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ABSTRACT 

Understanding the mechanisms that regulate gene expression is an important 

goal in bioinformatic research. There are two major levels of gene regulation: 

transcriptional and post-transcriptional control. Much attention has been 

directed to transcriptional control, but it is now clear that the untranslated 

regions (UTRs) of messenger RNA (mRNA) also play an important role in 

post-transcriptional control of gene expression. Two important control signals 

found in 5′-UTRs of both animal and plant mRNAs are stem-loop motifs and 

upstream open reading frames (uORFs). 

One strategy for identifying functional uORFs in plants is to use a 

comparative approach (Crowe et al. 2006; Hayden and Jorgensen 2007; Pavesi 

et al. 2007). There are extensive EST datasets for five important cereal crops 

(rice, wheat, barley, maize, and sorghum). Rice is the best characterised of 

these cereals with a sequenced genome (Yu et al. 2002) and a cDNA database 

containing 32,000 clones that are enriched for 5′ full-length sequences 

(Kikuchi et al. 2003). In this research, comparative R-nomics was used to 

identify conserved stem-loop motifs and uORFs in cereals using publicly 

available assembled EST data. 

 To determine the prevalence of 5′-UTR stem-loop structures in plants a 

bioinformatics pipeline was developed to predict secondary structures. The 

pipeline used a program called RNAProfile to predict stem-loops that are 

conserved in both sequence and structure. The findings from this study 

concluded that conserved 5′-UTR stem-loops in long 5′-UTRs (200 to 1200 nt) 

are rare (~8%) in the cereal transcriptome, the genes themselves that contain 

conserved 5′-UTR stem-loop motifs are spread across different functions, and 

appear to have a biological role based on higher structure than sequence 

conservation in at least three out of four cereal species. 

Another control signal that is involved in post-transcriptional control is 

the uORF. A recent study in distantly related plants, such as rice and 
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Arabidopsis, found that uORFs are rare in these transcriptomes (Hayden and 

Jorgensen 2007), but it is unclear how prevalent uORFs are in closely related 

plants. To address this question, the bioinformatics pipeline was modified to 

use a program called uORFSCAN to find conserved uORFs in five cereals that 

could potentially regulate translation. Major conclusions from this study are 

that the identified uORFs are highly conserved (50% median amino acid 

sequence similarity), are rare in cereal transcriptomes (<150 loci contain them), 

are generally short (less than 100 nt), position independent in their 5′-UTRs, 

and their start codon context and the usage of rare codons do not appear to be 

important for translation. 

 

Two candidate uORFs were selected for mutational analyses, and a 

quantitative in vitro transcription and translation system was used to determine 

if they function in translational control. The rice SAMDC small and S6K long 

uORFs were shown to be capable of down-regulating translation of a luciferase 

reporter gene. This study has provided evidence, for the first time, that the S6K 

uORF is involved in controlling translation. In conclusion, this study has 

identified new genes that may be controlled at the level of translation by stem-

loop motifs and conserved uORFs. 
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