Conserved control signals in the transcriptome of higher plants

Khanh Tran

Thesis submitted for the degree of Doctor of Philosophy

May 2010

Discipline of Plant and Pest Science School of Agriculture, Food, and Wine The University of Adelaide CHAPTER 3

UPSTREAM OPEN READING FRAMES

CHAPTER 3 UPSTREAM OPEN READING FRAMES

This chapter contains work published in "Tran, M.K., C.J. Schultz, and U. Baumann. 2008. Conserved upstream open reading frames in higher plants. *BMC Genomics* **9:** 361".

3.1 INTRODUCTION

RNA-omics, or more simply R-nomics, is the large-scale study of RNA structure and function (Clote 2005). One of the major challenges faced by R-nomics is to understand the regulatory mechanisms of complex signals found in the untranslated regions (UTRs) of messenger RNAs. In particular, the control signals found in the 5'-UTR of some eukaryotic mRNAs play a crucial role in translational control that can result in rapid changes to the proteome during stages of mammalian development (Le Roch et al. 2004), and in response to plant abiotic stress (Floris et al. 2009). These post-transcriptionally regulated mRNAs frequently encode important regulatory proteins (e.g., proto-oncogenes, growth factors, and transcription factors) (Mignone et al. 2002) that need to be strongly or precisely regulated for normal cellular activity. In other cases, control signals in the 5'-UTR provide continuous regulation of essential mRNAs by providing an alternative route for translation when cap-dependent translation is compromised (e.g., under stress conditions) (Holcik et al. 2000).

Translational control signals are often found in long 5'-UTRs (>100 nt) (Kozak 1987a) where they can contain either a single control signal (Raney et al. 2000) or multiple control signals that function independently (Wang and Wessler 2001) or in a coordinated fashion (Franceschetti et al. 2001; Jin et al. 2003; Yaman et al. 2003). One important translational control signal found in both prokaryotes and eukaryotes is the upstream open reading frame (uORF), a small open reading frame located upstream of the main coding region (Lovett

and Rogers 1996). uORFs that are conserved are also known as conserved noncoding sequences (CNSs) (Freeling and Subramaniam 2009).

Two types of functional uORFs have been described and shown to have a demonstrated activity either *in vitro or in vivo* (Gaba et al. 2001): a) sequence-dependent uORFs encoding bioactive peptides that either cause ribosomal stalling during translation of the main open reading frame or have other biological roles (Crowe et al. 2006; Hayden and Bosco 2008; Hayden and Jorgensen 2007; Iacono et al. 2005), and b) sequence-independent uORFs that reduce reinitiation efficiency of the main open reading frame (Meijer and Thomas 2002; Vilela and McCarthy 2003). There is also evidence that both sequence-dependent and sequence-independent uORFs can influence mRNA stability (Ruiz-Echevarria and Peltz 2000; Vilela et al. 1999), however their underlying mechanisms remain unclear.

Identifying uORFs involved in regulation of gene expression is a difficult and time consuming process that is estimated to take up to 20 manmonths to find a single functional uORF by random selection and testing of mRNAs (Selpi et al. 2006). To overcome this problem, computational methods have been developed to predict uORFs that are likely to be functional, and include methods such as artificial intelligence (Selpi et al. 2006), comparative approaches based on homology (Hayden and Bosco 2008; Hayden and Jorgensen 2007), and comparative approaches based on specific uORF sequence organisation (Kochetov et al. 2008).

The frequency of reported uORFs in plants is rare in comparison to mammalian systems. Early estimates on the number of characterised uORFs in plants were less than 100 (0.3%) (Tran et al. 2008), and most are described in four cereal transcriptomes. These characterised uORFs (<0.3%) in plants are much lower than the estimated number of genes that contain uORFs, which can vary from 11% (Pesole et al. 2000) to 60% (Hayden and Jorgensen 2007).

In this study, a comparative R-nomics approach was used to identify conserved uORF motifs in cereals and Arabidopsis. A bioinformatics pipeline called uORFSCAN was constructed that performs a comparative analysis on the important agronomic crops rice, wheat, barley, maize, and sorghum; and the well studied dicot plant Arabidopsis. To account for the variable quality of assembled EST data, the uORFSCAN pipeline used orthologous sequence clustering, iterative sequence analysis, and manual curation. The comparative approach of uORFSCAN is easily transferable to uORF identification in other species.

3.2 MATERIALS AND METHODS

3.2.1 Sequence data

KOME full-length rice cDNA sequences obtained from were ftp://cdna01.dna.affrc.go.jp/pub/data/CURRENT/INE_FULL_SEQUENCE_D B.zip. This file is dated Tuesday, 24 January 2006, and contains 32,127 fulllength cDNA clones (originally 28,469). The Dana Farber Cancer Institute (DFCI) plant gene indices database (http://compbio.dfci.harvard.edu/tgi/) was used to obtain tentative contigs (TCs) from wheat (release 10.0, Jan 05, 580155 ESTs, 44954 TCs), barley (release 9.0, Sept 04, 370546 ESTs, 23176 TCs), maize (release 17.0, Nov 06, 695811 ESTs, 56687 TCs), and sorghum (release 8.0, Nov 05, 187282 ESTs, 20029 TCs). Data cleaning was performed on the DFCI dataset to select for sequences that are designated as tentative contigs (identifiers prefixed with "TC"), thereby excluding all singletons. All data files were imported and managed using Microsoft Access 2003. Also, the analysis was re-ran using the TIGR Plant Transcript Assemblies (last updated on October 17th, 2006) for wheat (840871 ESTs), barley (456410 ESTs), maize (1084701 ESTs), and sorghum (203575 ESTs) on the uORFSCAN pipeline, but did not find any additional conserved uORFs.

3.2.2 Orthologue searches

Similarity searches were performed at The South Australian Partnership for Advanced Computing (SAPAC) (http://www.sapac.edu.au/) using the method described in Chapter 2 (Section 2.2.2). In brief, the reciprocal best hit method (rbh) was adapted to improve the detection of putative orthologues in the presence of alternative splice forms that would otherwise give many false negatives. To account for alternative splice forms, the top hit and also similar hits in the reverse BLAST (percent identity to top hit: Δ -5%, similar length to top hit: +/- 20%) were examined for symmetry with the top hit in the forward BLAST. If there is symmetry between the forward and reverse BLASTs then we considered the reciprocal pair to be orthologous.

3.2.3 Verification of main ORF

The rice cDNA sequences containing conserved uORFs were used in a blastn search against NCBI Non-redundant database to identify uORFs predicted from ribosomal RNA genes, chloroplastic genes, and mitochondrial genes. These genes do not represent coding genes derived from the nuclear genome, and therefore have been removed from this study. Also, the main open reading frames, predicted by uORFSCAN were used to search (blastn) the coding sequence (CDS) annotations from TIGR rice pseudomolecules database (http://www.tigr.org/tdb/e2k1/osa1/data_download.shtml). Alignments not starting from the beginning of the CDS were regarded as suspicious. As additional verification, the rice main open reading frame predictions were also compared with protein data from the UniProt Knowledgebase (UniProtKB) (www.ebi.uniprot.org/database/download.shtml). Translations of the rice cDNA sequences in the same frame as the predicted main open reading frame, starting from the 5'-untranslated region to the end of the main open reading frame, were used to search (blastp) against UniProtKB. Aligments not beginning from the start of the protein sequence were discarded if they also did not have TIGR CDS support.

3.2.4 Statistical analysis of codon usage

The *p*-values were calculated according to the following formulas:

The probability to observe the number of times each codon was present in the uORFs (n_{obs}) that was less than or equal to the expected (n_{av}) by chance alone is:

$$P = \sum_{n=0}^{n_{obs}} \begin{bmatrix} N \\ n \end{bmatrix} P^n (1-P)^{N-n}$$
1

The probability to observe the number of times each codon was present in the uORFs (n_{obs}) that was greater than or equal to the expected (n_{av}) by chance alone is:

$$P = \sum_{n=n_{obs}}^{N} \begin{bmatrix} N \\ n \end{bmatrix} P^{n} (1-P)^{N-n}$$
2

Where,

 n_{obs} = The observed number of times a codon was present in the uORFs. n_{av} = The average number of times a codon was present in the uORFs based on the frequency of this codon in the mORF and the sample size (the observed number of codons for the set of codons for an amino in the uORFs).

3.3 **RESULTS**

3.3.1 The uORFSCAN pipeline for discovering uORFs

The uORFSCAN pipeline used rice full-length cDNAs (Kikuchi et al. 2003) and wheat, barley, maize, and sorghum assembled EST data for comparative analysis (Figure 3.1). As in Chapter 2, the first step of the pipeline identified rice genes that had orthologues in wheat, barley, and maize but also in sorghum. The use of orthologous sequences allowed for better detection of the main coding region, and in turn defines the 5'-UTR that is necessary to identify conserved uORFs. For this purpose, a modified reciprocal best hit (rbh) method was used to find true orthologues by a process of eliminating paralogues (Bork et al. 1998; Tatusov et al. 1997), and was shown to perform much better than a standard one-directional BLAST. For example, in the one directional BLAST against the barley assembled EST database 19,655 sequences were identified, however this number was reduced to 5,115 (26%) sequences when the reciprocal best hit method was used (Figure 3.1, Step 1).

Only 1723 of the rice genes had conserved orthologues in the other four cereals (wheat, barley, maize, and sorghum), most likely because none of the assembled EST datasets contained the entire transcriptome. To account for missing or erroneous sequences, the orthologues were grouped into three datasets for 5'-UTR analysis (Figure 3.1, Step 2). The datasets included rice genes that had orthologues in four other cereals (5 out of 5 dataset), in three other cereals (4 out of 5 dataset), and in two other cereals (3 out of 5 dataset).

In Figure 3.1 (Step 3), the uORFSCAN program (Appendix) was developed to find conserved uORFs. uORFSCAN takes as input a FASTA file containing the rice cDNA sequence and its orthologues, and identifies for each of these sequences all the possible open reading frames (ORFs). In the first iteration, the longest conserved ORF was designated as the main coding region. However, the longest ORF is not always the main coding region when there are

other ORFs of similar length. Therefore, a comparative approach was used to identify the main coding region (Figure 3.1, Step 3.1). This involved finding the longest ORF that was present in all orthologous sequences, and then iteratively reducing the number of orthologous sequences, one at a time, to determine if a longer conserved set of ORFs could be found, and finally terminating when there was no improvement. The longest ORF in at least three out of five cereals was considered the main coding region. In Figure 3.1 (Step 3.2), uORFSCAN attempts to align rice uORFs with similar length orthologous uORFs (+/- 5%) at the protein level using ClustalW (Thompson et al. 1994). Finally, uORFSCAN analysed each alignment file to determine the average conservation of the uORFs, and grouped the alignments based on the number of conserved orthologous uORFs found. For example, using the 4 out of 5 dataset generated the 4 out of 4 and the 3 out of 4 datasets (Figure 3.1). To improve the detection of functional uORFs, only uORFs from orthologous genes that shared sequence similarity were reported.

The final step (Figure 3.1, Step 4) was manual curation to verify the predicted rice main coding region of each gene by comparing it with the genome annotation and other protein data. This was necessary, as uORFSCAN is expected to be sensitive to inaccurate (e.g., frame-shifts) and/or incomplete sequence data. For example, rice full length sequences can be incomplete because of failure of the 5' capping method (Kikuchi et al. 2003). If the coding region is truncated, this can result in an internal methionine selected as the start codon and therefore the derived 5'-UTR is actually coding sequence, which is often highly conserved and can lead to false positive predictions.

3.3.2 Conserved uORFs appear to be rare

The uORFSCAN pipeline identified nine cDNAs containing uORFs that were conserved in all five cereal orthologues (5/5 uORF dataset) (Table 3.1). Three of these cDNAs encoded multiple uORFs, one of the cDNAs being AdoMetDC, which has previously been reported to contain two uORFs (Hanfrey et al. 2002). All nine cDNAs were manually curated and showed that they were all reliable based on the validation criteria used in this study (Table 3.2), which included the removal of the uORFs predicted from ribosomal rRNA genes (data not shown). The cDNAs included the multiple uORFs in S-adenosylmethionine decarboxylase cDNA (Hanfrey et al. 2002), alkaline phytoceramidase cDNA, calcineurin B-like (CBL)-interacting protein kinase cDNA; and a single conserved uORF in a cDNA encoding an oxidoreductase protein, ribosomal protein S6 kinase, trehalose-6-phosphate phosphatase, ubiquitin-fold protein, F9L1.29 protein, and an ankyrin-3 protein.

To account for variable quality in assembled EST data, instances where the uORFs (4/5, 3/5, 4/4, 3/4, and 3/3 result set) were conserved in only some cereal orthologues (5/5, 4/5, and 3/5 dataset) (Tables 3.3, 3.4, 3.5, 3.6, 3.7; Figure 3.1, Step 3.2) were also reported. In brief, the 4/5 result set contains 16 rice genes with a total of 20 conserved uORFs in orthologous cereal genes, the 3/5 result set contains 44 rice genes with a total of 79 conserved uORFs in orthologous cereal genes, the 4/4 result set contains 16 rice genes with a total of 23 conserved uORFs in orthologous genes, the 3/4 result set contains 113 rice genes with a total of 129 conserved uORFs in orthologous genes, and finally the 3/5 result set contains 65 genes with a total of 93 conserved uORFs in orthologous genes.

In order to identify sequence dependent uORFs, the search was extended for cereal uORFs that might also be conserved in the dicot Arabidopsis by using the rice cDNAs that contained conserved uORFs in at least two other cereal orthologues (5/5, 4/5, 3/5, 4/4, 3/4 and 3/3 result set) and the Arabidopsis Tair 7 cDNA dataset (Section 3.2.2). The uORFSCAN pipeline identified 13 rice cDNAs containing uORFs that were conserved in Arabidopsis (Table 3.8). Four of these cDNAs encoded multiple uORFs. Of the 13 cDNAs with uORFs, only 11 were verified as reliable based on manual curation (Table 3.9) that removed the uORFs predicted from a cDNA encoding a helicase. Manual curation of the helicase cDNA revealed that the genome and

protein annotation for the coding region extended further upstream than predicted by uORFSCAN, highlighting the limitations of using assembled EST data where frame-shift errors was the likely reason for the false positive prediction. The reliable predictions included the multiple uORFs found in a cDNA encoding ww domain containing protein, trehalose-6-phosphate phosphatase, GAMYB-binding protein, and ankyrin-3. The latter three cDNAs contained a combination of uORFs that were conserved between the cereals (rice and at least two other cereals) and Arabidopsis, and uORFs conserved between rice and Arabidopsis (Table 3.8). uORFSCAN also identified seven rice cDNAs containing a single uORF that were conserved in Arabidopsis and in almost all cases (except cDNA encoding an auxilin-like protein) the cereals as well (Table 3.8). They included the uORFs found in a cDNA encoding Sphosphatase 2a protein, homeodomain containing protein, adenosylmethionine decarboxylase, auxilin-like protein, CBL-interacting protein kinase, protein kinase ATN1, and a hypothetical protein.

3.3.3 Position and occupation of uORFs in 5'-UTRs

Studies have shown that the position of an uORF within its 5'-UTR, which determines the pre-ORF and intercistronic distances, can have profound effects on its function (Vilela and McCarthy 2003; Vilela et al. 1999). The position of cereal uORFs within their 5'-UTRs were examined and no positional preference was found with the exception that they were not positioned too closely to the start of their individual 5'-UTR and coding region (Figure 3.2). For example, all of the uORFs conserved in five orthologous cereals (5/5 result set) and in Arabidopsis were at least positioned 20 nucleotides from the start of their 5'-UTR, which is thought to be the minimum number of nucleotides required for a functional uORF (Vilela and McCarthy 2003). The intercistronic distances for these uORFs were generally shorter than the pre-ORF distance (Figure 3.2). Also, seven uORFs were found to occupy greater than 20% of their individual 5'-UTR, and included the functional small AdoMetDC uORF (AK100589).

3.3.4 Length distribution of uORFs

Since earlier reports showed that plant uORFs can vary in length from 6 to 156 nucleotides (Franceschetti et al. 2001; Hanfrey et al. 2002; Locatelli et al. 2002; Lohmer et al. 1993; Wang and Wessler 1998; Wang and Wessler 2001), the length distribution of the cereal uORFs was examined. There are two peaks in the distribution that were found between 1 to 20 nucleotides, and 81 to 100 nucleotides (Figure 3.3). The uORFs found in the first peak are tiny with 9 (out of 14) uORFs having a length of nine nucleotides. Some of these tiny uORFs could be artefactual as a result of point mutations that insert an in-frame start and/or stop codon in the 5'-UTR. The uORF length distribution around the second peak (41 to 160 nt) tends to move towards a normal distribution. Seventy six percent of the uORFs in the length distribution are shorter than 100 nucleotides, and 48% are shorter than 40 nucleotides. The shortest conserved uORF found in four independent cDNAs was nine nucleotides, even though the cut-off length used by uORFSCAN to identify uORFs was six nucleotides (a start and a stop codon). One of the nine nucleotide uORFs was the 5' tiny uORF found in the S-adenosylmethionine decarboxylase cDNA (Franceschetti et al. 2001), and three new uORFs, two found in a cDNA encoding alkaline phytoceramidase, and one in a cDNA encoding oxidoreductase, (Table 3.1). Two long conserved uORFs (>181 nucleotides) were found in cDNAs encoding protein kinases that included one uORF found in a cDNA encoding a CBL-interacting protein kinase and another uORF found in a cDNA encoding a ribosomal protein S6 kinase.

3.3.5 Sequence conservation of uORFs

The level of amino acid sequence conservation in cereal uORFs was generally high, as expected, based on the approach of reporting similar length orthologous uORFs that shared sequence similarity used in this study. For example, in the 5 out of 5 result set the median value is 50% sequence similarity. When the two main datasets were included (uORFs conserved in all five cereal orthologues and uORFs conserved between rice and Arabidopsis), the median value is 36% sequence similarity. The uORFs conserved between rice and at least two other cereal orthologues (5/5, 4/5, 3/5, 4/4, 3/4 and 3/3 result set) and Arabidopsis (median value of 36% sequence similarity) generally had a higher amino acid sequence similarity than those uORFs conserved between rice and Arabidopsis only (median value of 28% sequence similarity). Given that the uORFs from orthologous genes were selected to be within a given length interval for alignment purposes, the high amino acid sequence similarity may suggest that these uORFs have a functional role (e.g., ribosomal stalling) that is mediated by the encoded uORF peptide.

3.3.6 Start condon context and codon usage of uORFs

The presence of uORFs does not mean that they will be translated. The sequence context of some plant uORFs has been shown to be sub-optimal for efficient initiation (Joshi et al. 1997; Wang and Rothnagel 2004). Therefore the sequence context of the cereal uORF AUG codons was examined to see if there was any sequence conservation that may aid in their ribosome initiation. No informative positions in the uORF consensus sequence context were found (Figure 3.4) based on the observed number of positions that showed sequence conservation was not greater than expected by chance alone. However when the context of the AUGs demarcating the conserved uORFs were compared with the context of the AUG at the main ORF it was evident that the main ORF generally had a better sequence context denoted by a purine in the -3 position and a guanine in the +4 position (Table 3.10). There were some exceptions where the uORF sequence context was good as (Table 3.10, AK060523) than the main ORF sequence context for ribosome initiation.

Recent work showed that ribosome stalling could occur at rare codons (Chumpolkulwong et al. 2006; Col et al. 2007; Fernandez et al. 2005; Meijer and Thomas 2003; Shu et al. 2006). Therefore the codon usage of the identified

uORFs was examined to determine if they contained an increased number of rare codons. Results showed that the frequencies of some codons had a *p*-value less than <0.05 in the rice uORF codon usage compared to the rice main coding region based on a significant deviation of observed from expected numbers of uORF codons (Section 3.2.4, Equations 1 and 2); however, the number of codons that had significant *p*-values were not greater than expected by chance (Figure 3.5).

3.4 DISCUSSION

3.4.1 Conserved uORFs appear to be rare

This study provides a method to identify conserved uORFs from large assembled EST datasets. A pipeline was developed that used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. This pipeline was successful in identifying 29 rice uORFs that are conserved at the amino acid level (median value of 36% sequence similarity) in wheat, barley, maize, sorghum, and in some cases (33%) Arabidopsis.

The number of conserved uORFs that share sequence similarity in the transcriptome of cereals appears to be low. This is consistent with reports of conserved uORFs in distantly related plants (i.e., rice and Arabidopsis) (Hayden and Jorgensen 2007) and in *Drosophila melanogaster* (Hayden and Bosco 2008). One explanation is that genes controlled at the level of translation by uORFs have low levels of transcription (Hu et al. 2005) and therefore are under-represented in cDNA and assembled EST databases. Another explanation for the low numbers of conserved cereal uORFs is that the uORFs have evolved in both length and sequence such that they no longer share sequence similarity across minor taxonomic groups (i.e., within the cereals)

(Table 3.2 and 3.9, Table 3.11 for CLUSTAL W alignments). Furthermore, if the codon usage of cereal uORFs rather than the uORF-encoded peptide were a major controlling mechanism then amino acid sequence may not be conserved.

3.4.2 Cereal uORFs conserved in Arabidopsis

It has been shown that the amino acid sequence of uORFs in monocot and dicot plants can be similar (Hanfrey et al. 2002). Sequence similarity was observed at the amino acid level across the major taxonomic groups (e.g., Arabidopsis and rice) (Table 3.8). Eleven rice genes were identified that contained uORFs conserved in Arabidopsis, of which nine were also conserved in additional cereal orthologues (at least two others). For example, a rice cDNA encoding Ankyrin-3 contains a uORF that is conserved in the cereals and Arabidopsis, but it contains a nested uORF that appears to be conserved only in rice and Arabidopsis. Therefore, it is likely that after the split between the two major groups of angiosperms (monocots and dicots), the rice gene has gained an additional in-frame and internal start codon, that is not present in the other cereals, making a nested uORF that is shorter by 33 nucleotides. It would be of interest to determine if the nested uORF is functional.

Conservation of uORF sequence within the cereals might simply reflect a relatively recent ancestor, rather than conservation of function, therefore it is difficult to predict whether these uORFs are likely to be sequence dependent or sequence independent uORFs (Meijer and Thomas 2002; Vilela and McCarthy 2003). However, uORFs that are conserved across both monocots and dicots suggest that these uORFs have a role in a sequence dependent manner. Indeed, six rice uORFs (out of 15, excluding nested uORFs, Table 3.8) that were conserved in Arabidopsis had a biased amino acid composition that was rich in serine or arginine (at least 20%). It has been suggested that uORF peptides that are rich in serine could either promote or inhibit ribosomal stalling through their phosphorylation (Hayden and Jorgensen 2007; Wang and Proud 2007), while arginine rich motifs can be involved in RNA binding (Bayer et al. 2005). Interestingly, of these six rice uORFs two (AK101100 and AK067412) are found in genes involved in phosphorylation, a function that appears to be overrepresented in this dataset (Table 3.8). It is possible that the main protein of these genes could have dual functions, the primary function is as a *trans*-acting factor in an unknown signalling cascade, and a secondary function as a regulator of mORF expression whereby the mORF protein phosphorylates the serine-rich uORF peptides, resulting in a conformational change that allows the uORF peptides to bind and stall ribosomes (Gaba et al. 2001).

There are uORFs previously identified in Arabidopsis that were not identified in this study. For example, the Arabidopsis auxin response factor (ARF) genes (Nishimura et al. 2005) ETTIN (ETT) and MONOPTEROS (MP) contain uORFs and while orthologues of these genes were found in the rice, sorghum and wheat assembled EST datasets, the uORFs showed no sequence similarity (by ClustalW) and were of different lengths (data not shown). Similarly, uORFs found in Arabidopsis genes AtMHX and AtNMT1 encoding encoding a tonoplast transporter (David-Assael et al. 2005) and a phosphoethanolamine N-methyltransferase (Tabuchi et al. 2006) respectively were not identified because the uORFs were not conserved in rice and at least two other cereals. Finally, the gene containing the uORF in Arabidopsis sac51 encoding a bHLH-type transcription factor (Imai et al. 2006) could not be identified in the rice dataset as a clear orthologue could not be identified. Therefore, it will be of interest to monitor new rice full-length cDNAs and high quality sequences for cereals as they become available to see if more conserved uORFs can be found.

Recently, a pair-wise comparative approach was used to identify conserved uORFs within homology groups that also included paralogs and ohnologs (homologous genes arising by whole-genome duplication) using rice and Arabidopsis full-length cDNAs (Hayden and Jorgensen 2007). Compared to the 11 genes identified in this study Hayden and Jorgensen (Hayden and Jorgensen 2007) reported that 19 genes contained conserved uORFs between rice and Arabidopsis. Interestingly only four genes (S-adenosylmethionine decarboxylase, Trehalose-6-phosphate phosphatase, Auxilin-like protein, and Ankyrin-3) were in common highlighting the benefits of complementary search methods. The approach developed in this study used the modified reciprocal best hit method to find putative orthologues. It is likely that some of the homologue groups identified by Hayden and Jorgensen (Hayden and Jorgensen 2007) may not be true orthologues. For example, homologue group 12 identified by Hayden and Jorgensen (Hayden and Jorgensen 2007) were not reciprocal best hit pairs according to the analysis used in this study, and therefore are likely to be paralogues. The approach of this study is deliberately conservative, eliminating paralogues, to maximise the finding of all conserved uORFs independent of their length.

One possible criticism of the comparative approach used in this study is that uORFs as short as 9 nt were reported. However, there are two independent reports that showed that the tiny uORF of *SAMDC* is functional (Hanfrey et al. 2005; Hu et al. 2005), although there is controversy regarding the type of effect and conditions under which the tiny uORF of *SAMDC* exerts its effect on downstream translation. Therefore, there is insufficient data to conclude one way or the other, and as such a conservative approach was chosen. This has allowed us to find several genes (e.g., protein phosphatase 2a, a protein containing a ww domain, and GAMYB-binding protein) that were not found by Hayden and Jorgensen (2007), as only conserved uORFs greater than 16 codons were detected.

3.4.3 Better quality assembled EST data is needed

One unavoidable limitation of using incomplete assembled EST data for orthology determination is that orthologues could be falsely assigned in situations where sequences have multiple protein domains. This will increase the number of putative orthologues identified prior to the prediction of uORFs, which is not necessarily harmful as these predictions are manually curated. However, to minimise this problem, a sequence coverage cutoff of at least 70% of any of the protein sequences in the alignment was used (Section 3.2.2). Also, orthologues were grouped into several datasets representing the number of orthologues that could be found for each gene. For example, the datasets included rice genes that had orthologues in four other cereals (5 out of 5 dataset), in three other cereals (4 out of 5 dataset), and in two other cereals (3 out of 5 dataset). This grouping of orthologues will also help minimise the effects of missing, incomplete, or erroneous assembled EST data.

There are reports of conserved uORFs in monocots and dicots that share high sequence similarity that were not found by the uORFSCAN pipeline, due to either lack of sequence conservation or due to limitations in the assembled ESTs currently available. For example, the uORF found in the basic region leucine zipper (bZIP)-type transcription factor *AtB2/AtbZIP11* was found to be conserved in rice and barley (Wiese et al. 2004), but not in the other cereals included in this study because the sequences are not represented in the other datasets. Current limitations include incomplete data (i.e., not all sequences are represented) and poor quality sequence data, leading to frameshifts and incorrect prediction of uORFs. Therefore, it is possible to obtain higher numbers of conserved uORFs if the cluster size was relaxed to two out of five, but this approach would reduce the power of comparative R-nomics, and would require significant manual curation.

3.4.4 Sequence dependent and independent uORFs

The cereal uORFs identified here are likely to encode bioactive peptides as selection has occurred to conserve peptide sequence. Those cereal uORFs that showed sequence conservation at the amino acid level with Arabidopsis are likely to be classified as sequence-dependent, as the encoded uORF peptide has remained conserved across the angiosperms, suggesting the peptide is directly involved in translational control (Franceschetti et al. 2001) or has some other biological activity (Crowe et al. 2006; Hayden and Bosco 2008; Hayden and

Jorgensen 2007; Iacono et al. 2005). Some identified uORFs were conserved only within the cereals, indicating a relative recent origin or selective loss of the uORFs in Arabidopsis. The possibility that some conserved cereal uORFs could also act in a sequence-independent manner cannot be ruled out, as a recent paper reported a conserved uORF in human and mouse ribosomal protein S6 kinase genes (the same finding in this study in cereals, Table 3.1), and suggested that the uORF translational control of the main ORF was through reinitiation (Kochetov et al. 2008). Experiments are needed to confirm the biological activity of the uORF in ribosomal protein S6 kinase gene.

The sequence context surrounding a uORF (ignoring secondary structure) does not appear to play a major role in its recognition and initiation of translation of an uORF based on our analysis. It is possible that a sub-optimal uORF sequence context (compared to optimal Kozak consensus (Joshi et al. 1997) sequence for the main coding region) would allow for leaky scanning (Smith et al. 2005; Wang and Rothnagel 2004) of the uORF, and preferential initiation at the downstream main coding region. An optimal uORF sequence context would provide rigid control in the translational regulation of the main coding region, as initiation would predominantly start at the uORF resulting in reduced availability of initiation factors, such as eIF2, for reinitiation at the downstream main open reading frame.

Sequence-independent uORFs allow for low-level translation of the downstream main coding region (Child et al. 1999). Low-level translation is possible, as sequence-independent uORFs do not cause ribosomal stalling as seen in sequence-dependent uORFs. The regulatory mechanism of the sequence-independent uORF involves other factors (uORF recognition, length, stop codon environment, and the downstream intercistronic sequence) that influence reinitiation efficiency (Meijer and Thomas 2002; Vilela and McCarthy 2003), and more recently leaky scanning (Wang and Rothnagel 2004), to regulate downstream translation. The codon usage of conserved uORFs was analysed and no preferential usage of rare codons was found in the

uORFs. Therefore, it is unlikely that the uORF codon usage in the examples found could contribute to low-level translation as seen for certain rare codons in *Xenopus laevis* (Meijer and Thomas 2003) and *Eschericia coli* (Chumpolkulwong et al. 2006) that can reduce translation.

3.5 CONCLUSION

This study showed that the uORFSCAN pipeline is a useful tool for identifying conserved uORFs in closely related species. This pipeline has allowed us to identify 29 conserved uORFs in the cereal transcriptome. More conserved uORFs will likely be identified once the cDNA and assembled EST datasets become more comprehensive. These conserved rice uORFs will be useful for future functional analyses that should provide some perspective into downstream translational regulation by uORFs.

Table 3.1	. The uORF	⁻ s predicted by uOR	FSCAN in 5/5 orthol	ogues of	the 5/5 ortho	ologue dataset		
ц	Rice	Wheat	Barley	2	laize	Sorghum	Avg. A.A.	Putative function ^b
Identifier	5'-UTR	Identifier 5'-UTR ^a	Identifier 5'-UTR ^a	Identifier	5'-UTR ^a	Identifier 5'-UTR ^a	similarity (%)	
AK106095	131_9_17	TC265929 113_9_16	TC148181 67_9_16	TC288369	131_9_17	TC102998 149_9_17	100	Oxidoreductase
AK103391 ^c	205_75_74	TC269775 251_75_62	TC134190 204_75_62	TC294011	215_75_75	TC103599 106_75_378	88	Trehalose-6-phosphate phosphatase
AK100589 ^{d,e}	240_9_334	TC264559 201_9_317	TC130707 228_9_318	TC292591	286_9_320	TC91317 260_9_329	50	S-adenosylmethionine decarboxylase (AdoMetDC)
	248_156_179	209_150_168	236_150_169		294_153_168	268_153_177	06	
	296_108_179	254_105_168	281_105_169		336_111_168	310_111_177	92	
AK073303	67_9_142	TC237149 75_9_113	TC132556 81_9_139	TC305609	127_9_69	TC102988 222_9_69	50	Alkaline phytoceramidase
	135_9_74	75_9_113	81_9_139		127_9_69	222_9_69	50	
AK072868 ^e	249_27_248	TC247418 258_27_266	TC139536 298_27_272	TC306591	444_27_564	TC102544 331_27_265	11	CBL-interacting protein kinase
	259_195_70	268_198_85	308_198_91		260_192_583	341_195_87	29	
	269_39_216	278_39_234	318_39_240		768_39_228	351_39_233	8	
	338_90_96	347_93_111	387_93_117		576_93_366	420_90_113	10	
	392_36_96	404_36_111	444_36_117		633_36_366	474_36_113	8	
AK072649	100_192_117	TC236348 79_192_117	TC133316 76_192_93	TC305793	180_192_116	TC93140 168_192_116	78	Ribosomal protein S6 kinase
AK066145	178_12_58	TC266262 149_12_73	TC134484 154_12_231	TC286452	224_12_70	TC94546 187_12_69	33	Ubiquitin-fold protein
AK064792	276_15_187	TC267323 254_15_188	TC132983 253_159	TC306152	263_15_170	TC107743 230_15_150	87	F9L1.29 protein
AK060523	173_123_185	TC235416 201_126_157	TC148319 211_120_163	TC305149	255_129_195	TC103609 240_129_212	58	Ankyrin-3
^a Pre-ORF dis	tance_uORF lengt	h_intercistronic distance.						
^b Functional a	nnotation based or	1 "The UniProt Knowledgebast	e (UniProt)" database.		-			

ц
qa
Ð
B
9
Ę
b
2
2
ല
f
ö
es
gu
<u>ō</u>
2
Ĕ
ы
2
.⊆
z
3
တိ
LL L
Б
Э
þ
σ
Ř
ĕ
ē
0
ц
R
Ч
ഉ
Ê
<u></u>

^c One of several genes (identifiers) that are in multiple tables because different conserved uORFs were identified in the different datasets. ^d Previously reported upstream open reading frames (see Chapter 1, Section 1.3.7). ^e Contain one or more nested uORFs. Ribosomal rRNA genes have been removed. See Table 3.2 for criteria for verifying rice uORFs in 5 out of 5.

Accession	Full-	Upstream &	Agreement with		Alignme	nt of uORFSC	AN identi	fied main proteins with l	JniP rot proteins ^c	uORF
	Length cDNA ^a	In-frame stop codon	genome annotation ^b	UniP rot protein length (AA)	Align length (AA)	Identities (%)	Expect	Annotation	GO classication (Arabidopsis thaliana)	- valid
AK 106095	Yes	Yes	Yes	392	392	100	2.2e-217	Oxidoreductase	[go:19538] protein metabolism [go:16706] oxidoreductase activity	Yes
AK103391	Yes	Yes	Yes	371	371	100	3.4e-194	T rehalos e-6-phos phate phos phatase	[go:5992] trehalose biosynthesis [go:9507] chloroplast [go:4805] trehalose-phosphatase activity	Yes
AK100589	Yes	Yes	Yes	398	398	100	1.1e-215	AdoMetDC	[go:6596] polyamine biosynthesis [go:5694] chromosome	Yes
AK073303	Yes	Yes	Yes	257	257	100	1.6e-141	Acyl-CoA independent ceramide synthase	[go:6672] ceramide metabolism [go:16020] membrane [go:3824] catalytic activity [go:16811] hydrolase activity	Yes
AK072868	Yes	Yes	Yes	443	443	100	3.6e-238	Uncharacterized protein (probable CBL-interacting serine/threonine-protein kinase 15)	[go:6468] protein phos phorylation [go:7165] signal trans duction [go:5524] ATP binding [go:4672] protein kinase activity	Yes
AK072649	Yes	Yes	Yes	480	488	76	9.6e-199	R ibosomal protein 5 6 K inase	[go:45946] positive translation [go:6468] protein phosphorylation [go:9507] chloroplast [go:16301] kinase activity	Yes
AK066145	No	Yes	Yes	119	119	100	1.3e-59	Membrane-anchored ubiquitin-fold protein	[go:6464] protein modification	Yes
AK064792	Yes	Yes	197 ^d	109	108	57	8.4e-26	F9L1.29 protein	Not available	Yes
AK 060523	Yes	Yes	Yes	166	166	100	1.9e-88	Uncharacterized protein (probable ankyrin-3)	[go:9507] chloroplast [go:5515] protein binding	Yes
^a Used rice cD ^b Used rice cD ^c Translated th	NA in blastn NA in blastn e rice cDNA	search against "NCBI search against "TIGR in the same frame as	I E S T_Others" databas Rice Genome Annota the main open reading	e (rice) to search fo tion DB: Coding Se I frame identified by	or longer 5' E S T equences " datak / uORFSCAN (j	s. Sase to verify the include translatio	cDNA ORF. ns upstream	of predicted start Methionine.	. The resulting protein sequence was used ir	in a blastp

Table 3.2. Criteria for verifying rice uORFs (uORF 5/5 result set)

Translated the rice cDNA in the same frame as the main open reading frame identified by uORFSCAN (include search against "The UniProt Knowledgebase (UniProt)" database.
The genome annotation for the CDS is longer by the indicated number of base pairs.

Table 3.3. The	uORFs pred	licted by uOR	FSCAN in	14/5 ortholo	gues of th	e 5/5 ortholo	gue dataset			
Rice		Wheat	B	arley	~	Aa ize	S orghu	E	Avg. A.A.	Putative function ^b
ldentifier 5'-UTR ^a	Identifier	5'-UTR ^a	ldentifier	5'-UTR ^a	ldentifier	5'-UTR ^a	Identifier 5'-U	TR ^a	similarity (%)	
AK121001 90_33_113	- 14 2 3 C J I	363 16 361	TC146266 TC134801	76_33_71	TC279901	100_33_67	TC102588 118_	33_67 31_111	60 17	Transcription factor
AK119592 304 90 14	3	CZ0_1Z_0C1	TC140173	311 90 110	TC 297985	464 90 147	TC103116 310 9	21_1 11	72	rigpoureucar protein Leucine zipper protein 16
1				287_144_110		440_114_147	286_	114_302	68	
				287_144_110		440_114_147	286_	114_302	70	
AK104437 187_42_20	3 TC266855	203_42_174	TC133317	181_42_178	TC282409	251_42_164			92	R NA-binding protein cabeza
AK103391 157_123_7	4 TC269775	203_123_62	TC134190	156_123_62	TC294011	167_123_75			70	Trehalose
AK102376 115_24_31	TC237876	95_24_48	TC133824	87_24_47			TC101133 576_	24_21	13	Zinc finger protein-like
AK102277 267_78_15	0 TC250018	255_78_130			TC299034	266_78_144	TC102365 258_	78_137	92	AP2 domain-containing protein
228_117_1	50	216_117_130				227_117_144	219_	117_137	82	
126_219_1	50	108_225_130				131_213_144	120_	216_137	65	
AK102068 463_12_11	TC 243607	181_12_14	TC136167	397_12_315			TC103028 402_	12_14	33	
AK100578 249_9_10	TC241920	568_9_372			TC300179	180_9_136	TC103751 83_9	_62	50	mRNA capping enzyme-like
AK099540 277_6_475			TC139607	184_6_495	TC280858	23_6_227	TC101936 513_4	6_465	100	Nam-like protein 2
AK073985 101_12_10	1 TC252583	179_12_900	TC148772	149_12_82			TC92492 123_	12_329	33	R NA-binding protein F US
AK070766 144_15_65	TC263230	129_15_44	TC134132	121_15_44	TC305003	186_15_43			50	PG4
AK065585 126_15_34	TC254095	64_15_42	TC139863	34_15_48	TC311554	192_15_22			100	Monodehydroas corbate
AK065240 112_21_17			TC132139	231_21_13	TC298549	354_21_28	TC93046 63_2	1_111	83	Arabinofuranohydrolase
AK065176 333_12_17	9 TC235016	413_12_202	TC139184	466_12_203			TC93049 357_	12_192	67	P hos phatidylinos itol
AK061109 35_12_98	TC263378	53_12_68			TC306071	79_12_66	TC96170 81_1.	2_57	33	Hypothetical protein
^a Pre-ORF distance_uO ^b Functional annotation Identifiers may not be ur Ribosomal rRNA genes	RF length_intercisi based on "The Uni ique among the ta have been remove	tronic distance. IP rot Knowledgebas ibles as different coi	e (UniProt)" da mbinations of u	tabase. ORFs were conse	rved.					

a
la j
J
g
ŏ
의
片
5
2
e
È
ō
es
B
<u> </u>
2
티
ы
4
.⊆
z
<u>≺</u>
S
屵
ő
E
वि
b
۳
÷ē
E
3
щ
g
Ы
e
Ξ
<u></u>

		512 511				iodaco ol			44000		
R	ice	5	/heat	Ba	rley	Ŵ	aize	Sor	ghum	_ Avg. A.A.	Putative function [®]
ldentifier	5'-UTR ^ª	Identifier	5'-UTR ^a	ldentifier	5'-UTR ^ª	ldentifier 🤅	5'-UTR ^ª	ldentifier	5'-UTR ^a	similarity (%)	
AK122113	73_12_635					TC 283896	249_12_198	TC 99912	357_12_273	33	Unknown protein
AK121846	204_39_102					TC292285	37_39_477	TC103358	136_39_228	25	K ⁺ efflux antiporter
AK121416 (525_36_180			TC134160	116_36_41	TC282124	164_36_38			1	DNA-directed RNA polymerase II
- '	571_33_237				119_33_41			TC105440	34_33_140	10	
	251_126_464					-	102_126_10		38_132_37	2	
	248 129 464					-	102 126 10		38 132 37	2	
AK121398	120_27_63					TC311365	164_27_38	TC104131	111_27_82	40	Hypothetical protein
AK121128	1194_63_16					TC 297930	132_63_301	TC106329	387_66_345	5	AC transposase
-	1011_60_202					TC 297930	132_63_301		642_57_99	-	
AK120409	257_12_1201	TC253102	218_12_752			TC313498	271_12_255			100	Cyclin T1
AK120173	386_51_59	TC 252694	391_51_358					TC93304	397_51_258	1	Hypothetical protein
	33_30_433		36_30_734						183_30_493	56	
AK111899	168_21_68	TC254194	18_21_260					TC105689	513_21_42	1	R es ponse regulator 10
AK111821 \$	978_69_878	TC 269697	396_66_78					TC96287	342_66_372	6	Transcription factor MYB86
	795_75_1055		390_72_78						336_72_372	4	
	212_69_1644		390_72_78						336_72_372	8	
	1223_63_639		396_66_78						342_66_372	10	
-	1125_15_785		360_15_165						306_15_459	50	
AK111748	540_12_55			TC142603	21_12_95	TC300604	546_12_29			33	E thylene receptor-like protein 1
AK105484	181_96_51	TC 235660	198_93_56					TC93642	173_99_47	17	Homeodomain leucine zipper protein
AK103391	176_30_148	TC 269775	222_30_136			TC294011	186_30_149			56	Trehalose-6-phosphate phosphatase
	130_27_197		176_27_185	TC134190	129_27_185					38	
	118_39_197		164_39_185	TC134190	117_39_185					50	
AK102966	206_9_32	TC247483	188_9_14	TC142783	160_9_138					50	Type 5 serine/threonine phosphatase
AK102080 8	399_9_127					TC 298645	131_9_125	TC107852	461_9_24	50	Arm repeat-containing protein
4	491_9_535					-	131_9_125		461_9_24	50	
	272_6_757					-	123_6_136		33_6_455	100	
AK101720	152_9_74	TC270620	187_9_264			TC289352	188_9_675			50	P robable calcium-binding
AK101319 5	976_9_280			TC142174	177_9_335	TC298112	153_9_176			50	Hypothetical protein
~	398_72_295			,	$446_{75}0$		75_72_191			12	
- '	544_75_646				$446_{75}0$		75_72_191			16	
-,	532_87_646	TC271530	20_87_40	,	$434_{87}0$					14	
4	490_129_646				392_129_0	F	136_123_79			10	
	269_9_987				177_9_335	-	153_9_176			50	
AK101100	142_12_21	TC263224	132_12_14	TC132639	175_12_510					100	Protein phosphatase 2A 55 kDa
AK100780	276_21_83			TC141120	409_21_258			TC105228	86_21_152	14	Activin receptor type II precurs or
AK100589	300_54_229					TC292591	343_54_218	TC91317	317_54_227	94	S -adenosylmethionine decarboxylase
AK100299 (592_21_187	TC 239370	264_21_11				574_21_163			1	
AK099745	136_21_245	TC 269480	129_21_140	TC136177	22_21_245					17	Glutamate receptor 3.2 precursor
More											

Table 3.4. The uOREs predicted by uORESCAN in 3/5 orthologues of the 5/5 orthologue dataset

ntinued) Avia A A Butativo function ^b	similarity (%)	83 Nam-like protein 2	81 Serine/threonine kinase	10 S hort stature homeobox protein 2 50		10	6	1	_	50	50	13 Hypothetical protein	100 E nhancer of polycomb-like protein	33 Wali7 protein	9 F7N22.3 protein	100	50 Molybdenum cofactor Cnx1	15 Unknown protein	47	100 P hos phatidylinos itol 3,5-kinas e-like	67 Expressed protein	Acetyl-coenzyme A synthetase	14 Clathrin coat assembly protein	50 Expressed protein	50	44 P hos phatidylinos itol 3-and 4-kinase-like	83 Kelch-like ECH-associated protein 1	72 Hypothetical protein	100	100 Peptidyiprolyl is omerase	100 Pelota (PEL1)	100	75 Ankyrin-2	75 Nitrilase 1	57 Leucine aminopeptidase pre protein	63	100	14	78 Calcium-binding protein like						
<u>thologue dataset (Co</u>	Identifier 5'-UTR ^a	TC101936 381_90_513		TC105154 157_93_526 431 9 336		485_33_258	455_63_258	157_93_526	455_63_258	740_9_27	740_9_27			TC101994 100_12_109		10100350 122_5/_42	TC97361 72_9_118							TC10281 0 65_9_245	TC102810 65_9_245								TC103609 133_27_421	TC93810 51_186_67											
logues of the 5/5 ort	ואומולב				TC281509 24_66_263	1	24_66_263	90_96_167	24_66_263			TC308361 214_27_640	TC313267 310_9_31			TC294109 238_6_201	TC288447 587_9_472			TC294470 533_6_178		TC293675 596_75_169	TC287533 93_24_70	TC288346 32_9_124	152_9_4			TC306152 268_99_98	263_15_187		TC311790 53_6_34	53_6_34	TC305149 127_27_425	TC288549 102_186_226	TC305089 645_24_26	585_84_26	669_6_20	645_24_26	TC314670 272_69_84					חיידים	nserved.
RFSCAN in 3/5 ortho	Identifier 5'-UTR ^a	TC13960 7 52_90_543	TC139536 429_51_117	TC139601 252_87_88		63_33_331							TC137384 305_9_235	TC131045 140_12_347	TC142763 298_33_5	202_00_08		TC132118 275 159 249	275_159_249	TC138312 401_6_126	TC133589 262_12_36		TC139620 197_24_39			TC139184 448_30_203	TC147261 7_21_263			22 130 9 20	TC134531 513_6_122	513_6_122			TC147191 616_24_26	556_84_26	640_6_20	616_24_26				ico (IlniProt)" datahase	ise (UniProt)" database	ise (UniProt)" database השהיהמניחה הל יוסמדה ששרים כחו	ise (UniProt)" database ombinations of uORFs were cor
RFs predicted by uO	ldentifier 5'-UTR ^a		TC247418 389_51_111	TC267242 82 9 80	62_72_37	1				82_9_80	82_9_80	TC258198 99_27_41			TC240522 226_33_83	TC240522 264_6_72		TC246998 270 150 246	270_150_246		TC253984 286_12_43	TC236575 204_75_379				TC235016 395_30_202	TC251833 13_21_266	TC267323 259_99_98	254_15_187	IC269443 96_9_25									TC235910 265_69_267	nath intercistronic distance	1	4 on "The UniProt Knowledgehz	d on "The UniProt Knowledgeba	d on "The UniProt Knowledgeba"	1 on "The UniProt Knowledgeba among the tables as different c
Table 3.4. The uO	Identifier 5'-LITR ^a	AK 099540 145_90_523	AK072868 377_51_96	AK072499 555_90_1239 416 9 1459	317_69_1498	210_33_1641	1675_66_143	1391_96_397	1258_66_560	1159_9_716	1094_9_781	AK072427 7_27_136	AK072349 376 9 36	AK071762 87_12_116	AK070751 664_33_209	398_6_502	AK070456 774_9_51	AK069730 770 156 22	412_153_383	AK067468 3_6_164	AK066942 259_12_32	AK066073 154_75_125	AK065538 162_24_57	AK065237 62_9_226	174_9_114	AK065176 315_30_179	AK065137 8_21_281	AK064792 281_99_98	276_15_187	AK 061004 108_9_30	AK060780 546_6_320	440_6_426	AK060523 60_27_394	AK058965 4_186_71	AK058513 94_24_26	34_84_26	128_6_10	118_24_2	AK058988 139_69_294	^a Pre-ORF distance uORF le	-	^U Eunctional annotation has er	² Functional annotation based	² Functional annotation based	⁷ Functional annotation based Identifiers may not be unique

.

Rice	Wheat	Barley	Maize	Avg. A.A.	Putative function ^b
ldentifer 5′-UTR ^a	ldentifer 5'-UTR ^ª	ldentifer 5'-UTR ^a	ldentifer 5′-UTR ^a	similarity (%)	
AK121850 86_18_51	TC238796 102_18_57	TC140406 84_18_58	TC292944 94_18_72	20	Protein kinase CK2
AK104437 187_42_203	TC266855 203_42_174	TC133317 181_42_178	TC282409 251_42_164	92	R NA-binding protein cabeza
AK103140 271_36_1	TC266113 212_36_407	TC140479 182_36_1	TC281091 194_36_1	64	Protein phosphatase 2C
AK101684 158_21_12	TC253407 137_21_33	TC141318 104_21_33	TC307223 180_21_16	33	CCAAT-binding transcription factor
AK100440 246_81_195	TC235293 210_78_152	TC133630 180_78_153	TC280879 138_78_77	4	BZIP transcription factor
AK099839 147_48_82	TC237323 145_48_50	TC140250 758_48_585	TC309986 144_48_57	7	MAP3K epsilon protein kinase
AK073303 67_9_142	TC237149 75_9_113	TC132556 81_9_139	TC305609 127_9_69	50	Hypothetical protein
135_9_74	75_9_113	81_9_139	127_9_69	50	
AK072868 392_36_96	TC247418 404_36_111	TC139536 444_36_117	TC306591 633_36_366	8	Serine/threonine kinase
338_90_96	347_93_111	387_93_117	576_93_366	9	
269_39_216	278_39_234	318_39_240	768_39_228	8	
259_195_70	268_198_85	308_198_91	260_192_583	35	
249_27_248	258_27_266	298_27_272	444_27_564	11	
AK072649 100_192_117	TC236348 79_192_117	TC133316 76_192_93	TC305793 180_192_116	81	R ibosomal protein 56 kinase homolog
AK070766 144_15_65	TC263230 129_15_44	TC134132 121_15_44	TC305003 186_15_43	50	Protein C 20orf1 1
AK069526 737_87_60	TC265553 757_87_62	TC147034 740_87_62	TC287352 477_87_65	32	GAMYB-binding protein
690_9_185	709_9_188	692_9_188	427_9_193	50	
440_102_342	453_102_351	436_102_351	150_102_377	12	
AK066145 178_12_58	TC266262 149_12_73	TC134484 154_12_231	TC286452 224_12_70	33	F 2E 2.12
AK065585 126_15_34	TC254095 64_15_42	TC139863 34_15_48	TC311554 192_15_22	100	Monodehydroas corbate reductase
AK063875 128_78_44	TC238591 348_78_2	TC133365 519_78_2	TC312696 325_78_2	12	Prokineticin 2 precursor
AK060523 173_123_185	TC235416 201_126_157	TC148319 211_120_163	TC305149 255_129_195	60	Ankyrin-3
AK060232 38_15_10	TC273755 224_15_44	TC135479 410_15_99	TC291309 171_15_4	25	S AM-dependent methyltransferase-like
^a Pre-ORF distance_uORF Ik ^b Functional annotation base	ength_intercistronic distance d on "The UniP rot Knowledgeba	se (UniP rot)" database			

Table 3.5. The uORFs predicted by uORFSCAN in 4/4 orthologues of the 4/5 orthologue dataset

Identifiers may not be unique among the tables as different combinations of uORFs were conserved. Ribosomal rRNA genes have been removed.

Table 3.6. The uO	RFs predicted by uO	RFSCAN in 3/4 orth	ologues o	f the 4/5 ort	thologue data	set
Rice	Wheat	Barley	2	Aaize	_ Avg. A.A.	Putative function
ldentifier 5′-UTR ^a	ldentifier 5′-UTR ^a	ldentifier 5'-UTR ^a	ldentifier	5'-UTR ^a	similarity (%)	
AK121416 625_36_180		TC134160 116_36_41	TC282124	164_36_38	1	DNA-directed RNA polymerase
AK121122 743_21_34	TC266483 118_21_70	TC148472 179_21_69			14	S NF protein
AK121001 90_33_113		TC146266 76_33_71	TC279901	100_33_67	60	Trans cription factor
AK120494 199_21_34	TC256417 136_21_625	TC134801 394_21_404			17	Hypothetical protein
AK120409 257_12_1201	TC253102 218_12_752		TC313498	271_12_255	100	Cyclin T1
AK119650 98_21_61	TC247011 129_21_73	TC148824 219_21_8			17	MAP kinase MAPK2
AK119592 304_90_148		TC140173 311_90_110	TC 297985	464_90_147	72	Homeodomain leucine zipper protein 16
283_111_148		287_114_110		440_114_147	68	
280_114_148		287_114_110		440_114_147	70	
AK111887 244_21_108	TC235829 289_21_48	TC131138 232_21_48			67	Calcineurin B protein
AK111883 623_12_193	TC232511 688_12_250		TC 295627	422_12_387	25	Hypothetical WD-repeat protein
508_45_275	24_45_881			497_45_279	64	
433_54_341	195_54_701			236_54_531	9	
348_12_468	139_12_799			338_12_471	33	
300_60_468	288_60_602			290_60_471	15	
246_54_528	195_54_701			236_54_531	9	
AK111748 540_12_55		TC142603 21_12_95	TC300604	546_12_29	33	E thylene receptor-like protein 1
AK111699 401 9 0	TC258667 378_9_360		TC307333	371_9_0	100	tR NA-dihydrouridine synthase 3
AK106310 547 72 149	TC273695 366 72 174	TC136869 1_72_168		1	21	Hypothetical protein
128_21_619	471_21_120	106_21_114			17	
AK103631 376_15_48		TC139875 822_15_0	TC306875	$445_{15}0$	25	Hypothetical protein
328_24_87	TC253392 188_24_308	224_24_589			13	
313_39_87	173_39_308	209_39_589			17	
277_18_144		3_18_816	TC306875	442_18_0	20	
AK103390 277_51_25	TC236507 242_51_24	TC132330 379_51_24			69	Hypothetical protein
AK103207 167_9_20	TC269820 173_9_475		TC306369	149_9_25	50	protein kinase
AK103040 8 54 271	TC254504 13 54 233		TC 293848	19 54 248	35	S ingle myb histone 1
45_87_201	TC254504	TC148672 25_84_166			64	
AK102966 206_9_32	TC247483 188_9_14	TC142783 160_9_138			50	Type 5 serine/threonine phosphatase 55
AK102376 115_24_31	TC237876 95_24_48	TC133824 87_24_47			14	Zinc finger (C3HC4-type RING finger)
AK102370 127_60_11	TC255624 139_63_11	TC133336 401_57_20			30	Tubby-like protein 3
124_63_11	139_63_11		TC312575	64_66_92	10	
AK102277 267_78_150	TC250018 255_78_130		TC 299034	266_78_144	92	Unknown protein
228_117_150	216_117_130			227_117_144	82	
126_219_150	108_225_130			131_213_144	65	
AK102068 463_12_11	TC243607 181_12_14	TC136167 397_12_315			33	Hypothetical protein
AK101942 106_18_51	TC248321 82_18_27		TC310601	4_18_283	40	Calcium-dependent protein kinase
AK101720 152_9_74	TC270620 187_9_264		TC 289352	188_9_675	50	Probable calcium-binding mitochondrial
AK101520 222_30_1281		TC136686 134_30_360	TC 297598	227_30_3	11	protein F19P19.26
AK101319 976_9_280		TC142174 177_9_335	TC298112	153_9_176	50	Hypothetical protein
898_72_295		446_75_0		75_72_191	12	
544_75_646		446_75_0		75_72_191	16	
532_87_646	TC271530 20_87_40	434_87_0			14	
More						

dataset	
orthologue	
5 U	
4	
f the	
es o	
nbol	
ortho	
3/4 (
L I	
A	
SO	
Ч	
on	
ą	
redicted	
s D	
ЧĽ	
<u>o</u>	
The	
3.6.	
able 3	

Table 3.6. The uO	RFs predicted by uO	RFSCAN in 3/4 ortho	ologues of t	he 4/5 ort	hologue data	s et (Continued)
Rice	Wheat	Barley	Ma	ize	Avg. A.A.	Putative function ^b
Identifier 5'-UTR ^a	Identifier 5'-UTR ^a	Identifier 5'-UTR ^a	Identifier 5'	-UTR ^a	similarity (%)	
490_129_646		392_129_0	13	6_123_79	10	
269_9_987		177_9_335	15	3_9_176	50	
AK101266 493_9_69		TC130775 526_9_432	TC285008 33	3_9_90	50	Thiol protease aleurain precursor
464_9_98		526_9_432	33	3_9_90	50	
457_45_69		301_45_621	27	0_45_117	14	
AK101100 142_12_21	TC263224 132_12_14	TC132639 175_12_510			100	P rotein phosphatase 2A 55 kDa B
AK100578 249_9_10	TC241920 568_9_372		TC300179 18	0_9_136	50	MR NA capping enzyme-like protein
AK100539 301_45_11	TC236703 339_45_11		TC305240 18	3_45_11	93	Dentin sialophosphoprotein 1
AK100332 50_9_2019	TC272800 48_9_152	TC153584 275_9_342			50	Chromodomain helicase DNA binding
262_78_1738	69_75_65	71_81_474			4	
1769 9 300	48 9 152	275 9 342			50	
1744 87 247	57 87 65	479 90 57			m	
1657 9 412	48 9 152	275 9 342			50	
1513 78 487	69 75 65	71 81 474			7	
1505 9 564	 48 9 152	275 9 342			50	
1435 9 634	48 9 152	275 9 342			50	
134 72 1872	72 72 65	80 72 474			-	
AK100299 692 21 187	TC 239370 264 21 11		TC 291351 57	4 21 163		Hvpothetical protein
AK100037 449 33 85	TC234512 400 33 495	TC134276 222 33 507			06	SAC domain-containing protein
AK099852 906 9 2	TC 233509 103 9 218	TC144509 159 9 177			50	Hvnothetical protein
AK099745 136 21 245	TC 269480 129 21 140	TC136177 22 21 245			17	Glutamate recentor 3 2
AK099676 77 18 8	TC247479 425 18 669		TC294642 38	18 8	20	ATPase
AK099625 353 9 26		TC140108 238 9 26	TC 281333 10	2 9 25	100	Hvnothetical protein
AK099540 277 6 475		TC139607 184 6 495	TC 280858 23	6 227	100	Nam-like nrotein 2
AK074023 6 75 94		TC145114 158 78 142	TC306013 27	4 72 248	4	Hvnothetical protein
AK073985 101 12 101	TC252583 179 12 900	TC148772 149 12 82	1		67	R NA-binding protein FIIS
	TC247410 200 E1 111	TC120526 420 E1 117			01	
06_16_//6 0002/UAA	TC24/410 309_31_111 TC265505 300 150 02	11123330 428_31_11/	10 0010001	C 1 C 2 O 2		3 etine/uneonine kindse Lumothotical acotaia
//_0C1_2/2 60/2/UAA			TC201500 21	co_cc1_c	20	
AK0/2499 31/_69_1498	TC26/242 62_/2_3/		TC281509 24	_66_263	- :	S hort stature homeobox
AKU/242/ /_2/_136	IC258198 99_27_41		IC308361 21	4_2/_640	13	Hypothetical protein
AK072349 376_9_36		TC137384 305_9_235	TC313267 31	0_9_31	100	E nhancer of polycomb-like protein,
AK070751 664_33_209	IC240522 226_33_83	IC142763 298_33_5			6	F7N22.3 protein
398_6_502	264_6_/2		IC 294109 23	8_6_201	100	
AK069730 770_156_22	TC 246998 270_150_246	TC132118 275_159_249			15	Hypothetical protein
412_555	2/0_130_240	647_601_6/2			4/	
AKU69/26 120_/8_82	1C235568 119_/8_/4	10139383 107_78_72			80	CBL-interacting protein kinase 23
AK069526 214_126_544	TC265553 239_123_544	TC147034 222_123_544			80	GAMYB-binding protein
149_246_489	174_243_489	157_243_489			63	
AK069065 133_12_97	TC266624 198_12_77	TC132959 163_12_73			33	RAD23-like protein
AK068416 254_33_43	TC239989 34_33_29		TC287928 31	2_33_796	20	E xpressed protein
AK067468 3_6_164		TC138312 401_6_126	TC294470 53	3_6_178	100	P hos phatidylinos itol 3,5-kinas e-like
AK067412 222_84_49	TC252944 247_81_102	TC142664 123_84_118			19	P rotein kinase
AK067258 246_27_25	TC247646 508_27_43	TC140304 193_27_46			38	Ankyrin-like protein
AK067123 840_72_630		TC132179 380_75_759	TC300140 66	_69_62	4	Ubiquitin-specific protease 12
579_69_894		963_66_185	66	_69_62	1	
291_72_1179		380_75_759	66	_69_62	4	
More						

Wited Identifier 5'-UTR 19 TC271435 169_57_ 32 T575000 153_39_ 33 T5755000 365 33	Barley R ^a Identifier 5'-U 23 TC137456 357 57 TC137450 222_	y Ide ITR ^a Ide 57_231 39_384	M	aize 5'-UTR ^ª	Avg. A.A. similarity (%)	Putative function ^b Arabidopsis thaliana genomic DNA
TC253984 286_12_ TC256019 215_24_ TC236575 204_75_ TC233536 232_69_	43 TC133589 262_ 326 TC148944 275_ TC148993 13_6 379 TC148993 13_6 379 TC150526 760_	12_36 24_194 _560 TC2 72_308 TC2	281469 5	539_6_92 596_75_169	67 14 100 4	E xpressed protein Hypothetical protein RING zinc finger protein-like Acetyl-coenzyme A synthetase Hypothetical protein
TC2435161 74_45_1 TC243618 239_9_1 TC243618 239_9_1 82_57_3 TC243502 103_18 TC249552 503_117 7 TC249752 503_117 7 339_108	17 17 191 191 191 147 191 147 191 147 147 147 147 147 147 147 14	2291 TCG 9_291 63_155 18_9 TC3 18_9 TC3	287626 2975318 305318	306_45_23 318_117_159 362_108_124	6 5 5 5 5 5 5 6 6	Hypothetical protein 1 Hypothetical protein Cell division protein kinase 8 Transformer-2-like protein
TC235016 413_12_ 395_30 TC251833 13_21_2	TC139620 197_ TC132139 231_ 202 TC139184 466_ 202 TC139184 448_ 266 TC137261 7_21 266 TC134594 263_	24_39 TC2 21_13 TC2 12_203 30_203 30_203 63_414 TC2	287533 2 298549 3 2987474 1	33_24_70 554_21_28 127_66_507	14 83 67 83 83	C lathrin coat assembly protein AP 47 Arabinoxylan arabinofuranohydrolase isoenzyme Phosphatidylinositol Kelch-like E CH-as sociated protein 1 Hydroxyproline-rich
TC267323 259_99_ 254_15_ TC239301 99_12_1 TC263378 53_12_6 TC269443 96_9_25	TC138646 106_ _98 _187 12 68 5 TC151138 130_ 5	15_35 TC3 TC3 TC3 TC3 TC3 TC3	288136 1 306152 2 287762 1 306071 7	159_15_32 268_99_98 263_15_187 164_12_12 79_12_66	75 72 100 33 100	Unknown protein protein F 12M16.29 Hypothetical protein P eptidylprolyl isomerase
TC239546 86_33_7 5 TC289581 134_120 5 TC269581 134_120	TC134531 513_ 513_ 74 TC149822 139_ 0_152 TC142662 193_ 0_152 184_	6_122 TC3 6_122 33_102 33_102 117_14 126_14	311790	53_6_34 53_6_34	100 100 7 7	Pelota (PEL1) Hypothetical protein Calyx protein
TC235910 265_69_ TC269547 203_51_	_267 _4 TC152057 83_5 660_ 556_ 640_ 616_	TC3 1_420 24_26 84_26 6_20 24_26	314670 2 305089 6	272_69_84 545_24_26 585_84_26 569_6_20 545_24_26	45 50 63 100	Calcium-binding protein-like Lipase class 3-like Neutral leucine aminopeptidase
TC238796 102_18_	TC150825 122_ _57 TC140406 84_1	15_42 TC2 8_58	282858	232_15_86	25 40	Transporter associated with antigen Kinase CK2 regulatory subunit

Identifiers may not be unique among the tables as different combinations of uORFs were conserved. Ribosomal rRNA genes have been removed.

Table 3.7. The uO	RFs predicted by uO	RFSCAN in 3/3 orthc	logues of the	3/5 orthologue dataset
Rice	Wheat	Barley	Avg. A.A.	Putative function ^b
ldentifer 5'-UTR ^a	Identifer 5'-UTR ^a	Identifer 5'-UTR ^a	similarity (%)	
AK122166 338_18_606 AK122131 322 9 28	TC250897 2_18_164 TC251213 242 9 30	TC149838 233_18_254 TC147542 253 9 31	20 100	Trans lation initiation factor 3 Chitin-inducible aibberellin-restonsive
AK121850 86_18_51	TC238796 102_18_57	TC140406 84_18_58	40	Kinase CK2 regulatory subunit
AK121122 743_21_34	TC266483 118_21_70	TC148472 179_21_69	14	NF protein
AK120494 199_21_34	TC256417 136_21_625	TC134801 394_21_404	17	Hypothetical protein F17M5.140
AK119650 98_21_61	1C24/011 129_21_/3	TC1148824 219_21_8	2 (MAP Kinase MAPK2
AK11188/ 244_21_108 AK106210 547 72 140	TC 235829 289_21_48 TC 235605 366 72 174	TC136060 1 77 160	6/ 1C	Calcineurin B protein Urwothotical anotain
21 21 24/_/2/2	1.27,3093 300_/2_1/4 471 31 130	10120009 1_12_100 106 21 114	17	
AK104437 187 42 203	TC266855 203 42 174	TC133317 181 42 178	92	R NA-binding protein cabeza
AK103631 328_24_87	TC253392 188_24_308	TC139875 224_24_589	13	Hypothetical protein
313_39_87	173_39_308	209_39_589	17	
AK103391 205_75_74	TC269775 251_75_62	TC134190 204_75_62	92	Trehalose-6-phosphate phosphatase
157_123_74	203_123_62	156_123_62	80	
130_27_197	176_27_185	129_27_185	38	
118_39_197	164_39_185	117_39_185	50	
AK103390 277_51_25	TC236507 242_51_24	TC132330 379_51_24	69	Non-imprinted in P rader-Willi/Angelman syndrome region protein 2
AK103140 271_36_1	TC266113 212_36_407	TC140479 182_36_1	73	Hypothetical protein
AK103040 45_87_201	TC254504 50_84_166	TC148672 25_84_166	64	S ingle myb his tone 1
AK102966 206_9_32	TC247483 188_9_14	TC142783 160_9_138	50	Type 5 serine/threonine phosphatase 55
AK102376 115_24_31	TC237876 95_24_48	TC133824 87_24_47	14	Zinc finger (C3HC4-type RING finger)
AK102370 127_60_11	TC255624 139_63_11	TC133336 401_57_20	30	Tubby-like protein 3
AK102068 463_12_11	TC243607 181_12_14	TC136167 397_12_315	33	Hypothetical protein
AK101684 158_21_12	TC253407 137_21_33	TC141318 104_21_33	50	CCAAT-box transcription factor
AK101539 37_12_125	TC251540 98_12_110	TC140495 36_12_129	100	CG11670-PA
AK101319 532_87_646	TC271530 20_87_40	TC142174 434_87_0	14	Hypothetical protein F14F8_120
AK101100 142_12_21	TC263224 132_12_14	TC132639 175_12_510	100	Protein phosphatase 2A 55 kDa B
AK100440 246_81_195	TC235293 210_78_152	TC133630 180_78_153	31	BZIP transcription factor, complete
AK100037 449_33_85	TC234512 400_33_495	TC134276 222_33_507	90	SAC domain-containing protein
AK099852 906_9_2	TC233509 103_9_218	TC144509 159_9_177	50	Hypothetical protein
AK099839 147_48_82	TC237323 145_48_50	TC140250 758_48_585	20	MAP3K epsilon protein kinase
AK099745 136_21_245	TC269480 129_21_140	TC136177 22_21_245	17	Glutamate receptor 3.2
AK073985 101_12_101	TC252583 179_12_900	TC148772 149_12_82	67	R NA-binding protein F US
AK073303 67_9_142	TC237149 75_9_113	TC132556 81_9_139	100	Hypothetical protein
135_9_74	75_9_113	81_9_139	50	:
AK072868 392_36_96	TC247418 404_36_111	TC139536 444_36_117	91	S erine/threonine kinase
377_51_96	389_51_111	429_51_117	81	
338_90_96	347_93_111	387_93_117	53	
269_39_216	278_39_234	318_39_240	83	
259_195_70	268_198_85	308_198_91	65	
249_27_248	258_27_266	298_27_272	75	
AK072649 100_192_117	TC236348 79_192_117	TC133316 76_192_93	87	R ibos omal protein S 6 kinas e homolog
AK072244 124_15_222	TC252797 107_15_14	TC136383 66_15_390	25	Hypothetical protein
AK072085 725_6_132	TC253625 6_6_624	TC150175 602_6_23	100	RNA polymerase II termination
683_6_1/4	6_6_24	602_6_23	100	
409_0_200	0_0_024 101 70 67	002_0_23 230 81 331	001	
000_01_100 AKN7N766 144 15 65	491_/0_0/ TC763730 170 15 44	TC134132 121 15 44	75	DCA
AKN7N751 664 33 209	TC202230 122_13_44	TC142763 298 33 5	r, o	F 04 F 7N 22 3 protein
More	12-11-11-11-11-11-11-11-11-11-11-11-11-1		•	

-Ē

Rice	Wheat	Barley	Avg. A.A.	P utative function ^b
Identifer 5'-UTR ^a	Identifer 5'-UTR ^a	Identifer 5'-UTR ^a	similarity (%)	
AK069730 770_156_22	TC246998 270_150_246	TC132118 275_159_249	15	Hypothetical protein
AK069726 120 78 82	TC235568 119 78 74	TC139583 107 78 72	80	Hordeum vulgare mRNA for expressed sequence tag
AK069534 870_57_327	TC236981 222_57_931	TC139404 90_57_190	9	Auxilin-like protein
603_57_594	222_57_931	90_57_190	6	
411_93_750	982_93_135	51_96_190	9	
1068_96_90	982_93_135	51_96_190	n	
AK069526 737_87_60	TC265553 757_87_62	TC147034 740_87_62	54	G AMY B-binding protein
690_9_185	709_9_188	692_9_188	100	
440_102_342	453_102_351	436_102_351	18	
214_126_544	239_123_544	222_123_544	80	
149_246_489	174_243_489	157_243_489	63	
AK069065 133_12_97	TC266624 198_12_77	TC132959 163_12_73	33	R AD23-like protein
AK067412 222_84_49	TC252944 247_81_102	TC142664 123_84_118	19	P rotein kinase
AK067258 246_27_25	TC247646 508_27_43	TC140304 193_27_46	38	Ankyrin-like protein
AK067156 1433_6_261	TC238252 27_6_439	TC140969 143_6_148	100	Hypothetical protein
AK066952 437_57_119	TC271435 169_57_23	TC137456 357_57_231	6	Arabidopsis thaliana genomic DNA
392 39 182	153 39 57	222 39 384	8	-
AK066942 259_12_32	TC253984 286_12_43	TC133589 262_12_36	67	E xpressed protein
AK066480 146 24 104	TC256019 215 24 326	TC148944 275 24 194	14	Hypothetical protein
AK066307 1325_12_14	TC264007 215_12_16	TC149400 160_12_15	100	R NA polymerase alpha subunit
1232_6_113	109_6_128	60_6_121	100	
AK066145 178_12_58	TC266262 149_12_73	TC134484 154_12_231	67	Protein F 2E 2.12
AK065998 108_72_28	TC253336 232_69_101	TC150526 760_72_308	4	Hypothetical protein
AK065729 398_9_62	TC243618 239_9_191	TC134511 147_9_291	50	Hypothetical protein
244_9_216	239_9_191	147_9_291	50	
193_60_216	62_57_320	229_63_155	1	
AK065683 82_18_41	TC243502 103_18_600	TC153017 307_18_9	20	Cell division protein kinase 8
AK065585 126_15_34	TC254095 64_15_42	TC139863 34_15_48	100	Monodehydroas corbate reductas e
AK065578 325_51_331	TC249752 302_51_377	TC139461 274_51_93	69	Transformer-2-like protein
AK065329 444_15_35	TC238280 174_15_44	TC147756 276_15_44	50	Hypothetical protein F14M19.150
AK065176 333_12_179	TC235016 413_12_202	TC139184 466_12_203	67	P hos phatidylinos itol 3
315_30_179	395_30_202	448_30_203	44	
AK065137 8_21_281	TC251833 13_21_266	TC147261 7_21_263	83	Kelch-like ECH-associated protein 1
AK063875 128_78_44	TC238591 348_78_2	TC133365 519_78_2	23	Prokineticin 2 precursor
AK061004 108_9_30	TC269443 96_9_25	TC151138 130_9_25	100	peptidylprolyl is omeras e
AK060783 216_21_173	TC247469 243_21_176	TC132683 307_21_175	100	Hypothetical protein
AK060523 173_123_185	TC235416 201_126_157	TC148319 211_120_163	68	Hypothetical protein
AK060232 38_15_10	TC273755 224_15_44	TC135479 410_15_99	25	S AM-dependent methyltrans feras e-like
AK059720 301_33_27	TC239546 86_33_74	TC149822 139_33_102	10	Hypothetical protein
AK059394 1_9_26	TC270230 46_9_128	TC134188 182_9_266	50	S mall nuclear ribonucleoprotein
AK059001 179_117_246	TC269581 134_120_152	TC142662 193_117_14	10	Calyx protein
170_126_246	134_120_152	184_126_14	7	
AK058880 106_51_4	TC269547 203_51_4	TC152057 83_51_420	50	Lipase class 3-like
^a Pre-ORF distance_uORF le	ngth_intercistronic distance			
^D Functional annotation base	l on "The UniProt Knowledgeba	se (UniP rot)" database		
Identifiers may not be unique	among the tables as different c	ombinations of uORFs were co	ns erved.	
KIDOSOMAI IKINA GENES IIAVE	been removea.			

ਰਿ
anu
ntir
ပိ
et
la ta s
er
ogı
P
P
3/5
he
of t
es
nbc
þ
ort
33
. <u> </u>
Z₽
S
E L
on /
ð
tec
gi
pr
Fs
OR
e n
님
Ч.
e 3
ab

Table 3.8. Rice uORFs predicted by	uORFSCAN that are conserved in Arabidopsis
------------------------------------	--

	Rice	Arab	pidops is	Avg. A.A.	Butative function ^b
Identifier	5'-UTR ^a	Identifier	5'-UTR ^a	similarity (%)	
AK101100	142_12_21 ^{c,d}	AT1G51690.1	555_12_1160	33	Protein phosphatase 2a
AK066952	365_66_182	AT3G13225.1	364_63_431	27	WW domain containing protein
	368_63_182 ^e		364_63_431	29	
	503_51_59		553_51_254	1	
AK119592	304_90_148 ^{c,d}	AT3G01470.1	162_87_120	36	Homeodomain leucine zipper protein
AK100589	248_156_179 ^{c,d}	AT3G02470.3	222_156_154	82	S-Adenosylmethionine decarboxylase
AK103391	176_30_148 ^{c,d,f}	AT4G22590.1	254_30_137	44	Trehalose-6-phosphate phosphatase
	205_75_74 ^g		283_75_63 ^g	71	
AK069534	813_9_432	AT4G12770.1	41_9_108	50	Auxilin-like protein
AK069526	214_126_544 ^c	AT4G19110.2	255_126_527	44	GAMYB-binding protein
	690_9_185 ^c		603_9_296	50	
	820_36_28		398_36_474	17	
AK072868	338_90_96 ^{c,d}	AT5G58380.1	11_87_295	17	CBL-interacting protein kinase
AK060523	173_123_185 ^c	AT5G07840.1	289_117_250	36	Ankyrin-3
			313_93_250 ^e	44	
	206_90_185 ^e		313_93_250 ^e	33	
AK067412	222_84_49 ^{c,h}	AT5G50180.1	357_84_79	4	Protein kinase ATN1
AK102277	228_117_150 ^c	AT1G68550.1	309_96_95	21	Hypothetical protein
AK100332	1174_21_883	AT5G44800.1	359_21_3	14	Helicase
	1618_21_439		359_21_3	17	
	1810_21_247		359_21_3	17	
AK059639	1 45 784 ^c	ATCG00920.1	55 45 844	86	40S ribosomal protein S15

^a P re-uORF distance_uORF length_intercistronic distance. ^b Functional annotation based on "the UniProt Knowledgebase (uniProt)" database.

^C Rice UORF is conserved in at least two orthologous cereal and Arabidopsis genes. ^d Rich in serine (at least 20%).

Rich in serine (at least 20%). ^e Nested uORF. ^f One of several genes (identifiers) that are in multiple tables because different conserved uORFs were identified in the different datasets. ^g Overlapping uORF.

⁶ Overlapping UORF. ^h Rich in arginine (approximately 25%). Ribosomal rRNA genes have been removed. Rows in italics are false positive predictions (see Table 3.9. Criteria for verifying rice uORFs that are conserved in Arabidopsis).

Table 3.9.	Criteria fo	r verifying rice	e uORFs that ar	e conserved ii	n Arabidop	sis				
Accession	FL- cDNA ^a	Upstream &	Agreement with		Alignmen	nt of uORFS	CAN iden	tified main proteins with Uni	P rot proteins ^c	uORF
		In-frame stop codon	genome annotation ^b	UniP rot protein length (AA)	Align length (AA)	ldentities (%)	Expect	Annotation	GO classication (Arabidopsis thaliana)	valid
AK101100	Yes	Yes	Yes	525	525	100	5.0e-287	Protein phosphatase 2A	[go:6470] protein dephosphorylation [go:166] nucleotide binding	Yes
AK066952	Yes	Yes	Yes	860	694	66	0	WW domain containing protein	Not available	Y es ^d
AK119592	Yes	Yes	Yes	343	343	100	6.8e-187	Homeodomain leucine zipper protein	[go:6355] regulation of transcription [go:3677] DNA binding	Yes
AK100589	Yes	Yes	Yes	398	398	100	1.1e-215	5 - Ade nos ylmethionine decarboxylas e	[go:6596] polyamine biosynthesis [go:5694] chromosome	Yes
AK103391	Yes	Yes	Yes	371	371	100	3.3e-194	T rehalos e-6-phos phate phos phatas e	[go:5992] trehalose biosynthesis [go:9507] chloroplast	Yes
AK069534	Yes	Yes	1066 ^e	485	413	61	7.6e-117	Auxilin-like protein	Not available	Yes ^f
AK069526	Yes	Yes	Yes	483	483	83	5.8e-256	GAMY B-binding protein	[go:6468] protein phosphorylation [go:5524] ATP binding [go:16301] kinase activity	Yes
AK072868	Yes	Yes	Yes	443	443	100	3.5e-238	CBL-interacting kinase 15	[go:6468] protein phosphorylation [go:5524] ATP binding [go:16301] kinase activity	Yes
AK 060523	No	Yes	Yes	166	166	66	8.2e-88	Ankyrin-3	[go:5515] protein binding	Yes
AK067412	Yes	Yes	Yes	353	353	72	1.2e-136	P rotein kinase ATN 1	[go:6468] protein phosphorylation [go:5524] ATP binding [go:16301] kinase activity	Yes
AK102277	Yes	Yes	Yes	338	338	66	4.9e-179	Hypothetical protein	Not available	Yes
AK100332	Yes	Yes	4092 ^e	2192	872	30	5.3e-28	Helicase	[go:3676] nucleic acid binding [go:6355] regulation of trans cription [go:5515] protein binding	PoN
AK059639	No	Yes	Yes	154	154	100	2.6e-77	405 ribosomal s15 protein	[go:3735] structural part of ribosome [go:6412] protein biosynthesis	No ^h
^a Used rice cDN ^b Used rice cDN ^c Translated the	A in blastn searc A in blastn searc rice cDNA in the	h against "NCBI ES h against "TIGR Ric same frame as the	T_Others" database (ric :e Genome Annotation I main open reading fran	:e) to search for long DB: Coding Sequenc ne identified by uORF	er 5' E S T s. es " database to S C AN (include 1	verify the cDN translations up	A ORF. stream of pr	edicted start Methionine). The resu	lting protein sequence was used in a blast	p search

The Unitrock Knowledgebase (Unitrody database. The protein data suggests that the main open reading frame predicted by UORFSCAN extends further upstream, but does not overlap the predicted uORFs and so the uORFs are still valid. The genome annotation for the CDS is longer by the indicated number of base pairs. A shorter protein was identified, but does not overlap the predicted uORFs and so the uORFs are still valid. A nonger protein was identified, but does not overlap the predicted uORFs and so the uORFs are still valid. Possibly not functional because pre-orf distance is less than 20 nucleotides that is thought to be required for translation initiation.

			In five cere	als		
Identifier	uORF1	uORF2	uORF3	uORF4	uORF5	Main OR F
AK106095	131_9_17 ^a CCGATGC ^b					157_1179 CCCATGG
AK103391	205_75_74 TTGATGA					354_1116 CAAATGG
AK100589	240_9_334 TGGATGT	248_156_179 CTAATGG	296_108_179° TTGATGT			583_1197 CCAATGG
AK073303	67_9_142 TCCATGC	135_9_74 CTCATGA				218_774 AGCATGG
AK072868	249_27_248 GGAATGC	259_195_70 AAGATGT	269_39_216 TGCATGC	338_90_96 TTCATGA	392_36_96 Actatgg	524_1332 GTGATGG
AK072649	100_192_117 CTCATGA					409_1443 AAGATGG
AK066145	178_12_58 ^d GCTATGG					248_360 GAGATGG
AK064792	276_15_187 CGGATGC					478_330 GGAATGG
AK060523	173_123_185 ^e ACTATGG					481_501 CGGATGG
		Ir	n rice and arab	idopsis		
Identifier	uORF1	uORF2	uORF3	uORF4	uORF5	Main OR F
AK101100	142_12_21 GCCATGG					175_1578 AAGATGG
AK066952	365_66_182 CCAATGA	368_63_182 Atgatga	503_51_59 CTGATGA			613_2085 GGGATGC
AK119592	304_90_148 CCGATGA					542_1032 GCGATGG
AK100589	248_156_179 CTAATGG					583_1197 CCAATGG
AK103391	176_30_148 AACATGA	205_75_74 TTGATGA				354_1116 CAAATGG
AK069534	813_9_432 TCGATGA					1254_1602 GAGATGC
AK069526	214_126_544^d GATATGG	690_9_185 TTGATGG	820_36_28 Catatga			884_1455 AAAATGG
AK072868	338_90_96 TTCATGA					524_1332 GTGATGG
AK060523	173_123_185 [°] ACTATGG	206_90_185 CCGATGC				481_501 CGGATGG
AK067412	222_84_49 CTGATGC					355_1059 GGGATGG
AK102277	228_117_150 TCTATGC					495_1017 GAAATGG

Table 3.10. Comparison of conserved cereal uORFs and their main ORF start context

^a Pre-ORF distance_uORF length_intercistronic distance. ^b uORF or mainORF sequence context from -3 position to +4. ^c AdoMetDC nested uORF found in this study. ^d uORF sequence context good as main ORF.

^e uORF sequence context better than main ORF.

	Upstream open reading frames o	conserved in 5/5 cereals but not in Arabidopsis
AK106095 uORF1	AK106095_r_ORF_131_9_17 TC265929_w_ORF_113_9_16 TC148181 b_ORF_67_9_16 TC288369_m_ORF_131_9_17 TC102998_s_ORF_149_9_17	ML ML ML ML **
AK064792 uORF1	AK064792 r_ORF_276_15_187 TC267323_w_ORF_254_15_188 TC132983 b_ORF_253_159 TC306152_m_ORF_263_15_170 TC107743_s_230_15_150	MLCC MLCC MLCC MLCC MLCC
AK072868 uORF1	AK072868 r_ORF_249_27_248 TC247418_w_ORF_258_27_266 TC139536_b_ORF_298_27_272 TC306591 m_ORF_444_27_564 TC102544_s_ORF_331_27_265	MQKDVLAC- MQKDVFAC- MQRDVFAC- MVK-IAGHL MQKDVLAC- * : :
AK072868 uORF2	AK072868_r_ORF_259_195_70 TC247418_w_ORF_268_198_85 TC139536_b_ORF_308_198_91 TC306591_m_ORF_260_192_583 TC102544_s_ORF_341_195_87	MCLHARELPCEGIGRVASHISPSTTLHDIGTQEYI-QRLLHVLSHYGVRRGNSTIFLDHHLGGDG MCLHARELPCEGIGRVAAPVSALIDLDDTASQQHTTHLFFHVLLHNGVRRGISTIILDYHLGGDG MCLHARELPCEGIGRVAAPLSALIDLDDTASQHHTAHLFFHVLLHNGVRRGISTIILDYHLGGDG MMLHD-GVPCLBIGRIHKHSCTLDLDDIGLQIYA-QQLPHAHTHTGAASCSSTIVSGFFLGGDG MCLHVEELPCEGIGRVAHHIDSLPALDDLAAQEYT-HLLLLVLPHNGVRCGGSTVFLDHLGGDG * ** ** ** ** ** ** ** ** ** ** ** **
AK072868 uORF3	AK072868 r_ORF_269_39_216 TC247418_w_ORF_278_39_234 TC139536_b_ORF_318_39_240 TC306591 m_ORF_768_39_228 TC102544_s_ORF_351_39_233	MLESYLVR-ELAG MLESYLAR-ESAG -MRLWLPKPRYIL MLKSYLVR-DLAG :. :* :
AK072868 uORF5	AK072868 r_ORF_392_36_96 TC247418_w_ORF_404_36_111 TC139536_b_ORF_444_36_117 TC306591 m_ORF_633_36_366 TC102544_s_ORF_474_36_113	-MGFDVATQPSS -MGFDVASQPSS -MGFDVASQPSS MLRLQKALLSR- -MGFDVAAQPSS : :: *
AK100589 uORF1	AK100589 r_ORF_240_9_334 TC264559_w_ORF_201_9_317 TC130707_b_ORF_228_9_318 TC292591_m_ORF_286_9_320 TC91317_s_ORF_260_9_329	MY MC MF MY MY *
AK100589 uORF3	AK100589_r_ORF_296_108_179 TC264559_w_ORF_254_105_168 TC130707_b_ORF_281_105_169 TC292591_m_ORF_336_111_168 TC91317_s_ORF_310_111_177	-MYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS -MYEAPLGYSIEDVRPAGGAKKF-SAAYSNCAKKPS -MYEAPLGYSIEDVRPAGGAKKF-SAAYSNCAKKPS MMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS MMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS ******
AK073303 uORF1	AK073303_r_ORF_67_9_142 TC237149_w_ORF_75_9_113 TC132556_b_ORF_81_9_139 TC305609_m_ORF_127_9_69 TC102988_s_ORF_222_9_69	MP MP MI MI *
AK073303 uORF2	AK073303 <u>r</u> ORF_135_9_74 TC237149_w_ORF_75_9_113 TC132556_b_ORF_81_9_139 TC305609_m_ORF_127_9_69 TC102988_s_ORF_222_9_69	MI MP MI MI *
	Upstream open reading frames c	onserved in 5/5 cereals and in Arabidopsis
AK103391 uORF2	AK103391 r_ORF_205_75_74 TC269775_w_ORF_251_75_62 TC134190 b_ORF_204_75_62 TC294011_m_ORF_215_75_75 TC103599_s_ORF_106_75_378	MNCLHTCSDKKTLKKWFFIDKTVG MNFLHTCSDKKTLKKWFFIDKTVG MNCLHTCSDKKTLKKWFFIDKTVG MNCLHTCSDKKTLKKWFFIDKTVG ** ***
AK103391 uORF2	AK103391_r_ORF_205_75_74 AT4G22590.1_a_ORF_283_75_63	MNCLHTCSDKKTLKKWFFIDKTVG MDSSTTSSDKKTLKRWFFIDKRVG *:. *.******* ****** **
More		

 Table 3.11.
 ClustalW alignment of uORFs identified by uORFSCAN in 5/5 cereals and in Arabidopsis

 Rice identifier
 Alignment^a

Rice identifier	Alignment ^a	
AK100589 uORF2	AK100589_r_ORF_248_156_179 TC264559_w_ORF_209_150_168 TC130707_ORF_236_150_169 TC292591_m_ORF_294_153_168 TC91317_s_ORF_268_153_177	MESKGGKKKSSSSRSLMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS MESKGGKK-SSSSSLMYEAPLGYSIEDVRPAGGAKKF-SAAYSNCAKKPS MESKGGKK-SSSSSLMYEAPLGYSIEDVRPAGGAKKF-SAAYSNCAKKPS MESKGGKK-SSSSRSMMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS MESKGGKK-SSSSRSMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS
AK100589 uORF2	AK100589_r_ORF_248_156_179 AT3G02470.3_a_ORF_222_156_154	MESKGGKKKSSSSRSLMYEAPLGYSIEDVRPAGGVKKFQSAAYSNCAKKPS MESKGGKKKSSSSSLFYEAPLGYSIEDVRPNGGIKKFKSSVYSNCSKRPS ************
AK072868 uORF4	AK072868_r_ORF_338_90_96 TC247418_w_ORF_347_93_111 TC139536_b_ORF_387_93_117 TC306591_m_ORF_576_93_366 TC102544_s_ORF_420_90_113	MT-LEHKSIYSACSMCSRTMGFDVATQPSS- MTPLHSSTQHTSSSMCFCTMGFDVASQPSS- MTPPRSTTQRTSSSMCFCTMGFDVASQPSS- MRWESYLEKGVLPKFTMLAM-LRLQKALLSR MT-LQLKSTRIFSYLCFRTMGFDVAAQPSS- * : : * : *
AK072868 uORF4	AK072868_r_ORF_338_90_96 AT5G58380.1_a_ORF_11_87_295	MTLEHKSIYSACSMCSRTMGFDVATQPSS- MTFNFVFISSSSSSVFSSIFVGKPRKK **::. :: :.* .* .: .:* .
AK060523 uORF1	AK060523 r ORF 173 123 185 TC235416 w_ORF_201_126_157 TC148319 b_ORF_211_120_163 TC305149 m_ORF_255_129_195 TC103609_s_ORF_240_129_212	MVLTPSPSPPPMLPKKLRALGPGLNPFAPFGMGNYYSSSR MVRR-RPSSSTSSSPMLHKNLRALGPGLNPFAPFGMGNYSR MVRR-RPSSSSSSPMLHKNLRALGPGLNPFAPFGMGNYSR MVYAPCRSSTPPSSSPMLHKNLRALGPGLNPFAPFGMGNYTR ** * * *** *:***********
AK060523 uORF1	AK060523_r_ORF_173_123_185 AT5G07840.1_a_ORF_289_117_250	-MVLTPSPSPPPMLPKKLRALGPGLNPFAPFGMGNYYSSSR MLVFSSLSMTPVVIPQNLRVFGPGLNPSFPYCIANHFP :*::* ::*::**.:****** *: :.*::.
	Upstream open reading frames cons	erved in rice and in Arabidopsis
AK103391 uORF1	AK103391_r_ORF_176_30_148 AT4G22590.1_a_ORF_254_30_137	MTSSQVFLC MISFQVTYF * * **
AK060523 uORF2	AK060523_r_ORF_206_90_185 AT5G07840.1_a_ORF_313_93_250	MLPKKLRALGPGLNPFAPFGMGNYYSSSR MTPVVIPQNLRVFGPGLNPSFPYCIANHFP ::*::**.:****** *: :.*::.
AK101100 uORF1	AK101100_r_ORF_142_12_21 AT1G51690.1_a_ORF_555_12_1160	MVS MNI *
AK066952 uORF1	AK066952_r_ORF_365_66_182 AT3G13225.1_a_ORF_364_63_431	MMKQRLILQMQVIR-LLMNVGT -MSWS-ILQLQAFWGLSSGCSS * ***.* : *
AK066952 uORF2	AK066952_r_ORF_368_63_182 AT3G13225.1_a_ORF_364_63_431	MKQRLILQMQVIR-LLMNVGT MSWS-ILQLQAFWGLSSGCSS * ***:*: *
AK066952 uORF3	AK066952_r_ORF_503_51_59 AT3G13225.1_a_ORF_553_51_254	-MIRSALEILLKKMLLP MQYKVSHSYTFSRSYN-
AK119592 uORF1	AK119592_r_ORF_304_90_148 AT3G01470.1_a_ORF_162_87_120	MKISTRLLWSTSFFRHKIAATIASSSSFL MGFCICPLESPARLLWSTSFFRHKIMIF :: .:***********
AK069534 uORF	AK069534_r_ORF_813_9_432 AT4G12770.1_a_ORF_41_9_108	MI ML *:
AK069526 uORF1	AK069526_r_ORF_214_126_544 AT4G19110.2_a_ORF_255_126_527	MEYTLYTTSSSVLHISLLEEVLGWRFSLYGDFLVISFVNCT MEQVFVWPSCYHYRLFSFQEALDWRFLVRSDFLVGSFVNCT **
AK069526 uORF2	AK069526_r_ORF_690_9_185 AT4G19110.2_a_ORF_603_9_296	MA ML *
AK069526 uORF3	AK069526_r_ORF_820_36_28 AT4G19110.2_a_ORF_398_36_474	MSLVHNRALLE- M-IFRGRCEANF * :.: *. :
AK067412 uORF	AK067412_r_ORF_222_84_49 AT5G50180.1_a_ORF_357_84_79	-MRAVVKRRRGGERGRCCGYWRSGASCD MLAIYLSLLFSSLSCELSNLHRYKSRK- : :
AK102277 uORF	AK102277 <u>r</u> _ORF_228_117_150 AT1G68550.1_a_ORF_309_96_95	MHQRLHGWNKSTSMLRDGFGVKYSGFLHIRPCGFCRGD MRLRPKRTCSSVEVFG-GFHIKQQKFSFFIVR *: * : .*:: ** :* . * .: : *

Table 3.11. ClustalW alignment of uORFs identified by uORFSCAN in 5/5 cereals and in Arabidopsis (Continued)

 a Identifier_letter_ORF_pre-orf distance_orf length_intercistronic distance letter: r = rice, w = wheat, b = barley, m = maize, s = sorghum, and a = Arabidopsis

Figure 3.1 Overview of the uORFSCAN pipeline. The pipeline consists of four steps: 1) Identifying putative orthologues using a modified reciprocal best hit (rbh) method, 2) Clustering of orthologues according to how many cereal species they are found in, 3) Using uORFSCAN program to find conserved uORFs using a comparative approach, and 4) Manual curation of predicted conserved cereal and Arabidopsis uORFs.

4. Manual curation of candidate genes

Figure 3.2 The position of uORFs conserved in four other cereals and in Arabidopsis within 5'-UTRs of rice cDNAs.

Figure 3.3 Frequency distribution of the length (nt) of rice uORFs conserved in four other cereals and in Arabidopsis.

Figure 3.4 The pattern of nucleotide sequence conservation calculated for the decanucleotide surrounding the uORF AUG triplet using WebLogo (Crooks et al. 2004). The overall height of each stack indicates the nucleotide sequence conservation at that position (measured in bits), whereas the height of nucleotide symbols (A, T, G, C) within the stack reflects the relative frequency of the corresponding nucleotide at that position. (B) Positions showing detectable nucleotide sequence conservation were magnified.

Figure 3.5 Relative frequencies of codons showing significant deviation (*) in codon usage between rice uORFs and rice main coding regions. Rice uORF codon usage calculated from the following URL: http://www.bioinformatics.vg/sms/codon_usage.html.