }^{\text {a }}$	Me_{26}	Me_{23}	$\mathrm{H}_{3}, \mathrm{H}_{56}, \mathrm{Me}_{24}$
H_{3}	$\mathrm{H}_{5}, \mathrm{Me}_{23}$	H_{15}	$\mathrm{H}_{70}, \mathrm{H}_{7 \mathrm{p}}, \mathrm{H}_{160}, \mathrm{H}_{168}$	Me_{24}	$\mathrm{Me}_{23}, \mathrm{Me}_{25}$
H_{5}	$\mathrm{H}_{9}, \mathrm{H}_{7 \mathrm{\beta}}, \mathrm{H}_{6 \beta}, \mathrm{Me}_{23}$	$\mathrm{H}_{16 a}$	$\mathrm{H}_{15}, \mathrm{H}_{22 a}, \mathrm{Me}_{27}$	Me_{25}	$\mathrm{Me}_{26}, \mathrm{Me}_{24}$
$\mathrm{H}_{6 \alpha}$	$\mathrm{H}_{7}, \mathrm{Me}_{25}$	H_{168}		Me_{26}	$\begin{aligned} & \mathrm{H}_{7}, \mathrm{H}_{12 \beta}, \mathrm{H}_{6 \alpha}, \mathrm{H}_{11 \beta}, \\ & \mathrm{Me}_{28,}, \mathrm{Me}_{25} \end{aligned}$
$\mathrm{H}_{6 \beta}$	H_{7}	H_{18}	Me_{27}	Me_{27}	$\mathrm{H}_{9}, \mathrm{H}_{18}, \mathrm{H}_{16 \alpha}, \mathrm{H}_{11 \alpha}$
$\mathrm{H}_{7 \alpha}$	$\begin{aligned} & \mathrm{H}_{15}, \mathrm{H}_{7 \beta}, \mathrm{H}_{6 \alpha}, \mathrm{H}_{6 \beta}, \\ & \mathrm{Me}_{26} \end{aligned}$	H_{19}	$\mathrm{Me}_{30}, \mathrm{Me}_{28}$	Me_{28}	$\mathrm{H}_{19}, \mathrm{H}_{21 \alpha}, \mathrm{Me}_{26}$
$\mathrm{H}_{7 \beta}$		H_{19}		Me_{29}	H_{21}
H_{9}	$\mathrm{H}_{5}, \mathrm{H}_{11 \alpha}, \mathrm{Me}_{27}$	$\mathrm{H}_{21 a}$	$\mathrm{H}_{22}, \mathrm{Me}_{30}, \mathrm{Me}_{28}$	Me_{30}	$\mathrm{H}_{19,}, \mathrm{H}_{21 \alpha}$

[49] 600MHz (${ }^{\mathrm{I}} \mathrm{H}$): $\delta(\mathrm{ppm})$ from internal TMS in CDCl_{3}
The NMR assignments suggested that [49] is 18-epi-taraxerol. As discussed, the methine hydrogen at $\delta_{\mathrm{H}} 0.96$ is positioned below the ring. In comparison, the stereochemistry of the equivalent methine hydrogen in taraxerol [26] is inverted (Figure 2.17). An isomer of taraxerol, 13-epi,18-epi-taraxerol [29], has previously been isolated from Scaevola spinescens. ${ }^{6}$ (See Figure 2.17 for comparison between 18-epi-taraxerol [49], taraxerol [26] and 13-epi,18-epi-taraxerol [29]) A comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [49], taraxerol [26] and 13-epi,18-epi-taraxerol [29] are shown in Table 2.3. The ${ }^{13} \mathrm{C}$ chemical shifts for [49] are broadly consistent with the literature reports for [26] ${ }^{6,43}$ and $[29]^{6}$ except for the ones highlighted in red.

[26]

[49]

[29]

Figure 2.17: Comparison of stereochemistry between [49], [26] and [29]

Table 2.3: Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [49], [26] and [29]

C	$\delta_{\mathrm{C}}[49]$	$\delta_{\mathrm{C}}[26]^{6}$	$\delta_{\mathrm{C}}[26]^{43}$	$\delta_{\mathrm{C}}[29]^{6}$
Solvent	CDCl_{3}	CDCl_{3}	CDCl_{3}	CDCl_{3}
C_{1}	37.71^{*}	38.2	38.1	37.7
C_{2}	27.1	27.3	27.3	27.1
C_{3}	79.0	78.9	79.2	79.0
C_{4}	38.7	39.8	39.1	38.7
C_{5}	55.5	55.2	55.7	55.5
C_{6}	18.7	19.1	19.0	18.8
C_{7}	41.3	35.3	35.3	41.3
C_{8}	38.9	38.7	38.9	38.9
C_{9}	49.2	48.2	48.9	49.2
C_{10}	38.0	37.9	37.9	38.0
C_{11}	17.4	17.8	17.7	17.5
C_{12}	33.6	35.1	35.9	33.7
C_{13}	37.5	37.0	37.9	37.5
C_{14}	158.0	159.1	158.1	158.0
C_{15}	116.8	117.3	117.0	116.8
C_{16}	$37.74 *$	36.4	36.9	37.7
C_{17}	35.7	38.6	38.1	35.7
C_{18}	48.7	50.3	49.4	48.7
C_{19}	36.6	41.7	41.4	36.6
C_{20}	28.7	29.5	29.0	28.8
C_{21}	33.0	33.9	33.9	33.3
C_{22}	35.1	32.8	33.2	35.1
C_{23}	27.9	27.2	28.1	28.0
C_{24}	15.44^{*}	15.2	15.6	15.4
C_{25}	15.41^{*}	15.2	15.6	15.4
C_{26}	25.9	29.5	30.1	25.9
C_{27}	21.3	25.0	26.0	29.9
C_{28}	24.8	29.7	30.1	29.7
C_{29}	33.3	33.4	33.5	33.1
C_{30}	29.9	21.7	21.5	21.3

* Assignments may be reversed

As indicated in Table 2.3, the assignments for carbons 1 and 16 may be reversed as they have the same ${ }^{13} \mathrm{C}$ chemical shifts. The assignments for carbon 24 and 25 may also be reversed. Carbon $7,17,19,22,26$, and 28 clearly shows that they are in the right position as discussed earlier based on the HMBC correlations and COSY correlations (where available). Carbon 27 and 30 which have the same ${ }^{1} \mathrm{H}$ chemical shifts were able to be assigned in this structure based on the HMBC correlations observed in carbon 30. There were HMBC correlations between carbon 30 with the methylene hydrogen ($\delta_{\mathrm{H}} 1.31$) at carbon 19 as well as the methyl hydrogens $\delta_{\mathrm{H}} 0.95$ at carbon 29.

As shown in Table 2.3, there are more differences in the ${ }^{13} \mathrm{C}$ chemical shifts between [26] and [49] compared to the isomer [29] that has been previously isolated from Scaevola spinescens. The differences of the ${ }^{13} \mathrm{C}$ chemical shifts between [26] and [49] might be due to the change of stereochemistry in [49] at position 18. As for the isomer [29], the differences of the ${ }^{13} \mathrm{C}$ chemical shifts between [29] and [49] are only at carbon 27, 28 and 30 . This might be due to the different stereochemistry in [29] at position 13 , which possibly affect the ${ }^{13} \mathrm{C}$ chemical shifts of [49] at the region close to position 13.

From the literature reports, the melting point of taraxerol [26] has been reported to be $280-$ $284^{\circ} \mathrm{C}^{6}$ and $278-279^{\circ} \mathrm{C}^{43}$. As for 13-epi,18-epi-taraxerol [29], the melting point has been reported to be $191-193^{\circ} \mathrm{C} .{ }^{6}$ The melting point for [49] is in the region of taraxerol [26], which is $282-283^{\circ} \mathrm{C}$.

Literature research indicates that [49] had not previously been isolated from Scaevola spinescens or any other Scaevola species.

Compound [50]

Compound [50] (11 mg) was isolated as a white amorphous solid with a melting point of 265 - $270{ }^{\circ} \mathrm{C}$. The low-resolution EI mass spectrum showed an ion peak at $m / z 411$. Using the high-resolution EI mass spectrum (HREIMS), the molecular formula was determined to be $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}$ from the ion $m / z 411.3633$ (calculated 411.3626).

However, the ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 30 unique carbons; seven methyls ($\delta_{\mathrm{C}} 15.2,15.3,21.3,25.8,27.8,29.6,33.3$), eleven sp^{3} methylenes ($\left(\delta_{\mathrm{C}} 17.1,18.5\right.$, $26.9,27.6,30.4,32.4,33.2,35.6,37.5,41.1,64.8$), four sp^{3} methines ($\delta_{\mathrm{C}} 44.6,48.9,55.3$, 78.5), one sp^{2} methine ($\delta_{\mathrm{C}} 115.6$), six quaternary sp^{3} carbons ($\delta_{\mathrm{C}} 28.3,37.2,37.7,38.5,38.8$, 40.2) and one quaternary sp^{2} carbon ($\delta_{\mathrm{C}} 158.6$). All these resonances accounted for a partial molecular formula $\mathrm{C}_{30} \mathrm{H}_{48}$.

Therefore, it was concluded that the molecular ion of this compound is not at $m / z 411$. There is an ion peak at $m / z 442$ at a low intensity. This indicated a potential loss of mass of $m / z 31$. The partial molecular formula $\mathrm{C}_{30} \mathrm{H}_{48}$ obtained from the ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated that there is an additional CH which accounts for a mass of $\mathrm{m} / \mathrm{z} 13$. The remaining $\mathrm{m} / \mathrm{z} 18$ to obtain a molecular weight of $m / z 442$ accounted for two hydrogen atoms and an oxygen atom. The ion peak at $\mathrm{m} / \mathrm{z} 411$ that gives the molecular formula of $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}$ corresponds to the lost of $\mathrm{CH}_{2} \mathrm{OH}$ from the ion peak at $\mathrm{m} / \mathrm{z} 442$. Therefore, the molecular formula for compound [51] was determined to be $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}$. This indicated that the compound had six degree of unsaturation. The IR spectum indicated the presence of hydroxyl group(s) as there was an absorption at $3340 \mathrm{~cm}^{-1}$.

From the partial molecular formula $\mathrm{C}_{30} \mathrm{H}_{48}$, the remaining two hydrogen atoms and two oxygen atoms suggested the presence of two hydroxyl groups. This is supported by the infrared spectra. The two sp^{2} carbons ($\delta_{\mathrm{C}} 115.6$ and 158.6) indicate one double-bond functionality, which accounts for one degree of unsaturation. This suggested that the compound contained 5 rings.

All the methyl, methylene and methine carbons identified in the DEPT NMR were assigned to their directly attached protons based on correlations from the HSQC experiment.

The structure of compound [50] was determined mainly based on the HMBC and ROESY correlations as well as and COSY coupling (where available). The COSY spectrum did not give much information as most of the hydrogens are overlapping in the chemical shift region of $1.2-1.6 \mathrm{ppm}$. Therefore, it was impossible to unambiguously assign all the signals for each hydrogen coupling by this method. Only unambiguously assigned signals were taken into consideration when determining this structure.

The assignments for the methylene carbons at $\delta_{\mathrm{C}} 17.1$ and $\delta_{\mathrm{C}} 18.5$ were based on HMBC correlations with the adjacent protons. In the HSQC experiment, the hydrogens attached to the methylene carbon at $\delta_{\mathrm{C}} 17.1$ and $\delta_{\mathrm{C}} 18.5$ were not observed. The relative stereochemistry of the structure was then investigated using the ROESY correlations. These correlations are shown in Table 2.4 and 2.5.

In the HMBC spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 0.964$ showed correlations with the methyl carbon at $\delta_{\mathrm{C}} 29.6$, the methylene carbons at $\delta_{\mathrm{C}} 32.4$ and $\delta_{\mathrm{C}} 35.6$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 28.3$. The methyl carbon at $\delta_{\mathrm{C}} 33.3$ had ${ }^{1} \mathrm{H}$ chemical shift at $\delta_{\mathrm{H}} 0.964$ which was indistinguishable with the ${ }^{1} \mathrm{H}$ chemical shift for the methyl carbon at $\delta_{\mathrm{C}} 21.3$ (δ_{H} 0.961 as shown in HSQC spectrum). However, this problem was resolved based on the HMBC correlations observed between the methylene hydrogens at $\delta_{\mathrm{H}} 1.24$ and $\delta_{\mathrm{H}} 1.26\left(\delta_{\mathrm{C}} 32.4\right)$ with the methyl carbon at $\delta_{\mathrm{C}} 33.3\left(\delta_{\mathrm{H}} 0.964\right)$. The HMBC correlations indicated that the two methyl carbons at $\delta_{\mathrm{C}} 29.6$ and $\delta_{\mathrm{C}} 33.3$ are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 28.3$. (Figure 2.18)

$\longrightarrow \quad$ HMBC correlations
($\delta_{\mathrm{C}} 28.3$)
Figure 2.18: Fragment to build the $1^{\text {st }}$ ring for [50] based on HMBC correlations

In the COSY spectrum, the methylene hydrogen at $\delta_{\mathrm{H}} 1.00\left(\delta_{\mathrm{C}} 35.6\right)$ showed correlations with the methine hydrogen at $\delta_{\mathrm{H}} 0.57$ ($\delta_{\mathrm{C}} 44.6$). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen δ_{H} 0.57 ($\delta_{\mathrm{C}} 44.6$) showed a multiplicity of doublet of doublet with coupling constant (J) of 3.6 Hz and 13.8 Hz . The ${ }^{1} \mathrm{H}$ NMR spectrum showed that both hydrogens at $\delta_{\mathrm{H}} 0.57$ and $\delta_{\mathrm{H}} 1.00$ had a coupling constant (J) of 3.6 Hz . The small coupling constants (J) indicated that the hydrogen at $\delta_{\mathrm{H}} 0.57$ had a bigger dihedral angle with the hydrogen at $\delta_{\mathrm{H}} 1.00$ than the hydrogen at δ_{H} 1.41. This suggested that the methylene hydrogen at $\delta_{\mathrm{H}} 1.00$ would be in equatorial position as the methine hydrogen at $\delta_{\mathrm{H}} 0.57$ had to be in axial position. Therefore, the other methylene hydrogen at $\delta_{\mathrm{H}} 1.41$ had to be in axial position. This is supported by the coupling constant (J) of 13.8 Hz for the hydrogen at $\delta_{\mathrm{H}} 0.57$. The multiplicity of hydrogen at $\delta_{\mathrm{H}} 0.57$ indicated that this hydrogen is likely to be split by the methylene hydrogens at $\delta_{\mathrm{H}} 1.00$ and $\delta_{\mathrm{H}} 1.41$. Therefore, the other neighbours of the hydrogen at $\delta_{\mathrm{H}} 0.57$ would be quaternary carbons.

In the COSY spectrum, the methylene hydrogens at $\delta_{\mathrm{H}} 1.24$ and $\delta_{\mathrm{H}} 1.26\left(\delta_{\mathrm{C}} 32.4\right)$ showed correlations with the methylene hydrogens at $\delta_{\mathrm{H}} 1.47$ and $\delta_{\mathrm{H}} 1.50$ (δ_{C} 27.6). HMBC correlations were also observed between the hydrogens at $\delta_{\mathrm{H}} 1.47$ and $\delta_{\mathrm{H}} 1.50$ ($\delta_{\mathrm{C}} 27.6$) with the methyl carbon at $\delta_{\mathrm{C}} 33.3$, the methylene carbon at $\delta_{\mathrm{C}} 32.4$ and the quaternary carbon at δ_{C} 37.2.

The methylene hydrogens at $\delta_{\mathrm{H}} 1.24$ and $\delta_{\mathrm{H}} 1.26\left(\delta_{\mathrm{C}} 32.4\right)$ showed HMBC correlations with methyl carbons at $\delta_{\mathrm{C}} 29.6$ and $\delta_{\mathrm{C}} 33.3$ as well as quaternary carbon at $\delta_{\mathrm{C}} 40.2$. HMBC correlations were also observed between the methylene hydrogens at $\delta_{\mathrm{H}} 1.00$ and $\delta_{\mathrm{H}} 1.41$ (δ_{C} 35.6) with methyl carbons at $\delta_{C} 29.6$ and $\delta_{C} 33.3$, the methine carbon at $\delta_{C} 44.6$ as well as the quaternary carbons at $\delta_{\mathrm{C}} 28.3$ and $\delta_{\mathrm{C}} 40.2$. The HMBC and COSY correlations (where applicable) supported the closure of a ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the second degree of unsaturation ($1^{\text {st }}$ ring).
(Figure 2.19)

Figure 2.19: Closure of the $1^{\text {st }}$ ring for [50] based on COSY and HMBC correlations

The chemical shift of the quaternary sp^{2} carbon at $\delta_{\mathrm{C}} 158.6$ and sp^{2} methine carbon at $\delta_{\mathrm{C}} 115.6$ indicated that they must be attached together as there were no other sp^{2} carbons. In the HSQC spectrum, the sp^{2} methine carbon at $\delta_{\mathrm{C}} 115.6$ is attached to the hydrogen at $\delta_{\mathrm{H}} 5.51$. The sp^{2} methine hydrogen at $\delta_{\mathrm{H}} 5.51\left(\delta_{\mathrm{C}} 115.6\right)$ showed COSY coupling with the methylene hydrogens at $\delta_{\mathrm{H}} 1.70$ and $\delta_{\mathrm{H}} 2.14$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the hydrogen at $\delta_{\mathrm{H}} 5.51$ showed a multiplicity of double of doublet with coupling constant (J) of 3.0 Hz and 8.4 Hz . The coupling constant (J) of 3.0 Hz matches the coupling constant for the hydrogen at $\delta_{\mathrm{H}} 1.70$. The small coupling constant (J) indicated that the hydrogen at $\delta_{\mathrm{H}} 5.51$ had a bigger dihedral angle with the hydrogen at $\delta_{\mathrm{H}} 1.70$ than the hydrogen at $\delta_{\mathrm{H}} 2.14$. This suggested that the hydrogen at $\delta_{\mathrm{H}} 1.70$ is a pseudoaxial. Therefore, the other methylene hydrogen at $\delta_{\mathrm{H}} 2.14$ had to be pseudoequatorial. This is supported by the coupling constant (J) of 8.4 Hz . In the HSQC spectrum, the methylene hydrogens at $\delta_{\mathrm{H}} 1.70$ and $\delta_{\mathrm{H}} 2.14$ are attached to the carbon at δ_{C} 30.4. HMBC correlations were observed between the hydrogen at $\delta_{\mathrm{H}} 5.51$ with the quaternary carbons at $\delta_{\mathrm{C}} 37.2, \delta_{\mathrm{C}} 38.8$ and $\delta_{\mathrm{C}} 40.2$. The HMBC correlation with the quaternary carbon at $\delta_{\mathrm{C}} 40.2$ indicated that this fragment is linked to the $1^{\text {st }}$ ring. This is also supported by the HMBC correlations observed between the hydrogen at $\delta_{\mathrm{H}} 1.70$ with methine carbons at δ_{C} 44.6 and $\delta_{\mathrm{C}} 115.6$, the methylene carbon at $\delta_{\mathrm{C}} 27.6$ and quaternary carbons at $\delta_{\mathrm{C}} 40.2$ and δ_{C} 158.6.

The methine hydrogen at $\delta_{\mathrm{H}} 0.57$ ($\delta_{\mathrm{C}} 44.6$) had HMBC correlations with the methyl carbon at $\delta_{\mathrm{C}} 21.3$, the methylene carbon at $\delta_{\mathrm{C}} 64.8$ as well as quaternary carbons at $\delta_{\mathrm{C}} 37.2$ and $\delta_{\mathrm{C}} 40.2$. HMBC correlations were observed between the methylene hydrogens at $\delta_{\mathrm{H}} 3.10$ and $\delta_{\mathrm{H}} 3.24$
with methylene carbons at $\delta_{\mathrm{C}} 27.6$ and $\delta_{\mathrm{C}} 30.4$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 40.2$. The HMBC correlations showed that the methylene carbon at $\delta_{\mathrm{C}} 64.8$ is likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 40.2$. The chemical shift of the methylene carbon at $\delta_{\mathrm{C}} 64.8$ indicated that an oxygen group is likely to be attached to this methylene carbon. Therefore, this accounted for one hydroxyl group ($1^{\text {st }}$ hydroxyl group). The HMBC correlations and COSY coupling supported the closure of a ring that fused to the $1^{\text {st }}$ ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the third degree of unsaturation (2 $2^{\text {nd }}$ ring). (Figure 2.20)

Figure 2.20: Closure of the $2^{\text {nd }}$ ring for [50] based on COSY and HMBC correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 1.06$ ($\delta_{\mathrm{C}} 25.8$) showed HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 48.9$, the methylene carbon at $\delta_{\mathrm{C}} 41.1$ and the quaternary carbon at $\delta_{\mathrm{C}} 38.8$. The HMBC correlations indicated that the methyl hydrogens at $\delta_{\mathrm{H}} 1.06$ are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 38.8$. HMBC correlations were observed between methine hydrogen at $\delta_{\mathrm{H}} 0.57$ ($\delta_{\mathrm{C}} 44.6$) with the methylene carbon at δ_{C} 33.2. The methylene hydrogen at $\delta_{\mathrm{H}} 1.62\left(\delta_{\mathrm{C}} 33.2\right)$ showed HMBC correlations with the methyl carbon at $\delta_{\mathrm{C}} 21.3$, the methine carbon at $\delta_{\mathrm{C}} 48.9$, the methylene carbon at $\delta_{\mathrm{C}} 17.1$ and quaternary carbons at $\delta_{\mathrm{C}} 37.2$ and $\delta_{\mathrm{C}} 38.8$. The HMBC correlations supported the closure of an additional ring that fused to the $2^{\text {nd }}$ ring. Therefore, this ring closure accounted for the fourth degree of unsaturation ($3^{\text {rd }}$ ring). (Figure 2.21)

Figure 2.21: Closure of the $3^{\text {rd }}$ ring for [50] based on HMBC correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 0.97$, which are attached to $\delta_{\mathrm{C}} 27.8$ showed HMBC correlations with the methyl carbon at $\delta_{\mathrm{C}} 15.3$, methine carbon at $\delta_{\mathrm{C}} 55.3$ and the quaternary carbon at δ_{C} 38.5. HMBC correlations were observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.79$ ($\delta_{\mathrm{C}} 15.3$) with the methyl carbon at $\delta_{\mathrm{C}} 27.8$, methine carbons at $\delta_{\mathrm{C}} 55.3$ and $\delta_{\mathrm{C}} 78.5$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.5$. The HMBC correlations observed for both methyl hydrogens indicated that they are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 38.5$.

The chemical shift of the methine carbon at $\delta_{\mathrm{C}} 78.5$ indicated that an oxygen group is likely to be attached to this methine carbon. Therefore, this is accounted for one additional hydroxyl group ($2^{\text {nd }}$ hydroxyl group).

In the HMBC spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 0.77$ ($\delta_{\mathrm{C}} 55.3$) showed correlations with the methyl carbons at $\delta_{\mathrm{C}} 15.3$ and $\delta_{\mathrm{C}} 27.8$, the methine carbons at $\delta_{\mathrm{C}} 48.9$ and $\delta_{\mathrm{C}} 78.5$, the methylene carbons at $\delta_{\mathrm{C}} 18.5$ and $\delta_{\mathrm{C}} 41.1$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 38.5$. HMBC correlations were observed between the methylene hydrogens at $\delta_{\mathrm{H}} 1.33$ and $\delta_{\mathrm{H}} 2.01$ with the methylene carbon at $\delta_{\mathrm{C}} 18.5$. HMBC correlations were also observed between the methine proton at $\delta_{\mathrm{H}} 1.42\left(\delta_{\mathrm{C}} 48.9\right)$ with the methyl carbons at $\delta_{\mathrm{C}} 15.2$ and $\delta_{\mathrm{C}} 25.8$. The methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ ($\delta_{\mathrm{C}} 15.2$) showed HMBC correlations with the methine carbons at δ_{C} 48.9 and $\delta_{\mathrm{C}} 55.3$, the methylene carbon at $\delta_{\mathrm{C}} 26.9$ and the quaternary carbon at $\delta_{\mathrm{C}} 37.7$. Therefore, the methyl group at $\delta_{\mathrm{H}} 0.91\left(\delta_{\mathrm{C}} 15.2\right)$ is likely to be attached to the quaternary
carbon at δ_{C} 37.7. The HMBC correlations supported the closure of an additional ring that fused to the $3^{\text {rd }}$ ring, thus accounted for the fifth degree of unsaturation ($4^{\text {th }}$ ring). (Figure 2.22)

Figure 2.22: Closure of the $4^{\text {th }}$ ring for [50] based on HMBC correlations

The methine hydrogen at $\delta_{\mathrm{H}} 3.16$ ($\delta_{\mathrm{C}} 78.5$) showed COSY coupling with the methylene hydrogens at $\delta_{\mathrm{H}} 1.59$ and $\delta_{\mathrm{H}} 1.60$. The ${ }^{1} \mathrm{H}$ NMR showed that the methine hydrogen at $\delta_{\mathrm{H}} 3.16$ had a coupling constant (J) of 4.8 Hz and $10.8 \mathrm{~Hz} . \mathrm{HMBC}$ correlations were observed between the methylene hydrogens at $\delta_{\mathrm{H}} 1.58$ and $\delta_{\mathrm{H}} 1.61$ with the methine carbon at $\delta_{\mathrm{C}} 78.5$. As mentioned earlier, the methyl hydrogens at $\delta_{\mathrm{H}} 0.91$ showed HMBC correlation with the methylene carbon at δ_{C} 26.9. The HMBC correlations as well as the COSY coupling supported the closure of a ring that fused to the $4^{\text {th }}$ ring, thus accounted for the sixth degree of unsaturation (5 ${ }^{\text {th }}$ ring). (Figure 2.23)

Figure 2.23: Closure of the $5^{\text {th }}$ ring for [50] based on COSY and HMBC correlations

Table 2.4: Spectral data for [50]

C	$\delta_{\text {C }}$	H	δ_{H}	I	M	$\mathrm{J}(\mathrm{Hz})$	COSY	HMBC
C_{1}	37.5	$\mathrm{H}_{1 \alpha}$	$\begin{aligned} & 1.61 \\ & 1.58 \end{aligned}$	1	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{3} \\ & \mathrm{C}_{3} \\ & \hline \end{aligned}$
C_{2}	26.9	$\begin{aligned} & \mathrm{H}_{2 \alpha} \\ & \mathrm{H}_{2 \beta} \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.59 \end{aligned}$	1	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{10} \\ & \mathrm{C}_{10} \end{aligned}$
C_{3}	78.5	H_{3}	3.16	1	dd	4.8, 10.8	$\mathrm{H}_{2 \alpha}, \mathrm{H}_{2 \beta}$	$\mathrm{C}_{23}, \mathrm{C}_{24}$
C_{4}	38.5							$\mathrm{H}_{5}, \mathrm{Me}_{23}, \mathrm{Me}_{24}$
C_{5}	55.3	H_{5}	0.77	1	dd	2.4, 12.6		$\mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{23}, \mathrm{C}_{24}$
C_{6}	18.5	$\begin{aligned} & \mathrm{H}_{6 \alpha} \\ & \mathrm{H}_{6 \beta} \end{aligned}$						
C_{7}	41.1	$\begin{aligned} & \mathrm{H}_{7 \alpha} \\ & \mathrm{H}_{7 \beta} \end{aligned}$	$\begin{aligned} & \hline 2.01 \\ & 1.33 \end{aligned}$	1	$\begin{aligned} & \mathrm{dt} \\ & \mathrm{td} \end{aligned}$	$\begin{aligned} & \hline 3.0,12.6 \\ & 3.0,12.6 \end{aligned}$		$\begin{aligned} & \mathrm{C}_{6}, \mathrm{C}_{12} \\ & \mathrm{C}_{6}, \mathrm{C}_{12} \end{aligned}$
C_{8}	38.8							$\mathrm{H}_{7 \alpha}, \mathrm{H}_{7 \beta}, \mathrm{H}_{12 \beta}, \mathrm{H}_{15}, \mathrm{Me}_{26}$
C_{9}	48.9	H_{9}	1.42	1	m			$\mathrm{C}_{25}, \mathrm{C}_{26}$
C_{10}	37.7							Me_{25}
C_{11}	17.1	$\begin{aligned} & \hline \mathrm{H}_{11 \alpha} \\ & \mathrm{H}_{11 \beta} \\ & \hline \end{aligned}$						
C_{12}	33.2	$\begin{aligned} & \mathrm{H}_{12 \alpha} \\ & \mathrm{H}_{12 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.66 \\ & 1.62 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{27} \\ & \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{27} \\ & \hline \end{aligned}$
C_{13}	37.2							$\begin{aligned} & \mathrm{H}_{12 \beta}, \mathrm{H}_{15}, \mathrm{H}_{18}, \mathrm{H}_{22 \alpha}, \mathrm{H}_{22 \beta}, \\ & \mathrm{Me}_{26}, \mathrm{Me}_{27}, \end{aligned}$
C_{14}	158.6							$\mathrm{H}_{166}, \mathrm{Me}_{26}, \mathrm{Me}_{27}$
C_{15}	115.6	H_{15}	5.51	1	dd	3.0, 8.4	$\mathrm{H}_{16 \alpha} \mathrm{H}_{16 \beta}$	$\mathrm{C}_{8}, \mathrm{C}_{13}, \mathrm{C}_{16}, \mathrm{C}_{17}$

C	$\delta_{\text {C }}$	H	δ_{H}	I	M	$\mathrm{J}(\mathrm{Hz})$	COSY	HMBC
C_{16}	30.4	$\begin{aligned} & \hline \mathrm{H}_{16 \alpha} \\ & \mathrm{H}_{16 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.14 \\ & 1.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{dd} \\ & \mathrm{dd} \end{aligned}$	$\begin{aligned} & 8.4,15.0 \\ & 3.0,15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{15}, \mathrm{H}_{16 \beta} \\ & \mathrm{H}_{15}, \mathrm{H}_{16 \alpha} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{28} \\ & \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{22}, \mathrm{C}_{28} \\ & \hline \end{aligned}$
C_{17}	40.2							$\begin{aligned} & \mathrm{H}_{16 a}, \mathrm{H}_{16 \beta}, \mathrm{H}_{18}, \mathrm{H}_{19 \alpha,} \mathrm{H}_{19 \beta}, \mathrm{H}_{21 \alpha}, \\ & \mathrm{H}_{21 \beta}, \end{aligned}$
C_{18}	44.6	H_{18}	0.57	1	dd	3.6, 13.8	$\mathrm{H}_{19}, \mathrm{H}_{19 \beta}$	$\begin{aligned} & \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{27}, \\ & \mathrm{C}_{28}, \mathrm{C}_{29}, \end{aligned}$
C_{19}	35.6	$\begin{aligned} & \mathrm{H}_{19 \alpha} \\ & \mathrm{H}_{19 \beta} \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{dd} \end{aligned}$	3.6, 13.2		$\begin{aligned} & \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{29}, \mathrm{C}_{30}, \\ & \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{30} \\ & \hline \end{aligned}$
C_{20}	28.3							$\mathrm{H}_{18}, \mathrm{H}_{19 \alpha}, \mathrm{H}_{19 \beta}, \mathrm{H}_{21 \alpha}, \mathrm{H}_{21 \beta},$ $\mathrm{Me}_{29}, \mathrm{Me}_{30}$
C_{21}	32.4	$\begin{aligned} & \mathrm{H}_{21 \alpha} \\ & \mathrm{H}_{21 \beta} \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.24 \end{aligned}$	1	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{17}, \mathrm{C}_{20}, \mathrm{C}_{29}, \mathrm{C}_{30} \\ & \mathrm{C}_{17}, \mathrm{C}_{20}, \mathrm{C}_{29}, \mathrm{C}_{30} \end{aligned}$
C_{22}	27.6	$\begin{aligned} & \mathrm{H}_{22 \alpha} \\ & \mathrm{H}_{22 \beta} \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.47 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~m} \end{aligned}$			$\begin{aligned} & \mathrm{C}_{13}, \mathrm{C}_{21}, \mathrm{C}_{29} \\ & \mathrm{C}_{13}, \mathrm{C}_{21}, \mathrm{C}_{29} \end{aligned}$
C_{23}	27.8	Me_{23}	0.97	3	s			$\mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{24}$
C_{24}	15.3	Me_{24}	0.79	3	s			$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{23}$
C_{25}	15.2	Me_{25}	0.91	3	s			$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{9}, \mathrm{C}_{10}$
C_{26}	25.8	Me_{26}	1.06	3	s			$\mathrm{C}_{7}, \mathrm{C}_{8} \mathrm{C}_{9}$,
$\mathrm{C}_{27 *}$	21.3	Me_{27}	0.961	3	s			$\mathrm{C}_{13}, \mathrm{C}_{1,4}, \mathrm{C}_{18}$
C_{28}	64.8	$\begin{array}{\|l} \hline \mathrm{H}_{28 \alpha} \\ \mathrm{H}_{28 \beta} \\ \hline \end{array}$	$\begin{aligned} & \hline 3.24 \\ & 3.10 \\ & \hline \end{aligned}$	1	d	$\begin{aligned} & \hline 10.8 \\ & 10.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H}_{28 \beta} \\ & \mathrm{H}_{28 \alpha} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{22} \\ & \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{16}, \mathrm{C}_{22} \\ & \hline \end{aligned}$
$\mathrm{C}_{29 *}$	33.3	Me_{29}	0.964	3	s			$\mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{30}$
C_{30}	29.6	Me_{30}	0.89	3	s			$\mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{29}$

* Interchangeable [51] 600MHz (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right): \delta(\mathrm{ppm})$ from internal TMS in CDCl_{3}

I = Integration
M = Multiplicity

The ROESY experiment unambiguously assigned the methyl hydrogens at $\delta_{\mathrm{H}} 0.79$ ($\delta_{\mathrm{C}} 15.3$), $\delta_{\mathrm{H}} 0.91\left(\delta_{\mathrm{C}} 15.2\right), \delta_{\mathrm{H}} 1.06\left(\delta_{\mathrm{C}} 25.8\right)$ to be on the same side of the molecule as there were strong ROESY correlations between these methyl groups. (Figure 2.24)

The geminal methyl groups at $\delta_{\mathrm{H}} 0.97\left(\delta_{\mathrm{C}} 27.8\right)$ showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.79\left(\delta_{\mathrm{C}} 15.3\right)$ as well as methine hydrogens at $\delta_{\mathrm{H}} 0.77\left(\delta_{\mathrm{C}} 55.3\right)$ and $\delta_{\mathrm{H}} 3.16$ ($\delta_{\mathrm{C}} 78.5$). Therefore, the hydrogens at $\delta_{\mathrm{H}} 0.77, \delta_{\mathrm{H}} 0.97$ and $\delta_{\mathrm{H}} 3.16$ were assigned to be on the same side of the molecule. This indicated that the hydroxyl group attached to methine carbon at $\delta_{\mathrm{C}} 78.5$ would be on the same side of the molecule with the methyl hydrogens at $\delta_{\mathrm{H}} 0.79$.
(Figure 2.25)

Figure 2.24: Stereochemical assignments of the methyl hydrogens for [50] based on ROESY correlations

Figure 2.25: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 3.16$ and $\delta_{\mathrm{H}} 0.77$ for [50] based on ROESY correlations.

ROESY correlations were observed between both methine hydrogens at $\delta_{\mathrm{H}} 0.77$ ($\delta_{\mathrm{C}} 55.3$) and $\delta_{\mathrm{H}} 1.42\left(\delta_{\mathrm{C}} 48.9\right)$, followed by the methine hydrogen at $\delta_{\mathrm{H}} 1.42\left(\delta_{\mathrm{C}} 48.9\right)$ with the methyl hydrogens at $\delta_{\mathrm{H}} 0.961$ ($\delta_{\mathrm{C}} 21.3$). ROESY correlations between the methine hydrogen at δ_{H} $1.42\left(\delta_{\mathrm{C}} 48.9\right)$ with the methyl hydrogens at at $\delta_{\mathrm{H}} 0.961\left(\delta_{\mathrm{C}} 21.3\right)$ are possible as the ring they are attached to are twisted and in a boat shape. (Figure 2.26)

Figure 2.26: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 0.77, \delta_{\mathrm{H}} 0.961$ and $\delta_{\mathrm{H}} 1.42$ for [50] based on ROESY correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 1.06\left(\delta_{\mathrm{C}} 25.8\right)$ showed ROESY correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 3.24$ ($\delta_{\mathrm{C}} 64.8$). The methylene hydrogens at $\delta_{\mathrm{H}} 3.24$ and $\delta_{\mathrm{H}} 3.10\left(\delta_{\mathrm{C}} 64.8\right)$ had ROESY correlations with the methine hydrogen at $\delta_{\mathrm{H}} 0.57$ ($\delta_{\mathrm{C}} 44.6$). ROESY correlations were also observed between the methine hydrogen at $\delta_{\mathrm{H}} 0.57$ ($\delta_{\mathrm{C}} 44.6$) with the methyl hydrogens at $\delta_{\mathrm{H}} 0.89$ ($\delta_{\mathrm{C}} 29.6$). The ROESY correlations indicated that the hydrogens at δ_{H} $0.57, \delta_{\mathrm{H}} 3.10, \delta_{\mathrm{H}} 3.24$ and $\delta_{\mathrm{H}} 0.89$ were on the same side of the molecule as the methyl hydrogens at $\delta_{\mathrm{H}} 1.06\left(\delta_{\mathrm{C}} 25.8\right)$. Therefore, methyl hydrogens at $\delta_{\mathrm{H}} 0.964$ ($\delta_{\mathrm{C}} 33.3$) had to be on the other side of the molecule. (Figure 2.27) The final structure is shown below.

Figure 2.27: Stereochemical assignments of methyl hydrogens at $\delta_{\mathrm{H}} 0.89$ and $\delta_{\mathrm{H}} 0.964$ for [50] based on ROESY correlations

[50]

Table 2.5: ROESY correlations for [50]

| Proton | ROESY | Proton | ROESY |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{1 \alpha}$ | | $\mathrm{H}_{16 \beta}$ | $\mathrm{H}_{16 \alpha}, \mathrm{Me}_{2927}$ |
| $\mathrm{H}_{1 \beta}$ | | H_{18} | $\mathrm{H}_{28 \alpha}, \mathrm{H}_{28 \beta}, \mathrm{H}_{19}, \mathrm{H}_{19 \beta}, \mathrm{Me}_{30}$ |
| $\mathrm{H}_{2 \alpha}$ | | $\mathrm{H}_{19 \alpha}$ | $\mathrm{H}_{18}, \mathrm{Me}_{27}$ |
| $\mathrm{H}_{2 \beta}$ | | $\mathrm{H}_{19 \beta}$ | $\mathrm{H}_{18}, \mathrm{Me}_{27}, \mathrm{Me}_{30}$ |
| H_{3} | $\mathrm{H}_{5}, \mathrm{H}_{2 \alpha}, \mathrm{Me}_{23}$ | $\mathrm{H}_{21 \alpha}$ | |
| H_{5} | $\mathrm{H}_{3}, \mathrm{H}_{8 \beta}, \mathrm{H}_{9}, \mathrm{Me}_{23}$ | $\mathrm{H}_{21 \beta}$ | $\mathrm{H}_{22 \beta}, \mathrm{Me}_{29}, \mathrm{Me}_{30}$ |
| $\mathrm{H}_{6 \alpha}$ | | $\mathrm{H}_{22 \alpha}$ | $\mathrm{H}_{19 \alpha}, \mathrm{H}_{21 \beta}$ |
| $\mathrm{H}_{6 \beta}$ | | $\mathrm{H}_{22 \beta}$ | |
| $\mathrm{H}_{7 \alpha}$ | $\mathrm{H}_{7 \beta}, \mathrm{Me}_{26}$ | $\mathrm{H}_{28 \alpha}$ | $\mathrm{H}_{18}, \mathrm{Me}_{26}$ |
| $\mathrm{H}_{7 \beta}$ | H_{5} | $\mathrm{H}_{28 \beta}$ | $\mathrm{H}_{18}, \mathrm{H}_{21 \alpha}, \mathrm{Me}_{30}$ |
| H_{9} | H_{5} | Me_{23} | $\mathrm{H}_{3}, \mathrm{H}_{5}, \mathrm{Me}_{24}$ |
| $\mathrm{H}_{11 \alpha}$ | | Me_{24} | $\mathrm{H}_{2 \beta}, \mathrm{Me}_{23}, \mathrm{Me}_{25}$ |
| $\mathrm{H}_{11 \beta}$ | | Me_{25} | $\mathrm{H}_{2 \beta}, \mathrm{Me}_{26}, \mathrm{Me}_{24}$ |
| $\mathrm{H}_{12 \alpha}$ | $\mathrm{H}_{18}, \mathrm{H}_{19 \alpha}$ | Me_{26} | $\mathrm{H}_{28 \alpha}, \mathrm{H}_{7 \alpha}$ |
| $\mathrm{H}_{12 \beta}$ | | Me_{27} | $\mathrm{H}_{9}, \mathrm{H}_{16 \beta}, \mathrm{H}_{19 \alpha}, \mathrm{H}_{19 \beta}$ |
| H_{15} | $\mathrm{H}_{7 \alpha}, \mathrm{H}_{7 \beta}, \mathrm{H}_{16 \alpha}$ | Me_{29} | $\mathrm{H}_{22 \alpha}$ |
| $\mathrm{H}_{16 \alpha}$ | $\mathrm{H}_{15}, \mathrm{H}_{16 \beta}$ | Me_{30} | $\mathrm{H}_{18}, \mathrm{H}_{19 \beta}, \mathrm{H}_{21 \beta}$ |

The NMR assignments suggested that [50] is myricadiol [24]. A comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [50] with other literature reports on myricadiol is shown in Table 2.6.

Table 2.6: Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [50] and myricadiol [24]

C_{1}	$\delta_{\mathrm{C}}[50]$	$\delta_{\mathrm{C}}[24]^{43}$	$\delta_{\mathrm{C}}[24]^{44}$	$\delta_{\mathrm{C}}[24]^{45}$
C_{1}	37.5	37.8	37.8	37.9
C_{2}	26.9	28.0	28.0	27.8
C_{3}	78.5	78.2	78.2	78.4
C_{4}	38.5	41.4	41.4	41.2
C_{5}	55.3	56.0	56.0	55.9
C_{6}	18.5	19.2	19.2	19.2
C_{7}	41.1	36.3	41.7	36.3
C_{8}	38.8	39.3	39.3	39.2
C_{9}	48.9	45.6	49.6	45.9
C_{10}	37.7	37.8	37.8	37.9
C_{11}	17.1	17.9	17.9	17.7
C_{12}	33.2	31.2	33.2	32.0
C_{13}	37.2	38.3	38.2	38.3
C_{14}	158.6	158.7	158.7	158.7
C_{15}	115.6	116.8	116.8	116.9
C_{16}	30.4	33.2	31.28	32.9
C_{17}	40.2	38.3	38.3	38.1
C_{18}	44.6	49.6	45.6	49.5
C_{19}	35.6	41.7	36.3	41.5
C_{20}	28.3	28.8	28.8	28.8
C_{21}	32.4	33.8	33.8	33.9
C_{22}	27.6	28.7	28.7	28.7
C_{23}	27.8	28.4	16.5	28.4
C_{24}	15.3	16.5	28.4	16.6
C_{25}	15.2	15.7	14.8	15.6
C_{26}	25.8	30.1	30.1	30.1
C_{27}	21.3	26.2	26.2	26.1
C_{28}	64.8	64.6	64.6	64.1
C_{29}	33.3	33.8	22.0	33.7
C_{30}	29.6	22.0	33.8	22.1

There are three literature reports for myricadiol [24].43-45 However, there is inconsistency in the reported ${ }^{13} \mathrm{C}$ chemical shifts in these sources. The ${ }^{13} \mathrm{C}$ chemical shifts of myricadiol [24] were first reported by Sakurai et al. ${ }^{43}$ The ${ }^{13} \mathrm{C}$ chemical shifts of myricadiol [24] were then later reassigned by Merfort et al. ${ }^{44}$ The assignments of the ${ }^{13} \mathrm{C}$ chemical shifts for myricadiol [24] by Soo Lee et al ${ }^{45}$ are based on the literature report by Sakurai et al ${ }^{43}$. Therefore, there are similarities between the ${ }^{13} \mathrm{C}$ chemical shifts reported by Sakurai et al ${ }^{43}$ and Soo Lee et al ${ }^{45}$. The ${ }^{13} \mathrm{C}$ chemical shifts for [50] are broadly consistent with the literature reports for myricadiol [24] except for the ones highlighted in red. Among the three literature reports for
myricadiol [24], the ${ }^{13} \mathrm{C}$ chemical shifts for [50] are more consistent with the literature report by Merfort et al ${ }^{44}$.

From the literature reports, the melting point for myricadiol [24] has been reported to be 269 $271^{\circ} \mathrm{C}^{45}$ and $278-279^{\circ} \mathrm{C}^{43}$. The melting point for [50] $\left(265-270^{\circ} \mathrm{C}\right)$ is in the region of the literature reports for myricadiol [24] ${ }^{43,45}$. This further supported that compound [50] was myricadiol.

Myricadiol [24] has previously been isolated from Scaevola spinescens ${ }^{5}$.

2.4.2 Ethyl Acetate Extract

Fractionation and purification of compounds from ethyl acetate extract

A total of 15 g of ethyl acetate extract was obtained from the Soxhlet extraction. The ethyl acetate extract was then subjected to fractionation and purification by flash column chromatography. The fractionation and purification of compounds from the ethyl acetate extract are summarized in Figure 2.28. Below are the details of the fractionation of compounds from the ethyl acetate extract.

- Two batches of the ethyl acetate extract ($\sim 7.5 \mathrm{~g}$ each time) were subjected to flash column chromatography (100 mm column diameter) using a series of increasing polarity solvents to yield 19 fractions, EA01/1-EA19/1 and 17 fractions, EA01/2EA17/2 respectively. The fractions from these two batches that had similar TLC profiles were combined. The combined fractions are indicated by colour coding in red (Figure 2.28). This was to enable further purification of the material and to allow a reasonable amount of pure compound to be isolated. The fractions that had slightly different TLC profiles were assigned with different colours to distinguish between the two batches. Fractions from the first batch of extraction were color coded in dark green and the fractions from the second batch of extraction were colour coded in blue (Figure 2.28).

Figure 2.28: Fractionation from 15 g of ethyl acetate extract

- Fraction EA10/1 (690 mg) was then subjected to further flash column chromatography (40 mm column diameter) using a series of increasing polarity solvents to yield 8 subfractions, EA1001-EA1008 (Figure 2.29).
- When solutions of Fractions EA1003 and EA1005 were left standing, white solids crystallized out of each solution. The white solids were labeled as EA1003a and EA1005a respectively (Figure 2.29). Both of these white solids were found to have similar ${ }^{1} \mathrm{H}$ NMR spectra. However, the amount of these white solids was insufficient for structural elucidation. Nevertheless, the filtrate from fraction EA1005 (EA1005b) was tested for purity by ${ }^{1} \mathrm{H}$ NMR spectrometer as this compound showed good antibacterial activity (See Chapter 3: Antibacterial assay) and was found to be reasonably pure, which should allow for further characterization. Therefore, EA1005b [51] was further characterized using 2D NMR, mass spectrometry, FTIR and UVvisible spectroscopy.

Figure 2.29: Fractionation from 690 mg of fraction EA10

- Fraction EA11 (416 mg) was subjected to further flash column chromatography (40 mm column diameter) using a series of increasing polarity solvents to yield 10 subfractions, EA1101-EA1110 (Figure 2.30). Sub-fraction EA1106 [52] was then further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-Visible spectroscopy (Figure 2.30).

Figure 2.30: Fractionation from 416 mg of fraction EA11

Compound [51]

Compound [51] (118 mg) was isolated as a white amorphous solid with a melting point of 238 $-240^{\circ} \mathrm{C}$. Using high-resolution EI mass spectrometry, the molecular formula was determined to be $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$ from the molecular ion peak at $\mathrm{m} / \mathrm{z} 456.3599$ (calculated 456.3603). This indicated that the compound had 7 degrees of unsaturation. The IR spectrum indicated the presence of hydroxyl group(s) as there were absorptions at $3416 \mathrm{~cm}^{-1}$ and $2850 \mathrm{~cm}^{-1}$. There was also an absorption at $1686 \mathrm{~cm}^{-1}$ in the IR spectrum, which indicated the presence of a carbonyl group. The combination of the absorption at $2850 \mathrm{~cm}^{-1}$ and $1686 \mathrm{~cm}^{-1}$ are strongly suggestive of a carboxylic acid functionality.

Some difficulties were encountered in assigning the hydrogens and carbons of this structure. The COSY spectrum did not give much information as most of the hydrogens are overlapping in the chemical shift region of $1.2-1.7 \mathrm{ppm}$. So it was impossible to unambiguously assign all the signals for each hydrogen by this method. Therefore, most of the NMR assignments were based on HMBC and ROESY correlations. Only unambiguously assigned signals were taken into consideration when determining this structure. These correlations are shown in Table 2.7 and Table 2.8.

The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 30 unique carbons; seven methyls (δ_{C} $16.5,16.8,18.1,18.3,22.0,24.6,29.2$), nine sp^{3} methylenes ($\delta_{\mathrm{C}} 19.9,24.8,25.8,28.4,29.7$, $32.2,34.8,38.6,40.5$), six sp 3 methines ($\delta_{\mathrm{C}} 38.6,40.9,49.5,54.8,57.2,80.2$), one sp^{2} methine ($\delta_{\mathrm{C}} 127.4$), five quaternary sp^{3} carbons ($\delta_{\mathrm{C}} 40.3,40.9,41.3,43.7,50.0$) and two quaternary sp^{2} carbon ($\delta_{\mathrm{C}} 140.1,182.0$). All these resonances accounted for a partial molecular formula $\mathrm{C}_{30} \mathrm{H}_{46}$.

The three sp^{2} carbons ($\delta_{\mathrm{C}} 127.4,140.1,182.0$) indicated a double bond functionality and carbonyl group, which accounts for two degrees of unsaturation. This suggested that the compound contained 5 rings. The carbonyl group accounted for an oxygen atom, which is supported by the infrared spectra. Therefore, the remaining two hydrogen atoms and two oxygen atoms accounted for two hydroxyl groups, which are also supported by the infrared spectra.

All the methyl, methylene and methine carbons identified in the DEPT NMR were assigned to their directly attached hydrogens using the HSQC experiment.

In the HMBC spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 0.77$ ($\delta_{\mathrm{C}} 16.8$ as shown in HSQC spectrum) showed correlations with the methyl carbon at $\delta_{\mathrm{C}} 29.2$, methine carbons at $\delta_{\mathrm{C}} 57.2$ and $\delta_{\mathrm{C}} 80.2$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 40.3$. HMBC correlations were also observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.97$ ($\delta_{\mathrm{C}} 29.2$ as shown un HSQC spectrum) with the methyl carbon at $\delta_{\mathrm{C}} 16.8$, methine carbons at $\delta_{\mathrm{C}} 57.2$ and $\delta_{\mathrm{C}} 80.2$ as well as the quaternary carbon at $\delta_{\mathrm{C}} 40.3$. This indicated that the two methyl groups are likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 40.3$. The chemical shift of the methine carbon at δ_{C} 80.2 indicated that an oxygen group is likely to be attached to this methine carbon. Therefore this accounted for one hydroxyl group. (Figure 2.31)

Figure 2.31: Fragment to build the $1^{\text {st }}$ ring for [51] based on HMBC correlations

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 3.14\left(\delta_{\mathrm{C}} 80.2\right)$ showed correlations with the methylene hydrogens at $\delta_{\mathrm{H}} 1.57$ and $\delta_{\mathrm{H}} 1.62$ ($\delta_{\mathrm{C}} 28.4$). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the hydrogen at $\delta_{\mathrm{H}} 3.14$ showed multiplicity of doublet of doublet with coupling constant (J) of 4.2 Hz ad 11.4 Hz . The methylene hydrogen at $\delta_{\mathrm{H}} 1.62$ also showed COSY correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 1.68$ ($\delta_{\mathrm{C}} 38.6$). HMBC correlations were also observed between the methylene hydrogen at $\delta_{\mathrm{H}} 1.57$ with the methylene carbon at $\delta_{\mathrm{C}} 38.6$ as well as quaternary carbons at $\delta_{\mathrm{C}} 40.9$ and $\delta_{\mathrm{C}} 40.3$. The methine hydrogen at $\delta_{\mathrm{H}} 0.74$ ($\delta_{\mathrm{C}} 57.2$) had HMBC correlations with the methylene carbon at δ_{C} 38.6. The HMBC and COSY correlations supported the closure of a ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the third degree of unsaturation ($1^{\text {st }}$ ring). (Figure 2.32)

Figure 2.32: Closure of the $1^{\text {st }}$ ring for [51] based on COSY and HMBC correlations

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 0.74\left(\delta_{\mathrm{C}} 57.2\right)$ showed correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 1.39$ ($\delta_{\mathrm{C}} 19.9$). HMBC correlations were also observed between the methine hydrogen at $\delta_{\mathrm{H}} 0.74$ with the methine carbon at $\delta_{\mathrm{C}} 49.5$, the methylene carbons at $\delta_{\mathrm{C}} 19.9$ and $\delta_{\mathrm{C}} 34.8$ as well as the methyl carbon at $\delta_{\mathrm{C}} 16.5$. The methine hydrogen at $\delta_{\mathrm{H}} 1.56$ ($\delta_{\mathrm{C}} 49.5$) had HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 57.2$, the methylene carbons at $\delta_{\mathrm{C}} 24.8$ and $\delta_{\mathrm{C}} 38.6$, the methyl carbons at $\delta_{\mathrm{C}} 16.5$ and $\delta_{\mathrm{C}} 18.3$ as well as the quaternary carbons at $\delta_{\mathrm{C}} 41.3$ and $\delta_{\mathrm{C}} 43.7$. In the COSY spectrum, the methine at $\delta_{\mathrm{H}} 1.56$ ($\delta_{\mathrm{C}} 49.5$) showed correlations with the methylene hydrogens at $\delta_{\mathrm{H}} 1.92$. The two methylene hydrogens at $\delta_{\mathrm{H}} 1.92$ were indistinguishable as they have the same chemical shifts. The methyl hydrogens at $\delta_{\mathrm{H}} 0.84\left(\delta_{\mathrm{C}} 18.3\right)$ showed HMBC correlations with the methine carbon at $\delta_{\mathrm{C}} 49.5$, methylene carbon at $\delta_{\mathrm{C}} 34.8$ as well as quaternary carbons at $\delta_{\mathrm{C}} 40.9, \delta_{\mathrm{C}} 41.3$ and $\delta_{\mathrm{C}} 43.7$. HMBC correlations were also observed between the quaternary carbon at $\delta_{\mathrm{C}} 41.3$ with the methylene hydrogen at $\delta_{\mathrm{H}} 1.92\left(\delta_{\mathrm{C}} 24.8\right)$ as well as the methyls hydrogens at $\delta_{\mathrm{H}} 0.84$ ($\delta_{\mathrm{C}} 18.3$) and δ_{H} 1.11 ($\delta_{\mathrm{C}} 24.6$). The quaternary carbon at $\delta_{\mathrm{C}} 43.7$ had HMBC correlations with the methine hydrogens at $\delta_{\mathrm{H}} 5.22$ ($\delta_{\mathrm{C}} 127.4$) and $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$). Therefore, the methyl group at $\delta_{\mathrm{H}} 0.84$ ($\delta_{\mathrm{C}} 18.3$) is likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 41.3$. The HMBC and COSY correlations (where applicable) supported the closure of a ring that fused to the $1^{\text {st }}$ ring, thus accounting for one additional degree of unsaturation, which accounted for the fourth degree of unsaturation (2 $2^{\text {nd }}$ ring). (Figure 2.33)

Figure 2.33: Closure of the $2^{\text {nd }}$ ring for [51] based on COSY and HMBC correlations

In the COSY spectrum, the methylene hydrogens at $\delta_{\mathrm{H}} 1.92$ ($\delta_{\mathrm{C}} 24.8$) showed correlations with the methine hydrogen at $\delta_{\mathrm{H}} 5.22$ ($\delta_{\mathrm{C}} 127.4$). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 5.22\left(\delta_{\mathrm{C}} 127.4\right)$ showed multiplicity of triplet with a coupling constant (J) of 3.6 Hz . The chemical shift of the methine carbon at $\delta_{\mathrm{C}} 127.4$ indicated that it must be attached to the sp^{2} quaternary carbon at δ_{C} 140.1. HMBC correlations were observed between the methine hydrogen at $\delta_{\mathrm{H}} 5.22\left(\delta_{\mathrm{C}} 127.4\right)$ with the methine carbons at $\delta_{\mathrm{C}} 49.5$ and 54.8 , the methylene carbon at $\delta_{\mathrm{C}} 24.8$ as well as the quaternary carbon at δ_{C} 43.7. The quaternary carbon at $\delta_{\mathrm{C}} 140.1$ showed HMBC correlations with the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ (δ_{C} 54.8), the methylene hydrogens at $\delta_{\mathrm{H}} 1.92\left(\delta_{\mathrm{C}} 24.8\right)$ and the methyl hydrogens at $\delta_{\mathrm{H}} 1.11$ (δ_{C} 24.6). The methyl hydrogens at $\delta_{\mathrm{H}} 1.11$ ($\delta_{\mathrm{C}} 24.6$) had HMBC correlations with the methylene carbon at $\delta_{\mathrm{C}} 29.7$ as well as the quaternary carbons at $\delta_{\mathrm{C}} 41.3, \delta_{\mathrm{C}} 43.7$ and $\delta_{\mathrm{C}} 140.1$. The HMBC and COSY correlations (where applicable) supported the closure of a ring that fused to the $2^{\text {nd }}$ ring, thus accounted for the fifth degree of unsaturation ($3^{\text {rd }}$ ring). (Figure 2.34)

Figure 2.34: Closure of the $3^{\text {rd }}$ ring for [51] based on COSY and HMBC correlations

In the COSY spectrum, the methylene hydrogens at $\delta_{\mathrm{H}} 1.09$ and $\delta_{\mathrm{H}} 1.92\left(\delta_{\mathrm{C}} 29.7\right)$ showed correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 2.03$ ($\delta_{\mathrm{C}} 25.8$). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene hydrogen at $\delta_{\mathrm{H}} 2.03$ ($\delta_{\mathrm{C}} 25.8$) showed multiplicity of triplet of doublet with coupling constant (J) of 3.6 Hz and 13.2 Hz . Both the methylene hydrogens at $\delta_{\mathrm{H}} 1.09\left(\delta_{\mathrm{C}}\right.$ 29.7) and $\delta_{\mathrm{H}} 2.03$ ($\delta_{\mathrm{C}} 25.8$) had HMBC correlations with the quaternary carbon at $\delta_{\mathrm{C}} 50.0$. HMBC correlation were also observed between the methylene hydrogen at $\delta_{\mathrm{H}} 2.03$ (δ_{C} 25.8) with the methine carbon at $\delta_{\mathrm{C}} 54.8$. The HMBC and COSY correlations supported the closure of a ring that fused to the $3^{\text {rd }}$ ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the sixth degree of unsaturation ($4^{\text {th }}$ ring). (Figure 2.35)

Figure 2.35: Closure of the $4^{\text {th }}$ ring for [51] based on COSY and HMBC correlations

The methylene hydrogen at $\delta_{\mathrm{H}} 2.03$ ($\delta_{\mathrm{C}} 25.8$) also showed HMBC correlations with the quaternary carbon at $\delta_{\mathrm{C}} 182.0$. The chemical shift of the quaternary carbon at $\delta_{\mathrm{C}} 182.0$ was consistent with a carboxylic acid group (identified in the IR spectrum), which accounts for one hydrogen atom and two oxygen atoms.

The quaternary carbon at $\delta_{\mathrm{C}} 182.0$ showed HMBC correlations with the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$) and methylene hydrogens at $\delta_{\mathrm{H}} 1.64$ and $\delta_{\mathrm{H}} 2.03$ ($\delta_{\mathrm{C}} 25.8$). The HMBC correlations observed for the quaternary carbon at $\delta_{\mathrm{C}} 182.0$ indicated that it is likely to be attached to the quaternary carbon at $\delta_{\mathrm{C}} 50.0$. HMBC correlations were also observed between the quaternary carbon at $\delta_{\mathrm{C}} 50.0$ with the methylene hydrogens at $\delta_{\mathrm{H}} 1.32\left(\delta_{\mathrm{C}} 32.2\right)$ and δ_{H} $1.66\left(\delta_{\mathrm{C}} 40.5\right)$. Both methylene hydrogens at $\delta_{\mathrm{H}} 1.32\left(\delta_{\mathrm{C}} 32.2\right)$ and $\delta_{\mathrm{H}} 1.00\left(\delta_{\mathrm{C}} 40.5\right)$ showed COSY correlations with each other. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene hydrogen at δ_{H} $1.00\left(\delta_{\mathrm{C}} 40.5\right)$ showed a multiplicity of doublet of doublet with coupling constant (J) of 3.6 Hz and 13.2 Hz . The methylene hydrogen at $\delta_{\mathrm{H}} 1.66\left(\delta_{\mathrm{C}} 40.5\right)$ had HMBC correlation with the methine carbon at $\delta_{\mathrm{H}} 1.68$ ($\delta_{\mathrm{C}} 38.6$). HMBC correlations were also observed between the methine carbon at $\delta_{\mathrm{C}} 38.6$ with the methine hydrogen at $\delta_{\mathrm{H}} 1.36$ ($\delta_{\mathrm{C}} 40.9$). In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 1.36\left(\delta_{\mathrm{C}} 40.9\right)$ showed correlations with the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ (δ_{C} 54.8) showed multiplicity of doublet with a coupling constant (J) of 11.4 Hz . This indicated that both methine hydrogens at $\delta_{\mathrm{H}} 2.19$ and $\delta_{\mathrm{H}} 1.36$ are in an axial-axial relationship. HMBC correlations were also observed between the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$) with the methine carbon at $\delta_{\mathrm{C}} 40.9$ and the methyl carbon at $\delta_{\mathrm{C}} 18.1$. This indicated that the methyl group at $\delta_{\mathrm{H}} 0.87\left(\delta_{\mathrm{C}} 18.1\right)$ is likely to be attached to the methine carbon at $\delta_{\mathrm{C}} 40.9$. This is supported by the multiplicity of doublet in the ${ }^{1} \mathrm{H}$ NMR spectrum. The methine carbon at δ_{C} 40.9 showed HMBC correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$. HMBC correlations were also observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 22.0$) with the methylene carbons at $\delta_{\mathrm{C}} 32.2$ and $\delta_{\mathrm{C}} 40.5$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ showed a multiplicity of doublet, which indicates that the methyl group at $\delta_{\mathrm{H}} 0.95$ is likely to be attached to the methine carbon at $\delta_{\mathrm{C}} 38.6$. The HMBC and COSY correlations supported the closure of a ring that fused to the $4^{\text {th }}$ ring, thus accounted for the seventh degree of unsaturation ($5^{\text {th }}$ ring). (Figure 2.36)

Figure 2.36: Closure of the $5^{\text {th }}$ ring for [51] based on COSY and HMBC correlations

[51]

Table 2.7: Spectral data for [51]

C	δ_{C}	H	δ_{H}	I	M	$J(\mathrm{~Hz})$	COSY	HMBC
$\mathrm{C}_{1}{ }^{*}$	38.6	$\begin{aligned} & \hline \mathrm{H}_{1 \alpha} \\ & \mathrm{H}_{1 \beta} \end{aligned}$	$\begin{aligned} & 1.68 \\ & 1.62 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		$\mathrm{H}_{2 \alpha}$	
C_{2}	28.4	$\begin{aligned} & \mathrm{H}_{2 a} \\ & \mathrm{H}_{2} \end{aligned}$	$\begin{array}{r} 1.62 \\ 1.57 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		$\begin{aligned} & \mathrm{H}_{3}, \mathrm{H}_{1 \alpha} \\ & \mathrm{H}_{3} \\ & \hline \end{aligned}$	$\mathrm{C}_{10}, \mathrm{C}_{4}, \mathrm{C}_{1}$
C_{3}	80.2	H_{3}	3.14	1	dd	4.2, 11.4	$\mathrm{H}_{2 \alpha}, \mathrm{H}_{2 \beta}$	$\mathrm{C}_{23}, \mathrm{C}_{24}$
C_{4}	40.3							$\mathrm{H}_{3}, \mathrm{H}_{5}, \mathrm{Me}_{23}, \mathrm{Me}_{24}$
C_{5}	57.2	H_{4}	0.74	1	d	11.4	$\mathrm{H}_{6 \beta}$	$\begin{aligned} & \mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{4}, \mathrm{C}_{1}, \mathrm{C}_{7}, \mathrm{C}_{23}, \\ & \mathrm{C}_{6}, \mathrm{C}_{24}, \mathrm{C}_{25} \end{aligned}$
C_{6}	19.9	$\begin{aligned} & \mathrm{H}_{6 \alpha} \\ & \mathrm{H}_{6 \beta} \end{aligned}$	$\begin{aligned} & \hline 1.54 \\ & 1.39 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		H_{5}	
C_{7}	34.8	$\begin{aligned} & \mathrm{H}_{7 \alpha} \\ & \mathrm{H}_{7 \beta} \\ & \hline \end{aligned}$	$\begin{array}{r} 1.54 \\ 1.34 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \hline \end{aligned}$			
C_{8}	41.3							$\mathrm{H}_{11 \alpha}, \mathrm{H}_{11}, \mathrm{Me}_{27}, \mathrm{Me}_{26}$
C_{9}	49.5	H_{9}	1.56	1	m		$\mathrm{H}_{11 \alpha}, \mathrm{H}_{11 \beta}$	$\begin{aligned} & \mathrm{C}_{5}, \mathrm{C}_{14}, \mathrm{C}_{8}, \mathrm{C}_{1}, \mathrm{C}_{11}, \mathrm{C}_{26}, \\ & \mathrm{C}_{25}, \end{aligned}$
$\mathrm{C}_{10^{*}}$	40.9							$\mathrm{H}_{2 \beta}$
C_{11}	24.8	$\begin{aligned} & \hline \mathrm{H}_{11 \alpha} \\ & \mathrm{H}_{11 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.92 \\ & 1.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~m} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{H}_{12}, \mathrm{H}_{9} \\ & \mathrm{H}_{12}, \mathrm{H}_{9} \end{aligned}$	$\mathrm{C}_{13}, \mathrm{C}_{12}, \mathrm{C}_{18}, \mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{8}$
C_{12}	127.4	H_{12}	5.22	1	t	3.6	$\mathrm{H}_{112}, \mathrm{H}_{11 \beta}$	$\mathrm{C}_{18}, \mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{11}$
C_{13}	140.1							$\mathrm{H}_{18}, \mathrm{H}_{111}, \mathrm{H}_{118}, \mathrm{Me}_{27}$
C_{14}	43.7							$\begin{aligned} & \mathrm{H}_{12}, \mathrm{H}_{18}, \mathrm{H}_{9}, \mathrm{H}_{16 \beta}, \mathrm{H}_{15 \alpha}, \\ & \mathrm{H}_{6 \alpha}, \mathrm{Me}_{27}, \mathrm{Me}_{26} \end{aligned}$
C_{15}	29.7	$\begin{aligned} & \mathrm{H}_{15 \alpha} \\ & \mathrm{H}_{15 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.92 \\ & 1.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{H}_{16 \alpha}, \mathrm{H}_{16 \beta} \\ & \mathrm{H}_{16 \alpha}, \mathrm{H}_{16 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{17}, \mathrm{Me}_{27} \\ & \mathrm{C}_{17} \end{aligned}$
C_{16}	25.8	$\begin{aligned} & \mathrm{H}_{16 \alpha} \\ & \mathrm{H}_{16 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.03 \\ & 1.64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{td} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	3.6, 13.2	$\begin{aligned} & \mathrm{H}_{15 \alpha}, \mathrm{H}_{15 \beta},{ }_{16 \beta} \\ & \mathrm{H}_{22 \alpha}, \mathrm{H}_{22 \alpha}, 16 \alpha \end{aligned}$	$\begin{aligned} & \mathrm{C}_{28}, \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{15} \\ & \mathrm{C}_{28}, \mathrm{C}_{18}, \mathrm{C}_{17} \end{aligned}$
C_{17}	50.0							$\begin{aligned} & \mathrm{H}_{18}, \mathrm{H}_{22 \alpha}, \mathrm{H}_{21 \beta}, \mathrm{H}_{15 \alpha}, \\ & \mathrm{H}_{16 \beta} \end{aligned}$
C_{18}	54.8	H_{18}	2.19	1	d	11.4	H_{19}	$\begin{aligned} & \mathrm{C}_{28}, \mathrm{C}_{13}, \mathrm{C}_{12}, \mathrm{C}_{17}, \mathrm{C}_{14}, \\ & \mathrm{C}_{19}, \mathrm{C}_{16}, \mathrm{C}_{29}, \end{aligned}$
$\mathrm{C}_{19}{ }^{*}$	40.9	H_{19}	1.36	1	m		H_{18}	C_{20}
$\mathrm{C}_{20}{ }^{\text {* }}$	38.6	H_{20}	1.68	1	m			$\mathrm{H}_{19}, \mathrm{H}_{22 \alpha}$
C_{21}	32.2	$\mathrm{H}_{21 \alpha}$	$\begin{aligned} & 1.49 \\ & 1.32 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		H_{22}	
C_{22}	40.5	$\begin{aligned} & \mathrm{H}_{22 \alpha} \\ & \mathrm{H}_{22 \beta} \end{aligned}$	$\begin{aligned} & 1.66 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{dd} \end{aligned}$	3.6, 13.2	$\mathrm{H}_{21 \beta}$	C_{20}
C_{23}	29.2	Me_{23}	0.97	3	s		Me_{24}	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{24}$
C_{24}	16.8	Me_{24}	0.77	3	s		Me_{23}	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{23}$
C_{25}	16.5	Me_{25}	0.95	3	s			$\mathrm{C}_{5}, \mathrm{C}_{9}$
C_{26}	18.3	Me_{26}	0.84	3	s			$\mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{7}$
C_{27}	24.6	Me_{27}	1.11	3	s			$\mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{8}, \mathrm{C}_{15}$
C_{28}	182.0							$\mathrm{H}_{18}, \mathrm{H}_{166}, \mathrm{H}_{16 \beta}$
C_{29}	18.1	Me_{29}	0.87	3	d			$\mathrm{C}_{18}, \mathrm{C}_{19}$
C_{30}	22.0	Me_{30}	0.95	3	d			$\mathrm{C}_{19}, \mathrm{C}_{21}$

* Interchangeable
[51] 600MHz (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right): \delta(\mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$
I = Integration
$\mathrm{M}=$ Multiplicity

The ROESY experiment unambiguously assigned the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 16.5$), $\delta_{\mathrm{H}} 0.77\left(\delta_{\mathrm{C}} 16.8\right)$ and $\delta_{\mathrm{H}} 0.84\left(\delta_{\mathrm{C}} 18.3\right)$ to be on the same side of the molecule as there were strong ROESY correlations between these methyl hydrogens. (Figure 2.37)

Figure 2.37: Stereochemical assignments of the methyl hydrogens for [51] based on ROESY correlations

The geminal methyl groups at $\delta_{\mathrm{H}} 0.97\left(\delta_{\mathrm{C}} 29.2\right)$ showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.77$ ($\delta_{\mathrm{C}} 16.8$) as well as the methine hydrogens at $\delta_{\mathrm{H}} 0.74$ ($\delta_{\mathrm{C}} 57.2$) and δ_{H} 3.14 ($\delta_{\mathrm{C}} 80.2$). Therefore, the hydrogens at $\delta_{\mathrm{H}} 0.74, \delta_{\mathrm{H}} 0.97$ and $\delta_{\mathrm{H}} 3.14$ were assigned to be on the same side of the molecule. This indicated that the hydroxyl group attached to the methine carbon at $\delta_{\mathrm{C}} 80.2$ would be on the same side of the molecule with the methyl hydrogens at $\delta_{\mathrm{H}} 0.77$. (Figure 2.38)

Figure 2.38: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 3.14$ and $\delta_{\mathrm{H}} 0.74$ for [51] based on ROESY correlations.

ROESY correlations were observed for both methine hydrogens at $\delta_{\mathrm{H}} 0.74\left(\delta_{\mathrm{C}} 57.2\right)$ and δ_{H} $1.56\left(\delta_{\mathrm{C}} 49.5\right)$, followed by the methine hydrogen at $\delta_{\mathrm{H}} 1.56\left(\delta_{\mathrm{C}} 49.5\right)$ with the methyl
hydrogens at $\delta_{\mathrm{H}} 1.11$ ($\delta_{\mathrm{C}} 24.6$). The methyl hydrogens at $\delta_{\mathrm{H}} 1.11$ ($\delta_{\mathrm{C}} 24.6$) also showed ROESY correlations with the methine hydrogen at $\delta_{\mathrm{H}} 1.36\left(\delta_{\mathrm{C}} 40.9\right)$ and the methyl hydrogens at $\delta_{\mathrm{H}} 0.87$ ($\delta_{\mathrm{C}} 18.1$). This is consistent with the central cyclohexene ring being in a twist chair conformation. (Figure 2.39)

Figure 2.39: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 0.87, \delta_{\mathrm{H}} 1.11, \delta_{\mathrm{H}} 1.36$ and $\delta_{\mathrm{H}} 1.56$ for [51] based on ROESY correlations

The methyl hydrogens at $\delta_{\mathrm{H}} 0.87$ ($\delta_{\mathrm{C}} 18.1$) showed ROESY correlations with the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 22.0$) and the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$). ROESY correlations were also observed between the methyl hydrogens at $\delta_{\mathrm{H}} 0.95$ ($\delta_{\mathrm{C}} 22.0$) with the methine hydrogen at $\delta_{\mathrm{H}} 2.19$ ($\delta_{\mathrm{C}} 54.8$). The ROESY correlations indicated that both the methyl hydrogens at $\delta_{\mathrm{H}} 0.87\left(\delta_{\mathrm{C}} 18.1\right)$ and $\delta_{\mathrm{H}} 0.95\left(\delta_{\mathrm{C}} 22.0\right)$ as well as the methine hydrogen at $\delta_{\mathrm{H}} 2.19\left(\delta_{\mathrm{C}} 54.8\right)$ would be on the opposite side of the methine hydrogen at $\delta_{\mathrm{H}} 1.36\left(\delta_{\mathrm{C}}\right.$ 40.9). (Figure 2.40)

Figure 2.40: Stereochemical assignments of hydrogens at $\delta_{\mathrm{H}} 0.87$ and $\delta_{\mathrm{H}} 0.95$ and $\delta_{\mathrm{H}} 2.19$ for [51] based on ROESY correlations

Table 2.8: ROESY correlations for [51]

Proton	ROESY	Proton	ROESY
$\mathrm{H}_{1 \alpha}$		H_{16}	$\mathrm{H}_{19}, \mathrm{H}_{15 \mathrm{~B}}, \mathrm{Me}_{27}$
$\mathrm{H}_{1 \beta}$		$\mathrm{H}_{16}{ }^{\text {a }}$	
$\mathrm{H}_{2 \alpha}$	H_{3}	H_{18}	$\mathrm{H}_{12}, \mathrm{Me}_{30}, \mathrm{Me}_{29}$
$\mathrm{H}_{2 \beta}$	H_{3}	H_{19}	Me_{27}
H_{3}	$\mathrm{H}_{5}, \mathrm{H}_{2 \alpha}, \mathrm{H}_{2 \beta}, \mathrm{Me}_{23}$	$\mathrm{H}_{21 \alpha}$	
H_{5}	$\mathrm{H}_{3}, \mathrm{H}_{9}, \mathrm{Me}_{23}$	$\mathrm{H}_{21 \beta}$	
$\mathrm{H}_{6 a}$		$\mathrm{H}_{22} \alpha$	
$\mathrm{H}_{6 \beta}$		$\mathrm{H}_{22}{ }^{\text {a }}$	
$\mathrm{H}_{7 \alpha}$		Me_{23}	$\mathrm{H}_{3}, \mathrm{H}_{5}$
$\mathrm{H}_{7 \beta}$		Me_{24}	Me_{25}
H_{9}	$\mathrm{H}_{5}, \mathrm{Me}_{27}$	Me_{25}	$\mathrm{Me}_{26}, \mathrm{Me}_{24}$
$\mathrm{H}_{11 \alpha}$	$\mathrm{H}_{12}, \mathrm{H}_{1 \alpha}, \mathrm{Me}_{26}, \mathrm{Me}_{25}$	Me_{26}	Me_{25}
$\mathrm{H}_{11 \beta}$	H_{12}	Me_{27}	$\mathrm{H}_{9 \alpha}, \mathrm{H}_{19 \alpha}, \mathrm{H}_{16 \alpha}, \mathrm{Me}_{29}$
H_{12}	$\mathrm{H}_{18}, \mathrm{H}_{11 \alpha}, \mathrm{H}_{11 \beta}, \mathrm{Me}_{29}$	Me_{29}	$\mathrm{H}_{18}, \mathrm{Me}_{27}, \mathrm{Me}_{30}$
$\mathrm{H}_{15 \alpha}$		Me_{30}	H_{18}
$\mathrm{H}_{15 \beta}$	$\mathrm{H}_{7 \beta}, \mathrm{H}_{15 \alpha}, \mathrm{H}_{16 \alpha}$		

The NMR assignments suggested that compound [51] is 20-epi-ursolic acid. As discussed in the ROESY correlations, the methyl group ($\delta_{\mathrm{H}} 0.95$) is positioned above the ring. In comparison, the stereochemistry of the equivalent methyl hydrogens in ursolic acid [15] is inverted.

20-epi-Ursolic acid has been prepared synthetically but no ${ }^{13} \mathrm{C}$ NMR data was reported. ${ }^{46}$ Therefore, the ${ }^{13} \mathrm{C}$ chemical shifts of compound [51] are compared only with ursolic acid [15]. This is shown in Table 2.9. The ${ }^{13} \mathrm{C}$ chemical shifts for compound [51] are similar but not the same as the literature report on ursolic acid [15]. ${ }^{47}$ However, compound [51] is not ursolic acid based on the ROESY assignment as discussed, but an isomer of ursolic acid.

Table 2.9: Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts between [51] and ursolic acid [15]

C	$\delta_{\mathrm{C}}[51]$	$\delta_{\mathrm{C}}[15]^{47}$
C_{1}	38.6	37.4
C_{2}	28.4	28.0
C_{3}	80.2	77.9
C_{4}	40.3	39.4
C_{5}	57.2	55.8
C_{6}	19.9	19.0
C_{7}	34.8	33.7
C_{8}	41.3	40.1
C_{9}	49.5	48.1
C_{10}	40.9	37.6
C_{11}	24.8	23.9
C_{12}	127.4	125.6
C_{13}	140.1	139.2
C_{14}	43.7	42.7
C_{15}	29.7	28.6
C_{16}	25.8	24.8
C_{17}	50.0	47.9
C_{18}	54.8	53.4
C_{19}	40.9	39.55
C_{20}	38.6	39.5
C_{21}	32.2	31.2
C_{22}	40.5	39.3
C_{23}	29.2	29.3
C_{24}	17.1	16.2
C_{25}	16.5	17.9
C_{26}	18.3	18.0
C_{27}	24.6	24.3
C_{28}	182.0	179.3
C_{29}	18.1	17.1
C_{30}	22.0	22.1

An optical rotation of compound [51] was conducted for further confirmation of the structure for [51]. Compound [51] was found to have $[\alpha]_{D}{ }^{23}+87.2^{\circ}$ (c 0.19 , methanol), which corresponds with the reported literature on 20-epi-ursolic acid with the value of $[\alpha]_{\mathrm{D}}+92^{\circ} .{ }^{46}$ The optical rotation value for compound [51] is also in the range of the literature reports on ursolic acid. ${ }^{48,49}$ However, the actual optical rotation for ursolic acid [15] is inconclusive as there are more than 20 optical rotation values reported, ranging from $[\alpha]_{D}+21.4^{048}$ to $[\alpha]_{D}+$ $126.7^{\circ} .{ }^{48}$ Therefore, it is hard to compare the optical rotation value of compound [51] with the reported literature on ursolic acid.

From the literature, the melting point for 20-epi-ursolic acid has been reported to be 270 - 282 ${ }^{\circ} \mathrm{C} .{ }^{46}$ However, this does not correspond with the melting point of compound [51], which is $238-240{ }^{\circ} \mathrm{C}$. The melting point of compound [51] is in the range of the literature reports for ursolic acid [15]. Again, the actual melting point of ursolic acid is also inconclusive as there is a wide range of melting point reported in more than 20 literature reports, ranging from $228^{\circ} \mathrm{C}^{50}$ to $307^{\circ} \mathrm{C}^{51}$. The melting point for the reported 20 -epi-ursolic acid was also in the range of the melting point for ursolic acid $[15]^{52}$. Therefore there is likelihood that compound [51], 20-epi-ursolic acid might have a different melting point with the reported literature for 20-epi-ursolic acid. There is a possibility that there might be a range of melting point for 20 -epi-ursolic acid as seen for ursolic acid [15]. Only one literature on 20-epi-ursolic acid was reported. ${ }^{46}$ Therefore, there is no other comparison that can be made to clarify the melting point of 20-epi-ursolic acid to be only in the range of be $270-282^{\circ} \mathrm{C}$. In addition, the 20-epiursolic acid is synthetically made and was not isolated from natural sources. ${ }^{46}$ Therefore, there is also a possibility that the melting point might be slightly different.

Despites all the comparison made, the ROESY assignments clearly show the stereochemistry to be that of 20-epi-ursolic acid.

Ursolic acid had been previously found in Scaevola spinescens and Scaevola species. However, the isomer of ursolic acid, 20-epi-ursolic acid has not been isolated from Scaevola spinescens or any other Scaevola species.

2.4.3 Methanol Extract

Fractionation and purification of compounds from methanol extract

A total of 71 g of methanol extract was obtained from the Soxhlet extraction. The methanol extract was then subjected to fractionation and purification by flash column chromatography. Preparative thin layer chromatography (PTLC) was used for futher purification on some of the compounds. The fractionation and purification of compounds from methanol extract are summarized in Figure 2.41. Below are the details of the fractionation and purification of compounds from the methanol extract.

- Three batches (approximately 22 g each) were subjected to flash column chromatography (100 mm column diameter) using a series of increasing polarity solvents to yield 17 fractions, M01-M17 (Figure 2.41).
- Fraction M09 (444 mg) was then subjected to further flash column chromatography (30 mm column diameter) using a series of increasing polarity solvents to yield 15 subfractions, M0901-M0915 (Figure 2.41).
- White amorphous solids precipitated from sub-fractions M0906, M0907, M0908 and M0911. These solids (designated M0906a, M0907a and M0911a respectively) were analyzed using 1D NMR spectrum. Sub-fractions M096a and M0907a were found to have similar NMR spectra. Therefore, only M0906a [53] and M0911a [54] were further analyzed using 2D NMR, melting point, mass spectrometry, FTIR and UVvisible spectroscopy.
- Fraction M10 (367 mg) was subjected to further flash column chromatography (30 mm column diameter) using a series of increasing polarity solvents to yield 10 subfractions, M1001-M1010 (Figure 2.41).
- Sub-fraction M1004 (19 mg) was then subjected to preparative thin layer chromatography and developed three times using dichloromethane (Figure 2.41). Ten bands were observed visually, under UV light and using phosphomolybdic acid (PMA) staining. Each band on the TLC plate was scraped off and the silica of each scraped band was soaked overnight in methanol. The methanol filtrate of each band was then evaporated to dryness. The sample obtained from Band $2(2 \mathrm{mg})$ [55], which was only visible under PMA staining on the TLC plate, was analyzed using 2D NMR spectrometer and was found to have similar NMR spectrum to that of sample M0906a [53]. The rest of the samples from other bands were not further analyzed as the amounts obtained were only about 1 mg or less.

Figure 2.41: Fractionation from 71 g of methanol extract

71 g of methanol extract

Flash column chromatography
(90% hexane/ethyl acetate; 75% hexane/ethyl acetate; 65% hexane/ethyl acetate; 50% hexane/ethyl acetate; 100% ethyl acetate; 99% ethyl acetate/methanol; 95\% ethyl acetate/methanol; 90% ethyl acetate/methanol;

- Fraction M1006 (13 mg) was also subjected to preparative thin layer chromatography using a solvent system of 90% dichloromethane / 10\% ethyl acetate (Figure 2.41). Seven bands were observed visually using UV light and PMA staining. Each band on the TLC plate was scraped off and the silica of each scraped band was soaked overnight in methanol. The methanol filtrate of each band was then evaporated to dryness. The sample obtained from Band 3 (2 mg) [56] was analyzed using 2D NMR, melting point, mass spectrometry and FTIR. This sample showed blue fluorescence under UV and visible under PMA staining. The rest of the samples from other bands were not further analyzed as the amounts obtained were only about 1 mg .
- Fraction M13 (2.1 g) was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of solvents of reducing polarity to yield 18 sub-fractions, M1301-M1318 (Figure 2.41).
- A white solid (4 mg) [57] precipitated from fraction M1306a. This sample [57] was further analyzed using 2D NMR, melting point, mass spectrometry, FTIR and UVvisible spectroscopy.

Compounds found in methanol extract

Compound [56]

Compound [56] (2 mg) was isolated as a pale yellow, amorphous solid with a melting point of $170^{\circ} \mathrm{C}$. The molecular formula was determined to be $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}$ from the molecular ion peak at $m / z 246.0889$ (calculated 246.0892) in the high-resolution EI mass spectrum (HREIMS). This indicated that the compound had eight degrees of unsaturation. The IR spectrum indicated the presence of hydroxyl group(s) as there was an absorption at $3412 \mathrm{~cm}^{-1}$. There was also an aborption at $1708 \mathrm{~cm}^{-1}$ which indicated the presence of carbonyl group(s) as well as the presence of double bond group(s) with an absorption at $1598 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 14 unique carbons; two methyls ($\delta_{\mathrm{C}} 24.8$, 25.8), one methylene ($\delta_{\mathrm{C}} 28.6$), one sp^{3} methine ($\delta_{\mathrm{C}} 90.9$), four sp^{2} methines ($\delta_{\mathrm{C}} 96.7,111.1$, $123.8,144.7$), one quaternary sp^{3} carbon ($\delta_{\mathrm{C}} 69.9$) and five quaternary sp^{2} carbons ($\delta_{\mathrm{C}} 112.0$,
$125.5,155.0,160.5,163.3$). All these resonances accounted for a partial molecular formula $\mathrm{C}_{14} \mathrm{H}_{13}$. The remaining one hydrogen atom and four oxygen atoms suggested the presence of a hydroxyl group. The nine sp^{2} carbons (four double-bond functionalities and one carbonyl group) accounted for five degrees of unsaturation. This suggested that the compound contained 3 rings.

All the methyl, methylene and methine carbons identified in the DEPT NMR were assigned to their directly attached hydrogens using the HSQC experiment. The NMR assignments for [56] were mainly based on HMBC, ROESY and COSY (where applicable) correlations. These correlations are shown in Table 2.10 and Table 2.11.

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 6.20\left(\delta_{\mathrm{C}} 111.1\right)$ showed correlations with the methine hydrogen at $\delta_{\mathrm{H}} 7.92$ (δ_{C} 144.7). The ${ }^{1} \mathrm{H}$ NMR spectrum showed that both hydrogens at $\delta_{\mathrm{H}} 6.20$ and $\delta_{\mathrm{H}} 7.92$ had a coupling constant (J) of 9.0 Hz which indicated a 1,2 orientation between the two hydrogens.

HMBC correlations were observed between the methine hydrogen at $\delta_{\mathrm{H}} 6.20$ ($\delta_{\mathrm{C}} 111.1$) with quaternary carbons at $\delta_{\mathrm{C}} 112.0$ and $\delta_{\mathrm{C}} 160.50$. The chemical shift of the quaternary carbon at $\delta_{\mathrm{C}} 160.5$ which is adjacent to the methine hydrogen at $\delta_{\mathrm{H}} 6.20$, suggested that oxygen group is likely to be attached to this quaternary carbon thereby causing the chemical shift of the adjacent hydrogen to be shifted upfield. Therefore, this accounts for one oxygen group ($1^{\text {st }}$ oxygen group). In addition, the hydrogen at $\delta_{\mathrm{H}} 7.92$ ($\delta_{\mathrm{C}} 144.7$) showed HMBC correlations with quaternary carbons at $\delta_{\mathrm{C}} 112.0, \delta_{\mathrm{C}} 155.0$ and $\delta_{\mathrm{C}} 160.5$ as well as methine carbon at δ_{C} 123.8. The chemical shift of a quaternary carbon at $\delta_{\mathrm{C}} 155.0$ suggested that oxygen group is likely to be attached to this quaternary carbon. Therefore, this accounts for another oxygen group ($2^{\text {nd }}$ oxygen group). The HMBC correlations between the two hydrogens at $\delta_{H} 6.20$ and $\delta_{\mathrm{H}} 7.92$ with the quaternary carbons at $112.0, \delta_{\mathrm{C}} 155.0$ and $\delta_{\mathrm{C}} 160.5$ supported the closure of a ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the sixth degree of unsaturation ($1^{\text {st }}$ ring). (Figure 2.42)

Figure 2.42: Closure of $1^{\text {st }}$ ring for [56] based on COSY and HMBC correlations

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 7.47\left(\delta_{\mathrm{C}} 123.8\right)$ showed correlations with the hydrogen at $\delta_{\mathrm{H}} 3.15$. The methylene hydrogen at $\delta_{\mathrm{H}} 3.15$ ($\delta_{\mathrm{C}} 28.6$) also had COSY correlations with methine hydrogen at $\delta_{\mathrm{H}} 4.69$ ($\delta_{\mathrm{C}} 90.9$).

HMBC correlations were observed between the methine hydrogen at $\delta_{\mathrm{H}} 7.47\left(\delta_{\mathrm{C}} 123.8\right)$ with the quaternary carbons at $\delta_{\mathrm{C}} 155.0$ and $\delta_{\mathrm{C}} 163.3$ as well as the methine carbon at $\delta_{\mathrm{C}} 144.7$ and the methylene carbon at $\delta_{\mathrm{C}} 28.6$. The methine hydrogen at $\delta_{\mathrm{H}} 6.78$ ($\delta_{\mathrm{C}} 96.7$) showed HMBC correlations with quaternary carbons at $\delta_{\mathrm{C}} 112.0, \delta_{\mathrm{C}} 125.5, \delta_{\mathrm{C}} 155.0$ and $\delta_{\mathrm{C}} 163.3$. The HMBC correlations supported the closure of a ring that fused to the $1^{\text {st }}$ ring to form a coumarin system, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the seventh degree of unsaturation ($2^{\text {nd }}$ ring). (Figure 2.43)

Figure 2.43: Closure of $2^{\text {nd }}$ ring for [56] based on COSY and HMBC correlations

The methine hydrogen at $\delta_{\mathrm{H}} 4.69$ ($\delta_{\mathrm{C}} 90.9$) showed HMBC correlations with two methyl groups at $\delta_{\mathrm{C}} 24.8$ and $\delta_{\mathrm{C}} 25.8$. HMBC correlations were observed between the methylene
hydrogen at $\delta_{\mathrm{H}} 3.15$ with the quaternary carbon at $\delta_{\mathrm{C}} 69.9$ and the methine carbon at $\delta_{\mathrm{C}} 90.9$. The chemical shift of the quaternary carbon at $\delta_{C} 69.9$ suggested that an oxygen group is likely to be attached to this carbon. Based on the chemical shift of the quaternary carbon at δ_{C} 69.9 and $\delta_{\mathrm{C}} 163.3$, these carbons are likely to be connected through an oxygen group to form the $3^{\text {rd }}$ ring, which accounted for the eight degree of unsaturation. This oxygen group accounts for the $3^{\text {rd }}$ oxygen group. Therefore, the unassigned oxygen group would be an hydroxyl group. (Figure 2.44)

Figure 2.44: Closure of $3^{\text {rd }}$ ring for [56] based on HMBC correlations

Table 2.10: Spectral data for [56]

C	δ_{C}	H	δ_{H}	I	M	J(Hz)	COSY	HMBC
C_{2}	160.5							$\mathrm{H}_{3 \alpha}, \mathrm{H}_{4 \alpha}$
C_{3}	111.1	H_{3}	6.20	1	d	9.0	H_{4}	$\mathrm{C}_{2}, \mathrm{C}_{4 \mathrm{a}}$
C_{4}	144.7	H_{4}	7.92	1	d	9.0	H_{3}	$\mathrm{C}_{2}, \mathrm{C}_{4 \mathrm{a}}, \mathrm{C}_{5}, \mathrm{C}_{10 \mathrm{a}}$
$\mathrm{C}_{4 \mathrm{a}}$	112.0							$\mathrm{H}_{4 \alpha}, \mathrm{H}_{5 \alpha}, \mathrm{H}_{10 \alpha}$
C_{5}	123.8	H_{5}	7.47	1	s		H_{60}	$\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{9} \mathrm{C}_{\text {a }} \mathrm{C}_{10 \mathrm{a}}$
$\mathrm{C}_{5 \mathrm{a}}$	125.5							H_{10}
C_{6}	28.6	$\begin{aligned} & \mathrm{H}_{6 \alpha} \\ & \mathrm{H}_{6 \beta} \end{aligned}$	3.15	2	m		$\mathrm{H}_{5}, \mathrm{H}_{7}$	$\mathrm{C}_{7}, \mathrm{C}_{8}$
C_{7}	90.9	H_{7}	4.69	1	t	9.0	H_{60}	$\mathrm{Me}_{11}, \mathrm{Me}_{12}$
C_{8}	69.9							
$\mathrm{C}_{9 \mathrm{a}}$	163.3							$\mathrm{H}_{5}, \mathrm{H}_{10 \alpha}$
C_{10}	96.7	H_{10}	6.78	1	s			$\mathrm{C}_{4 \mathrm{a}}, \mathrm{C}_{5 \mathrm{a}}, \mathrm{C}_{9 \mathrm{a}}, \mathrm{C}_{10 \mathrm{a}}$
$\mathrm{C}_{10 \mathrm{a}}$	155.0							$\mathrm{H}_{4 \alpha}, \mathrm{H}_{5 \alpha}, \mathrm{H}_{10 \alpha}$
C_{11}	25.8	Me_{11}	1.13	3	S			$\mathrm{C}_{7}, \mathrm{C}_{8}$
C_{12}	24.8	Me_{12}	1.12	3	s			$\mathrm{C}_{7}, \mathrm{C}_{8}$

[56] 600MHz (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$): $\delta(\mathrm{ppm})$ in d_{6}-DMSO
I = Integration
M = Multiplicity

In the ROESY spectrum, the methyl hydrogens at $\delta_{\mathrm{H}} 1.12$ showed correlations with the methine hydrogen at δ_{H} 4.69. The methine hydrogen at $\delta_{\mathrm{H}} 4.69$ had ROESY correlations with the methylene hydrogen at $\delta_{\mathrm{H}} 3.15$. ROESY correlations were also observed between the methine hydrogen at $\delta_{\mathrm{H}} 7.47$ with the methine hydrogen at $\delta_{\mathrm{H}} 7.92$ and the methylene hydrogen at $\delta_{\mathrm{H}} 3.15$. Therefore, all these hydrogens are on the same face of the pyran ring. (Figure 2.45) The ROESY correlations are shown in Table 2.10.

\longrightarrow ROESY correlations

Figure 2.45: ROESY correlations for [56] to show relative stereochemistry

Table 2.11: ROESY correlations for [56]

Proton	ROESY
H_{3}	H_{4}
H_{4}	$\mathrm{H}_{5}, \mathrm{H}_{3}$
H_{5}	$\mathrm{H}_{4}, \mathrm{H}_{6}, \mathrm{H}_{6}$
$\mathrm{H}_{6 a}$	$\mathrm{H}_{7}, \mathrm{Me}_{12}$
$\mathrm{H}_{6 \beta}$	$\mathrm{H}_{7}, \mathrm{Me}_{12}$
H_{7}	$\mathrm{H}_{6}, \mathrm{H}_{6}, \mathrm{Me}_{12}$
H_{10}	
Me_{11}	
Me_{12}	$\mathrm{H}_{6}, \mathrm{H}_{7}$
$[57] 600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right): \delta(\mathrm{ppm})$ in d_{6}-DMSO	

[56]
The NMR assignments confirmed compound [56] to be decursinol [58]. The ${ }^{1} \mathrm{H}$ chemical shifts for fraction M100603 [56] are broadly consistent with one of the literature reports of (-)-
decursinol (Table 2.12). ${ }^{53}$ The ${ }^{13} \mathrm{C}$ chemical shifts for compound [56] are also broadly consistent with another literature report on (-)-decursinol (Table 2.13). ${ }^{54}$ Both literature reports are based on NMR spectra obtained in deuterated chloroform. Compound [56] did not dissolve well in either deuterated chloroform or deuterated methanol, therefore this sample was dissolved in deuterated DMSO. Although no direct comparison can be made, the broad consistency of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts between (-)-decursinol and compound [56] supported that compound [56] is decursinol.

The optical rotation for compound [56] was not determined as the sample was insufficient for the experiment. An optical rotation was attempted with the concentration of compound [56] at $0.01 \mathrm{~g} / 100 \mathrm{~mL}$. However, the results were irreproducible and inconsistent as the sample was clearly too dilute.

Table 2.12: ${ }^{1} \mathrm{H}$ chemical shift values between [56] and [58]

H	$\delta_{\mathrm{H}}[56]$	$\delta_{\mathrm{H}}[58]^{53}$
Solvent	d_{6}-DMSO	CDCl_{3}
$\mathrm{H}_{3 \alpha}$	6.20	6.24
$\mathrm{H}_{4 \alpha}$	7.92	7.60
$\mathrm{H}_{5 \alpha}$	7.47	7.30
$\mathrm{H}_{6 \alpha}$	3.15	3.15
$\mathrm{H}_{10 \alpha}$	6.78	6.80
$\mathrm{Me}_{11 / 12}$	$1.13 / 1.12$	$1.34 / 1.45$

[56] 600MHz ($\left.{ }^{1} \mathrm{H}\right): \delta(\mathrm{ppm})$ in d_{6}-DMSO

Table 2.13: ${ }^{13} \mathrm{C}$ chemical shift values between [56] and [58]

C	$\delta_{\mathrm{C}}[56]$	$\delta_{\mathrm{C}}[58]^{54}$
Solvent	d_{6}-DMSO	CDCl_{3}
C_{2}	160.5	161.0
C_{3}	111.1	112.7
C_{4}	144.7	142.7
$\mathrm{C}_{4 \mathrm{a}}$	112.0	112.5
C_{5}	123.8	128.6
$\mathrm{C}_{5 \mathrm{a}}$	125.5	116.4
C_{6}	28.6	30.6
C_{7}	90.9	68.9
C_{8}	69.9	78.0
$\mathrm{C}_{9 \mathrm{a}}$	163.3	156.2
C_{10}	96.7	104.8
C_{10}	155.0	153.6
C_{11}	25.8	25.1
C_{12}	24.8	21.9

[56] 600MHz (${ }^{1} \mathrm{H}$ and $\left.{ }^{{ }^{13} \mathrm{C}}\right): \delta(\mathrm{ppm})$ in $\mathrm{d}_{6}-\mathrm{DMSO}$

Compound [57]

Compound [57] (4mg) was isolated as a pale yellow, amorphous solid with a melting point of $260-265^{\circ} \mathrm{C}$. The Negative Ion Atmospheric Pressure Chemical Ionization (APCI) method was used on an LTQ Orbitrap ${ }^{\text {TM }}$ mass spectrometer to obtain the negative ion spectrum of this sample. A mass of 447.0936 was determined, indicating a molecular formula of $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}$. The calculated mass for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}-\mathrm{H}$ is 447.0927. The molecular formula indicated that the compound had twelve degrees of unsaturation. The absorption at $3451 \mathrm{~cm}^{-1}$ and $3495 \mathrm{~cm}^{-1}$ in the IR spectrum indicated the presence of hydroxyl group(s). The IR spectrum also indicated the presence of a carbonyl group as there was an absorption at $1659 \mathrm{~cm}^{-1}$ and a double bond due to the absorption at $1597 \mathrm{~cm}^{-1}$ and $1609 \mathrm{~cm}^{-1}$. An absorption in the UV at 352 nm (in methanol) indicated the presence of conjugated double bonds.

The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 21 unique carbons; one methylene ($\delta \mathrm{c}$ 62.89), five sp^{3} methines ($\delta \mathrm{c} 71.7,75.2,78.3,78.8,102.1$), six sp^{2} methines ($\delta \mathrm{c} 96.5,101.1$, $103.5,106.9,109.9,120.6$), and nine quaternary sp^{2} carbons ($\delta \mathrm{c} 107.5,121.6,154.8,159.4$, $159.4,163.3,165.1,168.9,184.4)$. All these resonances accounted for a partial molecular formula $\mathrm{C}_{21} \mathrm{H}_{13}$. The remaining seven hydrogen atoms and eleven oxygen atoms suggested the presence of multiple hydroxyl groups. The fifteen sp^{2} carbons (seven double-bond functionalities and one carbonyl group) accounted for eight degrees of unsaturation. This suggested that the compound contained 4 rings.

All the methyl, methylene and methine carbons identified in the DEPT NMR were assigned to their directly attached hydrogens using the HSQC experiment. The NMR assignments for [57] were mainly based on HMBC, ROESY and COSY (where applicable) correlations. These correlations are shown in Table 2.14 and Table 2.15.

In the COSY spectrum, the methine hydrogens at $\delta_{\mathrm{H}} 6.47$ ($\delta_{\mathrm{C}} 101.1$) and $\delta_{\mathrm{H}} 6.80\left(\delta_{\mathrm{C}} 96.5\right)$ showed correlations with each other. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that both methine hydrogens at $\delta_{\mathrm{H}} 6.47$ and $\delta_{\mathrm{H}} 6.80$ had a coupling constant (J) of 2.4 Hz . The coupling constant is consistent with a 1,3 orientation for an aromatic system. The chemical shifts of both methine hydrogens, which are shifted upfield, indicate that they are adjacent to electronegative elements. In this case, it would be an oxygen group or groups.

HMBC correlations were observed between the methine hydrogen at $\delta_{\mathrm{H}} 6.47$ ($\delta_{\mathrm{C}} 101.1$) with the quaternary carbons at $\delta_{\mathrm{C}} 107.5, \delta_{\mathrm{C}} 163.3$ and $\delta_{\mathrm{C}} 165.1$. In addition, the methine hydrogen at $\delta_{\mathrm{H}} 6.80\left(\delta_{\mathrm{C}} 96.5\right)$ showed HMBC correlations with the quaternary carbons at $\delta_{\mathrm{C}} 101.1, \delta_{\mathrm{C}}$ $107.5, \delta_{\mathrm{C}} 159.4$ and $\delta_{\mathrm{C}} 165.1$. The HMBC correlations as well as the COSY coupling supported the closure of an aromatic ring, thus accounting for one additional degree of unsaturation. Therefore, this accounted for the ninth degree of unsaturation ($1^{\text {st }}$ ring).

The chemical shifts of the quaternary carbons at $\delta_{\mathrm{C}} 159.4, \delta_{\mathrm{C}} 163.3$ and $\delta_{\mathrm{C}} 165.1$ which are adjacent to the methine hydrogens at $\delta_{\mathrm{H}} 6.47$ and $\delta_{\mathrm{H}} 6.80$, suggested that oxygen groups are likely to be attached to these quaternary carbons thereby causing the chemical shifts of the adjacent methine hydrogens to be shifted upfield by resonance. (Figure 2.46)

Figure 2.46: Closure of the $1^{\text {st }}$ ring for [57] based on COSY and HMBC correlations

The hydrogen at $\delta_{\mathrm{H}} 6.56$ showed HMBC correlations with quaternary carbons at $\delta_{\mathrm{C}} 107.5, \delta_{\mathrm{C}}$ 121.6, $\delta_{\mathrm{C}} 168.9$ and $\delta_{\mathrm{C}} 184.4$. The HMBC correlations supported the closure of an additional ring that fused to the $1^{\text {st }}$ ring. Therefore, this ring closure accounted for the tenth degree of unsaturation ($2^{\text {nd }}$ ring $)$.

The chemical shift of the quaternary carbon at $\delta_{\mathrm{C}} 184.4$ indicated that it is a carbonyl carbon of a ketone. Therefore, this accounts for one oxygen group ($1^{\text {st }}$ oxygen group).

The chemical shift of the quaternary carbon at $\delta_{\mathrm{C}} 168.9$ indicated that an oxygen group is likely to be attached to this quaternary carbon. The chemical shifts for both quaternary carbon
at $\delta_{\mathrm{C}} 159.4$ (from $1^{\text {st }}$ aromatic ring) and $\delta_{\mathrm{C}} 168.9$ (from $2^{\text {nd }}$ aromatic ring) suggested that they are connected through an oxygen group. Therefore, this accounted for another oxygen group (2 $2^{\text {nd }}$ oxygen group). (Figure 2.47)

Figure 2.47: Closure of the $2^{\text {nd }}$ ring for [57] based on HMBC correlations

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 7.36$ ($\delta_{\mathrm{C}} 120.6$) showed correlations with the methine hydrogens at $\delta_{\mathrm{H}} 7.16$ ($\delta_{\mathrm{C}} 106.9$) and $\delta_{\mathrm{H}} 6.68$ ($\delta_{\mathrm{C}} 109.9$). The ${ }^{1} \mathrm{H}$ NMR spectrum showed that both methine hydrogens at $\delta_{\mathrm{H}} 7.36$ and $\delta_{\mathrm{H}} 7.16$ had a coupling constant (J) of 2.4 Hz , which indicated a 1,3 orientation between these two hydrogens. In addition, the methine hydrogen at $\delta_{\mathrm{H}} 7.36$ also had a coupling constant (J) of 8.4 Hz , which indicated a 1,2 orientation between the methine hydrogen at $\delta_{\mathrm{H}} 7.36$ with $\delta_{\mathrm{H}} 6.68$. The chemical shift of the methine hydrogen at $\delta_{\mathrm{H}} 6.68$ and $\delta_{\mathrm{H}} 7.16$ which are slightly upfield indicated that they are close to an electronegative element, an oxygen group or groups.

HMBC correlations are observed between the methine hydrogen at $\delta_{\mathrm{H}} 7.36$ with quaternary carbons at $\delta_{\mathrm{C}} 106.9, \delta_{\mathrm{C}} 121.6$ and $\delta_{\mathrm{C}} 159.4$. The methine hydrogen at $\delta_{\mathrm{H}} 7.16$ showed HMBC correlations with quaternary carbons at $\delta_{\mathrm{C}} 120.6, \delta_{\mathrm{C}} 121.6, \delta_{\mathrm{C}} 154.8$ and $\delta_{\mathrm{C}} 159.4$. The methine hydrogen at $\delta_{\mathrm{H}} 6.68$ showed HMBC correlations with quaternary carbons at $\delta_{\mathrm{C}} 154.8$, $\delta_{\mathrm{C}} 159.4$ and $\delta_{\mathrm{C}} 168.9$. The COSY coupling and HMBC correlations observed among those methine hydrogens supported the closure of an aromatic ring. Therefore, this accounted for the eleventh degree of unsaturation ($3^{\text {rd }}$ ring).

The chemical shifts of quaternary carbons at $\delta_{\mathrm{C}} 154.8$ and $\delta_{\mathrm{C}} 159.4$ indicated that oxygen groups are likely to be attached to these quaternary carbons thereby causing the chemical
shifts of the adjacent methine hydrogens ($\delta_{\mathrm{H}} 7.16$ and $\delta_{\mathrm{H}} 6.68$) to be shifted upfield. (Figure 2.48)

Figure 2.48: Closure of $3^{\text {rd }}$ ring for [57] based on COSY and HMBC correlations

HMBC correlations were observed between the methine hydrogen at $\delta_{\mathrm{H}} 6.68$ with the quaternary carbon at $\delta_{\mathrm{C}} 168.9$ and the methine hydrogen at $\delta_{\mathrm{H}} 6.56$ with quaternary carbon at δ_{C} 121.6. The HMBC correlation observed showed that the $3^{\text {rd }}$ ring is joined to the $2^{\text {nd }}$ ring through the quaternary carbon at $\delta_{\mathrm{C}} 121.6$ and δ_{C} 168.9. (Figure 2.49)

Figure 2.49: Fusing of the $3^{\text {rd }}$ ring to the $2^{\text {nd }}$ ring for [57] based on HMBC correlations

In the COSY spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 5.06$ ($\delta_{\mathrm{C}} 102.1$) had correlations with δ_{H} 3.48 ($\delta_{\mathrm{C}} 75.2$) which then also had correlations with $\delta_{\mathrm{H}} 3.49$ ($\delta_{\mathrm{C}} 78.3$). The methine hydrogen at $\delta_{\mathrm{H}} 3.49$ also had COSY correlations with $\delta_{\mathrm{H}} 3.41\left(\delta_{\mathrm{C}} 71.1\right)$ followed by COSY correlations
between hydrogens at $\delta_{\mathrm{H}} 3.41$ and $\delta_{\mathrm{H}} 3.54$ ($\delta_{\mathrm{C}} 78.8$). COSY correlations are also observed between the methine hydrogen at $\delta_{\mathrm{H}} 3.54$ with the methylene hydrogen at $\delta_{\mathrm{H}} 3.71$ ($\delta_{\mathrm{C}} 62.8$).

The chemical shifts of all these hydrogens indicate that they are adjacent to an electronegative element. In this case, it would be multiple oxygen groups. The chemical shifts for $\delta_{\mathrm{H}} 5.06$ (δ_{C} 102.1), which is shifted downfield compared to the chemical shifts of other hydrogens / carbons indicates two oxygen groups are likely to be attached to this carbon.

HMBC correlations were observed between the hydrogen at $\delta_{\mathrm{H}} 3.48\left(\delta_{\mathrm{C}} 75.2\right)$ with sp^{3} methine carbons at $\delta_{\mathrm{C}} 102.1$ and $\delta_{\mathrm{C}} 78.3$. The methine hydrogen at $\delta_{\mathrm{H}} 3.49$ ($\delta_{\mathrm{C}} 78.3$) showed HMBC correlations with sp^{3} methine carbons at $\delta_{\mathrm{C}} 75.2$ and $\delta_{\mathrm{C}} 71.7$. HMBC correlations are also observed between the hydrogen at $\delta_{\mathrm{H}} 3.41$ ($\delta_{\mathrm{C}} 71.7$) with sp^{3} methine carbon at $\delta_{\mathrm{C}} 78.8$ and δ_{C} 62.8 as well as $\delta_{\mathrm{H}} 3.54$ ($\delta_{\mathrm{C}} 78.8$) with an sp^{3} methine carbon at $\delta_{\mathrm{C}} 71.7$. The methylene hydrogen at $\delta_{\mathrm{H}} 3.71$ showed HMBC correlations with sp^{3} methine carbons at $\delta_{\mathrm{C}} 71.7$ and δ_{C} 78.8 while the methylene hydrogen at $\delta_{\mathrm{H}} 3.92$ showed HMBC correlations with an sp^{3} methine carbon at $\delta_{\mathrm{C}} 71.7$.

The COSY and HMBC correlations observed supported the closure of a ring, which would account for the twelfth degree of unsaturation ($4^{\text {th }}$ ring). The ${ }^{1} \mathrm{H}$ NMR showed distinct signals for a sugar unit, possibly a pyranose. This is also supported by the COSY correlations as well as the chemical shifts of the hydrogens. (Figure 2.50)

Figure 2.50: Closure of a sugar unit ring for [57] based on COSY coupling

In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 5.06 \mathrm{had}$ a coupling constant (J) of 7.2 Hz which indicates an axial-axial coupling with the methine hydrogen at $\delta_{\mathrm{H}} 3.48$. The methine hydrogen at $\delta_{\mathrm{H}} 5.06$ showed ROESY correlations with methine hydrogens at $\delta_{\mathrm{H}} 3.49$ and δ_{H} 3.54, indicating that these hydrogens are on the same face of the ring. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 3.54$ appeared to be a multiplet but resolved into doublet of doublet of doublet upon Lorentzian / Gaussian resolution enhancement (LB $=-2$ and GF $=$ 0.2) using SpinWorks 3 ($\delta_{\mathrm{H}} 3.54$, ddd, $J=2.3,5.6,9.7 \mathrm{~Hz}$) (See Appendix A). In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 3.54$ had a coupling constant (J) of 9.7 Hz which indicates an axial-axial coupling with methine hydrogen at $\delta_{\mathrm{H}} 3.41$. Therefore, the pyranose sugar could be positively identified as a β-glucoside. The pyranose sugar consists of an oxygen group and four hydroxyl groups. Therefore, this accounts for five oxygen groups ($3^{\text {rd }}-$ $7^{\text {th }}$ oxygen group). (Figure 2.51)

Figure 2.51: Stereochemical assignments for [57] based on ROESY correlations

In the HMBC spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 5.06$ showed HMBC correlation with the methine carbon at δ_{C} 165.1. The methine hydrogen at $\delta_{\mathrm{H}} 5.06$ also showed ROESY correlations with the methine hydrogens at $\delta_{\mathrm{H}} 6.47$ and $\delta_{\mathrm{H}} 6.80$. Therefore, the $4^{\text {th }}$ ring is connected to the $1^{\text {st }}$ ring through an oxygen group. This oxygen group accounts for the $8^{\text {th }}$ oxygen group. (Figure 2.52)

Figure 2.52: Connection between the $4^{\text {th }}$ and the $1^{\text {st }}$ ring for [57] based on ROESY and HMBC correlations

The molecular formula of the four assigned rings accounted for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{8}$ with three unassigned oxygen group. Therefore, the three unassigned oxygen group would be hydroxyl groups as this would give the exact molecular formula of the compound which is $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}$.

[57]

Table 2.14: Spectral data for [57]

C	$\delta_{\text {C }}$	H	δ_{H}	I	M	J(Hz)	COSY	HMBC
C_{2}	168.9							$\mathrm{H}_{3}, \mathrm{H}_{2}, \mathrm{H}_{6}$,
C_{3}	103.5	H_{3}	6.56	1	s			$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{4 \mathrm{a}}$
C_{4}	184.4							H_{3}
$\mathrm{C}_{4 \mathrm{a}}$	107.5							$\mathrm{H}_{3}, \mathrm{H}_{6}, \mathrm{H}_{8}$
C_{5}	163.3							H_{6}
C_{6}	101.1	H_{6}	6.47	1	d	2.4	$\mathrm{H}_{8 \alpha}$	$\mathrm{C}_{4 \mathrm{a}}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}$
C_{7}	165.1							$\mathrm{H}_{6}, \mathrm{H}_{8}, \mathrm{H}_{1}$,
C_{8}	96.5	H_{8}	6.80	1	d	2.4	$\mathrm{H}_{6 a}$	$\mathrm{C}_{4 \mathrm{a}}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8 \mathrm{a}}$
$\mathrm{C}_{8 \mathrm{a}^{*}}$	159.48							H_{8}
C_{1},	121.6							$\mathrm{H}_{3}, \mathrm{H}_{\mathrm{r}}, \mathrm{H}_{5}$,
$\mathrm{C}_{2}{ }^{\text {, }}$	106.9	H_{2}	7.16	1	d	2.4	$\mathrm{H}_{6}{ }^{\prime}$	$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}$.
$\mathrm{C}_{3}{ }^{\text {, }}$	154.8							$\mathrm{H}_{2}, \mathrm{H}_{5}$,
C_{4} **	159.46							$\mathrm{H}_{2}, \mathrm{H}_{5^{\prime}}, \mathrm{H}_{6}$
C_{5},	109.9	H_{5},	6.68	1	d	8.4	$\mathrm{H}_{6}{ }^{\prime}$	$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$,
C_{6},	120.6	H_{6}	7.36	1	dd	2.4, 8.4	$\mathrm{H}_{2^{\prime}}{ }^{\prime}, \mathrm{H}_{5}{ }^{\prime} \alpha$	$\mathrm{C}_{1^{\prime}}, \mathrm{C}_{2}, \mathrm{C}_{4}{ }^{\prime}$
C_{1},	102.1	H_{1},	5.06	1	d	7.2	$\mathrm{H}_{2}{ }^{\prime}{ }^{\prime}$	C_{7}
$\mathrm{C}_{2}{ }^{\prime}$	75.2	$\mathrm{H}_{2}{ }^{\prime \prime}$	3.48	1	m		$\mathrm{H}_{1}{ }^{\prime}{ }_{0}, \mathrm{H}_{3}{ }^{\prime}{ }_{\alpha}$	$\mathrm{C}_{1}{ }^{\prime}, \mathrm{C}_{3}{ }^{\prime \prime}$
C_{3},	78.3	$\mathrm{H}_{2}{ }^{\prime \prime}$	3.49	1	m		$\mathrm{H}_{2}{ }^{\prime}{ }_{0}, \mathrm{H}_{4}{ }^{\prime}{ }_{0}$	$\mathrm{C}_{2}{ }^{\prime \prime}, \mathrm{C}_{4}{ }^{\text {, }}$
$\mathrm{C}_{4}{ }^{\text {, }}$	71.7	H_{3},	3.41	1	m		$\mathrm{H}_{3}{ }^{\prime},{ }_{0}, \mathrm{H}_{5}{ }^{\prime}{ }_{\text {a }}$	$\mathrm{C}_{5^{\prime \prime}}, \mathrm{C}_{6}{ }^{\prime}$,
$\mathrm{C}_{5}{ }^{\prime \prime}$	78.8	H_{4},	3.54	1	ddd	2.3, 5.6, 9.7	$\mathrm{H}_{4}{ }^{\prime}{ }_{c}, \mathrm{H}_{6,{ }^{\prime}}$	$\mathrm{C}_{4}{ }^{\prime \prime}, \mathrm{C}_{5^{\prime \prime}}$
C_{6},	62.8	$\begin{aligned} & \mathrm{H}_{6, \alpha}{ }^{\prime} \\ & \mathrm{H}_{6},{ }^{\prime} \beta \end{aligned}$	$\begin{aligned} & \hline 3.71 \\ & 3.92 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \hline \mathrm{dd} \\ & \mathrm{dd} \end{aligned}$	$\begin{aligned} & 5.6,12.0 \\ & 2.3,12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{5^{\prime}, \alpha}, \mathrm{H}_{6^{\prime \prime}} \\ & \mathrm{H}_{6^{\prime}} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{4^{\prime}}, \mathrm{C}_{5^{\prime \prime}} \\ & \mathrm{C}_{4}, \end{aligned}$

[^0]Table 2.15: ROESY correlations for [57]

Proton	ROESY	Proton	ROESY
H_{3}	$\mathrm{H}_{2}, \mathrm{H}_{6}$.	H_{2} "	
H_{6}	H_{1},	H_{3},	H_{1},
H_{8}	H_{1},	$\mathrm{H}_{4}{ }^{\prime \prime}$	
H_{2},	H_{3}	H_{5},	H_{1},
H_{5} '	H_{6} '	$\mathrm{H}_{6}{ }^{\prime}{ }^{\prime}$	$\mathrm{H}_{6 \times \beta}{ }^{\prime}$
H_{6}.	$\mathrm{H}_{3}, \mathrm{H}_{5}$,	$\mathrm{H}_{6}{ }^{\prime} \mathrm{\beta}$	$\mathrm{H}_{5}{ }^{\prime}, \mathrm{H}_{6}{ }^{\prime}{ }_{\alpha}$
H_{1},	$\mathrm{H}_{3^{\prime}}, \mathrm{H}_{5}$,		

[57] 600MHz (${ }^{\mathrm{H}} \mathrm{H}$): $\delta(\mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$

The NMR assignments confirmed that compound [57] is luteolin-7-O-glucoside [44]. This compound has been previously isolated from Scaevola spinescens by Nobbs. ${ }^{6}$ Comparison of the ${ }^{13} \mathrm{C}$ chemical shifts values for compound [57] with other literature reports of luteolin-7-Oglucoside [44] has been done and these are shown in Table 2.16. They have similar ${ }^{13} \mathrm{C}$ chemical shifts but not identical as the solvents used are different. Four out of the five previous reports used d_{6}-DMSO and one of the reports is based on pyridine- $\mathrm{d}_{5}+\mathrm{D}_{2} \mathrm{O}$ solvent. Therefore, no direct comparison can be made. However, the similar ${ }^{13} \mathrm{C}$ chemical shifts as well as the NMR assignments are consistent with the structure of luteolin-7-O-glucoside [44].

Table 2.16: ${ }^{13} \mathrm{C}$ chemical shift values between [57] and [44]

C	$\delta_{\text {C }}$ [57]	$\delta_{\mathrm{C}}[44]^{6}$	$\delta_{\mathrm{C}}[44]^{55}$	$\delta_{\mathrm{C}}[44]^{56}$	$\delta_{\mathrm{C}}[44]^{57}$	$\delta_{\mathrm{C}}[44]^{58}$
Solvent	$\mathrm{CD}_{3} \mathrm{OD}$	d_{6}-DMSO	d_{6}-DMSO	d_{6}-DMSO	d_{6}-DMSO	pyridine- $\mathrm{d}_{5}+\mathrm{D}_{2} \mathrm{O}$
C_{2}	168.9	164.4	164.9	164.9	164.5	164.2
C_{3}	103.5	103.1	103.6	103.3	103.2	104.4
C_{4}	184.4	181.8	182.4	182.2	181.6	183.3
$\mathrm{C}_{4 \mathrm{a}}$	107.5	105.2	105.8	105.6	105.5	106.9
C_{5}	163.3	161.0	161.6	161.4	161.1	162.5
C_{6}	101.1	99.4	100.0	99.8	99.7	101.02
C_{7}	165.1	162.9	163.4	163.27	162.9	166.0
C_{8}	96.5	94.6	95.2	95.0	94.9	96.2
$\mathrm{C}_{8 \mathrm{a}}$	159.4*	156.8	157.4	157.2	156.9	158.2
C_{1},	121.6	121.2	121.8	121.3	121.6	123.0
C_{2},	106.9	113.5	114.0	113.7	113.7	115.0
C_{3},	154.8	145.7	146.3	146.2	145.7	147.9
C_{4}	159.4*	149.9	150.4	150.8	149.7	152.0
C_{5},	109.9	115.9	116.5	116.3	116.0	117.3
C_{6}	120.6	119.1	119.7	119.5	119.0	120.3
C_{1},	102.1	100.0	100.3	100.2	100.0	102.0
$\mathrm{C}_{2}{ }^{\text {, }}$	75.2	73.0	73.8	73.4	73.2	74.8
C_{3},	78.3	76.3	76.8	76.7	76.5	78.1
C_{4},	71.7	69.5	70.0	69.9	69.7	71.4
C_{5},	78.8	77.1	77.6	77.5	77.2	75.9
C_{6},	62.8	60.5	61.1	60.9	60.8	65.6

[57] 600MHz ($\left.{ }^{13} \mathrm{C}\right): \delta(\mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$

* Assignments may be reversed

2.4.4 Aqueous Extracts

Fractionation and purification of compounds from aqueous extract

A total of 46 g of aqueous extract was obtained from the decoction method and 71 g of aqueous extract from Soxhlet extraction. Each of these aqueous extracts were then separately dissolved in $70 \% \mathrm{v} / \mathrm{v}$ methanol before being subjected to liquid-liquid partitioning with hexane, followed by dichloromethane and ethyl acetate. Each of the aqueous extracts was partitioned twice with each of the solvents to increase the yield of partitioned products.

Aqueous extract (decoction)

Liquid-liquid partitioning of the aqueous extract from the decoction method gave 21 mg of hexane extract, 1.2 g of dichloromethane extract and 7.6 g of ethyl acetate extract. Evaporation of the aqueous methanol extract gave 33.5 g . The fractionation and purification of compounds from each of the partitioned extracts are summarized in Figure 2.53. Below are the details of the fractionation and purification of compounds from each of the partitioned extracts.

- The dichloromethane extract (1.2 g) from the partitioning was subjected to reversedphase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 10 fractions, $\mathrm{Aq}(\mathrm{Dct}) \mathrm{D} 01-\mathrm{Aq}(\mathrm{Dct}) \mathrm{D} 10$ (Figure 2.53).
- The ethyl acetate extract (7.6 g) from the partitioning was subjected to reversed-phase column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 11 fractions, $\mathrm{Aq}(\mathrm{Dct}) \mathrm{EA} 01-\mathrm{Aq}(\mathrm{Dct}) \mathrm{EA} 11$ (Figure 2.53).
- The aqueous methanol residue (33.5 g) from the partitioning was subjected to reversed-phase column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 11 fractions, Aq(Dct)AM01-Aq(Dct)AM11 (Figure 2.53).

Figure 2.53: Fractionation from 46 g of decoction aqueous extract

Aqueous methanol residue

Aqueous extract (soxhlet)

Liquid-liquid partitioning of the aqueous extract from the Soxhlet method gave 27 mg of hexane extract, 1.9 g of dichloromethane extract, 6.2 g of ethyl acetate extract and 52 g of aqueous methanol residue upon evaporation. The fractionation and purification of compounds from each of the partitioned extracts are summarized in Figure 2.54. Below are the details of the fractionation and purification of compounds from each of the partitioned extracts.

- The dichloromethane extract (1.9 g) from the partitioning was subjected to reversedphase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 14 fractions, $\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 01-\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 14$ (Figure 2.54). When solution of fraction $\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 02$ was left standing, colourless solids [59] (15 mg) crystallized out of solution. Only the ${ }^{1} \mathrm{H}$ NMR spectrum was acquired for compound [59].
- The ethyl acetate extract (6.2 g) from the partitioning was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 11 fractions, Aq(Sox)EA01-Aq(Sox)EA11 (Figure 2.54). When solution of fraction $\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA} 02$ was left standing, colourless solids [60] (125 mg) crystallized out of solution. Therefore, the colourless solids [60] was further analyzed using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy to determine the structure. Compound [60] was found to have a similar ${ }^{1} \mathrm{H}$ NMR with compound [59].
- The aqueous methanol residue (52 g) from the partitioning was subjected to reversedphase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents to yield 11 fractions, Aq(Sox)AM01-Aq(Sox)AM11 (Figure 2.54).

Figure 2.54: Fractionation from 71 g of Soxhlet aqueous extract

Compounds found in aqueous extracts

Compound [60]

Compound [60] (26 mg) was isolated as colourless crystals with a melting point of 230 $233^{\circ} \mathrm{C}$. Positive ion electrospray ionization mass spectrometry (ESI-MS) showed a mass at 166.0751. The calculated mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{H}$ is 165.0762 , which supported the mass obtained from positive ion ESI-MS. This indicated that the compound had one degree of unsaturation. The adsorption at $3306 \mathrm{~cm}^{-1}$ in the IR spectra indicated the presence of hydroxyl group(s).

The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra indicated a total of 6 unique carbons; one methylene (δ_{C} 35.20) and five sp^{3} methines ($\delta_{\mathrm{C}} 70.52,70.83,72.90,74.17,76.49$). All these resonances accounted for a partial molecular formula $\mathrm{C}_{6} \mathrm{H}_{7}$. The remaining five hydrogen atoms and five oxygen atoms suggested the presence of hydroxyl groups. This is supported by the infrared spectra.

All the methyl, methylene and methine carbons identified in the DEPT NMR were assigned to their directly attached hydrogens using the HSQC experiment. The NMR assignments for [60] were mainly based on COSY coupling. These correlation are shown in Table 2.17.

In the COSY spectrum, the methylene hydrogens at $\delta_{\mathrm{H}} 1.86$ and $\delta_{\mathrm{H}} 2.04$ ($\delta_{\mathrm{C}} 35.2$) showed coupling with each other. Both methylene hydrogens also coupled with $\delta_{\mathrm{H}} 4.07$ ($\delta_{\mathrm{C}} 70.5$) and $\delta_{\mathrm{H}} 3.80\left(\delta_{\mathrm{C}} 70.8\right)$. The methylene hydrogen at $\delta_{\mathrm{H}} 2.04\left(\delta_{\mathrm{C}} 35.2\right)$ also coupled with $\delta_{\mathrm{H}} 3.98$ (δ_{C} 74.1). COSY couplings were also observed between the methine hydrogen at $\delta_{\mathrm{H}} 4.07$ with δ_{H} $3.98, \delta_{\mathrm{H}} 1.86$ and $\delta_{\mathrm{H}} 2.04$, as well as $\delta_{\mathrm{H}} 3.98$ with $\delta_{\mathrm{H}} 3.76$ and $\delta_{\mathrm{H}} 2.04$. The methine hydrogen at $\delta_{\mathrm{H}} 3.80$ showed COSY couplings with the hydrogens at $\delta_{\mathrm{H}} 3.62, \delta_{\mathrm{H}} 1.86$ and $\delta_{\mathrm{H}} 2.04$. COSY couplings were also observed between the methine hydrogens at $\delta_{\mathrm{H}} 3.76$ ($\delta_{\mathrm{C}} 72.9$) and $\delta_{\mathrm{H}} 3.62$ ($\delta_{\mathrm{C}} 76.4$). The COSY spin system data supported the closure of a ring. Therefore, it accounted for one degree of unsaturation. (Figure 2.55)

Figure 2.55: Closure of a ring for [60] based on COSY coupling

The coupling constants for the hydrogens can be used to determine the relative stereochemistry of the assigned signals. The ${ }^{1} \mathrm{H}$ NMR spectrum shows that the methine hydrogen at $\delta_{\mathrm{H}} 3.76$ had a coupling constant (J) of 9.6 Hz with the hydrogen at $\delta_{\mathrm{H}} 3.62$, indicating that these two hydrogens are in an axial-axial relationship. The coupling constant of 9.6 Hz and 11.5 Hz for the methine hydrogen at $\delta_{\mathrm{H}} 3.80$ indicated axial-axial coupling with both hydrogens at $\delta_{\mathrm{H}} 1.86$ and $\delta_{\mathrm{H}} 3.62$. Since the methylene hydrogen at $\delta_{\mathrm{H}} 1.86$ has been assigned as axial, therefore, the geminal methylene hydrogen at $\delta_{\mathrm{H}} 2.04$ must be equatorial. The coupling constant of 14.4 Hz between the methylene hydrogens at $\delta_{\mathrm{H}} 1.86$ and $\delta_{\mathrm{H}} 2.04 \mathrm{a}$ supported a $2 J$ geminal coupling. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methine hydrogen at $\delta_{\mathrm{H}} 4.07$ had a coupling constant (J) of 3.6 Hz with both methylene hydrogens. This indicated that the methine hydrogen at $\delta_{\mathrm{H}} 4.07$ is in an equatorial position as it supported the equatorialequatorial coupling constant with the methylene hydrogen at $\delta_{\mathrm{H}} 2.04$ and axial-equatorial coupling constant with the methylene hydrogen at $\delta_{\mathrm{H}} 1.86$. The methine hydrogen at $\delta_{\mathrm{H}} 3.98$ is the last hydrogen to be assigned, either axial or equatorial. The ${ }^{1} \mathrm{H}$ NMR spectrum shows that the methine hydrogen at $\delta_{\mathrm{H}} 3.98$ had a coupling constant (J) of 3.6 Hz with the methine hydrogens at $\delta_{\mathrm{H}} 3.76$ and δ_{H} 4.07. Therefore, the methine hydrogen at $\delta_{\mathrm{H}} 3.98$ has to be equatorial as it supported the equatorial-equatorial relationship with the methine hydrogen at $\delta_{\mathrm{H}} 4.07$ and axial-equatorial relationship with the methine hydrogen at $\delta_{\mathrm{H}} 3.76$. This is also supported by the long range coupling constant of 1.2 Hz between the two hydrogens at $\delta_{\mathrm{H}} 3.98$ and δ_{H} 2.04. (Figure 3.56)

Figure 2.56: Assignment of relative stereochemistry for [60] based on COSY coupling

Thus, the overall structure of compound [60] can be illustrated in two different representations that are shown in Figure 2.57.

[60]
Figure 2.57: Different representations indicating the relative stereochemistry for [60]

Table 2.17: Spectral data for [60]

C	$\delta_{\text {C }}$	H	$\delta_{\text {H }}$	I	M	$J(\mathrm{~Hz})$	COSY	HMBC
C_{1}	70.5	$\mathrm{H}_{1 \alpha}$	4.07	1	q	3.6	$\mathrm{H}_{2 \alpha}, \mathrm{H}_{6 \alpha}, \mathrm{H}_{6 \beta}$	$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}$
C_{2}	74.1	$\mathrm{H}_{2 a}$	3.98	1	td	1.2, 3.6	$\mathrm{H}_{10}, \mathrm{H}_{30}, \mathrm{H}_{6 \beta}$	$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}$
C_{3}	72.9	$\mathrm{H}_{3 a}$	3.76	1	ddd	0.6, 3.6, 9.6	$\mathrm{H}_{2 \alpha}, \mathrm{H}_{4 \alpha}$	$\mathrm{C}_{4}, \mathrm{C}_{5}$
C_{4}	76.4	H_{4}	3.62	1	t	9.6	$\mathrm{H}_{3 \alpha}, \mathrm{H}_{5 \alpha}$	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}$
C_{5}	70.8	H_{5}	3.80	1	dddd	0.6, 4.8, 9.6, 11.5	$\mathrm{H}_{40}, \mathrm{H}_{60}, \mathrm{H}_{6 \beta}$	$\mathrm{C}_{4}, \mathrm{C}_{6}$
C_{6}	35.2	$\begin{aligned} & \hline \mathrm{H}_{6 \alpha} \\ & \mathrm{H}_{6 \beta} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.86 \\ & 2.04 \end{aligned}$	1	ddd dddd	$\begin{aligned} & 3.6,11.5,14.4 \\ & 1.2,3.6,4.8,14.4 \end{aligned}$	$\begin{aligned} & \mathrm{H}_{1 \alpha}, \mathrm{H}_{5 \alpha}, \mathrm{H}_{6 \beta} \\ & \mathrm{H}_{1 \alpha}, \mathrm{H}_{2 \alpha}, \mathrm{H}_{5 \alpha}, \mathrm{H}_{6 \alpha} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{5} \\ & \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5} \end{aligned}$

[60] 600MHz $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right): \delta(\mathrm{ppm})$ in $\mathrm{D}_{2} \mathrm{O}$
I = Integration
M = Multiplicity

The NMR assignments suggested that compound [60] is 2-deoxy-chiro-inositol. An optical rotation of compound [60] was conducted for further confirmation of the structure for [60]. Compound [60] was found to have $[\alpha]_{\mathrm{D}}{ }^{22.5}+23.6^{\circ}$ (c 0.22 , water), which corresponds with the reported literature on 2-deoxy-D-chiro-inositol with the value of $[\alpha]_{D}+23.2^{\circ} .{ }^{59}$ This compound had previously been isolated from Scaevola spinescens by Nobbs. ${ }^{6}$ The melting point range also matches the values found in Nobbs's thesis as well as in the literature. ${ }^{6,60}$ Thefore, these confirmed that compound [60] can be identified as 2-deoxy-D-chiro-inositol.

CHAPTER 3

Antibacterial Assay

3.1 Introduction

The in vitro antibacterial activity of the plant extracts was determined using a broth microdilution assay based on minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). MIC is the lowest concentration of antibacterial agent that completely inhibits the growth of microorganism in the micro-dilution wells as detected by the unaided eye after overnight incubation. ${ }^{61}$ Once an MIC has been performed, MBC can subsequently be determined. MBC is the lowest concentration of antibacterial agent that has bacterial killing effects. Gram-positive and Gram-negative bacteria were used for antibacterial testing.

The Gram-positive bacteria used for antibacterial testing were Staphylococcus aureus (ATCC 25923) and Streptococcus pyogenes (ATCC 10389). Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) were the Gram-negative bacteria used for antibacterial testing. The selection of these Gram-positive and Gram-negative bacteria are based on the uses of the plant by the Aboriginal people. These bacteria are commonly found in many important human diseases. Staphylococcus aureus and Streptococcus pyogenes are the cause of many human diseases ranging from mild skin infections to life-threatening systemic diseases. ${ }^{62,63}$ Previous research done on childhood infections in tropical north Australia showed that these bacteria are also important pathogens in indigenous communities. ${ }^{64}$ Escherichia coli and Pseudomonas aeruginosa can cause a variety of different types of infections including urinary tract infections (UTIs). ${ }^{62}$ UTIs, predominantly caused by Escherichia coli are the most common bacterial infections found in most women nowadays. ${ }^{65,66}$ Besides that, Escherichia coli is also an important pathogen in the general community and indigenous communities, causing infectious diarrhea. ${ }^{64}$

Ampicillin was used as a known inhibitor in the assay with an MIC of $0.5-2.0 \mu \mathrm{~g} / \mathrm{mL}$ against Staphylococcus aureus (ATCC 25923), which was in accordance with published reference ranges for Staphylococcus aureus (ATCC 29213) and $0.06-0.25 \mu \mathrm{~g} / \mathrm{mL}$ against Streptococcus pyogenes (ATCC 10389), which was in accordance with published reference ranges for Streptococcus pneumoniae (ATCC 49619). ${ }^{67}$ Gentamicin was used as a known inhibitor in the assay with an MIC of $0.65 \mu \mathrm{~g} / \mathrm{mL}$ against Escherichia coli (ATCC 25922) and $1.30 \mu \mathrm{~g} / \mathrm{mL}$ against Pseudomonas aeruginosa (ATCC 27853), which was in accordance with published reference ranges for these strains. ${ }^{67}$

The scoring of good antibacterial activity for the extracts tested in this research is based on the criteria for 'activity' in the review of Cos et al. ${ }^{68}$ A stringent criteria for activity is set to IC_{50} values below $100 \mu \mathrm{~g} / \mathrm{mL}$ for extracts and below $25 \mu \mathrm{M}$ for pure compounds. ${ }^{68}$ Therefore, any antibacterial activity observed below $100 \mu \mathrm{~g} / \mathrm{mL}$ is considered good. This value was used as a general guideline as there are other criteria such as the microorganism used, which can also affect the antibacterial activity. Different pathogens have specific sensitivities to the aspecific or toxic action of chemical molecules. ${ }^{68}$

All the extracts (depending on the availability of the extracts) isolated in this thesis were tested for antibacterial activity using the broth micro-dilution assay to determine the MIC and subsequently the MBC on the selected extracts or compounds that showed promising antibacterial activity (Table 3.1).

Table 3.1: Antibacterial testing on the crude extracts of Scaevola spinescens
(Activities reported in $\mu \mathrm{g} / \mathrm{mL}$)

Crude extract	Microorganism							
	Staphylococcus aureus ATCC 25923	Streptococcus pyogenes ATCC 10389		Escherichia coli ATCC 25922	Pseudomonas aeruginosa ATCC 27853			
	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
Hexane	NA	NA	500	1000	NA	NA	NA	NA
Ethyl acetate	1000	1000	$250-500$	500	NA	NA	NA	NA
Methanol	NA	NA	4000	4000	NA	NA	NA	NA
Aqueous (Soxhlet)	NA							
Aqueous (Decoction)	NA							

NA: No activity

3.2 Hexane Extract

The crude hexane extract showed activity against Streptococcus pyogenes (ATCC 10389) with MIC at $500 \mu \mathrm{~g} / \mathrm{mL}$ and MBC at $1000 \mu \mathrm{~g} / \mathrm{mL}$. This suggested that the bacteria might be inhibited but not killed at the concentration of $500 \mu \mathrm{~g} / \mathrm{mL}$. No activity was observed against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$ (Table 3.1).

Twenty-two fractions (H01-H22) were isolated by flash column chromatography of the hexane crude extract. However, not all of the hexane fractions were tested against Streptococcus pyogenes (ATCC 10389) due to insufficient amount of samples for testing. Only the first nine fractions ($\mathrm{H} 01-\mathrm{H} 09$) were tested for antibacterial activity against Streptococcus pyogenes (ATCC 10389) (Figure 3.1). The remaining thirteen fractions were not tested as those samples have been used for further chromatographic fractionation. Among the nine fractions tested for antibacterial activity against Streptococcus pyogenes (ATCC 10389), only sample H04 was found to be active with MIC at $500-1000 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.1). The MIC value was still above the criteria for good activity $(100 \mu \mathrm{~g} / \mathrm{mL})$. Therefore, no further investigation was done on sub-fractions from sample H04.

Figure 3.1: Antibacterial testing on the crude extract of hexane as well as its sub-fractions (MIC value) (MBC value)

3.3 Ethyl acetate Extract

The crude ethyl acetate extract showed activity against both Gram-positive bacteria. Both MIC and MBC observed against Staphylococcus aureus (ATCC 25923) was $1000 \mu \mathrm{~g} / \mathrm{mL}$. This indicated that $1000 \mu \mathrm{~g} / \mathrm{mL}$ of ethyl acetate crude extract had a bactericidal effect on Staphylococcus aureus (ATCC 25923). The MIC of the extract against Streptococcus pyogenes (ATCC 10389) was between $250-500 \mu \mathrm{~g} / \mathrm{mL}$ with MBC observed at $500 \mu \mathrm{~g} / \mathrm{mL}$. There was no antibacterial activity observed against either of the Gram-negative bacteria at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$ (Table 3.1). Based on the assay, the ethyl acetate extract has better bactericidal effect against Streptococcus pyogenes (ATCC 10389). Therefore, the ethyl acetate fractions isolated from flash column chromatography were tested only against Streptococcus pyogenes (ATCC 10389).

A total of twenty-six fractions (See Chapter 2) were isolated from the two batches of ethyl acetate crude extract using flash column chromatography. However, only sixteen out of twenty-six ethyl acetate fractions were tested against Streptococcus pyogenes (ATCC 10389) for any antibacterial activity at a maximum concentration of $2000 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.2). The selection of samples to be tested was based on the amount available for testing. Some of the samples are insufficient for testing as they have been used for further chromatographic fractionation.

Among the sixteen fractions tested, fraction EA10, EA11 and EA12 showed good antibacterial activity against Streptococcus pyogenes (ATCC 10389) with MIC ranging from 62.5 - 250 $\mu \mathrm{g} / \mathrm{mL}$ (Figure 3.2). These three fractions were then tested against Staphylococcus aureus (ATCC 25923) at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. Only fraction EA12 showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with an MIC of 4000 $\mu \mathrm{g} / \mathrm{mL}$. The results show that these fractions have better antibacterial activity against Streptococcus pyogenes (ATCC 10389) compared to Staphylococcus aureus (ATCC 25923). Therefore, the sub-fractions of these three fractions were further tested only against Streptococcus pyogenes (ATCC 10389) (Figure 3.2).

Figure 3.2: Antibacterial testing on the crude extract of ethyl acetate as well as its subfractions (MIC value)(MBC value)

Crude Ethyl Acetate

Staph.a.
(1000 $\mu \mathrm{g} / \mathrm{ml}$)
($1000 \mu \mathrm{~g} / \mathrm{ml}$)

Strep.p.
($250-500 \mu \mathrm{~g} / \mathrm{ml}$)
($500 \mu \mathrm{~g} / \mathrm{ml}$)

EA02/1 EA04/1 EA06/1EA08/1 EA10/1 EA12/1EA14/1 EA16/1 EA18/1 EA04/2 EA06/2 EA08/2 EA10/2
EA02/2 $\begin{array}{ccc}\text { Strep.p. } & \text { Strep.p. } \\ & (250-500 & (125-250 \\ & \mu \mathrm{g} / \mathrm{ml}) & \mu \mathrm{g} / \mathrm{ml})\end{array}$

EA12/2EA14/2	EA16/2	EA18/2	Strep.p.	Strep.p.	
Strep.p.	Strep.p.	Strep.p.	Strep.p.	(NA*)	(NA*)
$(125-250$	$(125-250$	$(500-$	$(125-250$		

Staph.a. : Staphylococcus aureus ATCC 25923
Strep.p. : Streptococcus pyogenes ATCC 10389
NA* : Not active at the maximum concentration tested $(2 \mathrm{mg} / \mathrm{ml})$
NA** : Not active at the maximum concentration tested ($1 \mathrm{mg} / \mathrm{ml}$)
NA*** : Not active at the maximum concentration tested $(500 \mu \mathrm{~g} / \mathrm{ml})$

Some of the sub-fractions from the EA10 extract (EA1003b, EA1005a, EA1005b and EA1006) showed good antibacterial activity against Streptococcus pyogenes (ATCC 10389) with MIC ranging from $1.9-30 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.2). The MBC of these sub-fractions were also observed ranging from $1.9-15 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.2). Sub-fraction EA1005b [51] which showed MIC of $1.9-3.7 \mu \mathrm{~g} / \mathrm{mL}(4.16-8.11 \mu \mathrm{M})$ and MBC of $3.7-7.5 \mu \mathrm{~g} / \mathrm{mL}(8.11-16.4$ $\mu \mathrm{M})$ against Streptococcus pyogenes (ATCC 10389) has been identified as 20-epi-ursolic acid. Sub-fraction EA1005b [51] also has good antibacterial activity against Staphylococcus aureus (ATCC 25923) with MIC of $3.7-7.5 \mu \mathrm{~g} / \mathrm{mL}(8.11-16.4 \mu \mathrm{M})$ and MBC of $7.5-15 \mu \mathrm{~g} / \mathrm{mL}$ (16.4-32.8 $\mu \mathrm{M}$). Initially, fraction EA10 did not show any significant antibacterial activity against Staphylococcus aureus (ATCC 25923). The results of the purified extract later showed good antibacterial activity against this Gram-positive bacterium. This is probably due to the amount of sub-fraction EA1005b [51] ($60 \mu \mathrm{~g} / \mathrm{mL}$) in fraction EA10 which is too little to be detected and therefore has little ability to inhibit the growth of Staphylococcus aureus (ATCC 25923). There is also a possibility that the interactions with other components in the crude fractions block or antagonize its effects. Unlike Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 10389) is more sensitive therefore, can be easily inhibited even in a low amount of active compound. However, sub-fraction EA1005b [51] still did not show any activity against either Gram-negative bacteria at a maximum concentration of 60 $\mu \mathrm{g} / \mathrm{mL}$ (Figure 3.2).

Among the sub-fractions from EA11 that were tested, sub-fraction EA1106 and EA1107 showed good antibacterial activity against Streptococcus pyogenes (ATCC 10389) with MIC of $3.7-7.5 \mu \mathrm{~g} / \mathrm{mL}$. There is a possibility that these two sub-fractions with similar MIC values might have similar active compounds as EA1107 is the sub-fraction obtained after EA1106. Sub-fraction EA1106 was then subjected for further antibacterial testing against Staphylococccus aureus (ATCC 25923) and both Gram-negative bacteria. Sub-fraction EA1106 showed good antibacterial activity against Staphylococcus aureus (ATCC 25923) with MIC of $1.9-3.7 \mu \mathrm{~g} / \mathrm{mL}$ and MBC of $3.7-7.5 \mu \mathrm{~g} / \mathrm{mL}$. Initially, fraction EA11 from which this compound was extracted did not show any significant antibacterial activity against this Gram-positive bacterium. Similar to EA1005b, the relative amount of sub-fraction EA1106 might be too little to be detected at an earlier stage, therefore no inhibition of growth was observed against Staphylococcus aureus (ATCC 25923). Staphylococcus aureus (ATCC 25923) is generally more resistant compared to Streptococcus pyogenes (ATCC 10389).

Therefore, a more concentrated amount of active compound is needed to observe any growth inhibition for Staphylococcus aureus (ATCC 25923). However, in some cases, the MICs were about the same, depending on the active compounds of an extract. Sub-fraction EA1106 did not have any antibacterial activity against either of the Gram-negative bacteria at a maximum concentration of $30 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.2).

Five out of the six sub-fractions from EA12 were tested against Streptococcus pyogenes (ATCC 10389). Among those tested, sub-fraction EA1206 showed good antibacterial activity with MIC of $31.2-62.5 \mu \mathrm{~g} / \mathrm{mL}$. However, no further antibacterial assay was performed on this sub-fraction. This sub-fraction could be further fractionated in the near future to isolate the active compounds that have good antibacterial activity against Streptococcus pyogenes (ATCC10389). Sub-fraction EA1203 was not tested due to insufficient amount for antibacterial testing (Figure 3.2).

3.4 Methanol Extract

The methanol crude extract showed some antibacterial activity against Streptococcus pyogenes (ATCC 10389) with MIC of $4000 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against either of the Gram-negative bacteria at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$ (Table 3.1).

However, a study done by Nobbs has shown that three methanol fractions of Scaevola spinescens have antibacterial activity (at maximum concentration of $60 \mathrm{mg} /$ disc using disc diffusion assay). ${ }^{6}$ From a clinical perspective, compounds with MIC values over $1 \mathrm{mg} / \mathrm{mL}$ using broth or agar dilution methodologies are not considered as a potential antibacterial agent since a number of relatively inert substances may show antibacterial activity at this high concentration. ${ }^{69}$ The antibacterial activity observed by Nobbs was at a high concentration. There could be a lot of possibilities that contribute to the antibacterial activity at this high concentration. It is hard to determine what the actual available concentration in these previously conducted diffusion assays were.

The dilution assay has more advantages compared to the diffusion assay, namely the test compound concentration in the medium is defined and has significant reductions in test compound concentration. ${ }^{70}$ As observed in Nobbs' work, the higher test concentration is required for the diffusion assay. Besides that, the antibacterial activity observed in the diffusion assay is dependent upon the ability of test compounds to migrate across the agar.

To verify the findings found by Nobbs, the antibacterial activity of the methanol crude extract has been tested using a broth micro-dilution assay. The antibacterial activities of methanol fractions were further tested although the MIC value of methanol crude extract was observed at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. There was a possibility that the total percentage of active compounds in the methanol crude extract was too little to be effective at this stage.

Seventeen fractions (M01-M17) have been isolated from the methanol crude extract using flash column chromatography. Only eight out of seventeen methanol fractions were further tested on Streptococcus pyogenes (ATCC 10389) for any antibacterial activity (at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$). (Figure 3.3) The selected fractions (M09, M10 and M13) are
in the range where pure compounds (M0906a, M0907a, M100603, M1306a) have been isolated. This approach was to target the compounds already isolated.

Among those methanol fractions tested, fraction M13 showed moderate antibacterial activity with MIC of $125-250 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.3). This fraction is of interest as a pure compound, identified as luteolin-7-O-glucoside was isolated from this fraction. Therefore, all of the M13 sub-fractions, except the pure compound, were further tested against Streptococcus pyogenes (ATCC 10389). This is because the amount of pure compound isolated was insufficient for antibacterial assay.

The sub-fractions from M1303 to M1310 did not show any antibacterial activity against Streptococcus pyogenes (ATCC 10389) at a maximum concentration of $2000 \mu \mathrm{~g} / \mathrm{mL}$. Therefore, there is a possibility that luteolin-7-O-glucoside (fraction M1306a) might not have any antibacterial activity against Streptococcus pyogenes (ATCC 10389). Research done by Chiruvella et al showed that luteolin-7-O-glucoside ($10 \mathrm{mg} / \mathrm{mL}$) did not have antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa using the agar well diffusion methanol. ${ }^{33}$ Therefore, no further antibacterial testing was done on these two microorganisms. Nevertheless, luteolin-7-O-glucoside ($10 \mathrm{mg} / \mathrm{mL}$) has previously been found to have antibacterial activity against Bacillus subtilis and Gram-negative bacteria including Klebsiella pneumoniae, Salmonella typhimurium, Proteus vulgaris and Escherichia coli. ${ }^{33}$ This shows that luteolin-7-O-glucoside has antibacterial properties that are specific to certain bacteria (typically Gram-negative bacteria). Besides having antibacterial properties, luteolin-$7-O$-glucoside ($10 \mathrm{mg} / \mathrm{mL}$) was also found to have antifungal activity against Aspergillus fumigatus, Aspergillus niger and Aspergillus alternata. ${ }^{33}$

The sub-fractions M1302 and from M1311 to M1314 showed antibacterial activity against Streptococcus pyogenes (ATCC 10389). Among these sub-fractions, M1313 and M1314 showed good antibacterial activity with MIC of $15-30 \mu \mathrm{~g} / \mathrm{mL}$. However, active pure compounds from these sub-fractions have not yet been isolated.

Figure 3.3: Antibacterial testing on the crude extract of methanol as well as its sub-fractions (MIC) (MBC)

Staph.a. : Staphylococcus aureus ATCC 25923
Strep.p. : Streptococcus pyogenes ATCC 10389
NA* : Not active at the maximum concentration tested ($1 \mathrm{mg} / \mathrm{ml}$)
NA** : Not active at the maximum concentration tested $(2 \mathrm{mg} / \mathrm{ml})$

3.5 Aqueous Extracts

Both aqueous extracts (decoction and Soxhlet extraction) did not show any activity against either Gram-positive (at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$) or Gram-negative bacteria (at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$). However, both aqueous extracts were sequentially extracted using liquid-liquid extraction (hexane, dichloromethane, ethyl acetate and methanol) and these extracts were further tested for any antibacterial activity. There is a possibility that the active compounds were present at too low a concentration to be detected at this stage.

Aqueous extract (decoction)

The hexane extract $[\mathrm{Aq}(\mathrm{Dct}) \mathrm{H}]$ from liquid-liquid partitioning of the aqueous decoction did not show any antibacterial activity for Gram-positive and Gram-negative bacteria at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$ (Figure 3.4). Due to insufficient amount of samples no further tests were done for this extract on a higher concentration.

The dichloromethane extract $[\mathrm{Aq}(\mathrm{Dct}) \mathrm{D}]$ from liquid-liquid partitioning of the aqueous decoction showed antibacterial activity against Streptococcus pyogenes (ATCC 10389) with an MIC of $1000-2000 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against Staphylococcus aureus (ATCC 25923) and either of the Gram-negative bacteria at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$. Therefore, the sub-fractions from this extract were further tested against Staphylococcus aureus (ATCC10389). However, only eight out of ten sub-fractions were tested as there were two sub-fractions that were insufficient for antibacterial testing. Four out of the eight sub-fractions tested showed antibacterial activity. Among those four sub-fractions, fraction $\mathrm{Aq}(\mathrm{Dct}) \mathrm{D} 07$ showed reasonable antibacterial activity with an MIC of 250 - 500 $\mu \mathrm{g} / \mathrm{mL}$. This fraction needs to be fractionated in the future so as to isolate the active pure compounds that contribute to the antibacterial activity (Figure 3.4).

The ethyl acetate extract $[\mathrm{Aq}(\mathrm{Dct}) \mathrm{EA}]$ from liquid-liquid partitioning of the aqueous decoction did not show any antibacterial activity against Staphylococcus aureus (ATCC 25923) and either of the Gram-negative bacteria at a maximum concentration of $1000 \mu \mathrm{~g} / \mathrm{mL}$. This extract
also did not show any antibacterial activity against Streptococcus pyogenes (ATCC 10389) at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. Therefore, the sub-fractions of this extract were not further examined (Figure 3.4).

The aqueous methanol residue $[\mathrm{Aq}(\mathrm{Dct}) \mathrm{AM}]$ from liquid-liquid partitioning of the aqueous decoction showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with an MIC of $500-1000 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against Streptococcus pyogenes (ATCC 10389) at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. Both Gram-negative bacteria were not tested for this extract as it has clearly shown no activity in the crude extract as well as the hexane, dichloromethane and ethyl acetate partition extracts. The sub-fractions of this extract were further tested against Staphylococcus aureus (ATCC 25923). Nine out of eleven sub-fractions tested showed positive results. Among those results observed, Aq(Dct)AM05 showed reasonable antibacterial activity against Streptococcus pyogenes (ATCC 10389) with an MIC of $125-250 \mu \mathrm{~g} / \mathrm{mL}$. This fraction can be further fractionated in the future to isolate active pure compounds that contribute to the antibacterial activity (Figure 3.4).

Figure 3.4: Antibacterial testing on the extracts from liquid-liquid partitioning of the aqueous decoction as well as its sub-fractions (MIC)

Aqueous decoction extract

Aqueous methanol extract

Staph.a.	: Staphylococcus aureus ATCC 25923
Strep.p.	: Streptococcus pyogenes ATCC 10389
E.coli	: Escherichia coli ATCC 25922
P.aeruginosa	: Pseudomonas aeruginosa ATCC 27853
NA* *	: Not active at the maximum concentration tested $(4 \mathrm{mg} / \mathrm{ml})$
NA $^{* *}$: Not active at the maximum concentration tested $(1 \mathrm{mg} / \mathrm{ml})$

Aqueous extract (soxhlet)

The hexane extract $[\mathrm{Aq}(\mathrm{Sox}) \mathrm{H}]$ from liquid-liquid partitioning of the aqueous Soxhlet extract showed good antibacterial activity against Streptococcus pyogenes (ATCC 10389) with an MIC of $62.5-125 \mu \mathrm{~g} / \mathrm{mL}$ and a reasonable antibacterial activity against Staphylococcus aureus (ATCC 25923) with an MIC of $250-500 \mu \mathrm{~g} / \mathrm{mL}$. This extract was not further fractionated due to the insufficient amount of sample. Therefore, the active compounds in this extract cannot be determined at this point of time (Figure 3.5).

The dichloromethane extract $[\mathrm{Aq}(\mathrm{Sox}) \mathrm{D}]$ from liquid-liquid partitioning of the aqueous Soxhlet extract had antibacterial activity against Streptococcus pyogenes (ATCC 10389) and Staphylococcus aureus (ATCC 25923) with MIC of $1000-2000 \mu \mathrm{~g} / \mathrm{mL}$. Only eleven out of fourteen sub-fractions of this extract were further tested on both Gram-positive bacteria due to insufficient amount available for testing. Nine out of the sub-fractions tested showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with a range of MIC between 500 to $4000 \mu \mathrm{~g} / \mathrm{mL}$. Among those sub-fraction tested, $\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 10$ and $\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 11$ showed good antibacterial activity against Streptococcus pyogenes (ATCC 10389) with MIC of $15-30 \mu \mathrm{~g} / \mathrm{mL}$. There was better antibacterial activity observed against Streptococcus pyogenes (ATCC 10389) compared to Staphylococcus aureus (ATCC 25923). These two subfractions are of interest for further testing. Therefore, further fractionation on these two subfractions can be done in the future to isolate the active compounds that contribute to the antibacterial activity (Figure 3.5).

The ethyl acetate extract $[\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA}]$ from liquid-liquid partitioning of the aqueous soxhlet showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with MIC of 250 - $500 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against Streptococcus pyogenes (ATCC 10389) at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. Therefore, the sub-fractions of this extract were only further tested against Staphylococcus aureus (ATCC 25923). All except one of the sub-fractions were tested as the amount was insufficient for antibacterial testing (Figure 3.5).

Two out of eleven sub-fractions tested did not show any antibacterial activity. One of them was the isolated pure compound, identified as 2-deoxy-D-chiro-inositol. However, the filtrate
where this pure compound was isolated showed antibacterial activity with MIC of 500-1000 $\mu \mathrm{g} / \mathrm{mL}$. (Figure 3.5).

Among those sub-fractions that were tested positive, fraction Aq(Sox)EtoAc08 showed good antibacterial activity with MIC of $62.5-125 \mu \mathrm{~g} / \mathrm{mL}$. Therefore, this extract has been further fractionated into 6 fractions and those fractions were then tested for antibacterial activity. Among those 6 fractions tested, fraction $\mathrm{Aq}(\mathrm{Sox}) E t o A c 0805$ showed good antibacterial activity with MIC of $31.25-62.5 \mu \mathrm{~g} / \mathrm{mL}$. This fraction is deemed desirable for further isolation to determine the active compound that contributes to the antibacterial activity. However, the active compounds have not yet been isolated due to the limitation of time (Figure 3.5).

The aqueous methanol residue $[\mathrm{Aq}(\mathrm{Sox}) \mathrm{AM}]$ from liquid-liquid partitioning of the aqueous Soxhlet extract had antibacterial activity against Staphylococcus aureus (ATCC 25923) with MIC of $500-1000 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against Streptococcus pyogenes (ATCC 10389) at a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. Only ten out of eleven sub-fractions from this extract were further tested against Staphylococcus aureus (ATCC 25923) due to insufficient amount of sample available for testing. All of the sub-fractions tested showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with MIC ranging from 125 to $2000 \mu \mathrm{~g} / \mathrm{mL}$. Further purification of these fractions needs to be performed to isolate the active compounds that contribute to antibacterial activity.

Figure 3.5: Antibacterial testing on the extracts from liquid-liquid partitioning of the aqueous soxhlet as well as its sub-fractions (MIC)

Aqueous soxhlet extract
Strep.p. (NA*); Staph.a. (NA***);
E.coli (NA***); P. aeruginosa (NA***)

1

Aqueous methanol layer

Ethyl acetate extract
Strep.p.(NA*); Staph.a.(250-500 $\mu \mathrm{g} / \mathrm{ml}$)

Aqueous methanol extract

Staph.a.	$:$ Staphylococcus aureus ATCC 25923
Strep.p.	: Streptococcus pyogenes ATCC 10389
E.coli	: Escherichia coli ATCC 25922
P.aeruginosa	: Pseudomonas aeruginosa ATCC 27853
NA*	: Not active at the maximum concentration tested $(4 \mathrm{mg} / \mathrm{ml})$
NA**	: Not active at the maximum concentration tested $(2 \mathrm{mg} / \mathrm{ml})$
NA***	: Not active at the maximum concentration tested $(1 \mathrm{mg} / \mathrm{ml})$

3.6 Discussion

Generally, the initial crude extracts show less activity compared to the fractionated extracts. In some of the cases observed, the antibacterial activity is only present in the fractionated extracts and not in the initial crude extracts. This is probably due to the active compounds in the crude extracts being in a low concentration and thus, not able to be detected by the antibacterial assay. There is also a possibility that interactions with other components in the crude extracts antagonize its effect. The antibacterial activity in an extract should be greater in the purified compound. However, it is not unusual for the initial extract to show greater activity than any of the fractions obtained with bioassay-guided fractionation. ${ }^{71}$ In cases like this, the possibility of synergy should be considered and if possible, checked by testing the bioactivity of the combined fractions. ${ }^{71}$

Differential solubility can be a problem, particularly when the extract is not water soluble, in which case methanol or dimethylsulfoxide (DMSO) may need to be used. ${ }^{71}$ However, these solvent must be used at a very low concentration. This is to prevent any possible killing effect from the solvent instead of the extract itself. A DMSO medium control was carried out in each assay to show that the concentration used to dissolve the extracts is not responsible for the killing effect. Therefore, any inhibition or killing effects observed are solely due to the active compounds in the extracts.

Based on the results of the assay, none of the extracts tested on either of the Gram-negative bacteria showed any antibacterial activity. This is probably due to the cell envelope of the bacteria. Gram-positive bacteria have a relatively simple cell envelope that consists of two or three layers. ${ }^{72}$ Whereas in Gram-negative bacteria, the cell envelope is a highly complex, multilayered structure. ${ }^{72}$ This makes the active compounds from the extracts harder to penetrate through the cell envelope of Gram-negative bacteria. Therefore, Gram-negative bacteria are harder to kill compared to Gram-positive bacteria.

Among all the samples tested, the ethyl acetate fractions showed the greatest antibacterial activity. This is clearly observed in the purified compound of EA1005b as well as EA1106 with MIC ranging from 1.9 to $7.5 \mu \mathrm{~g} / \mathrm{mL}(4.16-16.4 \mu \mathrm{M})$ against Streptococcus pyogenes (ATCC 10389) and Staphylococcus aureus (ATCC 25923).

The sub-fraction [Aq(Sox)EA0805] also showed promising antibacterial activity with MIC of $31.25-62.5 \mu \mathrm{~g} / \mathrm{mL}$. The promising results from this aqueous extract supported the claimed used by the Aboriginal people on this plant to cure stomach ache, urinary problems and pain in the alimentary tract as well as boils, skin rashes and sores. These cures are usually related to microbial infections.

Bioassay-guided fractionation is one of the ways to identify possible active compounds. Any fractions that have antibacterial activity with MIC below $100 \mu \mathrm{~g} / \mathrm{mL}$ are deemed desirable for further antibacterial testing in the sub-fractions, which might lead to identification of active pure compounds.

CHAPTER 4

Experimental

4.1 General experimental procedures

- Analytical TLC was performed using Merck Kieselgel 60 F254 silica on aluminium backing sheets. Preparative TLC was performed using Merck pre-coated Kieselgel 60 F254 silica on glass plates ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$) with the thickness of 0.25 mm .
- Normal phase flash chromatography was performed using Davisil Chromatographic Silica Media for separation and purification application (40-63 micron). Chemsupply sand acid washed was used in packing the normal phase flash chromatography. Reversed-phase flash chromatography was performed using Waters Preparative C18 $125 \AA$ (55 - 105 micron), which contained dimethyloctadecylsilyl bonded amorphous silica.
- Visualization of TLC plates was done using ultraviolet radiation at 254 nm and staining reagents such as phosphomolybdic acid, vanillin, anisaldehyde and potassium permanganate solution.
- Melting points were obtained using a Reichert hot-stage microscope $\left(0^{\circ}-350^{\circ} \mathrm{C}\right)$.
- UV/ visible spectra were acquired on an SP-8001 Metertech UV/Vis spectrophotometer.
- Infrared spectra were acquired on a Perkin Elmer spectrum BX FT-IR system.
- 1D and 2D NMR spectra were acquired on a Varian INOVA 600 MHz spectrometer. Chemical shifts were referenced to residual solvent resonances.
- High and low resolution mass spectra analysis was conducted at the Central Science Laboratory, Tasmania using a Kratos Concept ISQ magnetic sector mass spectrometer (positive ion mode unless indicated otherwise). Negative Ion Atmospheric Pressure Chemical Ionization (APCI) method was used on an LTQ Orbitrap ${ }^{\text {TM }}$ mass spectrometer to obtain negative ion spectra.
- Optical rotation values were acquired on an AP-100 Automatic polarimeter.
- A 0.5 McFarland standard bacterial cell suspension was determined using a VITEK colorimeter.

4.2 Plant material

The aerial parts of the plant (leaves and branches) were collected in April 2007 on the Morgan-Eudunda road, 10km west of Morgan. A voucher specimen was deposited at the State Herbarium of South Australia, Adelaide. -Voucher Number AD99702040

4.3 Extraction and isolation

The aerial parts (leaves and branches) of Scaevola spinescens (1.6 kg) were air-dried. The total loss of moisture was about 160 g . The ground up samples were mixed then divided into two lots, one with about $2 / 3$ of the total sample (Sample A) and the other with about $1 / 3$ of the total sample (Sample B).

Sample A was sequentially extracted using Soxhlet extraction based on increasing polarity solvents, starting from hexane (2.5 L), then ethyl acetate (2.5 L), methanol (2.5 L) and lastly distilled water $(2.5 \mathrm{~L})$. The solvents for each extraction that were evaporated to dryness in vacuo at $40^{\circ} \mathrm{C}$ gave 8 g of hexane extract, 15 g of ethyl acetate extract and 71 g of methanol extract. The distilled water that was evaporated to dryness in vacuo at $60^{\circ} \mathrm{C}$ gave 71 g of aqueous extract (soxhlet).

Sample B was extracted using the decoction method. The samples were soaked in warm water (the level of the water is 3 cm above the sample) for half an hour, heated to boiling, then simmered for about 45 minutes with constant stirring. The samples were then filtered using a Buchner funnel and the water from the filtrate was evaporated to dryness in vacuo at $60^{\circ} \mathrm{C}$ using a rotary evaporator. Sample B was re-extracted twice using the same procedure to increase the yield of extracted material. This extraction yielded 46 g of aqueous extract (decoction).

4.3.1 Hexane extract

The hexane extract (8 g) was subjected to flash column chromatography (100 mm column diameter) using a series of increasing polarity solvents. The sample was loaded onto the column in a minimum volume of 50% hexane / 50% dichloromethane then eluted sequentially with 2 L of each of the following solvent systems:
50% hexane / 50\% dichloromethane
50\% hexane / 45\% dichloromethane / 5\% ethyl acetate
50% hexane / 40% dichloromethane / 10% ethyl acetate
50% hexane / 50\% ethyl acetate
20\% hexane / 80\% ethyl acetate
100% ethyl acetate
90% ethyl acetate / 10% methanol
80\% ethyl acetate / 20% methanol
A total of $32 \times 500 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 22 fractions, H01-H22.

Fraction H10 (500 mg) was resubjected to flash column chromatography (40 mm column diameter). The sample was loaded onto the column in a minimum volume of 60% hexane / 38% dichloromethane / 2% ethyl acetate then eluted sequentially with 60% hexane / 38% dichloromethane / 2% ethyl acetate (800 mL) then 60% hexane / 35% dichloromethane / 2% ethyl acetate (800 mL) to give $40 \times 40 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 12 sub-fractions, H1001-H1012.

Sub-fraction H1010 (150 mg) was resubjected to flash column chromatography (20 mm column diameter). The sample was loaded onto the column in a minimum volume of 5% hexane / 95\% dichloromethane then eluted with the same solvent (200 mL) to give $20 \times 10 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 5 sub-fractions, H101001-H101005.

Fraction H11 (980 mg) was resubjected to flash column chromatography (50 mm column diameter). The sample was pre-absorbed with a small quantity of silica and added as a dry mixture onto the column, then eluted with 100% dichloromethane then 50% hexane / 45%
dichloromethane / 5\% ethyl acetate to give $40 \times 50 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 14 sub-fractions, H1101-H1114.

Fraction H12 (900 mg) was resubjected to flash column chromatography (50 mm column diameter). The sample was loaded onto the column in a minimum volume of 50% hexane / 45% dichloromethane / 5\% ethyl acetate then eluted sequentially with 50% hexane / 45% dichloromethane / 5\% ethyl acetate then 50% hexane / 40% dichloromethane / 10% ethyl acetate to give $40 \times 50 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 14 sub-fractions, H1201-H1214.

Fraction H14 (580 mg) was resubjected to flash column chromatography (40 mm column diameter). The sample was pre-absorbed with a small quantity of silica and added as a dry mixture onto the column, then eluted with 20% hexane / 70% dichloromethane / 10% ethyl acetate, 90% dichloromethane / 10% ethyl acetate then 80% dichloromethane / 20% ethyl acetate to give $60 \times 30 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 16 sub-fractions, H1401-H1216.

The sub-fractions H1007, H1008 and H1103 with similar ${ }^{1} \mathrm{H}$ NMR profile were combined $(456 \mathrm{mg})$ and crystallized from hot dichloromethane. The white solids (56 mg) that crystallized out of solution were then re-crystallized again from hot dichloromethane to give fine, white crystals (31 mg). The sub-fractions H101003 and H1205 with similar ${ }^{1} \mathrm{H}$ NMR profile were combined (53 mg) and crystallized from hot dichloromethane to give fine, white crystals (7 mg). The ${ }^{1} \mathrm{H}$ NMR profile of these crystals was found to be similar to compound isolated from fraction H1007, H1008 and H1103. These compounds were combined [49] and further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy. The structure for compound [49] was identified as 18-epi-taraxerol. Details of the data are presented below.

When a solution of fraction H1407 was left standing, white solids (15 mg) crystallized out of solution. This white precipitate was then re-crystallized from hot dichloromethane to give a white amorphous solid (11 mg) [50]. Compound [50] was further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy. The structure for compound [50] was identified as myricadiol. Details of the data are presented below.

Compounds

18-epi-taraxerol [49]

[49]
38 mg of [49] was recrystallized from fractions H1007, H1008, H101003, H1103 and H1205 as fine white crystals. MP: $282-283^{\circ} \mathrm{C}$. IR: $v_{\max }$ (nujol) $3480 \mathrm{~cm}^{-1}(\mathrm{OH}), 1641 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta_{\mathrm{H}}: 0.78\left[1 \mathrm{H}, \mathrm{dd}, J_{5,6}=2.4 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, \mathrm{H}(5)\right], 0.80[3 \mathrm{H}, \mathrm{s}$, $\operatorname{Me}(24)], 0.82[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(28)], 0.91[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(27)], 0.91[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(30)], 0.92$ [3H, s, $\mathrm{Me}(25)], 0.93$ [1H, m, H(1ß)], 0.95 [3H, s, Me(29)], 0.96 [1H, m, H(18)], 0.97 [1H, m, $\mathrm{H}(19 \beta)], 0.98[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(23)], 1.01[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(22 \beta)], 1.09[3 \mathrm{H}, \mathrm{d}, \mathrm{Me}(26)], 1.24[1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(21 \beta)], 1.31[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(19 \alpha)], 1.33[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(21 \alpha)], 1.34[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(7 \beta)], 1.36[1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(22 \alpha)], 1.41[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(9)], 1.47[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(11 \beta), 1.47[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(6 \beta)], 1.55[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(12 \beta)]$, $1.57[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \beta)], 1.59[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(1 \alpha)], 1.60[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \alpha)], 1.61[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(6 \alpha)], 1.61[$ $1 \mathrm{H}, \mathrm{m}, \mathrm{H}(12 \alpha)], 1.63[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(11 \alpha)], 1.63[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(16 \beta)], 1.91\left[1 \mathrm{H}, \mathrm{dd}, J_{15,16 \alpha}=3.0 \mathrm{~Hz}\right.$, $\left.J_{16 \alpha, 16 \beta}=15.0 \mathrm{~Hz}, \mathrm{H}(16 \alpha)\right], 2.03\left[1 \mathrm{H}, \mathrm{dd}, J_{6,7}=6.6 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, \mathrm{H}(7 \alpha)\right], 3.19[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(3)]$, $5.53\left[1 \mathrm{H}, \mathrm{dd}, J_{15,16 \alpha}=3.0 \mathrm{~Hz}, J_{15,16 \beta}=7.4 \mathrm{~Hz}, \mathrm{H}(15)\right] .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta_{\mathrm{C}}$: $15.41\left[\mathrm{C}\left(25^{*}\right)\right], 15.44\left[\mathrm{C}\left(24^{*}\right)\right], 17.4$ [C(11)], 18.7 [C(6)], 21.3 [C(27)], 25.9 [C(26)], 27.1 [C(2)], 27.9 [C(23)], 28.7 [C(20)], 29.8 [C(28)], 29.9 [C(30)], 33.0 [C(21)], 33.3 [C(29)], 33.6 [C(12)], 35.1 [C(22)], 35.7 [C(17)], $36.6[C(19)], 37.71\left[C\left(1^{*}\right)\right], 37.74\left[C\left(16^{*}\right)\right], 37.5[C(13)]$, 38.0 [C(10)], 38.7 [C(4)], 38.9 [C(8)], 41.3 [C(7)], 48.7 [C(18)], 49.2 [C(9)], 55.5 [C(27)], 79.0 [C(3)], 116.8 [C(15)], 158.0 [C(14)]. LREIMS m/z 426 [M ${ }^{+}$, 15\%], 411 [18\%], 302 [42\%], 287 [48\%], 269 [30\%], 204 [100\%], 189 [45\%], 147 [35\%], 135 [68\%]. HREIMS m / z 426.3858 (calculated for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}, 426.3861$).

* Assignments may be reversed.

Myricadiol [50]

[50]
11 mg of [50] was isolated from fraction H1407 as a white, amorphous solid. MP: 265 $270^{\circ} \mathrm{C}$. IR: $v_{\max }$ (nujol) $3340 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta_{\mathrm{H}}: 0.57[1 \mathrm{H}$, dd, $\left.J_{18,19 \beta}=3.6 \mathrm{~Hz}, J_{18,19 \alpha}=13.8 \mathrm{~Hz}, \mathrm{H}(18)\right], 0.77\left[1 \mathrm{H}, \mathrm{dd}, J_{5,6}=2.4 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, \mathrm{H}(5)\right], 0.79$ [3H, s, $\operatorname{Me}(24)], 0.89[3 \mathrm{H}, \mathrm{s}, \operatorname{Me}(30)], 0.91$ [3H, s, $\operatorname{Me}(25)], 0.961[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(27)], 0.964$ [3H, $\mathrm{s}, \mathrm{Me}(29)], 0.97[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(23)], 1.00\left[1 \mathrm{H}, \mathrm{dd}, J_{18,19 \beta}=3.6 \mathrm{~Hz}, J_{9 \beta, 19 \alpha}=13.2 \mathrm{~Hz}, \mathrm{H}(19 \beta)\right]$, $1.06[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(26)], 1.24[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(21 \beta)], 1.26[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(21 \alpha)], 1.33\left[1 \mathrm{H}, \mathrm{td}, J_{6,7 \beta}=3.0 \mathrm{~Hz}\right.$, $\left.J_{7 \beta, 7 \alpha}=12.6 \mathrm{~Hz}, \mathrm{H}(7 \beta)\right], 1.41[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(19 \alpha)], 1.42[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(9)], 1.47[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(22 \beta)], 1.50$ $[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(22 \alpha)], 1.58[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(1 \beta)], 1.59[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \beta)], 1.60[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \alpha)], 1.61[1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(1 \alpha)], 1.62[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(12 \beta)], 1.66[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(12 \alpha)], 1.70\left[1 \mathrm{H}, \mathrm{dd}, J_{16 \beta, 15}=3.0 \mathrm{~Hz}, J_{16 \beta, 16 \alpha}=\right.$ $15.0 \mathrm{~Hz}, \mathrm{H}(16 \beta)], 2.01\left[1 \mathrm{H}, \mathrm{dt}, J_{6,7 \alpha}=3.0 \mathrm{~Hz}, J_{7 \alpha, 7 \beta}=12.6 \mathrm{~Hz}, \mathrm{H}(7 \alpha)\right], 2.14\left[1 \mathrm{H}, \mathrm{dd}, J_{15,16 \alpha}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{16 \alpha, 16 \beta}=15.0 \mathrm{~Hz}, \mathrm{H}(16 \alpha)\right], 3.10\left[1 \mathrm{H}, \mathrm{d}, J_{28 \beta, 28 \alpha}=10.8 \mathrm{~Hz}, \mathrm{H}(28 \beta)\right], 3.16\left[1 \mathrm{H}, \mathrm{dd}, J_{3,2}\right.$ $=4.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, \mathrm{H}(3)], 3.24\left[1 \mathrm{H}, \mathrm{d}, J_{28 \alpha, 28 \beta}=10.8 \mathrm{~Hz}, \mathrm{H}(28 \alpha)\right], 5.51\left[1 \mathrm{H}, \mathrm{dd}, J_{15,16 \beta}=3.0\right.$ $\left.\mathrm{Hz}, J_{15,16 \alpha}=8.4 \mathrm{~Hz}, \mathrm{H}(15)\right] .{ }^{13} \mathbf{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta_{\mathrm{C}}: 15.2[\mathrm{C}(25)], 15.3$ [C(24)], 17.1 [C(11)], 18.5[C(6)], 21.3 [C(27*)], 25.8 [C(26)], 26.9 [C(2)], $27.6[\mathrm{C}(22)], 27.8$ [C(23)], 28.3 [C(20)], 29.6 [C(30)], 30.4 [C(16)], 33.2 [C(12)], 32.4 [C(21)], 33.3 [C(29*)], 35.6 [C(16)], 37.2 [C(13)], 37.5 [C(1)], 37.7 [C(10)], 38.5 [C(4)], $38.8[\mathrm{C}(8)], 40.2[\mathrm{C}(17)], 41.1$ [C(7)], $44.6[\mathrm{C}(18)], 48.9[\mathrm{C}(9)], 55.3[\mathrm{C}(5)], 64.8[\mathrm{C}(28)], 78.5[\mathrm{C}(3)], 115.6[\mathrm{C}(15)], 158.6$ [C(14)]. LREIMS m/z 442 [M ${ }^{+}$, 4\%], 411 [57\%], 302 [40\%], 287 [45\%], 203 [55\%], 189 [100\%]. HREIMS $m / z 411.3633$ (calculated for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}, 411.3626$).

* Assignments may be reversed.

4.3.2 Ethyl acetate extract

Two batches of the ethyl acetate extract ($\sim 7.5 \mathrm{~g}$ each time) were subjected to flash column chromatography (100 mm column diameter) using increasing polarity solvents. The sample was loaded onto the column in a minimum volume of 50% hexane / 50% dichloromethane then eluted sequentially with 2 L of each of the following solvent systems:
50% hexane / 50% dichloromethane
50% hexane / 40% dichloromethane / 10\% ethyl acetate
50% hexane / 50% ethyl acetate
50% hexane / 30% ethyl acetate / 20% methanol
40% hexane / 40% ethyl acetate / 20\% methanol
90% ethyl acetate / 10% methanol
80% ethyl acetate / 20% methanol
A total of $28 \times 500 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 19 fractions, EA01/1-EA19/1 and 17 fractions respectively, EA01/2EA17/2.

Fraction EA10 (690 mg) was resubjected to flash column chromatography (40 mm column diameter) using increasing polarity solvents. The sample was pre-absorbed with a small quantity of silica and added as a dry mixture onto the column then eluted sequentially with 600 mL of each of the following solvent systems:
40% hexane / 50% dichloromethane / 10% ethyl acetate
30% hexane / 50\% dichloromethane / 20\% ethyl acetate
20\% hexane / 50\% dichloromethane / 30\% ethyl acetate
100% ethyl acetate
A total of $80 \times 30 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 8 fractions, EA1001-EA1008.

When solutions of fractions EA1003 and EA1005 were left standing, white solids crystallized out of each solution. The white solids were labeled as EA1003a (7 mg) and EA1005a (8 mg). The filtrate from fraction EA1005 (EA1005b) was tested for purity by ${ }^{1} \mathrm{H}$ NMR as this compound showed good antibacterial activity and was found reasonably good for further characterization. Therefore, EA1005b [51] was further characterized using 2D NMR, melting
point, mass spectrometry, FTIR and UV-visible spectroscopy. Compound [51] was identified as 20-epi-ursolic acid. Details of the data are presented below.

Fraction EA11 (416 mg) was resubjected to flash column chromatography (40 mm column diameter) using increasing polarity solvents. The sample was pre-absorbed with a small quantity of silica and added a dry mixture onto the column then eluted sequentially with 600 mL of each of the following solvent systems:
95% dichloromethane / 5\% ethyl acetate
20% hexane / 70% dichloromethane / 10% ethyl acetate
20% hexane / 60% dichloromethane / 20% ethyl acetate
70% dichloromethane / 30\% ethyl acetate
100\% ethyl acetate
95\% ethyl acetate / 5\% methanol
A total of $120 \times 30 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 10 fractions, EA1101-EA1110.

Sub-fraction EA1106 [52] was then further characterized using 2D NMR, melting point, mass spectrometry, FTIR and UV-Visible spectroscopy. However, the structure of compound [52] is yet to be determined.

Compound

20-epi-Ursolic acid [51]

[51]
118 mg of [51] was isolated from fraction EA1005b as a white, amorphous solid. MP: 238 $240^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]_{\mathrm{D}}:+87.2^{\circ}$ (c 0.19, methanol). IR: $v_{\max }$ (nujol) $3401 \mathrm{~cm}^{-1}(\mathrm{OH}), 2850 \mathrm{~cm}^{-1}(\mathrm{OH})$, $1686 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta_{\mathrm{H}}: 0.74\left[1 \mathrm{H}, \mathrm{d}, J_{5,6 \beta}=11.4 \mathrm{~Hz}, \mathrm{H}(5)\right], 0.77$ [3H, s, $\operatorname{Me}(24)], 0.84[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(26)], 0.87$ [3H, d, $\operatorname{Me}(29)], 0.95$ [3H, d, $\operatorname{Me}(30)], 0.95$ [3H, $\mathrm{s}, \mathrm{Me}(25)], 0.97[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(23)], 1.00\left[1 \mathrm{H}, \mathrm{dd}, J_{21,22 \beta}=3.6 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, \mathrm{H}(22 \beta)\right], 1.09[1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}(15 \beta)], 1.11[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(27)], 1.32[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(21 \beta)], 1.34[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(7 \beta)], 1.36[1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(19)], 1.39[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(6 \beta)], 1.49[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(21 \alpha)], 1.54[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(7 \alpha)], 1.54[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(6 \alpha)]$, $1.56[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(9)], 1.57[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \beta)], 1.62[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(2 \alpha)], 1.62[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(1 \beta)], 1.64[1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}(16 \beta)], 1.66[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(22 \alpha)], 1.68[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(20)], 1.68[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(1 \alpha)], 1.92[1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}(11 \alpha)], 1.92[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(11 \beta)], 1.92[1 \mathrm{H}, \mathrm{m}, \mathrm{H}(15 \alpha)], 2.03\left[1 \mathrm{H}, \mathrm{td}, J_{16 \alpha, 15}=3.6 \mathrm{~Hz}, 13.2 \mathrm{~Hz}\right.$, $\mathrm{H}(16 \alpha)], 2.19\left[1 \mathrm{H}, \mathrm{d}, J_{18,19}=11.4 \mathrm{~Hz}, \mathrm{H}(18)\right], 3.14\left[1 \mathrm{H}, \mathrm{dd}, J_{3,2}=4.2 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, \mathrm{H}(3)\right], 5.22$ $\left[1 \mathrm{H}, \mathrm{t}, J_{12,11}=3.6 \mathrm{~Hz}, \mathrm{H}(12)\right] .{ }^{13} \mathbf{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta_{\mathrm{C}}: 16.5[\mathrm{C}(25)], 16.8[\mathrm{C}(24)]$, 18.1 [C(29)], 18.3 [C(26)], 19.9 [C(6)], 22.0 [C(30)], 24.6 [C(27)], 24.8 [C(11)], 25.8 [C(16)], 28.4 [C(2)], $29.2[\mathrm{C}(23)], 29.7[\mathrm{C}(15)], 32.2[\mathrm{C}(21)], 34.8[\mathrm{C}(7)], 38.6\left[\mathrm{C}\left(1^{*}\right)\right], 38.6\left[\mathrm{C}\left(20^{*}\right)\right]$, 40.3 [C(4)], $40.5[\mathrm{C}(22)], 40.9\left[\mathrm{C}\left(19^{*}\right)\right], 40.9\left[\mathrm{C}\left(10^{*}\right)\right], 41.3[\mathrm{C}(8)], 43.7[\mathrm{C}(14)], 49.5[\mathrm{C}(9)]$, 50.0 [C(17)], $54.8[C(18)], 57.2$ [C(5)], $80.2[C(3)], 127.4[C(12)], 140.1[C(13)], 182.0$ [C(28)]. LREIMS $m / z 456\left[\mathrm{M}^{+},<1 \%\right], 248$ [100\%], 208 [25\%], 203 [70\%], 133 [50\%]. HREIMS $m / z 456.3599$ (calculated for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 456.3603$).

* Assignments may be reversed.

4.3.3 Methanol extract

Three batches (approximately 22 g each) were subjected to flash column chromatography (100 mm column diameter) using increasing polarity solvents. The sample was pre-absorbed with a small quantity of silica and added as a dry mixture onto the column then eluted sequentially with 2 L of each of the following solvent systems:
90% hexane / 10\% ethyl acetate
75% hexane / 25% ethyl acetate
65% hexane / 35\% ethyl acetate
50% hexane / 50\% ethyl acetate
100% ethyl acetate
99% ethyl acetate / 1% methanol
95% ethyl acetate / 5\% methanol
90% ethyl acetate / 10% methanol
80\% ethyl acetate / 20\% methanol
50% ethyl acetate / 50% methanol
A total of $40 \times 500 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 18 fractions, M01-M18.

Fraction M09 (444 mg) was resubjected to flash column chromatography (30 mm column diameter). The sample was pre-absorbed with a small quantity of silica and added as a dry mixture onto the column then eluted sequentially with 100% dichloromethane (800 mL), 98% dichloromethane / 2% ethyl acetate (500 mL), 95% dichloromethane / 5\% ethyl acetate (500 mL), 90% dichloromethane / 10% ethyl acetate (500 mL), 70% dichloromethane / 30\% ethyl acetate (500 mL), 50% dichloromethane $/ 50 \%$ ethyl acetate $(400 \mathrm{~mL}), 100 \%$ ethyl acetate $(400 \mathrm{~mL})$ and 90% ethyl acetate $/ 10 \%$ methanol $(400 \mathrm{~mL})$ to give $80 \times 50 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 15 sub-fractions, M0901-M0915.

White amorphous solids precipitated from sub-fractions M0906, M0907, M0908 and M0911. These solids (designated M0906a, M0907a and M0911a respectively) were analyzed using 1D NMR. Sub-fractions M096a and M0907a were found to have similar NMR spectra. Therefore, only M0906a [53] and M0911a [54] were further analyzed using 2D NMR, melting point,
mass spectrometry, FTIR and UV-visible spectroscopy. However, the structures of compound [53] and [54] are yet to be determined.

Fraction M10 (367 mg) was resubjected to flash column chromatography (30 mm column diameter). The sample was pre-absorbed with a small quantity of silica and added as a dry micture onto the column then eluted sequentially with 40% hexane / 60% chloroform (900 mL), 100% chloroform (400 mL), 90% chloroform / 10% ethyl acetate (300 mL), 80% chloroform / 20\% ethyl acetate (200 mL), 50% chloroform / 50% ethyl acetate (200 mL), 90% chloroform / 10% methanol (200 mL) and 90% ethyl acetate / 10% methanol $(200 \mathrm{~mL})$ to give $48 \times 50 \mathrm{~mL}$ fractions. After TLC analysis, appropriate fractions were combined to give 10 sub-fractions, M1001-M1010.

Sub-fraction M1004 (19 mg) was then subjected to preparative thin layer chromatography and developed three times using dichloromethane. Ten bands were observed visually, under UV light and using Phosphomolybdic acid (PMA) staining. Each band on the TLC plate was scraped off and the silica of each scraped band was soaked overnight in methanol. The methanol filtrate of each band was then evaporated to dryness. Only sample from Band 2 (2 mg) [55] was analyzed using 2D NMR as the rest of the samples obtained were only about 1 mg or less. This sample was only visible under PMA staining. Compound [55] was found to have similar ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR with compound [53]. However, the structures of both compounds are yet to be determined.

Sub-fraction M1006 (13 mg) was also subjected to preparative thin layer chromatography using a solvent system of 90% dichloromethane / 10% ethyl acetate. Seven bands were observed visually, under UV light and using PMA staining. Each band on the TLC plate was scraped off and the silica of each scraped band was soaked overnight in methanol. The methanol filtrate of each band was then evaporated to dryness. The pure compound obtained from Band 3 (2 mg) [57] was analyzed using 2D NMR, melting point, mass spectrometry and FTIR. The rest of the samples obtained were not characterized as they only contained about 1 mg . This sample showed blue florescence under UV and was visible under PMA staining. Compound [56] was identified as decursinol. Details of the data are presented below.

Fraction M13 (2.1 g) was resubjected to reversed-phase flash column chromatography (40 mm column diameter) using increasing polarity solvents. The sample was pre-absorbed with small quantity of C-18 silica and added it as a dry mixture onto the column then eluted sequentially with 1 L of each of the following solvent systems:
20% methanol / 80% water
40% methanol / 60% water
60% methanol / 40% water
100% methanol
A total of $80 \times 500 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 18 fractions, M1301-M1318.

A white solid (4 mg) [57] precipitated from fraction M1306a. Compound [57] was further analyzed using 2D NMR, melting point, mass spectrometry, FTIR and UV-visible spectroscopy. Compound [57] was identified as luteolin-7-O-glucoside. Details of the data are presented below.

Compounds

Decursinol [56]

[56]

2 mg of [56] was isolated from fraction M100603 as a pale yellow, amorphous solid. MP: $170^{\circ} \mathrm{C}$. IR: $v_{\max }$ (nujol) $3412 \mathrm{~cm}^{-1}(\mathrm{OH}), 1708 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1598 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\mathrm{MHz}, \mathrm{d}_{6}$-DMSO); $\delta_{\mathrm{H}}: 1.12[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(12)], 1.13[3 \mathrm{H}, \mathrm{s}, \mathrm{Me}(11)], 3.15[2 \mathrm{H}, \mathrm{s}, \mathrm{H}(6)], 4.69[1 \mathrm{H}$, $\left.\mathrm{t}, J_{6,7}=9.0 \mathrm{~Hz}, \mathrm{H}(7)\right], 6.20\left[1 \mathrm{H}, \mathrm{d}, J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}(3)\right], 6.78[1 \mathrm{H}, \mathrm{s}, \mathrm{H}(10)], 7.47[1 \mathrm{H}, \mathrm{s}, \mathrm{H}(5)]$, $7.92\left[1 \mathrm{H}, \mathrm{d}, J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}(4)\right] .{ }^{13} \mathbf{C}$ NMR ($600 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO); $\delta_{\mathrm{C}}: 24.8[\mathrm{C}(12)], 25.8$ [C(11)], 28.6 [C(6)], 69.9 [C(8)], 90.9 [C(7)], 96.7 [C(10)], 111.1 [C(3)], 112.0 [C(4a)], 123.8 [C(5)], 125.5 [C(5a)], 144.7 [C(4)], 155.0 [C(10a)], 160.5 [C(2)], 163.3 [C(9a)]. LREIMS m / z 246 [$\mathrm{M}^{+}, 35 \%$], 213 [25\%], 187 [100\%], 175 [14\%], 160 [27\%], 131 [15\%]. HREIMS $m / z:$ 246.0889 (calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}, 246.0892$).

[57]
4 mg of [57] was isolated from fraction M1306a as pale yellow, amorphous solid. MP: 260 $265{ }^{\circ} \mathrm{C}$. IR: $v_{\max }$ (nujol) $3495 \mathrm{~cm}^{-1}(\mathrm{OH}), 3451 \mathrm{~cm}^{-1}(\mathrm{OH}), 1659 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1609 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$, $1597 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \mathbf{U V}: \lambda_{\max }$ (methanol) $352 \mathrm{~nm} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta_{\mathrm{H}}: 3.41[1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}(4 ")], 3.48\left[1 \mathrm{H}, \mathrm{m}, \mathrm{H}\left(2^{\prime \prime}\right)\right], 3.49\left[1 \mathrm{H}, \mathrm{m}, \mathrm{H}\left(3^{"}\right)\right], 3.54\left[1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6^{\prime} \beta}=2.3 \mathrm{~Hz}, J_{5^{\prime \prime}, 6^{\prime \prime}{ }^{\prime}}=\right.$ $\left.5.6 \mathrm{~Hz}, J_{4^{\prime}, 5 "}=9.7 \mathrm{~Hz}, \mathrm{H}\left(5^{\prime \prime}\right)\right], 3.71\left[1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime} \alpha}=5.6 \mathrm{~Hz}, J_{6 " \beta, 6^{\prime} \alpha}=12.0 \mathrm{~Hz}, \mathrm{H}(6 " \alpha)\right], 3.92$ $\left[1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime \prime}, 6^{\prime \prime}}=2.3 \mathrm{~Hz}, J_{6^{\prime \prime}, 6^{\prime \prime} \beta}=12.0 \mathrm{~Hz}, \mathrm{H}\left(6^{\prime \prime} \beta\right)\right], 5.06\left[1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2 "}=7.2 \mathrm{~Hz}, \mathrm{H}(1 ")\right], 6.47$ $\left[1 \mathrm{H}, \mathrm{d}, J_{6,8}=2.4 \mathrm{~Hz}, \mathrm{H}(6)\right], 6.56[1 \mathrm{H}, \mathrm{s}, \mathrm{H}(3)], 6.68\left[1 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{H}\left(5^{\prime}\right)\right], 6.80[1 \mathrm{H}, \mathrm{d}$, $\left.J_{6,8}=2.4 \mathrm{~Hz}, \mathrm{H}(8)\right], 7.16\left[1 \mathrm{H}, \mathrm{d}, J_{2^{\prime}, 6^{\prime}}=2.4 \mathrm{~Hz}, \mathrm{H}\left(2^{\prime}\right)\right], 7.36\left[1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 6^{\prime}}=2.4 \mathrm{~Hz}, \mathrm{H}\left(6^{\prime}\right)\right]$. ${ }^{13} \mathbf{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta_{\mathrm{C}}: 62.8\left[\mathrm{C}\left(6^{\prime \prime}\right)\right], 71.7$ [C(4")], 75.2 [C(2")], 78.3 [C(3")], 78.8 [C(5")], 96.5 [C(8)], 101.1 [C(6)], 102.1 [C(1")], 103.5 [C(3)], 106.9 [C(2’)], 107.5 [C(4a)], 109.9 [C(5')], $120.6\left[\mathrm{C}\left(6^{\prime}\right)\right], 121.6$ [C(1’), $154.8\left[\mathrm{C}\left(3^{\prime}\right)\right], 159.46\left[\mathrm{C}\left(4^{\prime} *\right)\right], 159.48\left[\mathrm{C}\left(8 \mathrm{a}^{*}\right)\right]$, $163.3[C(5)], 165.1[C(7)], 168.9[C(2)], 184.4[C(4)]$. APCI MS (Negative ion) m / z : 447.0936 (calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11}-\mathrm{H}, 447.0927$), 285.0406 (100%).

* Assignments may be reversed.

4.3.4 Aqueous extracts

A total of 46 g of aqueous extract was obtained from the decoction method and 71 g of aqueous extract from soxhlet extraction. Each of these aqueous extracts were then separately dissolved in $70 \% \mathrm{~V} / \mathrm{V}$ methanol before being subjected to liquid-liquid partitioning with hexane, followed by dichloromethane and ethyl acetate. Each of the aqueous extracts was partitioned twice with each of the solvents to increase the yield.

Aqueous extract (decoction)

Liquid-liquid partitioning of the aqueous extract from the decoction method gave 21 mg of hexane extract, 1.2 g of dichloromethane extract, 7.6 g of ethyl acetate extract and 33.5 g of aqueous methanol upon evaporation.

Dichloromethane extract (1.1 g) from the partitioning was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of $\mathrm{C}-18$ silica and added it as a dry mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
40% methanol / 60% water
60% methanol / 40% water
80% methanol / 20% water
100% methanol
A total of $64 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 10 fractions, $\mathrm{Aq}(\mathrm{Dct}) \mathrm{D} 01-\mathrm{Aq}(\mathrm{Dct}) \mathrm{D} 10$.

Ethyl acetate extract (7.5 g) from the partitioning was subjected to reversed-phase column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of C-18 silica and added it as a dry mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
30% methanol / 70\% water
40% methanol / 60% water
60% methanol / 40% water
80% methanol / 20% water
100\% methanol
A total of $80 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 11 fractions, $\mathrm{Aq}(\mathrm{Dct}) \mathrm{EA} 01-\mathrm{Aq}(\mathrm{Dct}) \mathrm{EA} 11$.

Aqueous methanol residue (33.4 g) from the partitioning was subjected to reversed-phase column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of $\mathrm{C}-18$ silica and added it as a dry mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
20% methanol / 80% water
30% methanol / 70% water
40% methanol / 60% water
60% methanol / 40% water
100% methanol
100% acetonitrile
100% tetrahydrofuran
A total of $112 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 11 fractions, $\mathrm{Aq}(\mathrm{Dct}) \mathrm{AM} 01-\mathrm{Aq}(\mathrm{Dct}) \mathrm{AM} 11$.

Aqueous extract (Soxhlet)

Liquid-liquid partitioning of the aqueous extract from the soxhlet method gave 27 mg of hexane extract, 1.9 g of dichloromethane extract, 6.2 g of ethyl acetate extract and 52 g of aqueous methanol residue upon evaporation.

Dichloromethane extract (1.8 g) from the partitioning was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of $\mathrm{C}-18$ silica and added it as a dry mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
40% methanol / 60% water
60% methanol / 40% water
80% methanol / 20% water
100\% methanol
A total of $64 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 14 fractions, Aq(Sox)D01-Aq(Sox)D14.

When a solution of fraction $\mathrm{Aq}(\mathrm{Sox}) \mathrm{D} 02$ was left standing, clear solids [59] crystallized out of solution. Only the ${ }^{1} \mathrm{H}$ NMR spectrum was aquired for compound [59]. Compound [59] was not fully characterized.

Ethyl acetate extract (6.1 g) from the partitioning was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of C-18 silica and added it as a dry mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
30% methanol / 70\% water
40% methanol / 60% water
60% methanol / 40% water
80% methanol / 20% water
100% methanol
A total of $80 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 11 fractions, $\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA} 01-\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA} 11$.

When a solution of fraction $\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA} 02$ was left standing, clear solids crystallized out of solution. The clear solids (125 mg) [60] crystallized out of solution $\mathrm{Aq}(\mathrm{Sox}) \mathrm{EA} 02$ was further characterized using NMR, melting point mass spectrometry, FTIR, UV-visible spectroscopy. Compound [60] was identified as 2-deoxy-D-chiro-inositol. Details of the data are presented below. Compound [60] was found to have similar ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR with compound [59].

Aqueous methanol residue (51 g) from the partitioning was subjected to reversed-phase flash column chromatography (40 mm column diameter) using a series of decreasing polarity solvents. The sample was pre-absorbed with small quantity of $\mathrm{C}-18$ silica and added it as a dry
mixture onto the column then eluted sequentially with 800 mL of each of the following solvent systems:
20% methanol / 80% water
30% methanol / 70% water
40% methanol / 60% water
60% methanol / 40% water
100% methanol
100\% acetonitrile
100% tetrahydrofuran
A total of $112 \times 50 \mathrm{~mL}$ fractions were collected. After TLC analysis, appropriate fractions were combined to give 11 fractions, $\mathrm{Aq}(\mathrm{Sox}) \mathrm{AM} 01-\mathrm{Aq}(\mathrm{Sox}) \mathrm{AM} 11$.

Compound

2-deoxy-D-chiro-inositol [60]

[60]

26 mg of [60] was isolated from $\mathrm{Aq}(S o x) E A 02$ as colourless crystals. MP: $230-233^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]_{\mathrm{D}}$: $+23.6^{\circ}$ (c 0.22 , water). IR: $v_{\max }$ (nujol) $3306 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}: 1.86$ $\left[1 \mathrm{H}\right.$, ddd, $\left.J_{2,6 \alpha}=3.6 \mathrm{~Hz}, J_{5,6 \alpha}=11.5 \mathrm{~Hz}, J_{6 \beta, 6 \alpha}=14.4 \mathrm{~Hz}, \mathrm{H}(6 \alpha)\right], 2.04\left[1 \mathrm{H}, \operatorname{dddd}, J_{2,6 \beta}=1.2\right.$ $\left.\mathrm{Hz}, J_{2,6 \beta}=3.6 \mathrm{~Hz}, J_{5,6 \beta}=4.8 \mathrm{~Hz}, J_{6 \alpha, 6 \beta}=14.4 \mathrm{~Hz}, \mathrm{H}(6 \beta)\right], 3.62\left[1 \mathrm{H}, \mathrm{t}, J_{3,4}=9.6 \mathrm{~Hz}, J_{4,5}=9.6\right.$ $\mathrm{Hz}, \mathrm{H}(4)], 3.76\left[1 \mathrm{H}, \mathrm{ddd}, J_{3,5}=0.6 \mathrm{~Hz}, J_{1,3}=3.6 \mathrm{~Hz}, J_{3,4}=9.6 \mathrm{~Hz}, \mathrm{H}(3), 3.80\left[1 \mathrm{H}\right.\right.$, dddd, $J_{3,5}$ $\left.=0.6 \mathrm{~Hz}, J_{5,6 \beta}=4.8 \mathrm{~Hz}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6 \alpha}=11.5 \mathrm{~Hz}, \mathrm{H}(5)\right], 3.98\left[1 \mathrm{H}, \operatorname{td}, J_{2,6 \beta}=1.2 \mathrm{~Hz}, J_{2,6 \beta}\right.$ $=3.6 \mathrm{~Hz}, \mathrm{H}(2)], 4.07\left[1 \mathrm{H}, \mathrm{q}, J_{1,3}=3.6 \mathrm{~Hz}, \mathrm{H}(1)\right] .{ }^{13} \mathbf{C} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}}: 35.2[\mathrm{C}(6)]$, 70.5 [C(1)], 70.8 [C(5)], 72.9 [C(3)], 74.1 [C(2)], 76.4 [C(4)]. ESI-MS m/z: 166.0751 (calculated for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{H}, 165.0762$).

4.4 Bacteria and growth conditions

The bacterial test strains provided by Dr Susan Semple, Sansom Institute, University of South Australia were Staphylococcus aureus ATCC 25923, Streptococcus pyogenes ATCC 10389, Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922. These bacterial strains were stored as stocks at $-70^{\circ} \mathrm{C}$ and freshly grown on blood agar for use in the antibacterial assay.

All bacterial test strains were grown on Columbia agar (Oxoid CM331) supplemented with $5 \%(\mathrm{v} / \mathrm{v})$ horse blood at $37^{\circ} \mathrm{C}$. For the broth micro-dilution assay to determine minimum inhibitory and bactericidal concentration, all bacteria except Streptococcus pyogenes were grown in Cation adjusted Mueller Hinton II Broth (BBL) at $37^{\circ} \mathrm{C}$. Streptococcus pyogenes were grown in Brain Heart Infusion Broth (Oxoid CM0225) at $37^{\circ} \mathrm{C}$ in the presence of 5\% CO_{2}.

4.5 Broth micro-dilution assay for minimum inhibitory and bactericidal concentration (MIC and MBC)

Using sterile round-bottom 96-well plates (Sarstedt), triplicate two-fold serial dilutions of extract ($100 \mu \mathrm{l} /$ well) were prepared in broth containing maximum of 1% (v/v) DMSO to produce a concentration range from 2000 to $62.5 \mu \mathrm{~g} / \mathrm{mL}$ (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and 8000 to $250 \mu \mathrm{~g} / \mathrm{mL}$ (Streptococcus pyogenes).

A two-fold serial dilution of ampicilin (Sigma, St. Louis, MO) to produce a final concentration range from 0.4875 to $0.0152 \mathrm{~g} / \mathrm{mL}$ was used as standard positive control for Gram-positive strains (Staphylococcus aureus and Streptococcus pyogenes). Gentamicin (Sigma, St. Louis, MO) was used as standard positive control for Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa). The final concentration of two-fold serial dilution of gentamicin for Escherichia coli and Pseudomonas aeruginosa varied (based on the acceptable limits for quality control strains) ranging from 1.300 to $0.0406 \mu \mathrm{~g} / \mathrm{mL}$ (Escherichia coli) and 2.600 to $0.0813 \mu \mathrm{~g} / \mathrm{mL}$ (Pseudomonas aeruginosa).

All of the wells except controls for extracts, saline and media sterility were added with $100 \mu \mathrm{~L}$ of 0.5 McFarland bacterial cell suspension $\left(1 \times 10^{8} \mathrm{CFU} / \mathrm{mL}\right)$ which had been diluted in $1: 150$ ratio (prepared in the appropriate broth) to correspond approximately $1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$. The subsequent $1: 2$ dilution resulted in $5 \times 10^{5} \mathrm{CFU} / \mathrm{mL}$ final inoculum concentration for the assay. The final concentration of extracts was 1000 to $31.25 \mu \mathrm{~g} / \mathrm{mL}$ (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and 4000 to $125 \mu \mathrm{~g} / \mathrm{mL}$ (Streptococcus pyogenes).

According to Gibbon (2004), natural products and extracts displaying MIC value over 1000 $\mu \mathrm{g} / \mathrm{mL}$ have little relevance in a clinical perspective as there is likely that a number of relatively inert substances may display antibacterial activity at such a high concentration. ${ }^{69}$ However, at this low concentration for crude extracts, there is a possibility that the amount of active compounds would be too little to be detected as the crude extracts are a mixture of different components. Therefore, the maximum concentration of crude extracts for antibacterial assay was set at 2-fold dilution higher than $1000 \mu \mathrm{~g} / \mathrm{mL}$ to give a maximum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$.

Plates were set up according to a previously suggested format (Cos et al 2006) ${ }^{68}$, as shown in Figure 4.1. Plates with bacteria other than Streptococcus species were then incubated at $37^{\circ} \mathrm{C}$ overnight. The Streptococcus species were incubated at $37^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$. After incubation, the minimum inhibitory concentration (MIC) of each extract was determined as the lowest concentration at which no growth was observed in the duplicate wells. The observation was done visually before adding the resazurin, an oxidation reduction indicator. A $0.01 \%(\mathrm{v} / \mathrm{v})$ resazurin solution, $10 \mu \mathrm{~L}$, was then added into the wells. ${ }^{73}$ The resazurin method is based on Mann et al 1998 with modification. The plates were then placed on a shaker for 3 min and incubated for 30 minutes at $37^{\circ} \mathrm{C}$, with additional $5 \% \mathrm{CO}_{2}$ for Streptococcus species. Then the plates were assessed visually for any change in colour from blue to pink indicating reduction of the dye due to bacterial growth.

The minimum bactericidal concentration (MBC) was then determined for the extracts with MIC value of $2000 \mu \mathrm{~g} / \mathrm{mL}$ and below using a method published previously (Ndi et al 2007) ${ }^{74}$. Ten microlitres of each wells of a duplicate plate (not treated with resazurin) that correspond to the MIC and those concentrations above were taken out. Each $10 \mu 1$ aliquot was mixed with
$190 \mu \mathrm{l}$ of appropriate broth in a sterile 96 -well plate. Duplicates were performed. Ten microlitres from each saline control and media sterility control were also taken out and mixed with $190 \mu \mathrm{l}$ of appropriate broth. The plate set-up is shown in Figure 4.2. The MBC plates were incubated under the same conditions as in the MIC experiment. The presence or absence of bacterial growth in the MBC experiment was determined visually as well as using the resazurin dye, similar to the MIC experiment.

Figure 4.1: Template for broth micro-dilution assay ${ }^{68}$ (adapted from Cos et al)

Template for 4 compounds with 6 serial dilutions
(2-fold dilution series for dose range
$4000-125 \mu \mathrm{~g} / \mathrm{mL}, 2000-62.5 \mu \mathrm{~g} / \mathrm{mL}$ and $1000-31.25 \mu \mathrm{~g} / \mathrm{mL}$)
Legend: \bigcirc Corners of plate not used in assay (to avoid problem of evaporation)
$\#$ Non-infected medium control: 0% growth of test organism
Non-infected medium + extract control (to test for extract sterility)
Infected control: 100% growth of test organismDMSO medium control
Reference drug control (ampicillin or gentamicin)Extract dilutions + test organismEmpty well

Figure 4.2: Template for duplicate plate (not treated with resazurin) to be tested for MBC ${ }^{74}$ (adapted from Ndi et al)

Template for 12 compounds with 6 serial dilutions (2-fold dilution series for concentration corresponding to the MIC)

Legend: \bigcirc Corners of plate not used in assay (to avoid problem of evaporation)
\# Non-infected medium control: 0% growth of test organism
Infected control: 100% growth of test organism
@ Empty well
\bigcirc Extract dilutions + test organism

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Based on the literature reports, a total of 27 compounds have been previously isolated from Scaevola spinescens. These compounds were isolated from hexane and methanol extracts. Previous work has shown that coumarins, terpenoids, iridoids and flavonoids are the classes of compounds isolated from Scaevola spinescens. These classes of compounds have been discussed in Chapter 1.

In this study, eleven compounds have been isolated from Scaevola spinescens. Six out of the eleven isolated compounds have been identified - 18-epi-taraxerol [49], myricadiol [50], 20-epi-ursolic acid [51], decursinol [56], luteolin-7-O-glucoside [57] and 2-deoxy-D-chiroinositol [60]. The structures of these compounds were determined using 1D and 2D NMR, melting point, UV-Visible spectroscopy, FTIR and high-resolution mass spectrometry. Due to the limitation of time, the structures of the remaining compounds were not able to be determined.

Myricadiol [50], luteolin-7-O-glucoside [57] and 2-deoxy-D-chiro-inositol [60] have been previously isolated from Scaevola spinescens. ${ }^{5,6}$ Whereas, 18-epi-taraxerol [49], 20-epi-ursolic acid [51] and decursinol [56] have not been isolated from Scaevola spinescens or any other Scaevola species. Therefore, these compounds are new addition to the chemical compounds found in Scaevola spinescens. Out of the three newly isolated compounds for Scaevola spinescens, two of them are known compound (20-epi-ursolic acid [51] and decursinol [56]). Whereas, 18-epi-taraxerol [49] is found to be a novel compound. The list of compounds found in Scaevola spinescens are shown in Table 5.1.

Overall, the first aim of this study was partly achieved. There are still more compounds in the plant extract that are yet to be identified. Due to limitation of time frame in this study, the complete chemical profiling of hexane, ethyl acetate, methanol and aqueous extracts of Scaevola spinescens was not possible. This is because the fractionation and purification of pure compounds from the plant extract as well as structural elucidation were time consuming processes.

Table 5.1: Chemical compounds found in Scaevola spinescens

Compounds	Newly found in Scaevola spinescens	Previously found in Scaevola spinescens
Xanthyletin [2]		5
Nodakenetin [3]		5
Emmarin [4]		6
β-sitosterol [8]		5
(3 $3,22 \mathrm{E}$)-stigmasta-5,22-dien-3-ol [11]		5
(3 $3,24 \mathrm{~S}$)-stigmast-5en-3-ol [12]		5
Ursolic acid [15]		6
Lupenone [17]		5
β-amyrin [23]		${ }^{5}$
Myricadiol [24][50]		5
Squalene [25]		5
Taraxerol [26]		5,6
Taraxerone [27]		${ }_{5}$
Taraxerol acetate [28]		5,6
Judarrylol [29]		${ }^{6}$
Loganin [31]		${ }^{6}$
Scaevoloside [34]		6
Scaevoloside dimethyl acetal [37]		6
Katecateroside [38]		6
Luteolin-7-O-glucoside [44][57]		${ }^{6}$
Luteolin-7-0-glucuronide methyl ester [45]		6
18-epi-taraxerol [49]	*	
20-epi-ursolic acid [51]	*	
Decursinol [56]	*	
2-deoxy-D-chiro-inositol [60]		6
2-C-(Hydroxymethyl)-D-ribonic acid-γ-lactone		${ }^{6}$
Daucesterol		6
Hexadecanoic acid, methyl ester		6
L-threo-Guaiacyl glycerol		6
Vanillic acid		6

The hexane, ethyl acetate and methanol crude extracts showed antibacterial activity against Gram-positive bacteria, specifically Streptococcus pyogenes ATCC 10389 with minimum inhibitory concentration (MIC) ranging from 500 to $4000 \mu \mathrm{~g} / \mathrm{ml}$ and minimum bactericidal concentration (MBC) ranging from 500 to $1000 \mu \mathrm{~g} / \mathrm{mL}$. No antibacterial activity was observed against Gram-negative bacteria.

The aqueous crude extracts did not show any antibacterial activity against Gram-positive bacteria at a minimum concentration of $4000 \mu \mathrm{~g} / \mathrm{mL}$. However, significant antibacterial activity against Staphylococcus aureus ATCC 25923 was observed in the aqueous fractions with MIC ranging from 31.25 to $4000 \mu \mathrm{~g} / \mathrm{mL}$. The aqueous fractions that had MIC of 31.25 $\mu \mathrm{g} / \mathrm{mL}$ are deemed desirable for further fractionation in the future to isolate active compounds that contributes to the antibacterial activity.

The good antibacterial activity found in aqueous fractions with MIC as low as $31.25 \mu \mathrm{~g} / \mathrm{mL}$ shows that these active compounds might be a possible source in the healing remedy used by the Aboriginal people. The uses of this plant were discussed in Chapter 1. Further investigation into the antibacterial activity of the aqueous extract may be of interest as it might validate the remedy used by the Aboriginal people.

One of the isolated compounds, 20-epi-ursolic acid [51] showed good antibacterial activity against Streptococcus pyogenes ATCC 10389 with an MIC from 1.9 to $3.7 \mu \mathrm{~g} / \mathrm{mL}(4.16-$ $8.11 \mu \mathrm{M})$ and MBC from 3.7 to $7.5 \mu \mathrm{~g} / \mathrm{mL}(8.11-16.4 \mu \mathrm{M})$. Compound [51] also showed good antibacterial activity against Staphylococcus aureus ATCC 25923 with MIC from 3.7 to $7.5 \mu \mathrm{~g} / \mathrm{mL}(8.11-16.4 \mu \mathrm{M})$ and MBC from 7.5 to $15 \mu \mathrm{~g} / \mathrm{mL}(16.4-32.8 \mu \mathrm{M})$.

Ursolic acid [15] has been reported to have antibacterial activity against Staphylococcus aureus (ATCC 25923 and ATCC 29213) with MIC of $8 \mathrm{mg} / \mathrm{mL}$ as well as against Enterococcus faecalis (ATCC 29212) with MIC of $4 \mathrm{mg} / \mathrm{mL} .{ }^{75}$ This suggested that ursolic acid [15] is associated with antibacterial properties. Therefore, it is conceivable that its isomer, 20-epi-ursolic acid [51] also shows antibacterial activity. Based on the MIC values, 20-epiursolic acid has better antibacterial activity compared to ursolic acid. The different stereochemistry at carbon 20 seems to increase the antibacterial activity.

Hexane, ethyl acetate, methanol and aqueous extracts were found to have antibacterial activity. However, not all of the chemical compounds that are responsible for the antibacterial activity were identified in this study.

Furthermore, no investigation on the findings found by Nobbs was done in this study. Another objective of the second aim in this study was to identify any antibacterial activity in the pure
compounds that were previously isolated by Nobbs from three of the crude fractions which were found to have significant antibacterial activity. These pure compounds had not been tested for antibacterial activity (See Chapter 1). However, this investigation was not possible as no pure compounds similar to those isolated by Nobbs were identified in this study.

Nevertheless, the overall antibacterial study shows that Scaevola spinescens is a potential plant source of antibacterial agents. Active compounds isolated from Scaevola spinescens might be potential lead compounds for development of new antibacterial therapeutics.

5.2 Future Work

Initial future work would be determination of the structures of the five remaining isolated compounds ([53], [54], [55], [56], [60]).

For further investigation of the active compounds in Scaevola spinescens, a better approach would be bioassay-guided fractionation. This approach can reduce the time needed to isolate active pure compounds. In addition, this also contributes to chemical profiling of the plant. Following up from this study, the bioassay-guided fractionation can be done based on the preliminary screening of the plant extracts for antibacterial assay. Crude fractions that had MIC below $100 \mu \mathrm{~g} / \mathrm{mL}$ are deemed desirable for further fractionation and testing on antibacterial assay to identify the active pure compounds. This approach can also help in search of pure compounds to verify the findings found by Nobbs.

20-epi-Ursolic acid that has been isolated in this study has good antibacterial activity against Streptococcus pyogenes (ATCC 10389) and Staphylococcus aureus (ATCC 25923) with MIC ranging from 1.9 to $15 \mu \mathrm{~g} / \mathrm{mL}$. The structure-activity relationship (SAR) study of 20-epiursolic acid and ursolic acid is important to gain a better understanding of the antibacterial activity.

REFERENCES

(1) Barr, A.; Chapman, J.; Smith, N.; Beveridge, M.; Knight, T.; Alexander, V.; Andrews, M. Traditional Bush Medicines; Greenhouse Publication, 1988.
(2) Fabricant, D., S.; Farnsworth, N. R. Environ. Health Perspect. 2001, 109, 69-75.
(3) Bodkin, F. The essential reference guide to native and exotic plants in Australia. Encyclopaedia Botanica.; Angus and Robertson Publisher, 1986.
(4) Lassak, E. V.; McCarthy, T. Australian medicinal plants; Methuen Australia, 1983.
(5) Kerr, P. G.; Longmore, R. B.; Betts, T. J. Planta medica 1996, 62, 519-522.
(6) Nobbs, S. F. PhD Thesis, University of Adelaide, 2001.
(7) ChemistryCentre "Annual Review," Chemistry Centre of Western Australia, 19992000.
(8) Kerr, P. G.; Longmore, R. B.; Yench, R. Biomed. Res. 1999, 1, 3-15.
(9) Carolin, R. C.; Morrison, D. A.; Rajput, T. Flora of Australia: Brunoniaceae, Goodeniaceae; Australian Government Publishing Service: Australian Capital Territory, Canberra, 1992.
(10) Jessop, J. P.; Toelken, H. R. Flora of South Australia.Part III; 4th ed.; South Australian Government, Adelaide, 1986.
(11) Black, J. M. Flora of South Australia.Part I; 2nd ed.; South Australian Government,Adelaide, 1943.
(12) Wee, Y. C. A guide to medicinal plants; Singapore Science Centre, 1992.
(13) Cambie, R. C.; Brewis, A. A. Anti-fertility plants of the Pacific; CSIRO, Australia, 1997.
(14) Barr, A.; Chapman, J.; Smith, N.; Wightman, G.; Knight, T.; Mills, L.; Andrews, M.; Alexander, V. Traditional Aboriginal Medicines in the Northern Territory of Australia; Darwin, 1993.
(15) Moerman, D. E. Native American Ethnobotany; Timber Press: Portland, 1998.
(16) Cribbs, A. B.; Cribbs, J. W. Wild medicine in Australia; Sydney, 1981.
(17) Khan, A. J.; Kunesch, G.; Chuilon, S.; Ravise, A. Fruits 1985, 40, 807-811.
(18) Kayser, O.; Kolodziej, H. Naturforsch., C: Biosci. 1999, 54c, 169-174.
(19) Wohlrabe, K.; Hansel, R. Arch. Pharm. (Weinheim) 1977, 310, 972-974.
(20) Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants; Lavoisier Publishing, 1993.
(21) Cowan, M. M. Clin. Microbiol. Rev. 1999, 12, 564-582.
(22) Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Nat. Prod. Rep. 2005, 22, 394-411.
(23) Tolstikova, T. G.; Sorokina, I. V.; Tolstikov, G. A.; Tolstikov, A. G.; Elekhter, O. B. Russ. J. Bioorg. Chem. 2006, 32, 37-49.
(24) Cambie, R. C.; Rutledge, P. S.; Wellington, K. D. J. Nat. Prod. 1997, 60, 1303-1306.
(25) Gideon, P. Biochemical targets of plant bioactive compounds; Taylor \& Francis: London and New York, 2003.
(26) Graikou, K.; Aligiannis, N.; Chinou, I. B.; Harvala, C. Z. Naturforsch 2002, 57c, 9599.
(27) Skaltsounis, A. L.; Tillequin, F.; Koch, M.; Pusset, J.; Chauviere, G. Planta medica 1989, 55, 191-192.
(28) Skaltsounis, A. L.; Tillequin, F.; Koch, M. Heterocycles 1987, 26, 599-605.
(29) Collins, D. J.; Culvenor, C. C. J.; Lamberton, J. A.; Loder, J. W.; Price, J. R. Plants for Medicines: a chemical and pharmacological survey of plants in the Australian region; CSIRO Publication: Victoria, 1990. (42-43)
(30) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Trends Plant Sci. Rev. 1997, 2, 152-159.
(31) Cho, S.-Y.; Park, S.-J.; Kwon, M.-J.; Jeong, T.-S.; Bok, S.-H.; Choi, W.-Y.; Jeong, W.-I.; Ryu, S.-Y.; Do, S.-H.; Lee, C.-S.; Song, J.-C.; Jeong, K.-S. Mol. Cell. Biochem. 2003, 243, 153-160.
(32) Bouaziz, M.; Sayadi, S. European J. Lipid Sci. Technol. 2005, 107, 497-504.
(33) Chiruvella, K. K.; Mohammed, A.; Dampuri, G.; Ghanta, R. G.; Raghavan, S. C. Int. J. Biomed. Sci. 2007, 3, 269-278.
(34) Heijnen, C. G. M.; Haenen, G. R. M. M.; Van Acker, F. A. A.; Van der Vijgh, W. J. F.; Bast, A. Toxicol. In Vitro 2001, 15, 3-6.
(35) Sadeghi-Hashjin, G.; Folkerts, G.; Henricks, P. A. J.; Muijsers, R. B. R.; Nijkamp, F. P. Clin. Exp. Allergy 1998, 28, 1464-1473.
(36) Digerness, S. B.; Harris, K. D.; Kirklin, J. W.; Urthaler, F.; Viera, L.; Beckman, J. S.; Darley-Usmar, V. Free Radic. Biol. Med. 1999, 27, 1386-1392.
(37) Rice-Evans, C. A.; Packer, L. In Flavonoids in health and disease; 2nd Edition ed.; Day, A. J., Williamson, G., Eds.; CRC Press, 2003.
(38) Patterson, R. Syst. Bot. 1984, 9, 263-265.
(39) Semple, S. J.; Reynolds, G. D.; O'Leary, M. C.; Flower, R. L. P. J. Ethnopharmacol. 1998, 60, 163-172.
(40) Anderson, D. A.; Sobieski, R. J. Introduction to microbiology; 2nd Edition ed.; The C.V. Mosby Company: St.Louis, 1980.
(41) Locher, C. P.; Burch, M. T.; Mower, H. F.; Berestecky, J.; Davis, H.; Van Poel, B.; Lasure, A.; Vanden Berghe, D. A.; Vlietinck, A. J. J. Ethnopharmacol. 1995, 49, 2332.
(42) Jones, W. P.; Kinghorn, A. D. In Methods in Biotechnology: Natural Products Isolation; Sarker, S. D., Latif, Z., Gray, A. I., Eds.; Humana Press: Totowa, NJ, 2006; Vol. 20.
(43) Sakurai, N.; Yaguchi, Y.; Inque, T. Phytochemistry 1987, 26, 217-219.
(44) Merfort, I.; Buddrus, J.; Nawwar, M. A. M.; Lambert, J. Phytochemistry 1992, 31, 4031-4032.
(45) Soo Lee, I.; Yi Jin, W.; Zhang, X.; Manh Hung, T.; Sik Song, K.; Hee Seong, Y.; Bae, K. Arch. Pharm. Res. 2006, 29, 548-555.
(46) Breton, F.; Jose, J. An. Quim. 1969, 65, 825-828.
(47) Tundis, R.; Dequin, B.; Menichini, F.; Tillequin, F. Biochem. Syst. Ecol. 2002, 30, 689-691.
(48) Taketa, T. C., Alexandre; Breitmaier, E.; Schenkel, E., P. J. Braz. Chem.l Soc. 2004, 15, 205-211.
(49) Kashiwada, Y.; Nagao, T.; Hashimoto, A.; Ikeshiro, Y.; Okabe, H.; Cosentino, L., Mark ; Lee, K.-H. J. Nat. Prod. 2000, 10, 131-136.
(50) Tokar, M.; Klimek, B. Acta Pol. Pharm. 2004, 61, 191-197.
(51) Rehman, A. U.; Riaz, N.; Ahmad, H.; Ahmad, Z.; Malik, A. J. Chem. Soc. Pak. 2003, 25, 257-259.
(52) Parra-Delgado, H.; Toscano, R. A.; Garcia-Argaez, A. N.; Mariano, M.-V. Naturforsch., B: Chem. Sci. 2005, 60.
(53) Abyshev, A. Z.; Gindin, V. A.; Semenov, E. V.; Agaev, E. M.; Abdulla-zade, A. A.; Guseinov, A. B. Pharm. Chem. J. 2006, 40, 607-610.
(54) Abyshev, A. Z.; Zmeikov, V. P.; Sidorova, I. P. Chem. Nat. Compd. 1982, 18, 277281.
(55) Nissler, L.; Gebhardt, R.; Berger, S. Anal. Bioanal. Chem. 2004, 379, 1045-1049.
(56) Lu, Y.; Foo, L. Y. Phytochemistry 2000, 55, 263-267.
(57) Carbon-13 NMR of flavonoids; Agrawal, P. K., Ed.; Elsevier science publishers: The Netherlands, 1989.
(58) Feeny, P.; Sachdev, K.; Rosenberry, L.; Carter, M. Phytochemistry 1988, 27, 34393448.
(59) Gultekin, M. S.; Celik, M.; Turkut, E.; Tanyeli, C.; Balci, M. Tetrahedron 2004, 15, 453-456.
(60) Dictionary of organic compounds; 5th ed.; Buckingham, J.; Donaghy, S. M., Eds.; Chapman and Hall: London, 1982; Vol. 5.
(61) Wikler, M. A.; Cockerill, F. R.; Craig, W. A.; Dudley, M. N.; Eliopoulos, G. M.; Hecht, D. W.; Hindler, J. F.; Low, D. E.; Sheehan, D. J.; Tenover, F. C.; Turnidge, J. D.; Weinstein, M. P.; Zimmer, B. L.; Ferraro, M. J.; Swenson, J. M. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard; Clinical and Laboratory Standard Institute: Pennsylvania, 2006.
(62) Madigan, M. T.; Martinko, J. M.; Parker, J. Brock Biology of Microorganisms; 8th Edition ed.; Prentice Hall: New Jersey, 1997.
(63) Moellering, J. R. C. J. Am. Med. Assoc. 2008, 299, 79-87.
(64) Currie, B. J.; Brewster, D. R. J. Paedtr. Child Health 2001, 37, 326-330.
(65) Rosen, D. A.; Hooton, T. M.; Stamm, W. E.; Humphrey, P. A.; Hultgren, S. J. PLoS Med. 2007, 4, 1949-1958.
(66) Gagliotti, C.; Buttazzi, R.; Sforza, S.; Moro, M. L.; Emilia-Romagna Antibiotic Resistance study group J. Infect. 2008, 57, 179-184.
(67) Performance Standard for antimicrobial susceptibility Testing. Sixteeth Infomational Supplement. M100-S16.; Clinical and Laboratory Standards Institute: Wayne, PA, 2006.
(68) Cos, P.; Vlietinck, A. J.; Berghe, D. V.; Maes, L. J. Ethnopharmacol. 2006, 106, 290302.
(69) Gibbons, S. Nat. Prod. Rep. 2004, 21, 263-277.
(70) Hadacek, F.; Greger, H. Phytochem. Anal. 2000, 11, 137-147.
(71) Ghisalberti, E. L. In Bioactive natural products: Detection, isolation and structural determination; 2nd edition ed.; Colegate, S. M., Molyneux, R. J., Eds.; CRC Press, 2007.
(72) Brooks, G. F.; Butel, J. S.; Morse, S. A.; Melnick, J. L.; Jawetz, E.; Adelberg, E. A. Jawetz, Melnick \& Adelberg's Medical Micorbiology; 23rd edition ed.; McGraw Hill, 2004.
(73) Mann, C. M.; Markham, J. L. J. Appl. Microbiol. 1998, 84, 538-544.
(74) Ndi, C. P.; Semple, S. J.; Griesser, H. J.; Barton, M. D. J. Basic Microbiol. 2007, 47, 158-164.
(75) Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R. E. J. Ethnopharmacol. 2008, 120, 272-276.

APPENDICES

Appendix A

Lorentzian / Gaussian resolution enhancement using SpinWorks 3

[^0]: * Interchangeable
 [57] 600MHz (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$): $\delta(\mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$
 I = Integration
 M = Multiplicity

