QUANTIFICATION OF THE BELOWGROUND INPUTS OF ORGANIC CARBON BY THE ANNUAL PASTURE LEGUME BARREL MEDIC (*MEDICAGO TRUNCATULA* GAERTN.)

Michael Cameron Crawford

Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

in the

Faculty of Agricultural and Natural Resource Sciences

The University of Adelaide

Department of Soil Science

May 1997

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

CHAPTER 2

LITERATURE REVIEW	15
1. Introduction	15
2. The role of barrel medic in the agricultural ecosystems of southern Au	stralia15
3. The carbon cycle in agricultural plants	16
3.1 Aboveground allocation	16
3.2 Belowground allocation	17
3.2.1 Rhizosphere respiration	18
3.2.1.1 Inputs of carbon	19
4. Techniques for measuring belowground inputs of carbon	20
4.1 Root biomass studies	21
4.1.1 Procedures	22
4.1.1.1 Sampling	22
4.1.1.2 Separation of roots and soil	23
4.1.1.3 Separation of live roots and dead roots	25
4.1.1.4 Losses	26
4.1.2 Estimation of total root biomass production	27
4.2 Carbon isotope labelling	30
4.2.1 Carbon isotopes	31
$4.2.1.1 {}^{14}C$	31
$4.2.1.2^{13}$ C	31
4.2.1.3 ¹¹ C	32
4.2.2 Labelling techniques	32
4.2.2.1 Pulse labelling	33
4.2.2.2 Continuous labelling	37
4.3 Other techniques	38
4.3.1 Natural ¹³ C abundance	38
4.3.2 'Bomb' carbon	39
4.3.3 Soil organic carbon models	39
5. Root:shoot ratios	40
5.1 Allometric models	41
5.2 Functional equilibrium models	41
5.3 Thornley's partitioning model	42
5.4 Hormone models	43
6. Factors affecting belowground allocation and inputs of carbon	44
6.1 Genotypic differences	45
6.1.1 Perennial vs annual species	45
6.1.2 Grasses vs legumes	47
$6.1.3 C_3 vs C_4 species$	48
6.1.4 Species and cultivar differences	49
6.2 Moisture stress	50
6.2.1 Plant growth	51
6.2.2 Carbon allocation	51

6.2.3 Root exudation	52
6.3 Defoliation	53
6.3.1 Aboveground production	55
6.3.2 Root biomass	55
6.3.3 Total root biomass production	56
6.3.4 Physiological responses to defoliation	58
6.3.4.1 Root responses	58
6.3.4.2 Carbon allocation	59
6.3.4.3 Compensatory photosynthesis	60
6.3.4.4 Translocation	61
7. Conclusions	62

CHAPTER 3

METHODOLOGY - THEORY AND CALCULATIONS	67
1. Introduction	67
2. Summation technique	67
2.1 Theory	67
2.2 Calculations	70
2.3 Discussion	72
3. ¹³ C dilution technique	73
3.1 Theory	73
3.2 Calculations	73
3.3 Discussion	74
4. Dual labelling technique	76
4.1 Calculations	77
4.2 Discussion	78
5. Conclusion	79

CHAPTER 4

MEDIC PASTURE, A BARLEY GRASS PASTURE AND CROP	81
1. Introduction	81
2. Materials and methods	83
2.1 Trial details	83
2.2 Soil water	84
2.3 Aboveground production	84
2.4 Root sampling	85
2.5 Old organic material disappearance	86
2.6 Root disappearance	87
2.7 Chemical analyses	87
2.8 Statistical analyses	87
3. Results	88
3.1 Rainfall and soil water content	88
3.2 Live root biomass	89
3.3 Total root biomass production	89
3.4 Depth distribution	90

3.5 Aboveground production	91
3.6 Root:shoot ratios	92
3.7 Carbon:nitrogen ratios and N contents	92
Discussion	93

4. Discussion

EXPERIMENT 2: EFFECT OF DEFOLIATION OF MEDIC PASTURES ON		
BELOWGROUND CARBON ALLOCATION AND TOTAL	ROOT BIOMASS	
PRODUCTION	106	
1. Introduction	106	
2. Materials and methods	108	
2.1 Site details	108	
2.2 Defoliation	108	
2.3 Labelling	109	
2.4 Sampling	110	
2.5 Chemical analyses	111	
2.6 Calculations	112	
2.7 ¹³ C dilution technique - theory	114	
2.8 Statistical analyses	115	
3. Results	115	
3.1 Shoot biomass production	115	
3.2 Live root biomass	116	
3.3 Total root biomass production	116	
3.4 Root:shoot ratios	117	
3.5 ¹³ C allocation	117	
3.5.1 Unlabelled plots	117	
$3.5.2^{13}$ C enrichment	117	
3.5.3 ¹³ C recovery	118	
3.5.4 Allocation of 13 C to roots	118	
3.6 NMR analyses	119	
4. Discussion	120	

CHAPTER 6

EXPERIMENT 3: ALLOCATION OF CARBON IN BARREL MEDIC		
BEFORE AND AFTER DEFOLIATION	134	
1. Introduction	134	
2. Materials and methods	136	
2.1 Soil	136	
2.2 Labelling in the growth cabinet	137	
2.3 Harvesting and sample preparation	139	
2.4 Chemical analyses	140	
2.5 Calculations	141	
2.6 Statistical analyses	141	
3. Results	142	
3.1 Biomass	142	
3.2^{14} C content	143	
3.3 ¹³ C content	145	
3.4 Rhizosphere respiration	146	
3.5 Total carbon allocation	148	
4. Discussion	148	
4.1 Distribution of carbon before defoliation	148	
4.2 Biomass production after defoliation	150	
4.3 Distribution of newly assimilated carbon after defoliation	151	
4.4 Distribution of residual plant carbon after defoliation	152	
4.5 Respiration	154	
4.6 Total carbon balance	155	

4.7 Conclusion	156
Chapter 7	
GENERAL DISCUSSION AND CONCLUSIONS	166
BIBLIOGRAPHY	174

ABSTRACT

In the cropping soils of southern Australia, pasture phases based on the annual legume barrel medic (*Medicago truncatula* Gaertn.) provide significant inputs of organic matter and lead to improvements in soil structure and fertility. This thesis aimed to quantify the belowground input of carbon by barrel medic and the effect of defoliation on this input. This aids the development of simulation models of soil organic carbon, and has practical implications regarding rotation choice and grazing management.

The major belowground input of carbon in annual species is found as root production. Measurement of total root biomass production, using a technique that accounted for root death and decomposition, found that it was 1.6 to 2.9 times the maximum live root biomass. In a year of very low rainfall, root production was a lot less than in a year of average rainfall. However, the ratio of total root production to total shoot production was higher. In both years, the total root biomass production and root:shoot ratio of barrel medic were greater than faba beans but similar to barley grass.

Total root biomass production of a frequently defoliated barrel medic pasture was estimated using a ¹³C dilution technique where swards were pulse labelled with ¹³C. Root biomass production following labelling was estimated from the subsequent dilution in ¹³C enrichment during the remainder of the season. Although live root biomass of cut pasture was less than that of uncut pasture, total root biomass production was similar. ¹³C allocation data showed that this was due to greater allocation of carbon belowground by cut plants. It was concluded there must be greater turnover of root material under cut pasture.

The effect of defoliation on the amount of carbon released to the soil through rhizodeposition was estimated by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a ¹⁴C-labelled CO₂ atmosphere, defoliated and then grown in a ¹³C-labelled CO₂ atmosphere. Distribution of ¹⁴C and ¹³C in the plants was compared with uncut plants. Defoliation did not have a significant effect on belowground allocation of carbon. The proportion of labelled carbon allocated belowground was 24 and 28 % for cut and uncut plants respectively. Total input of carbon into the soil was estimated to be 1.70 (cut) and 1.65 (uncut) times the amount of carbon recovered in root biomass.

Applying these correction factors to results from the field experiments, total annual belowground input of carbon ranged from 700 to 1880 kg C/ha. As a proportion of carbon in above ground production, carbon input belowground ranged from 0.40 to 0.77. Defoliation at the frequency and level imposed in these experiments had no adverse effect on total belowground inputs of carbon.

DECLARATION

I declare that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Michael Crawford

Date

ACKNOWLEDGMENTS

My sincere thanks go to my principal supervisor, Dr Peter Grace, whose vision and enthusiasm helped to make this project achievable. Sincere thanks also go to my joint supervisors, Prof Malcolm Oades and Dr Bill Bellotti who both provided invaluable advice and support whenever necessary.

To the many people who provided assistance in the field, glasshouse and laboratory over the past three years, I also give thanks and acknowledgment. These people include Philip Clarke, Cliff Hignett, David Little, Colin Rivers, Bernie Swaby, Ian Trigg and Melissa Truscott. I would like to particularly thank Johan Swinnen, William Besz and Maurice Amato for their part in the construction of the controlled atmosphere growth cabinet and Maurice Amato for his assistance in performing ¹³C analyses.

I am grateful to Jeff Baldock, Cameron Grant, Andrew Moore, Paul Nelson and Johan Swinnen for their advice and thought provoking discussion along the way. Thanks also go to members of the Department of Soil Science, the Cooperative Research Centre for Soil and Land Management and the CSIRO Divsion of Land and Water who provided support whenever necessary.

I would like to acknowledge the financial support of the Cooperative Research Centre for Soil and Land Management who provided me with a postgraduate scholarship, the Department of Natural Resources and Environment (Victoria) who granted me Study Leave Without Pay for three years and the Grains Research and Development Corporation and the Rural Industries Research and Development Corporation who both provided me with travel grants to assist me in presenting my work at international conferences.

Heartfelt thanks go to my parents for their support during my formative years and extra special thanks go to my wife and best friend, Linda, for diligently proof reading the entire thesis and for her constant support, encouragement and special advice.

PUBLICATIONS ARISING FROM THIS THESIS

Book chapters (refereed)

Crawford, M.C., Grace, P.R. and Oades, J.M. (1998). Effect of defoliation of medic pasture on below-ground carbon allocation and root production. In *'Management of Carbon Sequestration in Soil'*. (Eds. Lal, R., J.M. Kimble and B.A. Stewart). Chapter 26. pp. 381-389. CRC/Lewis Publishers, Boca Raton, Florida, USA.

Journal papers (refereed)

Crawford, M.C., Grace, P.R., Bellotti W.D. and Oades, J.M. (1997). Root production of a barrel medic (*Medicago truncatula*) pasture, a barley grass (*Hordeum leporinum*) pasture and a faba bean (*Vicia faba*) crop in southern Australia. *Australian Journal of Agricultural Research* **48** 1139-1150.

Crawford, M.C., Grace, P.R., Bellotti W.D. and Oades, J.M. (2000). Allocation of carbon to shoots, roots, soil and rhizosphere respiration by barrel medic (*Medicago truncatula*) before and after defoliation. *Plant and Soil* **227**, 67-75.

Conference proceedings (refereed)

Crawford, M.C., Grace, P.R., Bellotti W.D. and Oades, J.M. (1996). Below-ground inputs of carbon by crops and pastures. Proceedings of the 8th Australian Agronomy Conference, Toowoomba, Queensland. pp. 172-175.

Conference proceedings (non-refereed)

Crawford, M.C., Grace, P.R., Bellotti, W.D. and Oades, J.M. (1996). Root production of medic pastures. Proceedings of the 2nd Victorian Cropping Zone Conference, Rutherglen, Victoria. pp. 36-37.

Crawford, M.C., Grace, P.R. and Oades, J.M. and Bellotti, W.D. (1996). Effect of defoliation of medic pastures on below ground carbon allocation and sequestration. Proceedings of an International Symposium on Carbon Sequestration in Soil, Columbus, Ohio, USA.

Crawford, M.C., Grace, P.R. and Oades, J.M. (1996). Effect of defoliation of annual medic pastures on below ground ¹³carbon allocation and on root growth. Proceedings of the 5th Symposium of the International Society of Root Research, Clemson, South Carolina, USA. p. 4.

Crawford, M.C., Grace, P.R. and Bellotti, W.D. (1996). Root production of crops and pastures - the effect of drought. Proceedings of the 1996 Farming Systems Conference, Adelaide, South Aust. pp. 135-136.

Crawford, M.C., Grace, P.R. and Bellotti, W.D. (1995). Root production of a faba bean crop, a barrel medic pasture and a barley grass pasture. Proceedings of the 1995 Tillage Workshop, Adelaide, South Australia. pp. 18-19.