Calcium Channel Distribution in the Arterial Vascular Tree and its Relation to Function

Christine June Ball, BSc (Hons)

A thesis submitted for the degree of

Doctor of Philosophy

Cardiology Unit

The Queen Elizabeth Hospital

Department of Medicine

Faculty of Health Sciences

The University of Adelaide

December 2009

TABLE OF CONTENTS

DECI	ECLARATION			xi
ACKNOWLEDGEMENTS			xii	
THES	SIS-REL	ATED PUB	LICATIONS	xiv
PUBI	LISHED	ABSTRAC	TS	XV
PRES	SENTAT	IONS AT N	IATIONAL AND	
]	INTERN	ATIONAL	CONFERENCES	xvi
AWA	RDS AN	ID SCHOL	ARSHIPS	xviii
ABB	REVIAT	IONS		xix
ABST	FRACT			xxii
<u>SEC</u>	TION A	A – INTR	<u>ODUCTION</u>	1
A.1	SCOP	E		2
A.2	THE V	ASCULA	ΓURE	3
	A.2.1	Vascular	Anatomy	3
		A.2.1.1	ARTERIAL SYSTEM	
		A.2.1.2	VENOUS SYSTEM	
		A.2.1.3	MICROCIRCULATION	
	A.2.2	Function	al Anatomy	6
	A.2.3	Vascular	Histology	6
		A.2.3.1	INTIMA	
		A.2.3.2	MEDIA	
		A.2.3.3	ADVENTITIA	

A.3	VASCULAR PHYSIOLOGY				8
	A.3.1	Haemod	ynamic Princ	ciples	8
	A.3.2	Regulato	ory Influences	s of Vascular Tone	9
		A.3.2.1	ENDOTHE	ELIAL INFLUENCES	
			A.3.2.1.1	Nitric Oxide	
			A.3.2.1.2	Prostacyclin	
			A.3.2.1.3	Endothelium Derived Hyperpolarising	
				Factor	
			A.3.2.1.4	Endothelin	
		A.3.2.2	HUMORA	L INFLUENCES	
			A.3.2.2.1	Catecholamines	
			A.3.2.2.2	Bradykinin	
		A.3.2.3	NEUROGI	ENIC INFLUENCES	
			A.3.2.3.1	Cholinergic Innervation	
			A.3.2.3.2	Adrenergic Innervation	
			A.3.2.3.3	Noncholinergic-Nonadrenergic	
				Innervation	
A.4	VASC	ULAR CE	LL BIOLOG	Y	26
	A.4.1	The Acti	n-Myosin Co	ntractile Apparatus	26
	A.4.2	Regulation	on of Myosin	Light Chain Phosphorylation	27
		A.4.2.1	MYOSIN I	LIGHT CHAIN KINASE AND	
			IT'S REGU	JLATION IN THE CONTEXT OF	
			VASCULA	AR CONTRACTION	

A.4.2.2 MYOSIN LIGHT CHAIN PHOSPHATASE

AND ITS REGULATION IN THE CONTEXT

33

OF VASCULAR CONTRACTION

A.5 REGULATION OF CYTOSOLIC CALCIUM

- A.5.1 Voltage-Operated Calcium Channels 34
 - A.5.1.1 VOLTAGE-OPERATED CALCIUM CHANNEL SUBUNIT COMPOSITION AND FUNCTION
 - A.5.1.2 VOLTAGE-OPERATED CALCIUM CHANNEL

SUBGROUPS

- A.5.1.2.1 L-type Calcium Channels
- A.5.1.2.2 T-type Calcium Channels
- A.5.1.2.3 P/Q-, N- and R-type Channels
- A.5.1.3 VOLTAGE-OPERATED CALCIUM CHANNEL

ANTAGONISTS

	A.5.2	Receptor	-Operated C	alcium Channels	49
	A.5.3	Store-Op	erated Calci	um Channels	50
	A.5.4	Potassiur	m Channels		51
	A.5.5	Chloride	Channels		53
A.6	VASC	ULAR PA	THOPHYSIC	DLOGY	54
	A.6.1	Pathophy	ysiology Tria	d	54
	A.6.2	Clinical S	Syndromes:]	Large Conduit Vessel Disorders	
		vs. Small	Resistance	Vessel Disorders	56
		A.6.2.1	LARGE C	ONDUIT VESSEL DISORDERS	
			A.6.2.1.1	Coronary Artery Disease	

		A.6.2.1.1	Peripheral Artery Disease	
	A.6.2.2	SMALL RI	ESISTANCE VESSEL DISORDERS	
		A.6.2.2.1	Coronary Microvascular Disorders	
		A.6.2.2.2	Hypertension	
		A.6.2.2.3	Cerebral Microvascular Disorders	
A.6.3	Clinical F	Role of Calci	um Channel Blockers	60

A.7 SUMMARY AND AIMS

61

SECTION B – Ca⁺⁺ L- AND T- CHANNEL BLOCKADE IN

<u>RA</u> 1	<u>T AND HUMAN VESSELS</u>			63
B.1	BACK	GROUND		64
	B.1.1	Ca ⁺⁺ Cha	nnel Blocker Classifications	64
	B.1.2	T-Chann	el Blockers in the Microcirculation	65
	B.1.3	Study Ob	ojectives	66
B.2	METH	IODS		67
	B.2.1	Vascular	Preparations	67
		B.2.1.1	RAT VESSELS	
		B.2.1.2	HUMAN VESSELS	
	B.2.2	Chronic 2	Endothelin Infusion Model	69
		B.2.2.1	MINI-OSMOTIC PUMP AND	
			CANNULA PREPARATION	
		B.2.2.2	MINI-OSMOTIC PUMP IMPLANTATION	
		B.2.2.2	BLOOD PRESSURE MEASUREMENT	
	B.2.3	Small Ve	ssel Myograph Assessment of Vascular Reactivity	72

		B.3.2.1	ENDOTHELIN-1-MEDIATED CONSTRICTION B 3 2 1 1 Rat Microvascular Responses	
		Blockers	at Therapeutic Equivalent Concentrations	86
	B.3.2	Inhibitio	n of Rat Constrictor Responses by Ca ⁺⁺ Channel	
	B.3.1	Ca ⁺⁺ Cha	nnel Blocker Dose Ranging Study	84
B.3	RESU	LTS		84
	B.2.8	Study Pr	otocol	82
		B.2.7.2	STATISTICAL ANALYSIS	
			CHARACTERISTICS	
		B.2.7.1	CONCENTRATION-RESPONSE CURVE	
	B.2.7	Data Ana	alysis	80
		B.2.6.3	Ca ⁺⁺ CHANNEL BLOCKERS	
		B.2.6.2	VASODILATORS	
		B.2.6.1	VASOCONSTRICTORS	
	B.2.6	Study Re	eagents	78
	B.2.5	Endothel	ial Integrity	78
		B.2.4.3	DEPOLARISING WITH POTASSIUM	
			RESPONSE	
		B.2.4.2	NORMALISATION FOR DEPOLARISATION	
		B.2.4.1	VESSEL CALIBRE NORMALISATION	
	B.2.4	Standard	lisation of Vascular Responses	75
		B.2.3.3	VESSEL MOUNTING	
		B.2.3.2	TISSUE HANDLING AND DISSECTION	
		B.2.3.1	SMALL VESSEL MYOGRAPH BACKGROUND	

			B.3.2.1.2	Rat Aortic Vessel Responses	
		B.3.2.2	HIGH POT.	ASSIUM-MEDIATED	
			DEPOLAR	ISATION	
			B.3.2.2.1	Rat Microvascular Responses	
			B.3.2.2.2	Rat Aortic Vessel Responses	
	B.3.3	Inhibitory	Effect of Ef	onidipine in Rat Microvessels with	
		Maximal	L-Channel B	lockade	92
	B.3.4	Inhibition	of Rat Cons	strictor Responses by Ca ⁺⁺ Channel	
		Blockers a	at Therapeut	ic-Equivalent Concentrations in the	
		Presence	of Chronic E	t-1 Receptor Activation	94
		B.3.4.1	SHAM ANI	D ET-1 RAT BLOOD PRESSURE	
			DURING C	HRONIC ET-1 TREATMENT	
		B.3.4.2	RAT MICR	OVASCULAR RESPONSES IN THE	
			PRESENCE	E OF CHRONIC ET-1	
		B.3.4.3	RAT AORT	TIC RESPONSES IN THE PRESENCE	
			OF CHRON	NIC ET-1	
	B.3.5	Human S	ubcutaneous	Microvascular Response	99
B.4	DISCU	SSION			100
	B.4.1	Heteroger	neity in Vasc	ular Responses to L- and Combined	
		L- and T-	type Ca ⁺⁺ Ch	annel Blockers	100
	B.4.2	Vascular '	T-Channel B	lockade	103
	B.4.3	Implicatio	ons		106
B.5	CONC	LUSIONS	USIONS 106		

SEC	TION	C - QUA	NTITATION OF L- AND T-TYPE Ca ⁺⁺	
<u>CH</u>	ANNEL	S IN LAI	RGE AND SMALL VESSELS	107
C.1	BACK	GROUND		108
	C.1.1	Ca ⁺⁺ Cha	nnels	108
	C.1.2	T-Chann	el Molecular Biology	110
	C.1.3	Ca ⁺⁺ Cha	nnel Distribution in the Vasculature	111
	C.1.4	Study Ok	ojectives	113
C.2	METH	IODOLOG	Ϋ́Υ	114
	C.2.1	Isolated `	Vessel Preparations	114
		C.2.1.1	RAT MESENTERIC AND AORTIC VESSELS	
		C.2.1.1	TISSUE HANDLING AND DISSECTION	
	C.2.2	Quantita	tion of the mRNA Encoding the Pore-Forming	
		Subunits	of Ca ⁺⁺ Channels Using Real-Time PCR	115
		C.2.2.1	RNA EXTRACTION	
		C.2.2.2	REVERSE TRANSCRIPTION	
		C.2.2.3	REFERENCE CONTROL GENES	
			(HOUSEKEEPING GENES)	
		C.2.2.4	QUANTITATIVE PCR PROTOCOL	
			C.2.2.4.1 Primers	
		C.2.2.5	DATA ANALYSIS	
			C.2.2.5.1 Statistical Analysis	
		C.2.2.6	STUDY PROTOCOL	
	C.2.3	Ratiomet	tric Quantitation of the Proteins Comprising the	

		Vessel Si	ze	131
	C.4.1	Heteroge	eneity in Channel Distribution According to	
C.4	DISCU	JSSION		130
			ABUNDANCE	
		C.3.2.2	L-CHANNEL VS. T-CHANNEL	
			MESENTERIC MICROVESSELS	
			T-CHANNELS IN RAT AORTA AND	
		C.3.2.1	LINEAR QUANTITATION OF L- AND	
	C.3.2	Relative	Quantitation of Ca ⁺⁺ Channel Protein	127
			IDENTIFICATION OF EFFICIENCY	
			FOLLOWING QUANTIATIVE PCR:	
		C.3.1.2	MELT CURVE ANALYSIS OF PCR PRODUCTS	
			IN RAT AORTA AND MESENTERIC VESSELS	
		C.3.1.1	mRNA EXPRESSION OF L- AND T-CHANNELS	
	C.3.1	Quantita	tion of Ca ⁺⁺ Channel mRNA	126
C.3	RESU	LTS		126
			C.2.3.5.1 Statistical Analysis	
		C.2.3.5	DATA ANALYSIS	
			C.2.3.4.1 Establishing the Linear Range of Detec	tion
		C.2.3.4	PROTEIN QUANTITATION	
			PROTOCOL	
		C.2.3.3	SDS-PAGE AND WESTERN BLOTTING	
		C.2.3.2	PROTEIN ISOLATION	
		C.2.3.1	ANTIBODIES	

	C.4.2	The Ca ⁺⁺ T-Channel in the Microvasculature	132
	C.4.3	Clarifications	133
C.5	CONC	CLUSIONS	134
<u>SEC</u>	TION	D – CONCLUSIONS AND OVERVIEW	135
APP	<u>ENDIC</u>	CES	141
<u>REF</u>	EREN	CES	156

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed on page xiv) resides with the copyright holder(s) of those works

Christine J Ball

(March 2010)

ACKNOWLEDGEMENTS

The contents of this thesis cover my research studies over the past 4 years. During this period I have primarily been funded by a Queen Elizabeth Hospital Research Foundation/Faculty of Health Sciences Postgraduate Research Scholarship. At various times I have also been funded by an International Society for Heart Research (Australian Section) and Ivan de la Lande Memorial (Queen Elizabeth Hospital) Travel Grants. Without the support of the above funding agencies and the patience of my supervisors and colleagues this research would not have been possible.

Firstly, I would like to express my sincerest thanks to the principal supervisor of this thesis, A/Prof John Beltrame. His relentless enthusiasm for "bench to bedside" research has been a constant source of encouragement which I will always be thankful for. Without all of your help and support this thesis would never have eventuated. I have learnt so very much from you and thank you.

I would also like to thank my co-supervisors A/Prof David Saint and Dr David Wilson. Your many years of physiology and research experience have been invaluable throughout my PhD and have provided me with a sound basis for developing research practices and always thinking "two steps ahead".

The component of this thesis which examined human subcutaneous microvessel reactivity required a close collaboration with the vascular surgical team at The Queen Elizabeth Hospital headed by Professor Rob Fitridge. I thank them for their support

and assistance in this area. A special acknowledgment must also be made to Mrs. Irene Stafford for her help and assistance with the technical aspects of my microvascular studies.

On a personal note, to my husband, Daniel, a special thanks. It takes a special person to tolerate the long hours and stress related with research and the production of a thesis. Your love and support throughout this period has meant more to me than I could ever express.

Finally, I must thank my parents and sisters. Firstly to my sisters I want to thank you for all your support and encouragement over the past 4 years. To my parents since my childhood you have always encouraged me to aim high and dream big and have always supported me, and believed without doubt, that I would achieve all my academic goals. Thank you all for your love and support.

PUBLICATIONS

Ball C, Wilson D, Turner S, Saint D, Beltrame J. Heterogeneity of L- and T-Channels in the Vasculature: a Rationale for the Efficacy of Combined L- and T-Blockade. *Hypertension* 2009; 53(4):654-660. (Appendix 1)

Wilson D, Ball C, Turner S, Saint D, Beltrame J. Response to Is Combined L- and T-Channel Blockade Better Than L-Channel Blockade in Therapy. *Hypertension* 2009; 54:e4. (Appendix 2)

PUBLISHED ABSTRACTS

Ball C, Saint D, Wilson D, Beltrame J. Heterogeneity in vasomotor responses to Land T-type calcium channel blockers. *Journal of Molecular and Cellular Cardiology* 2008;44(4):817-818

Ball C, Saint D, Beltrame J, Wilson D. The role of L- and T- channels in the large and microvasculature. *Heart, Lung and Circulation* 2008;17(3):S241

Ball C, Saint D, Wilson D, Beltrame J. Heterogeneity in vasomotor responses to Land T-type calcium channel blockers. *Heart, Lung and Circulation* 2007;16(2): S212-S213

Ball C, Saint D, Beltrame J. The effect of efonidipine hydrochloride on human subcutaneous microvascular constrictor responses. *Journal of Molecular and Cellular Cardiology* 2006;41(4):733

PRESENTATIONS AT NATIONAL

AND INTERNATIONAL CONFERENCES

2009

• National Heart Foundation of Australia, Brisbane

2008

- International Society for Heart Research Congress, Greece
- International Society for Heart Research, Adelaide

2007

- International Society for Heart Research, New Zealand
- Frontiers in Vascular Medicine, Melbourne
- The Queen Elizabeth Hospital Research Day, Adelaide

2006

- National Health and Medical Research Congress, Melbourne
- International Society for Heart Research, Canberra
- The Queen Elizabeth Hospital Research Day, Adelaide
- Australian Society for Medical Research, Adelaide

2005

- European Society of Cardiology, Sweden
- Cardiac Society of Australia and New Zealand, Perth
- The Queen Elizabeth Hospital Research Day, Adelaide

AWARDS AND SCHOLASRHIPS

2008

 International Society for Heart Research Young Investigator of the Year Recipient (Australasian Section)

2007

- The Queen Elizabeth Hospital Research Day Ivan De LaLande Memorial Travel Fund
- International Society for Heart Research Young Investigator Finalist
- International Society for Heart Research Travel Grant (Australasian Section)
- Frontiers in Vascular Medicine Young Investigator Finalist

2006

 The Queen Elizabeth Hospital Research Day Oral Presentation Award Recipient

2005

• The University of Adelaide, Faculty of Health Sciences Postgraduate Research Scholarship

ABBREVIATIONS

5HT	5-Hydroxytrypamine (commonly known as Serotonin)
ACh	Acetylcholine
Ang-II	Angiotensin II
ANP	Atrial Natriuretic Peptide
ATP	Adenosine Triphosphate
ВК	Bradykinin
Ca ⁺⁺	Ionic Calcium
CaM	Calmodulin
cAMP	Cyclic Adenosine Monophosphate
ССВ	Calcium Channel Blocker
cDNA	Complimentary Deoxyribonucleic Acid
cGMP	Cyclic Guanosine Monophosphate
cGRP	Calcitonin Gene-Related Peptide
Cl	Ionic Chloride
CSFP	Coronary Slow Flow Phenomenon
DAG	Diacyl Glycerol
DNA	Deoxyribonucleic Acid
E _{max}	Maximal Contractile Response
EC ₅₀	Concentration Required for 50% Maximal Response
EDHF	Endothelium Derived Hyperpolarising Factor
EDRF	Endothelium Derived Relaxing Factor
eNOS	Endothelial Nitric Oxide Synthase

Et-1	Endothelin-1
K ⁺	Ionic Potassium
KCl	Potassium Chloride
KPSS	Potassium Physiological Salt Solution
HVA	High Voltage-Activated
iNOS	Inducible Nitric Oxide Synthase
IP ₃	1,4,5-triphosphate
LVA	Low Voltage-Activated
MLC	Myosin Light Chain
MLCK	Myosin Light Chain Kinase
MLCP	Myosin Light Chain Phosphatase
mRNA	Messenger Ribosomal Nucleic Acid
nNOS	neuronal NOS
NO	Nitric Oxide
NOS	Nitric Oxide Synthase
NPY	Neuropeptide Y
OD	Optical Density
PCR	Polymerase Chain Reaction
PE	Phenylephrine
РКС	Protein Kinase C
PLC	Phospholipase C
RNA	Ribosomal Nucleic Acid
ROCC	Receptor-Operated Ca ⁺⁺ Channel
ROK	Rho-kinase

RyR	Ryanodine Receptor
SDS	Sodium Dodecyl Sulfate
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
SOCC	Store-Operated Ca ⁺⁺ Channel
SR	Sarcoplasmic Reticulum
TBS-T	Tris Buffered Saline with Tween 20
VOCC	Voltage-Operated Ca ⁺⁺ Channel
VSM	Vascular Smooth Muscle
VSMC	Vascular Smooth Muscle Cell

ABSTRACT

Clinical evidence in microvascular disease suggests that T-type Ca⁺⁺ channel blockers (CCBs) have benefits over conventional L-type CCBs, however the basis for this remains largely unknown. The objective of this study was to examine vascular reactivity utilising both pharmacological and molecular techniques. This thesis is composed of three sections including (A) an Introduction, (B) Functional Vascular Studies and (C) Molecular Vascular Studies.

Section A summarised fundamental principles of the vasculature including an outline of the vascular system, vascular physiology, vascular cell biology, regulation of cytosolic Ca⁺⁺ and vascular pathophysiology.

Section B utilised isolated vessels and wire myography to determine the effect of pre-treatment with L-type CCBs (verapamil and nifedipine) and combined L- and T-type CCBs (mibefradil and efonidipine) on endothelin-1 (Et-1) and K⁺-mediated contractile responses in large (rat aorta) and small (rat mesenteric and human subcutaneous) vessels. All four CCBs inhibited both Et-1 and K⁺-mediated contractile responses to a similar extent in large rat vessels, however in rat microvessels the combined L- and T-channel blockers produced significantly greater inhibition of contraction than L-channel blockers alone. The significance of this differential T-channel effect in microvessels was further supported by: (1) demonstration of divergent CCB responses in human microvessels, (2) incremental inhibition of constrictor responses with a combined L- and T- CCB despite maximal

L-channel blockade, (3) utilisation of structurally diverse CCBs with varied affinity for L- and T-channels, (6) use of pharmacodynamically and therapeutically appropriate CCB concentrations, (7) confirmation of contractile agonist independent responses, (8) consistent results even in the presence of an altered microvascular physiology in the form of chronic Et-1 activation and (9) exclusion of an endothelium-dependent mechanism.

Section C utilised the molecular techniques of quantitative polymerase chain reaction (PCR) and ratiometric western blotting to examine the distribution of the poreforming subunits Ca_v1.2, Ca_v3.1 and 3.2 in both large (rat aorta) and small (rat mesenteric) vessels. The PCR data was equivocal with no difference noted in the distribution of the L- and T-channels between large and small vessels. In contrast to this, quantitative western blot analysis revealed that while there is a similar distribution of the three subunits in the large vessel, there is a significantly increased expression of both T-channel pore-forming subunits in microvessels (Ca_v3.1: 112 \pm 38%*, Ca_v3.2: 168 \pm 48%* relative to L-channel expression, *p<0.05).

Considered together these 'functional' and 'structural' studies indicate the important role of the Ca⁺⁺ T-channel in regulating contractile responses in the microvasculature and their therapeutic potential.