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Abstract

Even while numerical simulation methods dominate reservoir modeling, the
Buckley-Leverett equation provides important insight into the physical pro-
cesses behind enhanced oil recovery. The interest in a stochastic Buckley-
Leverett equation, the subject of this thesis, arises because uncertainty is at
the heart of petroleum engineering. Stochastic differential equations, where
one modifies a deterministic equation with a stochastic perturbation or where
there are stochastic initial conditions, offers one possible way of accounting
for this uncertainty. The benefit of examining a stochastic differential equa-
tion is that mathematically rigorous results can be obtained concerning the
behavior of the solution.

However, the Buckley-Leverett equation belongs to a class of partial differen-
tial equations called first order conservation equations. These equations are
notoriously difficult to solve because they are non-linear and the solutions
frequently involve discontinuities. The fact that the equation is being consid-
ered within a stochastic setting adds a further level of complexity. A problem
that is already particularly difficult to solve is made even more difficult by
introducing a non-deterministic term.

The results of this thesis were obtained by making the fractional flow curve
the focus of attention, rather than the relative permeability curves. Reser-
voir conditions enter the Buckley-Leverett model through the fractional flow
function. In order to derive closed form solutions, an analytical expression
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for fractional flow is required. In this thesis, emphasis in placed on model-
ing fractional flow in such a way that most experimental curves can readily
be approximated in a straightforward manner, while keeping the problem
tractable. Taking this approach, a range of distributional results are obtained
concerning the shock front saturation and position over time, breakthrough
time, and even recovery efficiency.
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Preface

One of the most distinguished contributers to reservoir engineering, Laurie
Dake [44], has made a call: for the revival of fractional flow of water which
seems to have ‘gone missing’ since the advent of simulation and, it is argued,
is the key to understanding any form of displacement process.1 This thesis
firmly belongs to the “Dakian” school of thought. From the first line until
the last page, the emphasis will be on closed form, analytical solutions. The
reader will appreciate that solutions of this kind are significantly more dif-
ficult to obtain than numerical ones. This approach is taken in the belief
that increased insight is thereby gained into the physical processes behind
the model.

1Dake [43] page 311.
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Nomenclature

S saturation (without subscripts it refers to the displacing fluid), fraction of pore volume
SL displacing saturation at end of core/reservoir
Sc connate displacing fluid saturation, fraction of pore volume
S̄ average saturation, fraction of pore volume
S∗ shock front saturation, fraction of pore volume
k permeability, darcy
kr relative permeability, fraction
f fractional flow (without subscripts it refers to the displacing fluid), fraction
φ porosity, fraction
µ viscosity, cp
ρ density, kg/m3

p pressure, Pa
P oil production, pore volumes
qtotal total flow rate (oil + water), m3/day
qi water injection rate, m3/day
Qi cumulative injected water volume, m3/day
Qdim dimensionless cumulative injected water, in pore volumes

Subscriptes may be added to specify a number of quantities.

1, 2 fluid 1 or 2
d, nd displacing or non-displacing fluid
w, nw wetting or non-wetting fluid
w, o, g water, oil or gas (it is clear by context whether water or wetting fluid is intended)
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c connate or critical (depending on the phase)
ir irreducible
dim dimensionless

Note on Subscripts and Connate Saturation

It would simplify matters greatly if the entire thesis could be written in terms
of a single set of subscripts, but this is impractical. Generally, fluid 1 versus
fluid 2 is used to present the flow equations, wetting fluid versus non-wetting
is used when discussing relative permeability, and displacing fluid versus
non-displacing is used for Buckley-Leverett. Other subscripts are used to
be consistent with original sources, or when formulas only apply to specific
phases. Throughout the examination of Buckley-Leverett, the initial satura-
tion corresponds to the connate saturation.
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