# ISOLATION, STRUCTURAL ELUCIDATION AND ANTIBACTERIAL ACTIVITY OF THE CHEMICAL CONSTITUENTS OF SCAEVOLA SPINESCENS

Michele Mejin, BSc in Biohealth Science (Hons)

A thesis submitted to the University of Adelaide in fulfillment of the requirement for the degree of Master of Science



Department of Chemistry School of Chemistry and Physics Faculty of Sciences, The University of Adelaide Adelaide, South Australia, 5005

(February, 2009)

# TABLE OF CONTENTS

| TABLE OF CONTENTS     | i    |
|-----------------------|------|
| LIST OF FIGURES       | iii  |
| LIST OF TABLES        | . vi |
| LIST OF ABBREVIATIONS | vii  |
| ABSTRACT              | viii |
| STATEMENT             | xi   |
| ACKNOWLEDGEMENTS      | xii  |

| CHAI | PTER 1 | <b>INTRODUCTION</b>                 |
|------|--------|-------------------------------------|
| 1.1  | GENE   | ERAL INTRODUCTION                   |
| 1.2  | GOOI   | DENIACEAE                           |
| 1.3  | SCAE   | VOLA SPECIES                        |
|      | 1.3.1  | Distribution4                       |
|      | 1.3.2  | Morphology5                         |
|      | 1.3.3  | <i>Uses</i>                         |
| 1.4  | CHEN   | IICAL CONSTITUENTS7                 |
|      | 1.4.1  | Coumarins7                          |
|      | 1.4.2  | Terpenoids9                         |
|      | 1.4.3  | Iridoids                            |
|      | 1.4.4  | Alkaloids16                         |
|      | 1.4.5  | Flavonoids                          |
| 1.5  | BIOL   | OGICAL ACTIVITIES                   |
|      | 1.5.1  | Antiviral                           |
|      | 1.5.2  | Anti-tumor and cytotoxicity         |
|      | 1.5.3  | Antibacterial 21                    |
| 1.6  | AIMS   |                                     |
| CHAI | PTER 2 | 25 SOLATION / STRUCTURE ELUCIDATION |
| 2.1  | GENE   | ERAL INTRODUCTION                   |

| 2.3  | PLAN   | VT PREPARATION                                                    | 29   |
|------|--------|-------------------------------------------------------------------|------|
| 2.4  | EXTR   | RACTION                                                           | 29   |
|      | 2.4.1  | Hexane extract                                                    | 31   |
|      | 2.4.2  | Ethyl acetate extract                                             | 60   |
|      | 2.4.3  | Methanol extract                                                  | 75   |
|      | 2.4.4  | Aqueous extract                                                   | 93   |
| CHA  | PTER 3 | 3 ANTIBACTERIAL ASSAY                                             | 101  |
| 3.1  | INTR   | ODUCTION                                                          | 102  |
| 3.2  | HEXA   | ANE EXTRACT                                                       | 104  |
| 3.3  | ETHY   | L ACETATE EXTRACT                                                 | 105  |
| 3.4  | METH   | HANOL EXTRACT                                                     | 109  |
| 3.5  | AQUI   | EOUS EXTRACT                                                      | 112  |
| 3.6  | DISC   | USSION                                                            | 118  |
| CHA  | PTER 4 | 4 EXPERIMENTAL                                                    | 120  |
| 4.1  | GENE   | ERAL EXPERIMENTAL PROCEDURES                                      | 121  |
| 4.2  | PLAN   | IT MATERIAL                                                       | 122  |
| 4.3  | EXTR   | RACTION AND ISOLATION                                             | 122  |
|      | 4.3.1  | Hexane extract                                                    | 123  |
|      | 4.3.2  | Ethyl acetate extract                                             | 127  |
|      | 4.3.3  | Methanol extract                                                  | 130  |
|      | 4.3.4  | Aqueous extract                                                   | 134  |
| 4.4  | BACT   | FERIA AND GROWTH CONDITIONS                                       | 138  |
| 4.5  | BROT   | TH MICRO-DILUTION ASSAY FOR MINIMUM INHIBITORY AND                |      |
|      | BACT   | FERICIDAL CONCENTRATION (MIC AND MBC)                             | 138  |
| CHA  | PTER 5 | 5 CONCLUSION AND FUTURE WORK                                      | 142  |
| REFF | CRENC  | EES                                                               | 147  |
| APPE | NDICI  | ES                                                                | .152 |
| APF  | ENDIX  | XA Lorentzian / Gaussian resolution enhancement using SpinWorks 3 | .152 |

### **LIST OF FIGURES**

| <b>Figure 1.1:</b> Distribution of <i>Scaevola spinescens</i> <sup>10</sup>                                      |
|------------------------------------------------------------------------------------------------------------------|
| <b>Figure 1.2:</b> Morphology feature of <i>Scaevola spinescens</i> <sup>10</sup>                                |
| Figure 1.3: Basic ring structure of flavonoid                                                                    |
| Figure 2.1: Picture of collection site (Photo: Michele Mejin, 2007)                                              |
| Figure 2.2: Picture of the aerial parts of the plant taken at the collection site                                |
| (Photo: Michele mejin, 2007)                                                                                     |
| Figure 2.3: Picture of the aerial parts of the plant sent for herbarium identification                           |
| (Photo: Michele Mejin, 2007)29                                                                                   |
| Figure 2.4: Flow chart of sample extraction                                                                      |
| Figure 2.5: Fractionation from 8 g of hexane extract                                                             |
| Figure 2.6: Purification of H1007, H1008, H1103, H101003 and H120533                                             |
| <b>Figure 2.7:</b> Fragment to build the 1 <sup>st</sup> ring for [49] based on HMBC correlations35              |
| Figure 2.8: Closure of the 1 <sup>st</sup> ring for [49] based on COSY and HMBC correlations 36                  |
| <b>Figure 2.9:</b> Closure of the 2 <sup>nd</sup> ring for [49] based on COSY and HMBC correlations37            |
| <b>Figure 2.10:</b> Closure of the 3 <sup>rd</sup> ring for [49] based on HMBC correlations                      |
| Figure 2.11: Closure of the 4 <sup>th</sup> ring for [49] based on HMBC correlations                             |
| Figure 2.12: Closure of the 5 <sup>th</sup> ring for [49] based on COSY and HMBC correlations40                  |
| Figure 2.13: Stereochemical assignments of the methyl hydrogens for [40] based on                                |
| ROESY correlations                                                                                               |
| <b>Figure 2.14:</b> Stereochemical assignments of the hydrogens at $\delta_H$ 3.19 and $\delta_H$ 0.78 for [49]  |
| based on ROESY correlations                                                                                      |
| Figure 2.15: Stereochemical assignments of the hydrogens at $\delta_H$ 0.91, $\delta_H$ 0.96 and $\delta_H$ 1.41 |
| for [49] based on ROESY correlations                                                                             |
| Figure 2.16: Stereochemical assignments of the methyl hydrogens at $\delta_H 0.95$ and $\delta_H 0.91$           |
| for [49] based on ROESY correlations                                                                             |
| Figure 2.17: Comparison of stereochemistry between [49], [26] and [29]45                                         |
| <b>Figure 2.18:</b> Fragment to build the 1 <sup>st</sup> ring for [50] based on HMBC correlations               |
| Figure 2.19: Closure of the 1 <sup>st</sup> ring for [50] based on COSY and HMBC correlations 50                 |
| <b>Figure 2.20:</b> Closure of the 2 <sup>nd</sup> ring for [50] based on COSY and HMBC correlations 51          |
| <b>Figure 2.21:</b> Closure of the 3 <sup>rd</sup> ring for [50] based on HMBC correlations                      |
| Figure 2.22: Closure of the 4 <sup>th</sup> ring for [50] based on HMBC correlations                             |

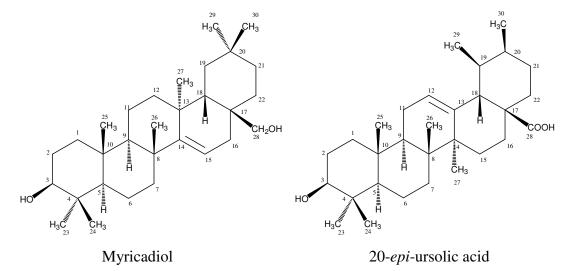
| Figure 2.23: (        | Closure of the 5 <sup>th</sup> ring for [50] based on COSY and HMBC correlations54                   |
|-----------------------|------------------------------------------------------------------------------------------------------|
| Figure 2.24: S        | Stereochemical assignments of the methyl hydrogens for [50] based on                                 |
| R                     | COESY correlations                                                                                   |
| Figure 2.25: S        | Stereochemical assignments of the hydrogens at $\delta_H$ 3.16 and $\delta_H$ 0.77 for [50]          |
| ł                     | based on ROESY correlations                                                                          |
| <b>Figure 2.26:</b> S | Stereochemical assignments of hydrogens at $\delta_H$ 0.77, $\delta_H$ 0.961 and $\delta_H$ 1.42 for |
| f                     | for [50] based on ROESY correlations                                                                 |
| Figure 2.27: S        | Stereochemical assignments of methyl hydrogens at $\delta_H$ 0.89 and $\delta_H$ 0.964 for           |
| [                     | [50] based on ROESY correlations                                                                     |
| <b>Figure 2.28:</b> F | Fractionation from 15 g of ethyl acetate extract                                                     |
| <b>Figure 2.29:</b> F | Fractionation from 690 mg of fraction EA10                                                           |
| <b>Figure 2.30:</b> F | Fractionation from 416 mg of fraction EA1162                                                         |
| Figure 2.31: F        | Fragment to build the 1 <sup>st</sup> ring for [51] based on HMBC correlations64                     |
| Figure 2.32: (        | Closure of the 1 <sup>st</sup> ring for [51] based on COSY and HMBC correlations 65                  |
| Figure 2.33: (        | Closure of the 2 <sup>nd</sup> ring for [51] based on COSY and HMBC correlations 66                  |
| Figure 2.34: (        | Closure of the 3 <sup>rd</sup> ring for [51] based on COSY and HMBC correlations 67                  |
| Figure 2.35: (        | Closure of the 4 <sup>th</sup> ring for [51] based on COSY and HMBC correlations67                   |
| Figure 2.36: (        | Closure of the 5 <sup>th</sup> ring for [51] based on COSY and HMBC correlations69                   |
| Figure 2.37: 8        | Stereochemical assignments of the methyl hydrogens for [51] based on                                 |
| I                     | ROESY correlations                                                                                   |
| Figure 2.38: 8        | Stereochemical assignments of the hydrogens at $\delta_H$ 3.14 and $\delta_H$ 0.74 for [51]          |
| ł                     | based on ROESY correlations                                                                          |
| Figure 2.39: 8        | Stereochemical assignments of the hydrogens at $\delta_H$ 0.87, $\delta_H$ 1.11, $\delta_H$ 1.36     |
| 8                     | and $\delta_{\rm H}$ 1.56 for [51] based on ROESY correlations                                       |
| Figure 2.40: S        | Stereochemical assignments of the hydrogens at $\delta_H$ 0.87 and $\delta_H$ 0.95 and               |
| δ                     | $\delta_{\rm H}$ 2.19 for [51] based on ROESY correlations                                           |
| <b>Figure 2.41:</b> F | Fractionation from 71 g of methanol extract77                                                        |
| Figure 2.42: (        | Closure of 1 <sup>st</sup> ring for [56] based on COSY and HMBC correlations                         |
| Figure 2.43: (        | Closure of 2 <sup>nd</sup> ring for [56] based on COSY and HMBC correlations 80                      |
| Figure 2.44: (        | Closure of 3 <sup>rd</sup> ring for [56] based on HMBC correlations                                  |
| Figure 2.45: F        | ROESY correlations for [56] to show relative stereochemistry                                         |
| Figure 2.46: (        | Closure of the 1 <sup>st</sup> ring for [57] based on COSY and HMBC correlations85                   |
| Figure 2.47: 0        | Closure of the 2 <sup>nd</sup> ring for [57] based on HMBC correlations                              |

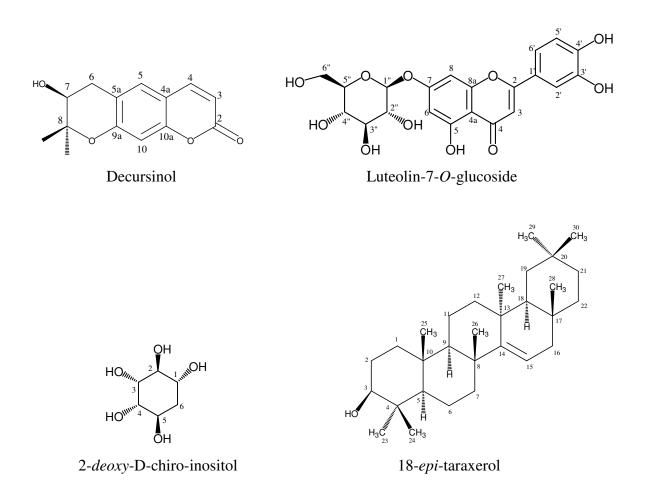
| Figure 2.48: Closure of the 3 <sup>rd</sup> ring for [57] based on COSY and HMBC correlations                  | 87    |
|----------------------------------------------------------------------------------------------------------------|-------|
| Figure 2.49: Fusing of the 3 <sup>rd</sup> ring to the 2 <sup>nd</sup> ring for [57] based on HMBC correlation | 87    |
| Figure 2.50: Closure of a sugar unit ring for [57] based on COSY coupling                                      | 88    |
| Figure 2.51: Stereochemical assignments for [57] based on ROESY correlations                                   | 89    |
| Figure 2.52: Connection between the 4 <sup>th</sup> and the 1 <sup>st</sup> ring for [57] based on ROESY and   |       |
| HMBC correlations                                                                                              | 90    |
| Figure 2.53: Fractionation from 46 g of decoction aqueous extract                                              | 94    |
| Figure 2.54: Fractionation from 71 g of soxhlet aqueous extract                                                | 96    |
| Figure 2.55: Closure of a ring for [60] based on COSY coupling                                                 | .98   |
| Figure 2.56: Assignment of relative stereochemistry for [60] based on COSY coupling                            | . 99  |
| Figure 2.57: Different representations indicating the stereochemistry for [60]                                 | 99    |
| Figure 3.1: Antibacterial testing on the crude extract of hexane as well as its sub-fraction                   | S     |
| (MIC value) (MBC value)                                                                                        | 104   |
| Figure 3.2: Antibacterial testing on the crude extract of ethyl acetate as well as its                         |       |
| sub-fractions (MIC value) (MBC value)                                                                          | .106  |
| Figure 3.3: Antibacterial testing on the crude extract of methanol as well as its                              |       |
| sub-fractions (MIC value) (MBC value)                                                                          | 111   |
| Figure 3.4: Antibacterial testing on the extracts from liquid-liquid partitioning of the                       |       |
| aqueous decoction as well as its sub-fractions (MIC)                                                           | 114   |
| Figure 3.5: Antibacterial testing on the extracts from liquid-liquid partitioning of the                       |       |
| aqueous soxhlet as well as its sub-fractions (MIC)                                                             | 117   |
| Figure 4.1: Template for broth micro-dilution assay <sup>57</sup> (adapted from Cos <i>et al</i> )             | 140   |
| Figure 4.2: Template for duplicate plate (not treated with resazurin) to be tested for                         | r     |
| MBC <sup>63</sup> (adapted from Ndi <i>et al</i> )                                                             | . 141 |
|                                                                                                                |       |

## LIST OF TABLES

| <b>Table 1.1:</b> Summary of coumarins found in <i>Scaevola</i> species                              | )              |
|------------------------------------------------------------------------------------------------------|----------------|
| Table 1.2: Classification of terpenoids                                                              | )              |
| Table 1.3: Summary of terpenoids found in Scaevola species                                           | 3              |
| <b>Table 1.4:</b> Summary of iridoids found in <i>Scaevola</i> species                               | 6              |
| <b>Table 1.5:</b> Presence of alkaloids in <i>Scaevola</i> species                                   | 7              |
| <b>Table 1.6:</b> Flavonoids found in <i>Scaevola</i> species <sup>39</sup> 1                        | 9              |
| <b>Table 1.7:</b> List of microorganisms commonly used                                               | 22             |
| <b>Table 1.8:</b> Pure compounds isolated from the crude fractions that may contribute to            |                |
| antibacterial activity <sup>7</sup> 2                                                                | 23             |
| Table 2.1: Spectral data for [49]      4                                                             | 40             |
| Table 2.2: ROESY correlations for [49]4                                                              | 14             |
| <b>Table 2.3:</b> Comparison of the <sup>13</sup> C chemical shift between [49], and taraxerol [26]4 | 45             |
| Table 2.4: Spectral data for [50]      5                                                             | 54             |
| <b>Table 2.5:</b> ROESY correlations for [50] 5                                                      | 58             |
| <b>Table 2.6:</b> Comparison of the ${}^{13}$ C chemical shifts between [50] and myricadiol [24]     | 59             |
| Table 2.7: Spectral data for [51]      7                                                             | 70             |
| <b>Table 2.8:</b> ROESY correlations for [51]                                                        | 13             |
| <b>Table 2.9:</b> Comparison of the ${}^{13}$ C chemical shifts between [51] and ursolic acid [15]7  | 14             |
| Table 2.10: ROESY correlations for [56]                                                              | 31             |
| Table 2.11: Spectral data for [56]                                                                   | 32             |
| Table 2.12: <sup>1</sup> H chemical shift values between [56] and [58]                               | 33             |
| <b>Table 2.13:</b> <sup>13</sup> C chemical shift values between [56] and [58]                       | 33             |
| Table 2.14: Spectral data for [57]                                                                   | )1             |
| Table 2.15: ROESY correlations for [57]                                                              | )1             |
| Table 2.16: <sup>13</sup> C chemical shift values between [57] and [44]                              | )2             |
| Table 2.17: Spectral data for [60]                                                                   | <del>)</del> 9 |
| <b>Table 3.1:</b> Antibacterial testing on the crude extracts of Scaevola spinescens                 | 03             |

# LIST OF ABBREVIATIONS


| °C               | degrees Celsius                                     |
|------------------|-----------------------------------------------------|
| v/v              | volume per volume                                   |
| ppm              | parts per million                                   |
| Hz               | hertz                                               |
| RNA              | ribonucleic acid                                    |
| CFU              | colony forming units                                |
| TLC              | Thin layer chromatography                           |
| UV               | Ultraviolet                                         |
| MP               | melting point                                       |
| FTIR             | Fourier Transform InfraRed                          |
| NMR              | Nuclear magnetic resonance                          |
| 1D               | one-dimensional                                     |
| 2D               | two-dimensional                                     |
| DEPT             | Distortionless Enhancement by Polarization Transfer |
| COSY             | Correlation Spectroscopy                            |
| HSQC             | Heteronuclear Single Quantum Coherence              |
| HMBC             | Heteronuclear Multiple Bond Correlation             |
| ROESY            | Rotational nuclear Overhauser Effect Spectroscopy   |
| m                | multiplet                                           |
| S                | singlet                                             |
| d                | doublet                                             |
| t                | triplet                                             |
| q                | quadruplet                                          |
| $\delta_{C}$     | chemical shift for <sup>13</sup> C                  |
| $\delta_{\rm H}$ | chemical shift for <sup>1</sup> H                   |
| ATCC             | American Type Culture Collection                    |
| IC <sub>50</sub> | 50% inhibitory concentrations                       |


#### ABSTRACT

*Scaevola spinescens*, an Australian indigenous plant has been used by Australian Aboriginal people in their traditional medicines for treating colds, stomach ache, urinary problems and pain in the alimentary tract, skin rashes, boils and sores. An infusion of leaves and twigs of *Scaevola spinescens* and *Codonocarpus cotinifolius* has been reputed to cure cancer. Therefore, this plant has been deemed desirable for investigation to identify possible active compounds that contribute to these medicinal therapies used by the Aboriginal people.

Previous work has shown that coumarins, terpenoids, iridoids and flavonoids are the classes of compounds isolated from *Scaevola spinescens*. So far, chemical constituents of *Scaevola spinescens* have only been isolated from hexane and methanol fractions. One of the aims of this research was to isolate more of the chemical constituents of *Scaevola spinescens*. Therefore in this research, the ethyl acetate and aqueous fractions were also included to broaden the range of compounds being isolated.

In this research, eleven compounds have been isolated from *Scaevola spinescens*. Five of the isolated compounds are known – myricadiol, 20-*epi*-ursolic acid, decursinol, luteolin-7-*O*-glucoside, and 2-*deoxy*-D-chiro-inositol. A novel compound identified as 18-*epi*-taraxerol has been isolated from *Scaevola spinescens* in this study. The structures of these compounds were determined using 1D and 2D NMR, UV-Visible spectroscopy, FTIR and high-resolution mass spectrometry. The structures of the five remaining compounds are yet to be determined.





The antiviral, antitumor and antibacterial activity of *Scaevola spinescens* extracts has been previously investigated. Previous work has shown that *Scaevola spinescens* was active against human cytomegalovirus (HCMV). However, previous work done on the antitumor activity of *Scaevola spinescens* was inconclusive. Previous work done on the antibacterial activity showed that some of the methanol fractions from *Scaevola spinescens* might contain antibacterial agents. However, these active compounds that contribute to the antibacterial activity were yet to be identified.

In this work, the organic (hexane, ethyl acetate and methanol) and aqueous crude extracts of *Scaevola spinescens* were screened for antibacterial activity against Gram-positive (*Staphylococcus aureus* ATCC 25923 and *Streptococcus pyogenes* ATCC 10389) and Gramnegative (*Pseudomonas aeruginosa* ATCC 27853 and *Escherichia coli* ATCC 25922) bacteria using a broth micro-dilution assay to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).

The hexane, ethyl acetate and methanol crude extracts were found to have antibacterial activity against Gram-positive bacteria specifically *Streptococcus pyogenes* while the aqueous fractions showed significant antibacterial activity against *Staphylococcus aureus*. No antibacterial activity was observed against Gram-negative bacteria.

A promising antibacterial activity was observed on one of the isolated compounds, 20-*epi*ursolic acid. This compound showed good antibacterial activity against *Streptococcus pyogenes* and *Staphylococcus aureus* with MIC in the range 1.87 to 7.5 µg/ml.

The research presented within this thesis shows that 20-*epi*-ursolic acid isolated from *Scaevola spinescens* might be a potential candidate as an antibacterial agent. This is supported by the results obtained from preliminary antibacterial screening on the organic and aqueous crude extracts.

## STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Michele Mejin

February, 2009

#### ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the people that have given me support from the beginning of my research, along the way and up till the completion of my thesis. Their assistance and support has been the key to my successful thesis.

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Simon Pyke for his invaluable help and guidance during the course of my research, especially in the area of NMR. It is a completely new area of study for me and I'm grateful for his patience in teaching me the basic skill of NMR as well as data interpretation for structural elucidation. His optimism has been a great encouragement for me to face any obstacle along the way.

I would also like to express my sincere gratitude to Dr. Susan Semple, who has been supervising me in my anti-microbial work. Her constant guidance and advice in microbiology aspects has been a great help.

I would like to express my appreciation to Mr. Philip Clements for his assistance in running my 2D NMR experiments as well as his patience in processing my NMR data. Appreciation is also expressed to Mr. Marshall Hughes and Mr. Edwin Lowe for their assistance in obtaining my mass spectrometry data.

In here, I would also like to express my utmost gratitude to the Sarawak Government and my employer, Sarawak Biodiversity Centre for their sponsorship as well as their encouragement for further studies. Without them, this would have been impossible. I thank them with sincere heart.

In addition to all of the above people, I would also like to thank my family, especially my mum and dad, not forgetting my two lovely siblings, Rachel and Malcolm for their unconditional love and encouragement from a far. I would also like to thank Andrew and his parents for their unconditional love and understanding throughout the period of accomplishing this thesis.

Last but not least, I would like to thanks all my friends that have been supportive in giving their encouragement, advice and critics that help in accomplishing my thesis. Special thanks to Sally Nobbs, for her help in my NMR work. Also Belinda Ng and Hii Mei Mei for being here all along. Not forgetting my lovely labmates, Rhiannon Jones, Jessica Smith, Melissa Perrotta and Justin Nash. It has been fun working with them. For those that I've met throughout my 2 years of research work, especially new friends that I've made in the chemistry department as well as in my integrated bridging programme (IBP). I thank you all for putting spice into my research life.

Above all, I would like to thank GOD for making all this possible for me. He had this all planned out for me.