
Drought Predictions: Applications

in Australia

Geraldine H. Wong

Thesis submitted for the degree of

Doctor of Philosophy

in

Statistics

at

The University of Adelaide

Discipline of Statistics, School of Mathematical Sciences,

Faculty of Engineering, Computer and Mathematical Sciences

January 9, 2010



Chapter 7

Predicting low rainfall for pixels

throughout Australia with climatic

indicators

The previous chapter demonstrated the performance of stochastic modelling in pre-

dicting short and longer term monthly rainfall at specific rainfall gauges. This chapter

examines the Rainman software, which is developed by Stone [119] and used by many

farmers, businesses and governmental agencies for example the Australian Bureau of

Meteorology, to carry out rainfall forecasting. This software analyzes records of his-

torical monthly and daily rainfall dating back to 1832, for monthly and daily patterns

and forecast seasonal rainfall based on the soi.

This chapter investigates the performance of this software across Australia, by applying

significant tests on the June to October rainfall probability distributions associated

with both the extreme phases defined by Stone. June to October is traditionally

the growing period in Australia and is especially crucial for agriculture. Another

forecasting strategy which only depend on the soi of May is also compared with the

classification that Rainman uses, through statistical tests. A third method where the

association between the rainfall distribution and the enso classification of the current

water year, April to March, is also examined here. This does not, in itself, provide a

prediction, but it could be incorporated with physically based climate models, which

are capable of predicting enso states.

The latter section of this chapter examines the correlations between the climatic index,
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sea-surface temperatures, with rainfall in selected regions of Australia. Appropriate

multiple regression models are fitted using the highest correlated sea-surface temper-

ature pixels. The predicted rainfall obtained from the regression model are compared

to the observed rainfall and recommendations are proposed.

7.1 Study area and data

Monthly rainfall grid data from 1900 to 2003 across Australia are obtained from BoM.

BoM has recognized that rainfall variability in the country has a large impact on the

economy. This has led to the revision of how rainfall data is recorded in Australia.

Previously, Australia was divided into rainfall districts, where the size of each district

varied with station density and population. Recall in Chapter 4, district rainfall data

was employed in copula modelling of drought.

In order to investigate spatial rainfall patterns, gridded data sets were generated from

historical rainfall records from rainfall stations, using the Barnes two-dimensional anal-

ysis [64]. Each grid is a regular 0.25◦ (approximately 25km) by 0.25◦ latitude-longitude

with a latitudinal range from 10 to 44.5◦S, and a longitudinal range from 112 to 156◦E

[58]. There are 178 intervals in the longitudinal and 139 intervals in the latitudinal

directions, which is stored in an array of 24,742 pixels, of which 11,225 are over land.

Annual mean precipitation across Australia is shown in Figure 7.1 for 1900 to 2003.

The maximum mean annual rainfall recorded is 3389mm in north-east Queensland,

while the minimum recorded is in central Australia with 128mm. Most parts of eastern

Australia receive more rainfall than the western and southern parts. This difference

in rainfall can be attributed to physical landforms such as the Great Dividing Range,

which extends along the eastern coastline from Queensland through NSW to Victoria,

and ocean currents and atmospheric circulation such as the so and sst.

The soi data used here is obtained from the Long Paddock website [94]. The soi given

in this website is calculated using a climatic base period of 1887 to 1989, in contrast

to the National Climate Centre (NCC), which calculates the soi using the climatic

base period of 1933 to 1992. The monthly soi data provided by the BoM, which was

used in Chapter 6, is calculated using this base period. The time series plot of the soi

data from 1900 to 2003 from the Long Paddock website is shown in Figure 7.2. There

is no apparent trend in the soi time series. The autocorrelogram of the soi from 1900
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Figure 7.1: Annual mean precipitation across Australia, 1900-2003

to 2003 in Figure 7.3 shows that there is slow decay in the autocorrelation of the soi,

indicating there is substantial correlation between lagged values of the soi.
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Figure 7.2: Time series plot of soi from Long Paddock website, 1900-2003

The Earth System Research Laboratory, run by the U.S. National Oceanic and At-

mospheric Administration (NOAA), maintains an online reconstructed sst data set,

using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) sst

data. The worldwide monthly sst anomalies from 1854 to 2003 are recorded in an

array, with 180 intervals in the longitudinal direction and 89 intervals in the latitudinal

direction. Each grid represents 2.0◦ latitude by 2.0◦ longitude across the entire globe

which spans from 88.0◦N to 88.0◦S in latitude direction and 0.0◦E to 358.0◦E in the

longitudinal direction. The mean monthly sst for every grid from 1900 to 2003 is

calculated and Figures 7.4 shows the sst during January and July respectively. The
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Figure 7.3: Autocorrelogram plot of soi, 1900-2003

sst changes are more pronounced in the extreme hemispheres and coincides with the

summer and winter seasons.

7.2 SOI phases

In Chapter 3, research by Stone et. al. [119] discussed the potential of predicting

the amount of rainfall through the lag-relationship between rainfall and soi patterns.

This method is recapitulated here as the following sections compares the effectiveness

of this method with other proposed techniques.

Stone [118] analyzed the soi data from 1882 to 1989 in his dissertation and found an

association between changes in the soi April and May with June to October rainfall

distributions. Based on these soi values and their one-month lag relationships, five

phases were established and this classification is shown in Figure 7.5. Rainfall from

the subsequent five months were tabulated and their probability distributions corre-

sponding to each of the soi phases were produced. Results show a causal relationship

between the soi phase and rainfall probability distribution. Cumulative probability

distributions of subsequent rainfall associated with the soi phases from a number of

locations show that the probability of obtaining rainfall above the median rainfall is

higher following a ‘rapid rise’ soi phase than a ‘rapid fall’ phase. Figure 7.6 illustrates

this using the example of Goondiwindi in Eastern Australia. Goondiwindi has latitude

28.3◦S and longitude of 150.2◦E and is located near the NSW border, 350km south

west of Brisbane. The short-dashed line denotes the rainfall distribution corresponding

to the soi phase ‘rapid fall’ in April and May, while the long-dashed line shows the
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Figure 7.4: Mean monthly sea-surface temperatures for (a) January and (b) July,1990 -
1999

distribution following a ‘rapid rise’ phase. The solid line represents the ‘all-years’ dis-

tribution. According to this diagram, the probability of obtaining more than 200mm

of rainfall is 25% following a ‘rapid fall’ phase while the probability of obtaining the

same amount of rainfall is 70% following a ‘rapid rise’ phase.

In the next section, non-parametric statistical tests, as described in Appendix E, are

introduced to determine if the rainfall probability distributions obtained from the

extreme soi phases are significantly different from each other at a given significance

level. These tests are performed for every grid in Australia and the number of grids

that are significant are counted. The effectiveness of the method is measured based

on the number of grids across Australia that show a significant difference between the
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‘rapid rise’ and ‘rapid fall’ phase.

Figure 7.5: Classification of soi values into five soi phases, based on current and previous
month.

Figure 7.6: Cumulative probability distribution of rainfall for June-October at Goondi-
windi, for rapid rise (long dash), rapid fall(short-dash) and overall (solid)

7.3 Predicting drought using SOI

This section introduces three methods of categorizing soi. The rainfall probability

distributions corresponding to the respective soi categories are obtained and statistical

significance testing on these distributions are performed to evaluate the prediction skill

of each of the three classification methods.

7.3.1 Categorization using SOI phases

The soi values from April and May of each year starting from 1900 to 2003 are being

categorized into the following five phases as shown in Figure 7.5: consistently negative,

consistently positive, rapid fall, rapid rise and near zero. The April and May soi values

were used by Stone et. al. [119] for rainfall prediction, as the soi of these months

were shown to be highly associated with rainfall.
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Table 7.1 shows the distribution of the years corresponding to the soi phases. The

phases are then associated to the subsequent grid rainfall from June to October of the

same year. Significance testing at the 5% level is carried out between the rainfall asso-

ciated to the extreme phases of rapid rise and rapid fall. These statistical significance

test are described in detail in Appendix E. These tests are performed on this set of

data so as to be consistent with the study done by Stone et. al. [119]. Figure 7.7

displays the plot of Australia, with significance between the extreme phases shaded in

black and non-significance shaded in grey.

Table 7.1: Number of observations corresponding to each phase

soi phase Number of years in each phase
Consistently negative 16
Consistently positive 22

Rapid fall 14
Rapid rise 26
Near zero 26

Figure 7.7: Statistically significant (5% level) differences in June-October rainfall associ-
ated with ‘rapid rise’ soi phase and ‘rapid fall’ phase shown in black.

Evidently, there is an observable significant difference on eastern Australia which gives

rise to a clustering effect in that region. There is also a noticeable clustering in the

western to southwest of Australia. A striking feature in Figures 7.7 and 7.8 is the

relatively slight association between the April and May soi phases and June to October

rainfall, to the east of the Great Divide. It may be that the soi has more effect on

summer coastal rainfall, which is increasingly higher than the winter rainfall as you
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(a) (b)

Figure 7.8: Difference in rainfall means (mm) between: (a) Rapid fall soi phase and overall
distribution; (b) Rapid rise soi phase and overall distribution

move north. Given the evidence of a difference in rainfall between rapid rise and rapid

fall phases at many grid points, the increase or decrease relative to overall mean is

shown in absolute terms in Figures 7.8(a) and (b) and as a proportion in Figures 7.9(a)

and (b).

(a) (b)

Figure 7.9: Ratio of mean rainfall between: (a) Rapid fall soi phase and overall distribu-
tion; (b) Rapid rise soi phase and overall distribution

Figure 7.8(a) shows that in most parts of Australia, there is a decrease in rainfall

associated with the rapid fall phase. There is only a slight increase in rainfall in

central and parts of northwest Australia. For the rapid rise phase, there is a general

increase in rainfall over Australia, with the exception of a few grid squares over the

east coast.

Some general observations can be made from Figures 7.9(a) and (b). It appears that
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the rapid fall phase has somewhat more influence on June to October rainfall than the

rapid rise phase. Also, the rapid fall phase is generally associated with a decrease in

June to October rainfall whereas the rapid rise is associated with an increase.

The rapid fall and rapid rise phases of the April and May soi categorisation were chosen

for the above comparisons because they had the greatest effect on June to October

rainfall. This approach is justified because there is evidence, from the Kruskal-Wallis

test, that the general categorisation into five phases does distinguish different rainfall

regimes. Grid squares for which the Kruskal-Wallis test is statistically significant at

the 5% level are shown in black in Figure 7.10. There is extensive amount of clustering

over eastern Australia and scattered clusters over western and northern Australia.

Figure 7.10: Kruskal-Wallis test of significance at 5% level of June-October rainfall with
statistically significant pixels in black.

There is a technical issue concerning multiple comparisons. As there are 11,225 pixels,

there are 11,225 hypotheses tests involved in this plot. If these tests were independent

and performed at the 5% level, the number of statistically significant pixels X, would

be distributed as binomial with 11,225 trials and probability of success 0.05. We

would expect 5% to be statistically significant and X would have a mean of 561.25

and a standard deviation of 23.09. But, given the spatial correlation of rainfalls,

tests for neighbouring pixels are not independent, and this has the effect of increasing

the standard deviation of X, although the mean remains the same. An informal

explanation, for the increase in the standard deviation of X, is that if statistical

tests were confined to a subset of grid squares, that were sufficiently separated to be

approximately independent, there would be considerably fewer of the tests. However,

the number of statistically significant pixels is 3005 (27%) and this is substantially
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greater than the expected number of 561.25. An overall significance level could be

obtained by simulation.

7.3.2 Categorization using SOI May

In this section, this method of classification is applied to the soi May values of each

year, since the rainfall period between June to October is being analyzed. The classifi-

cation differs from the study by Jin et. al. [56] due to the distribution of the soi May

values. Studies done in Japan also showed that there is statistically significant corre-

lation between soi and precipitation in the subsequent months, using categorization

method of the soi [60].

For consistent comparisons to be made with the soi phases, the soi May values is being

categorized into five groups: Strong El-Niño (soi < −8.6); Weak El-Niño (−8.6 ≤
soi < −1.9); Normal Condition (−1.9 ≤ soi ≤ 1.9); Weak La-Niña (1.9 < soi ≤ 8.6);

Strong La-Niña (soi > 8.6). The subsequent June to October rainfall totals are

then categorized accordingly. Table 7.2 displays the number of observations in each

category. As a parallel comparison to the soi phases in 7.3.1, there are 19 observations

corresponding to the Strong El-Niño category and 16 observations in the Strong La-

Niña category, as compared to 14 in the rapid fall phase and 26 observations in the

rapid rise phase.

Table 7.2: Number of observations corresponding to each enso state

soi May category Number of years in each category
Strong El-Niño 19
Weak El-Niño 19

Normal Condition 19
Weak La-Niña 31
Strong La-Niña 16

Figure 7.11 displays the results from K-S test between rainfall associated to soi May

categorized as Strong El-Niño and rainfall associated to soi May categorized as Strong

La-Niña year. There is a considerable amount of clustering in eastern Australia, con-

sistent with results in Section 7.3.3. However, the significant pixels on the southwest

of Australia are more scattered.

Comparisons between the rainfall probability distributions associated to soi May value
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Figure 7.11: Statistically significant (5% level) differences in June-October rainfall associ-
ated with soi May categorized as Strong El-Niño and Strong La-Niña shown
in black.

categorized as Strong El-Niño and ‘all-years’ distribution are made. The same is car-

ried out with the Strong La-Niña category. Figures 7.12(a) and (b) show the difference

in absolute means between rainfall associated with Strong El-Niño and Strong La-Niña

and overall average rainfall respectively. Figure 7.12(a) shows that in most parts of

Australia, the rainfall associated with Strong El-Niño is around 0-60mm lower than

the overall average rainfall. In scattered parts of southern Tasmania, the rainfall

associated to the Strong El-Niño category is higher than the overall mean rainfall.

When mean rainfall associated with Strong La-Niña category is compared to overall

average rainfall, it is generally higher over the country, with southern parts of Tasma-

nia again receiving a higher amount of rainfall than other parts of Australia. These

observations are in agreement with Figures 7.13(a) and (b), where the proportion of

mean rainfall during the Strong El-Niño years is mainly below 1, and rainfall during

the Strong La-Niña years is mostly above 1 for the whole country.

7.3.3 Categorization based on ENSO classification

The method of enso classification used by Ropelewski and Halpert [103], as discussed

in Chapter 2, was applied to the monthly soi values and the years 1900 to 2003 are

classified into El-Niño, La-Niña or Neutral. Rainfall totals from June to October of the

same year are calculated and categorized according to which enso state that year is

classified into. Table 7.3 displays the distribution of years according to the enso state.

Similar significance testing at the 5% level is performed between rainfall distributions
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(a) (b)

Figure 7.12: Difference in means (mm) between: (a) Strong El-Niño and overall distribu-
tion; (b) Strong La-Niña and overall distribution, associated with soi May
categorization.

(a) (b)

Figure 7.13: Ratio of mean rainfall between: (a) Strong El-Niño and overall distribution;
(b) Strong La-Niña and overall distribution, associated with soi May cate-
gorization.

associated with El-Niño and La-Niña years. Figure 7.14 shows the plot of Australia

with significant p-values shaded in black.

This approach of classification sees a substantial increase in the number of pixels that

are statistically significant. This is consistent with the claim that El-Niño events

are often associated to lower than usual rainfall while La-Niña brings about a higher

amount of rainfall to most parts of Australia.

Although this form of classification gives a higher number of pixels as compared to soi

phase categorization, this categorization is not immediately useful for forecasting, since

monthly soi values for the entire year from April to March have to be known before
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Table 7.3: Number of observations corresponding to each enso state

enso state Number of years in each category
El-Niño 32
La-Niña 29
Neutral 43

Figure 7.14: Test of significance at 5% level between June-October rainfall associated with
El-Niño, and La-Niña with statistically significant pixels in black.

the association of June to October rainfall can be made. However, recent research

claims to have developed physically based climate models that can predict enso state

up to 2 years [21]. This model-based prediction of El-Niño depends largely on initial

conditions such as sst, sea level and winds. Chen et. al. [21] demonstrate that the

model is able to predict most of the warm and cold events in the past 148 years,

although the model’s prediction accuracy is higher when predicting stronger El-Niño

and La-Niña events.

Nevertheless, this model would allow the enso state to be predicted for the following

year and rainfall probability distributions can be obtained based on the enso state.

Given that there is a significant difference in probability rainfall distributions between

El-Niño and La-Niña events in most parts of Australia, this form of categorization has

the potential to provide farmers a forecast of one year ahead based on the probability

of obtaining a certain amount of rainfall given the enso state.
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7.4 Summary of results

In the first half of this chapter, the two prediction methods, soi phases and soi May

categories are both limited to years in which the phase is rapid rise or rapid fall or

the soi May category is Strong El-Niño or Strong La-Niña. There is little evidence

of any substantial association between rainfall and intermediate phases or categories.

So predictions would only be made with credibility during 40, for phases, and 35,

for categories, years out of 104 years. In this respect, the soi phases are slightly

more effective. However, in terms of percentage of statistically significant pixels, the

soi phases are significant over a smaller area of Australia (26.8%) compared with

(33.6%) for categories (Table 7.4). Figure 7.15 shows the density plot of the rainfall

distributions associated with rapid rise and rapid fall from a pixel in Queensland that

was found to have significantly different distributions for both phases.

−100 0 100 200 3000.
00

0
0.

00
4

0.
00

8

June−October rainfall (mm)

D
en

si
ty

Rapid fall
Rapid rise

Figure 7.15: Density plot of rainfall distributions associated with rapid rise (blue) and
rapid fall (red) phases

If the two measures are combined, 26.8% of 40 is 10.8 which is slightly less than 33.6%

of 35 which is 11.7. There is no evidence that the soi phases are better than the

soi May categorisation. The latter categorisation has advantages of simplicity and of

being on an ordinal scale (Table 7.2). The El-Niño and La-Niña year classification

is not directly comparable because it cannot be used for predictions unless combined

with physically based climate models. This strategy remains to be investigated.

Eastern Australia and western to southwest Australia shows a higher number of signif-

icant pixels than the rest of Australia. Hence, rainfall forecasts can be made based on

the associations to the phases or the enso states. This could eventually lead to more

reliable forecasts of droughts, which could be useful for farmers by providing them an
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estimate of the increase or decrease in the amount of rainfall they should expect given

a certain soi phase or soi May category. This finding is consistent with the fact that

drought usually develops during an El-Niño, especially in the eastern two-thirds of the

continent due to the Walker circulation shifting eastwards [135].

Table 7.4: Summary table for significance testing between soi phases

enso state Number of years Percentage of statistically
significant pixels

soi April and May categorized 26 vs. 14 26.8%
as rapid rise vs. soi April

and May categorized as rapid fall
El-Niño years vs. La-Niña years 32 vs. 29 75.6%
soi May categorized as Strong 19 vs. 16 33.6%

El-Niño vs. soi May categorized
as Strong La-Niña

7.5 Predicting drought using SST anomalies

7.5.1 Model and Application

In Chapter 2 and 3, sst anomalies is considered an influential climatic indicator of

the enso phenomenon, which affects the occurrence of droughts. The relationship

between all of the 16020 sst pixels and the monthly rainfall of a selected pixel in

Australia is investigated in this chapter. For illustration, monthly rainfall data from

Warragamba pixel is used. Warragamba is located in the state of NSW, with longitude

156◦E and latitude 33.8◦S. This region is also home to the Warragamba Dam, which

is the primary water supply for Sydney, with a catchment of 9050 square kilometers.

Figure 7.16 shows the location of the Warragamba Dam, in relation to Sydney.

To provide a spatial perspective of the correlations between the sst and the rainfall

of this region, Figure 7.17 shows the location of Warragamba and the location of the

five highest correlated pixel relating to each month’s rainfall. These figures illustrates

the changes in spatial correlations with sst across the year. To avoid selecting neigh-

bouring pixels of the strongest correlated ones, a mask boundary has been constructed

to identify the next highest correlated pixel which is not located in close proximity to

previously chosen pixels.



118
Chapter 7. Predicting low rainfall for pixels throughout Australia with

climatic indicators

Figure 7.16: Location of Warragamba Dam [123]

In general, there is a noticeable change in the area where the strongest correlated

pixels are found for every month. In January, highly positive correlated sst pixels are

located close to the eastern and western coast of Australia, and most of the southern

hemisphere. This gradually develops to a more negatively correlated area in July.

Given the monthly changes in correlation, the highest correlated sst pixel relating to

Warragamba rainfall is different for each month.

To account for temporal correlations for each month’s rainfall, the correlations are

calculated for different lag sst months. For instance, the correlations between March

rainfall and the sst prior to March are calculated. For each lag, the five strongest

correlated sst pixel relating to Warragamba’s rainfall is selected, with a similar mask

boundary attached. Based on the selected sst pixels, the following regression models

with and without interactions are developed.

Yt = β0 + β1SST1t−k + β2SST2t−k + β3SST3t−k + β4SST4t−k

+ β5SST5t−k + et

(7.1)

Yt = SST1t−k × SST2t−k × SST3t−k × SST4t−k × SST5t−k + et (7.2)

where Yt is the monthly Warragamba rainfall in month t, and SST1t−k is the highest

NOTE:
This figure is included on page 118 of the print copy of
the thesis held in the University of Adelaide Library.

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 118 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Figure 7.17: Correlation plots for (a) January rainfall and sst; (b) April rainfall and sst;
(c) July rainfall and sst and (d) November rainfall and sst,1990 - 2003
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correlated sst pixel in month t − k where k represents the lag. SST2 represents

the next strongest correlated sst pixel and so on. The residuals of the model are

represented as e.

7.5.2 Coefficient of determination

The coefficient of determination, R2 is commonly used statistic output given by most

statistical software, as a measure of strength of a relationship fitted by a regression

model. It provides an indication of how well future outcomes are likely to be predicted

by this model

Usually, the adjusted R2 function is also provided and is a modification of the R2

which penalizes R2 as more predictors are included into the model:

R2
adj = 1−

∑n
i=1 r2

i /(n− p− 1)∑n
i=1(Yi − Ȳ )2/(n− 1)

= 1− s2
e

s2
Y

where n is the sample size and p is the number of predictors in the regression model,

while s2
e and s2

Y indicates the estimates of the variances of the errors and of the obser-

vations, respectively. With large data sets, relatively few predictions and convincing

fits, the distribution may not be important. However, in the context of rainfall predic-

tion using sst, the distinction is crucial. Relatively impressive R2 values as displayed

in Sharma [111] for example, become much less so when the loss of degrees of freedom

is considered. For example, an R2 value of 57% recorded for forecasting rainfall from

one of the multiple regression models looks promising until the adjusted R2 of only

38% is taken into consideration.

7.5.3 Results and predictions

Regression models in Equations 7.1 and 7.2 are fitted with the strongest correlated sst

pixels for a particular time lag. The adjusted R2 values for the models without inter-

action terms and with interaction terms are shown in Tables 7.5 and 7.6 respectively.

In general for most time lags, regression models with interactions terms generally per-

form better in explaining variability as compared to the models without interaction

terms. For the purpose of analyzing the predictive ability of sst, the highest adjusted
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R2 value from Table 7.6 is chosen. This corresponds to the regression model with

March rainfall regressed on the previous November five highest correlated sst pixels,

giving an adjusted R2 of 0.419.
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The first 90 years of March rainfall data from 1901 to 1990 is regressed against the

five November sst pixels from 1900 to 1989. Based on this model, the rainfall for

March 1991 is predicted using November 1990 sst anomalies. This process is repeated

as each new March rainfall observation is added and the regression model is re-fitted

with new parameters for the previous year’s November sst anomalies.

Predictions from the regression model is then compared with the observed rainfall and

the residuals are calculated. To evaluate the performance of the rainfall predictions,

the median of the observed rainfall distribution is calculated and this is compared

to the predicted rainfall. The probability that the predicted rainfall will exceed the

median is calculated using the following equation:

P(predicted rainfall exceeds median rainfall) = Φ

(
ŷt+1 −my

sŷ

)
(7.3)

where ŷt+1 is the predicted March rainfall at time t + 1, my represents the median of

the observed rainfall up to time t and sŷ is the standard deviation of the predicted

rainfall distribution.

Both predicted and median rainfall values are considered against the observed March

rainfall and recommendations are made based on the accuracy of each value relative

to the observed rainfall. Table 7.7 displays the rainfall prediction results for 1991

to 2003, where pexceed my denotes the probability of exceeding the median rainfall as

expressed in Equation (7.3) and ‘M’ refers to the recommendation of using the median

over the prediction and ‘P’ refers to the preference of using predicted rainfall over the

median. The time series plot of predicted rainfall (dashed line) and observed rainfall

(solid line) is provided in Figure 7.18(a), along with the median rainfall (dotted line),

while Figure 7.18(b) shows their correlation plot.

Overall, all of the regression models fitted in the above table have an adjusted R-

squared of between 0.42 and 0.47. In all of the thirteen predictions, the model only

produced two favorable predictions that were closer in value to the observed rain-

fall than the median rainfall. More often than not, the model produces extremely

high rainfall predictions. There is a weak correlation between the observed and pre-

dicted rainfall of -0.25 and also by observing Figure 7.18(b). Hence, despite the high

correlations and adjusted R-squared which exist between the selected sst pixels and

Warragamba rainfall, results from this application indicate that the regression model

is often inadequate in producing four-month ahead predictions.
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Table 7.7: Summary table of predictions for Warragamba March rainfall, 1991-2003.

Rainfall Observed Predicted Residual Median pexceed my Recommendation
year(t) Rainfall(yt) Rainfall(ŷt) (mm) (M/P)
1991 12.8 75.8 -63.0 43.4 0.83 M
1992 58.2 84.3 -26.1 43.2 0.88 M
1993 88.9 27.1 61.8 43.4 0.32 M
1994 39.2 1.08 38.1 43.6 0.11 M
1995 13.7 42.7 -29.0 43.4 0.49 P
1996 36.5 75.5 -39.0 43.2 0.82 M
1997 29.7 108 -78.4 42.75 0.97 M
1998 6.5 91.3 -84.8 42.3 0.92 M
1999 77.4 42.8 34.6 42.1 0.51 P
2000 106.7 23.3 83.4 42.3 0.29 M
2001 55.4 196 -141 42.75 1.00 M
2002 35.0 75.3 -40.3 43.2 0.82 M
2003 55.6 85.7 -30.1 42.75 0.89 M
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Figure 7.18: (a) Time series plot of predicted and observed Warragamba March rainfall;
(b) Correlation plot between observed and predicted rainfall, 1991-2003.

7.6 Summary of Chapter

This chapter explores the prediction capability of two climatic indicators known to

affect Australia’s rainfall significantly; the soi and sst. Previous studies have investi-

gated the relationship of rainfall with soi and sst. This chapter adds to earlier work

by re-examining the phase method introduced by Stone et. al. [119] and also the

probabilistic forecasts procedure using the sst anomalies by Sharma et. al. [111].

The investigation of the soi phase method was extended to all of Australia’s rainfall

in the first half of this chapter. The soi phase method was then compared with the

soi May categories, but there was no evidence that the former is better for predicting
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June to October rainfall than the latter.

The soi phase method effectively reduces to a claim that a rapid fall in soi over April

and May is associated with below average June to October rainfall, and that a rapid

rise in April and May soi is associated with an above average June to October rainfall.

Forty out of 100 years fall into one or the other of these phases. The difference between

mean rainfall during the rapid fall and rapid rise is statistically significant at the 5%

level for 27% of the pixels in Australia. In a similar way, the difference between mean

rainfall for soi May categorized as Strong El-Niño and Strong La-Niña is statistically

significant at the 5% level for 34% of pixels but only 35 out of 104 years. Once the

number of years in which credible prediction can be made is allowed, there is little

difference in the performance of the two forecasting strategies. It is perhaps more

useful to consider using a combination of both, which does at least allow plausible

predictions of low rainfall to be made approximately 25% of the time. Table 7.8 shows

the distribution of years given both categorization methods.

Table 7.8: Number of years in each categorization

Categories Strong El-Niño Other Strong La-Niña
soi Rapid rise 0 18 8

Other 11 45 8
soi Rapid fall 8 6 0

Large-scale correlations between all sst pixels and a selected rainfall pixel were cal-

culated in the later part of this chapter. A routine which selects the five highest

correlated sst pixels allowed for separate multiple regression models to be fitted for

one to twelve month time lags. The adjusted R2 values for each of these multiple re-

gression models with and without interaction terms, were used to measure the strength

of the relationship, since this statistic takes into account the number of terms used in

the model. Results indicate that there is a general improvement in adjusted R2 values

when the interaction terms are included in the regression models. To demonstrate the

application of these models, the model with the highest adjusted R2 value was chosen.

The resulting predictions performed badly against the observed rainfall, despite high

correlations between the climatic indicator and the rainfall.

Both applications in this chapter have taken advantage of the associations of the cli-

matic indicators and rainfall to carry out predictions in Australia. These relationships

are useful since an estimate of the increase or decrease in the amount of rainfall could
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assist farmers in making better informed decisions about which crops to plant and

environmental agencies to manage water supplies and plan restrictions on use.
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Chapter 8

Improving drought predictions

using copulas

Modelling of drought characteristics using copulas and the influence of enso on the

dependence structure were explored in Chapter 4 and 5. The relationship between

rainfall around Australia and two prominent climatic indicators were examined in

detail using several methods of categorization in Chapter 7.

In this chapter, rainfall sum from June to October in two contiguous rainfall districts

are predicted from April and May soi using the trivariate Gumbel-Hougaard copula

conditioned on the soi April state being classified as positive or negative. Statistical

tests show a significant difference between the fitted copulas in both soi states. This

copula approach can be extended to modelling for more than two sites and the rainfall

prediction can be used to provide an estimate of drought risk.

8.1 Study area and data

Winter cropping season in eastern Australia is from June to October and hence pre-

dicting rainfall over this period would be of great financial value. June to October

rainfall from 1913 to 2002 from two neighbouring districts lying west of the Great Di-

viding Range, District 62 (Central Tablelands north) and 64 (Central Western Slopes)

in NSW have been selected to illustrate this. Both rainfall districts are an important

region in producing wool, beef, oats and wheat.

NSW has a temperate climate with large climatic variations depending on the prox-

129
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imity to the coast and mountains. Figure 8.1 shows the location of the neighbouring

districts 62 and 64. District 62 is located within the central parts of NSW, with lati-

tude 31.73◦ to 33◦S and longitude 148.97◦ to 150.4◦E. The region has a varied elevation

of between 170m to 1101m, with maximum monthly rainfall being 323.1mm and min-

imum being 0mm. Lying north of District 62 is District 64 positioned at a latitude of

31.2◦ to 32.28◦S and longitude of between 148.7◦ and 148◦E. The elevation range in

this district is between 213.4m to 860m, with maximum monthly rainfall of 309.1mm.

Both Districts 62 and 64 have roughly similar mean annual rainfall of 642.6mm and

625.8mm respectively. Figures 8.2 display the time series plot of June to October

rainfall sum for Districts 62 and 64. There is no evidence of a linear trend in both

districts. The monthly soi data over this time period is obtained from the Queensland

Government Long Paddock website [94], which is also used in Chapter 7 where the

time series plot is also provided .

Figure 8.1: Location of District 62 and 64, NSW

Year

R
ai

nf
al

l (
m

m
)

1920 1940 1960 1980 2000

10
0

30
0

50
0

District 62
District 64

Figure 8.2: Time series plot of June to October rainfall sum for Districts 62 and 64, 1913-
2002.
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8.2 Methodology and Application

8.2.1 Identifying and categorizing of copula variables

In Chapters 2 and 3, negative values of the soi were found to be highly correlated with

El-Niño events in Australia, during which droughts occur more frequently. Changes

between the soi April and May states were associated with subsequent June to October

rainfall total and this was discussed in Chapter 7. This relationship was shown to be

effective in predicting drought occurrence and its corresponding risk. Furthermore,

drought risk for a particular rainfall region can be better determined, since rainfall

from neighbouring districts are generally spatially correlated.

Based on these established relationships with June to October rainfall sum, three

variables are chosen to model their dependence structure by the trivariate Gumbel-

Hougaard copula, introduced in Chapter 4. The three variables are: District 62 June

to October rainfall total; District 64 June to October rainfall total; and soi May.

For each year from 1913 to 2002, these data triplets are categorized into two groups

based on the soi April value; positive (+ve) or negative (−ve). Table 8.1 provides the

basic statistics of the variables in the two groups and Table 8.2 shows the correlations

between the copula variables in both groups. There is a general decrease in mean June

to October rainfall total in both districts associated with soi April being negative. It

is also more likely for soi May to be negative when soi April is negative. Similarly,

when soi April is in a positive state, there is a higher tendency for soi May to be

positive. Correlations between rainfall in both districts are roughly similar for both

soi April states, however correlations between the respective district rainfall totals

and soi May in soi April negative state is overall higher as compared to that in the

positive state.

Table 8.1: Means and Standard deviations of copula variables given soi April state

Variable District 62 Jun-Oct District 64 Jun-Oct soi May
rainfall sum (mm) rainfall sum (mm)
soi −ve soi +ve soi −ve soi +ve soi −ve soi +ve

Number of years 50 40 50 40 50 40
Mean 237.4 262.6 226.2 239.1 -2.7 3.5

Standard deviation 110.8 83.7 120.6 70.5 10.1 7.1
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Table 8.2: Correlations between copula variables given soi April state

Correlations Pearson
soi April −ve soi April +ve

District 62 Jun-Oct rainfall, District 64 Jun-Oct rainfall 0.93 0.91
District 62 Jun-Oct rainfall, soi May 0.37 0.11
District 64 Jun-Oct rainfall, soi May 0.31 0.10

8.2.2 Fitting marginal distributions to copula variables

Similar approach used in Chapters 4.2 and 5.4, are applied here to fit appropriate

marginals to each copula variable for both soi April states. To determine the most

appropriate distribution requires the use of the aic criterion again.

Tables 8.3 shows the best fitted distribution for each copula variable with estimated

parameters for the respective distributions. The estimated means for the corresponding

distributions for Districts 62 and 64 are both lower when soi April is negative. The

largest difference in estimated means between both soi April states is observed for

District 62 June to October rainfall total, where the standard deviation of the rainfall

total is larger in the soi April negative state (9.99) compared to the soi April positive

state (7.01).

Table 8.4 computes the correlation between the copula variables following the trans-

formation to uniform variables. Comparing these correlations to those in Table 8.2,

it is evident that the correlations between the rainfall totals in both districts remain

largely unaffected in both soi April states, which is not surprising since rainfall in

neighbouring districts are usually highly correlated.

However, correlations between rainfall totals from both districts and soi May have

reduced in the soi April positive state, while an increment is observed in the soi April

negative state. Following this transformation, correlations between rainfall totals from

both districts and soi May are found to be highly similar for both soi April states.

For example, before transformation when soi April is in a negative state, correlations

between June to October rainfall total from District 62 and soi May is 0.37, while

correlations between that of District 64 and soi May is 0.31. The corresponding

correlations for the same set of data after transformation was found to be 0.46 and

0.45 respectively. These highly similar correlations are essential when the dependence

structure of these variables are modelled by the asymmetric Gumbel-Hougaard copula.
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This is ideal for this form of Archimedean copula since, a restriction of this copula is

that the correlations between the inner variables and the outer variable of the copula

are identical, as mentioned in Chapter 4.

Table 8.3: Parameters of marginal distributions of copula variables

Variable Distribution Estimated
Parameters

SOI April positive
District 62 Jun-Oct rainfall Normal µ = 3.53, σ = 7.01
District 64 Jun-Oct rainfall Lognormal µ = 5.53, σ = 0.29

soi May Lognormal µ = 5.44, σ = 0.29

SOI April negative
District 62 Jun-Oct rainfall Normal µ = −2.72, σ = 9.99
District 64 Jun-Oct rainfall Lognormal µ = 5.36, σ = 0.49

soi May Lognormal µ = 5.29, σ = 0.53

Table 8.4: Correlations between transformed uniform copula variables given soi April state

Correlations Pearson
soi April −ve soi April +ve

District 62 Jun-Oct rainfall, District 64 Jun-Oct rainfall 0.94 0.89
District 62 Jun-Oct rainfall, soi May 0.46 0.02
District 64 Jun-Oct rainfall, soi May 0.45 0.04

8.2.3 Modelling dependence structure using trivariate Gumbel-Hougaard

copula

The asymmetric trivariate Gumbel-Hougaard copula from Equation (4.12) in Chapter

4 is used here. Recall that one of the property of this copula is that the dependence

parameter of nested variables in the copula are the highest correlated pairs. In this

case, the rainfall totals between District 62 and 64 are the highest among all the

variable pairs. Due to this prerequisite, the uniform variables of District 62 June to

October rainfall total are taken to be u1, District 64 June to October rainfall total to

be u2 and soi May to be u3 in Equation (4.12).

For both trivariate Gumbel-Hougaard copulas in their respective soi April states, the

estimation of parameters θ1 and θ2 are estimated using mle, introduced in Chapters

4 and 5. These estimated parameters for both soi April states are shown in Table 8.5,
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along with their standard errors given in brackets. Both estimated copula parameters

are higher in the soi April negative state. This is due to the higher correlations

observed in Tables 8.3 and 8.4 during the soi April negative state.

Table 8.5: Parameters of trivariate Gumbel-Hougaard copula given soi state

Parameter soi April −ve soi April +ve
θ̂1 1.26 1.04

(0.13) (0.09)
θ̂2 4.52 3.21

(0.52) (0.41)

In order to assess if a significant difference exists between the dependence structure of

variables from soi April positive and negative states, the null hypothesis of equality

between the copula parameters of both soi states is assumed. Statistical significance

tests at the 5% level are performed on the estimates of the dependence parameter θ.

The test statistics for testing the hypotheses of the equality of parameters in the two

soi states are 1.38 for θ1 and 1.96 for θ2, which corresponds to p-values of 0.18 and

0.05 respectively.

Results indicate a very strong evidence that θ2 is higher during the soi April nega-

tive state than positive state. There is also weak evidence that θ1 is higher in soi

April negative state than positive state. These results justify allowing for different

dependence parameters for different climatic conditions.

8.2.4 Goodness-of-fit tests

Once again, the fitted Gumbel-Hougaard copulas have to be assessed for a satisfactory

fit to the observed data. Similar approach taken in Chapters 4 and 5 is used here.

Figure 8.3 shows the plot of the probabilities derived from the fitted copula against

the probabilities calculated from the empirical copula, where the empirical copula is

given in Equation 4.17 in Chapter 4. Recall that the distance between the plotted

points and the diagonal line should be minimized for an optimal fit. For both soi

April states, the points are relatively close to the diagonal line and hence satisfy this

test.
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Figure 8.3: Plot of values from theoretical Gumbel-Hougaard copula against empirical
copula for soi April positive (diamonds) and soi April negative (circles)

8.2.5 Simulating from the Gumbel-Hougaard Copula

Random variables are simulated from the respective trivariate Gumbel-Hougaard cop-

ula fitted with their estimated parameters obtained above, using the algorithm de-

scribed in Chapter 4.2.3. Simulations of 100,000 are generated for the three variables

from their corresponding copula given soi April state. Table 8.6 shows the correlations

between pairs of simulated variables. The correlations derived from the simulations

are close to those derived from the observed data (Table 8.2) when the soi April is

negative. The difference in the correlations are negligible when similar comparisons are

made for the soi April positive state. These simulations justify that the fitted trivari-

ate Gumbel-Hougaard copulas for both soi April states are adequate in modelling the

dependence structure of the observed data.

Copula density plots of District 62 June to October rainfall against soi May for both

soi April states are constructed from the simulations, and are displayed in Figures

8.4(a) and (b) respectively. Figures 8.5(a) and (b) shows the copula density plots of

District 64 June to October rainfall total and soi May, given their soi April states.

Table 8.6: Correlations between simulated variables given soi April state

Correlations soi April −ve soi April +ve
u1, u2 0.93 0.87
u1, u3 0.31 0.06
u2, u3 0.31 0.06

Both Figures 8.4 and 8.5 show that different soi April conditions have an effect on



136 Chapter 8. Improving drought predictions using copulas

(a)

District 62 Jun!Oct rainfall

0

200

400

600

800

S
O

I M
ay

!40

!20

0

20

40

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

(b)

District 62 Jun!Oct rainfall

0

200

400

600

800

S
O

I M
ay

!40

!20

0

20

40

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Figure 8.4: Copula densities of District 62 sum of June to October rainfall and soi May
during (a) soi April positive; and (b) soi April negative states.
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Figure 8.5: Copula densities of District 64 sum of June to October rainfall and soi May
during (a) soi April positive; and (b) soi April negative states.

the copula densities between both district rainfall totals and the soi May. Given

this difference in density plots and copula dependence parameters for both soi April

states, the probability of exceeding the drought threshold and consequently a drought

occurring, can be derived based on these distribution plots and the use of the spi. The

spi of −1 or less indicates a drought, hence rainfall amounts equivalent to this spi

value in both districts can be computed and used to assess the probability of drought

risk in these districts.

8.2.6 Forecasting using copula

The fitted copulas for whichever soi April state pertains, can be used for forecasting

the June to October rainfall distributions of Districts 62 (u1) and 64 (u2) given the
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soi May (u3). First, the copula C(u1, u2, u3) has to be partially differentiated with

respect to u1, u2 and u3 to give its pdf c(u1, u2, u3). Then given the soi May as u∗3,

we can simulate from c(u1, u2 | u∗3) by using the Metropolis-Hastings algorithm [23] on

c(u1, u2, u
∗
3). This will generate the bivariate rainfall distribution of u1 and u2 given

u3 = u∗3 and whether soi April is positive or negative.

8.3 Summary of chapter

This chapter extends the application of copulas from modelling drought character-

istics in Chapters 4 and 5 to providing a framework for the assessment of drought

risk through the established relationship between preceding soi states and rainfall in

neighbouring rainfall districts (Chapter 8). This model is applied to two neighbouring

districts, Districts 62 and 64, in NSW. Two groups of triplets consisting of June to

October rainfall total in Districts 62 and 64 and soi May, are obtained by segregating

them according to the positive or negative values of soi April.

The dependence structure of the triplets for each soi April category is then modelled

through the Gumbel-Hougaard copula, where the copula parameters are estimated

through mle. Goodness-of-fit tests performed indicate no evidence of a lack of fit

using the Gumbel-Hougaard copula to model these set of historical data. Significance

tests and the copula density plots from the simulations for both soi April positive

and negative demonstrate the difference between dependence structures of the triplets

given the soi value from the preceding month. Based on these results, drought risk

through the use of rainfall predictions may be improved with the inclusion of the soi

from preceding months in the copula model.
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Chapter 9

Conclusions and future research

directions

9.1 Conclusions

The aim of this thesis was to predict drought occurrence spatially and temporally in

Australia, by first considering multivariate models of drought risk and then examining

the practicability of short term predictions of droughts. Outcomes from this research

will provide drought risk information which will be useful for drought risk assessment

and short-term drought predictions. This information could assist the agricultural

community make better informed decisions on appropriate crops to plant, as well as

environmental and governmental agencies to manage water supplies and plan restric-

tions on use.

Much of the literature concentrates on droughts defined solely in terms of their dura-

tion, which is a univariate approach, and relies on aggregation of rainfall over a defined

area. Examples of such areas are: a square pixel, a river basin or a rainfall district,

or a larger region such as a state. A multivariate approach allows for further charac-

teristics of droughts, such as their peak and average intensities, to be modelled and

also provides scope for more detailed spatial modelling. The most common approach

to multivariate modelling is the multivariate Gaussian distribution, which has the ad-

vantage of being mathematically tractable. There are standard results for conditional

distributions of one sub-set of variables on another subset.

The apparent restriction of Gaussian marginal distributions can easily be circum-
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vented by transforming any marginal cdf to a uniform cdf and then taking the inverse

Gaussian distribution, which is equivalent to fitting a Gaussian copula. A popular

alternative is to take a Box-Cox transform of the variables. However, the multivariate

Gaussian distribution has a unique correlation structure which is not realistic for many

applications especially for extreme values. In particular, the multivariate Gaussian dis-

tribution does not have tail dependence. Copulas offer a highly versatile approach to

modelling all multivariate distributions, and there has been renewed research interest

in this area over the past 10 years.

In Chapter 4, a single rainfall district in NSW was considered and copulas were fitted to

three drought characteristics: duration; severity and peak intensity. Comparison was

made between the Gaussian and Gumbel-Hougaard copulas and it was demonstrated

that the tail dependence of the latter provided a more realistic model.

In Chapter 5, the ideas of Chapter 4 were extended to the comparison of two rain-

fall districts, east and west of the Great Dividing Range, conditioned on El-Niño and

La-Niña climatic states. Furthermore, similar to the Gaussian copula, the t-copula,

allows for separate correlation parameters and also allows for tail dependence, was

introduced. Following this, a comparison of the copula forms was made in terms of

return periods. This chapter provided a comprehensive demonstration of the copula

model and showed that the calculation of return periods on a univariate scale can

result in misleading conclusions and analysis of drought risk when correlations are

present between hydrological variables. The availability of such information is espe-

cially crucial when making recommendations in drought mitigation and water resource

planning.

Attention of this study turned from modelling drought behaviour to short-term predic-

tions of expected spi values in Chapter 6, methods for forecasts with lead times of one

to twelve months. The forecasting performance of various stochastic models was eval-

uated using rainfall data from three station gauges in NSW. From the rmse results, it

was observed that using rainfall in a climatic regression model which included climatic

indices, performed the best in identifying a one-month ahead drought when compared

to the spi(3). For predictions to be of practical use to the agricultural community,

they will have to be made at a longer time lag. Coupling statistical modelling with

numerical weather prediction models is a method recommended to address this issue.

Autoregressive models with climatic indicators and weighted regression models were

employed to predict six-month ahead monthly forecasts. The inclusion of weights in
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the climatic regression model reduced the rmse value based only on drought periods,

substantially. This chapter also validated the significant influence of climatic indices

on droughts, by improving drought forecasts with the inclusion of climatic indicators.

Chapter 7 moved on to predicting the short-term probability rainfall distributions

through establishing relationships between rainfall, soi and sst variables. In partic-

ular, this study has examined the performance of a widely-used rainfall prediction

software, Rainman [119], and compared this to other forms of categorization tech-

niques. Firstly, this study proposed alternate and simpler strategy for forecasting

June to October rainfall using only soi from the preceding month. This strategy

was demonstrated for all of Australia. Statistical significance testing between the ex-

treme categories of each method were carried out for all pixels in Australia and their

forecasting performance were evaluated based on the percentage of pixels that were

significantly different at the 5% level.

This thesis has presented results that show that the classification technique which only

uses the soi from the preceding month, is equally capable of providing probabilistic

rainfall forecasts as Rainman. A third classification procedure categorized rainfall

of the same year according to the enso state that year was in. This study showed

promising results of an association between June to October rainfall and enso state,

hence the potential of using this association for rainfall predictions, given an accurate

prediction of an enso state, can be made well in advance. Such a prediction would

need to come from a numerical weather prediction model. In addition, this analy-

sis has demonstrated that such classification methods and software, should be used

with extreme care when making predictions, especially in regions where no signifi-

cant difference in rainfall between categories were found, as this may cause misleading

conclusions.

This research continued investigating the potential of probabilistic rainfall forecasting

based on relationships with another influential climatic indicator, sst anomalies. This

analysis follows from the study by Sharma [111], which showed that using highly cor-

related pixels of sst anomalies as predictors of quarterly rainfall, are an improvement

to three commonly used enso indices. Utilizing rainfall data from the same region

as Sharma [111] and selecting the corresponding five highest correlated sst pixels,

this section has demonstrated that although these pixels gave relatively impressive R2

values from the fitted model which was considered by Sharma [111], these R2 values

were less impressive once degrees of freedom is taken into account which was reflected
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by the adjusted R2 values. Furthermore, the rainfall predictions made from these re-

gression models performed poorly and it was therefore recommended by this study to

use the median rainfall instead.

Finally, in Chapter 8, the thesis combined two concepts from earlier chapters and

extended it to improve drought predictions. This chapter took advantage of the es-

tablished June to October rainfall relationship with soi April and May discussed in

Chapter 7, and the copula concept employed to model drought characteristics. Rain-

fall during this period from two neighbouring NSW rainfall districts were fitted to

the trivariate Gumbel-Hougaard copula along with the soi in May. Separate trivari-

ate copulas were fitted for different soi April conditions. Results from this analysis

showed a significant difference between the fitted copula parameters, and was further

supported by the copula densities from both enso states. In the case where a signifi-

cant difference exists, these copula densities were shown to be valuable in drought risk

assessment. Findings from this thesis have opened a number of possible research areas

that could contribute to improvements in drought predictions and they are described

in the following section.

9.2 Future research directions

This research has presented results which are instrumental in understanding the nature

of droughts in Australia and may lead to further development in the modelling and

prediction of droughts. Some of these results have led to the identification of future

possible research avenues which are discussed below.

9.2.1 Further modelling of drought characteristics using copulas

Though the application of copulas in the area of hydrology has been recent, this

concept represents a significant addition to the modelling of drought characteristics

and drought predictions. The field of copula research is rather wide and there are many

other copula forms for which their applications to drought remains to be explored.

Within the Archimedean copula family, a range of copulas are capable of modeling

a variety of dependence structures, for example the Cook-Johnson and Frank copula.

Furthermore, limited research on the application of elliptical copulas to droughts has

been carried out, mainly due to not having closed-formed solutions. Results from the
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application of t-copulas in Chapter 5 have been promising, and it is possible that this

copula may be extended to fit a larger number of variables. One of the drawbacks of

the t-copula is its strong symmetry, where the level of tail dependence in the upper

tail is the same as the lower tail. Several extensions of the t-copula were introduced in

[30] to introduce more asymmetry, for example the skewed t-copula allows for heavier

marginal tails and the grouped t-copula allows for different levels of tail dependence for

each subvector of the vector X. These modified versions of the t-copula may provide

more flexibility in modelling specific extreme drought events.

Another aspect of the copula approach which has recently gained increasing attention

is the use of distortions. Some authors label this as a transformation of the existing

copulas [35] and few studies have focused on this technique [34, 79, 5]. Recall the basic

construction of an Archimedean bivariate copula is based on the following:

C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) (9.1)

Then for γ : [0, 1] → [0, 1], Durrleman et. al. [35] defines the transformation of the

copula Cγ on [0, 1]2 as

Cγ(x, y) = γ−1(C(γ(x), γ(y))) (9.2)

The distorted copula is also a copula and possesses properties such as concavity on

[0, 1], being twice differentiable and continuous from [0, 1] to [0, 1]. Morillas [79] pro-

vides a list of expressions that the transforming generator functions γ can take. This

introduction of distortions to copulas has paved the way for the construction of a vari-

ety of new copulas, which can be more versatile for drought modelling and predicting.

Part of the ifm approach discussed in Chapter 4 was to fit a continuous marginal

distribution to each hydrological variable to transform them onto a uniform scale.

Drought characteristics in this thesis have been calculated on both monthly and daily

time scales. However, the use of months to derive drought duration results in step

or discrete-looking data. Issues have been raised over whether the use of continuous

marginal distributions on duration should be permitted. Shiau [113] justifies fitting an

exponential distribution to drought duration defined in months [149]. Utilizing daily

rainfall in this thesis have been proposed to overcome this restriction. The discrete

copula family is another alternative and applications of this copula form have been

recent [43]. The application of this copula family to hydrology is worth investigating
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and may improve the existing approach.

9.2.2 Improving predictions of climatic indices and the inclusions of other

indices

This thesis has concentrated on the relationships between the enso phenomenon and

its associated indices, the soi and sst, with drought to make predictions. In Chapter

7, two categorization techniques which relied on soi from preceding months were used.

Further work will investigate the relationship between rainfall and a linear combina-

tion of preceding soi, using a canonical correlation technique. Furthermore, the third

categorization which displayed a significant difference between rainfall during El-Niño

and La-Niña states throughout most of eastern and central Australia. Thorough in-

vestigation into the performance of rainfall forecasts could be conducted, based on

combining predictions of annual enso with relatively high correlation between June

to October rainfall and annual enso, using physically based climate models of Chen

et. al. [21].

The drought variability in Australia is largely due to its location, which is influenced by

the ocean-atmospheric interactions in the Indian, Southern and Pacific Ocean. Other

global climatic indices worth investigating are the iod and mei, which could be incor-

porated in the development of drought forecasting models. Background description

of the iod in Chapter 2, associated the positive phase of the iod with dry conditions

in parts of Australia. There is still substantial work required to develop a forecasting

framework to predict iod phases, by improving the predictions of the corresponding

index, dmi. Luo et. al. [65] has shown promising results using a coupled model to

show that two positive iod phases can be predicted up to 3 or 4 seasons ahead. Also,

the influence of the iod on the soi, sst, and consequently enso could be examined.

A relationship between the iod and soi were suggested by Behera and Yamagata [16].

Hence, a mixture of these indices incorporated in a model could be used to predict

drought. It has also been widely reported that temperature increase in recent years,

has affected drought in Australia. The association of temperature with these climatic

indices could also be investigated and this relationship may provide further insight

into the prediction of droughts.
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9.2.3 Producing predictions for wider spatial extent and applications of

drought predictions

The modelling and prediction techniques in this research have so far only been applied

to mainly NSW and the pixels in Australia in Chapter 7. One possible extension would

be to increase the spatial extent of drought predictions, by way of modelling all rainfall

pixels as a single multivariate distribution and forecasting multi-site drought. Another

challenge when predicting droughts in Australia, is to predict both spatially and tem-

porally. Spatio-temporal modelling of rainfall has only been recently considered in

the literature [108, 2]. Sanso and Guenni [108] used the multivariate dynamic linear

model to model time-varying long-range spatial dependence and fitted this model us-

ing Markov Chain Monte-Carlo method, which allowed for a predictive distribution

of rainfall to be obtained. These methods could be applied to the spatio-temporal

modelling of drought using the spi values instead of rainfall data. Another proposed

extension that may take into account both aspects would be the copula approach.

Figure 9.1 displays 9 selected grids in time t1 and t2 for a small site. The shaded pixel

is the pixel for which rainfall predictions are made in time t2. Given that rainfall in

neighbouring pixels are highly correlated with the shaded pixel, a copula that incor-

porates rainfall from neighbouring pixels in time t1 and t2, rainfall of shaded pixel in

time t1 and t2, could be modelled. The joint distribution function and conditional dis-

tribution function may provide probabilistic rainfall information for the shaded pixel.

It is possible that this application could be expanded for a larger area, by combining

rainfall from 2 or more pixels.

Figure 9.1: Grid rainfall diagram for a small region

As mentioned, the agricultural community is especially affected by the loss in revenue

when a drought occurs. A worthwhile area of investigation would be to calculate the
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definitive cost attached to each drought episode. The relationship between drought in-

dices such as spi and global climatic indices with the economic cost could be examined

through the application of the multivariate distribution using copulas. By evaluating

this relationship, a system of economic valuation, for instance, the Conditional Value

at Risk (CVaR) and the Valuation at Risk (VaR) which is commonly used in finance,

could be laid out. This will give farmers and governmental agencies an overview of

the estimated cost to set aside, to cope with the effects of drought.

The economic cost of drought analysis would also provide a system of valuation for

prevention measures to be implemented based on cost benefit analysis. Cost ben-

efit analysis is an essential technique in project appraisal. This involves attaching

monetary weights to the total expected costs and comparing these costs to the total

expected benefits of one or more actions, in order to choose the most profitable option.

Further research could examine the feasibility of various drought mitigation efforts, for

example, dams which have been used worldwide or the construction of desalination

plants.

9.3 Conclusion

This thesis has presented a comprehensive analysis of drought modelling and predic-

tions in Australia and has established a framework for more important investigations

in drought predictions. Ultimately, it is hoped that this research will be beneficial to

both public and private sectors directly affected by future droughts.



Appendix A

Derivation of Conditional

Archimedean copula

This appendix gives an example of deriving the conditional copula, using a trivariate

asymmetric Gumbel-Hougaard copula. From Equation (4.12), the trivariate asymmet-

ric Gumbel-Hougaard copula is given as:

C1(C2(u1, u2), u3) = exp[−([(− lnu1)θ2 + (− lnu2)θ2 ]
θ1
θ2 + (− lnu3)θ1)

1
θ1 ]

By the definition of Equation (4.9),

C2(u2 | u1) =
∂C2(u1, u2)

∂u1

/
∂C1(u1)

∂u1

C3(u3 | u1, u2) =
∂2C3(u1, u2, u3)

∂u1∂u2

/
∂2C2(u1, u2)

∂u1∂u2

where C3(u1, u2, u3) = C1(C2(u1, u2), u3). The derivation of C2(u2 | u1) is

∂C2(u1, u2)

∂u1

/
∂C1(u1)

∂u1

= exp(−((− ln(u1))θ2 + (− ln(u2))θ2)1/θ2)

× (((− ln(u1))θ2 + (− ln(u2))θ2)(1/θ2)−1 × ((1/θ2)

× ((− ln(u1))(θ2)−1 × ((θ2)× (1/u1)))))

and ∂C1(u1)
∂u1

= 1.

The derivation of C3(u3 | u1, u2) first requires the derivation of ∂2C3(u1,u2,u3)
∂u1∂u2

and
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∂2C2(u1,u2)
∂u1∂u2

separately. The result from deriving ∂2C3(u1,u2,u3)
∂u1∂u2

is

∂2C3(u1, u2, u3)

∂u1∂u2

= exp(−(((− ln(u1))θ2 + (− ln(u2))θ2)
θ1
θ2

+ (− ln(u3))θ1)1/θ1)× ((((− ln(u1))θ2

+ (− ln(u2))θ2)θ1/θ2 + (− ln(u3))θ1)(1/θ1)−1

× ((1/θ1)× (((− ln(u1))θ2 + (− ln(u2))θ2)(θ1/θ2)−1

× ((θ1/θ2)× ((− ln(u2))θ2−1 × (θ2 × (1/u2)))))))

× ((((− ln(u1))θ2 + (− ln(u2))θ2)θ1/θ2

+ (− ln(u3))θ1)(1/θ1)−1 × ((1/θ1)× (((− ln(u1))θ2

+ (− ln(u1))θ2)(θ1/θ2)−1 × ((θ1/θ2)

× ((− ln(u1))(θ2)−1 × (θ2 × (1/u1)))))))− exp(−(((− ln(u1))θ2

+ (− ln(u2))θ2)θ1/θ2 + (− ln(u3))θ1)1/θ1)

× ((((− ln(u1))θ2 + (− ln(u2))θ2)θ1/θ2

+ (− ln(u3))θ1)(1/θ1)−1 × ((1/θ1)× (((− ln(u1))θ2

+ (− ln(u2))theta2)((θ1/θ2)−1)−1 × (((θ1/θ2)− 1)

× ((− ln(u2))(θ2)−1 × ((θ2)× (1/u2))))× ((θ1/θ2)

× ((− ln(u1))(θ2)−1 × ((θ2)× (1/u1)))))) + (((− ln(u1))θ2

+ (− ln(u2))θ2)θ1/θ2 + (− ln(u3))θ1)((1/θ1)−1)−1

× (((1/θ1)− 1)× (((− ln(u1))θ2 + (− ln(u2))θ2)(θ1/θ2)−1

× ((θ1/θ2)× ((− ln(u2))(θ2)−1 × ((θ2)× (1/u2))))))

× ((1/θ1)× (((− ln(u1))θ2 + (− ln(u2))θ2)(θ1/θ2)−1

× ((θ1/θ2)× ((− ln(u1))(θ2)−1 × ((θ2)× (1/u1)))))))



Appendix A. Derivation of Conditional Archimedean copula 149

and the result obtained from ∂2C2(u1,u2)
∂u1∂u2

is

∂2C2(u1, u2)

∂u1∂u2

= exp(−((− ln(u1))θ2 + (− ln(u2))θ2)1/θ2)

× (((− ln(u1))θ2 + (− ln(u2))θ2)(1/θ2)−1 × ((1/θ2)

× ((− ln(u2))(θ2)−1 × ((θ2)× (1/v)))))× (((− ln(u1))θ2

+ (− ln(u2))θ2)(1/θ2)−1 × ((1/θ2)× ((− ln(u1))(θ2)−1

× ((θ2)× (1/u1)))))− exp(−((− ln(u1))θ2 + (− ln(u2))θ2)1/θ2)

× (((− ln(u1))θ2 + (− ln(u2))θ2)((1/θ2)−1)−1 × (((1/θ2)− 1)

× ((− ln(u2))(θ2)−1 × ((θ2)× (1/u2))))× ((1/θ2)

× ((− ln(u1))(θ2)−1 × ((θ2)× (1/u1)))))

With these results, the derivation of C3(u3 | u1, u2) is straightforward.
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Appendix B

Regression results of annual

drought impact from Chapter 5

Results from regressing annual drought impact on time and enso indicators are pro-

vided for both District 58 and 63. Here, ENSO ind2 refers to the La-Niña state while

ENSO ind3 refers to the Neutral state.

District 58:

Call:

lm(formula = yearly_sum ~ year + ENSO_ind)

Residuals:

Min 1Q Median 3Q Max

-1.5186 -0.7940 -0.2953 0.4310 3.9245

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.821197 0.321566 5.664 1.93e-07 ***

year -0.010806 0.004903 -2.204 0.0502 .

ENSO_ind2 -0.650093 0.331565 -1.961 0.0532 .

ENSO_ind3 -0.569780 0.302126 -1.886 0.0627 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 1.205 on 86 degrees of freedom

Multiple R-squared: 0.1009,Adjusted R-squared: 0.06957

F-statistic: 3.218 on 3 and 86 DF, p-value: 0.02671

District 63:

Call:

lm(formula = yearly_sum ~ year + ENSO_ind)

Residuals:

Min 1Q Median 3Q Max

-2.2315 -0.7292 -0.4120 0.3500 6.3797

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.296480 0.397826 5.773 1.21e-07 ***

year -0.005014 0.006066 -0.827 0.410787

ENSO_ind2 -1.311595 0.410197 -3.197 0.001941 **

ENSO_ind3 -1.415353 0.373776 -3.787 0.000282 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.49 on 86 degrees of freedom

Multiple R-squared: 0.1648,Adjusted R-squared: 0.1357

F-statistic: 5.656 on 3 and 86 DF, p-value: 0.001386



Appendix C

Copula parameter estimation

This appendix shows the mle program in R, for the purpose of determining the copula

parameters θ1 and θ2 of the asymmetric trivariate Gumbel-Hougaard copula.

Following the result given in Appendix A, the mle function is

MLE_parameter = function(p) {

L = (exp(-(((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2]) +

(-log(w))^(p[1]))^(1/p[1])) * ((((-log(u))^(p[2]) +

(-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^((1/p[1]) -

1) * ((1/p[1]) * ((-log(w))^((p[1]) - 1) * ((p[1]) *

(1/w))))) * ((((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2]) +

(-log(w))^(p[1]))^((1/p[1]) - 1) * ((1/p[1]) *

(((-log(u))^(p[2]) + (-log(v))^(p[2]))^((p[1]/p[2]) - 1)

* ((p[1]/p[2]) * ((-log(v))^((p[2]) - 1) * ((p[2]) * (1/v)))))))

- exp(-(((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2])

+ (-log(w))^(p[1]))^(1/p[1])) * ((((-log(u))^(p[2])

+ (-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))

^(((1/p[1]) - 1) - 1) * (((1/p[1]) - 1) * ((-log(w))

^((p[1]) - 1) * ((p[1]) * (1/w)))) * ((1/p[1]) * (((-log(u))

^(p[2]) + (-log(v))^(p[2]))^((p[1]/p[2]) -1) * ((p[1]/p[2])

* ((-log(v))^((p[2]) - 1) * ((p[2]) * (1/v)))))))) *

((((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2])

+ (-log(w))^(p[1]))^((1/p[1]) -1) * ((1/p[1]) * (((-log(u))
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^(p[2]) + (-log(v))^(p[2]))^((p[1]/p[2]) - 1) * ((p[1]/p[2])

* ((-log(u))^((p[2]) - 1) * ((p[2]) * (1/u))))))) -

exp(-(((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2]) +

(-log(w))^(p[1]))^(1/p[1])) * ((((-log(u))^(p[2]) +

(-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^((1/p[1]) -

1) * ((1/p[1]) * (((-log(u))^(p[2]) + (-log(v))^(p[2]))

^((p[1]/p[2]) - 1) * ((p[1]/p[2]) * ((-log(v))^((p[2]) - 1)

* ((p[2]) * (1/v))))))) * ((((-log(u))^(p[2])+ (-log(v))

^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^(((1/p[1]) - 1) - 1)

* (((1/p[1]) - 1) * ((-log(w))^((p[1]) - 1) * ((p[1])* (1/w))))

* ((1/p[1]) * (((-log(u))^(p[2]) + (-log(v))^(p[2]))^((p[1]/p[2])

- 1) * ((p[1]/p[2]) * ((-log(u))^((p[2]) - 1) * ((p[2]) *

(1/u))))))) - (exp(-(((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2])

+ (-log(w))^(p[1]))^(1/p[1])) * ((((-log(u))^(p[2]) +

(-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^((1/p[1]) - 1)

* ((1/p[1]) * ((-log(w))^((p[1]) - 1) * ((p[1]) * (1/w)))))

* ((((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2]) +

(-log(w))^(p[1]))^((1/p[1]) - 1) * ((1/p[1]) * (((-log(u))^(p[2])

+ (-log(v))^(p[2]))^(((p[1]/p[2]) - 1) - 1) * (((p[1]/p[2]) - 1)

* ((-log(v))^((p[2]) - 1) * ((p[2]) * (1/v)))) * ((p[1]/p[2]) *

((-log(u))^((p[2]) - 1) * ((p[2]) * (1/u)))))) + (((-log(u))^(p[2])

+ (-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^(((1/p[1])

- 1) - 1) * (((1/p[1]) - 1) * (((-log(u))^(p[2]) + (-log(v))^(p[2]))

^((p[1]/p[2]) - 1) * ((p[1]/p[2]) * ((-log(v))^((p[2]) - 1)

* ((p[2]) * (1/v)))))) * ((1/p[1]) * (((-log(u))^(p[2]) + (-log(v))

^(p[2]))^((p[1]/p[2]) - 1) * ((p[1]/p[2]) * ((-log(u))^((p[2]) - 1)

* ((p[2]) * (1/u))))))) - exp(-(((-log(u))^(p[2]) + (-log(v))^(p[2]))

^(p[1]/p[2]) + (-log(w))^(p[1]))^(1/p[1])) * ((((-log(u))^(p[2])

+ (-log(v))^(p[2]))^(p[1]/p[2]) + (-log(w))^(p[1]))^((((1/p[1])

- 1) - 1) - 1) * ((((1/p[1]) - 1) - 1) * ((-log(w))^((p[1])

- 1) * ((p[1]) * (1/w)))) * (((1/p[1]) - 1) * (((-log(u))^(p[2])

+ (-log(v))^(p[2]))^((p[1]/p[2]) - 1) * ((p[1]/p[2])

* ((-log(v))^((p[2]) - 1) * ((p[2]) * (1/v)))))) * ((1/p[1])

* (((-log(u))^(p[2]) + (-log(v))^(p[2]))^((p[1]/p[2])
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- 1) * ((p[1]/p[2]) * ((-log(u))^((p[2]) - 1) * ((p[2]) *

(1/u)))))) + (((-log(u))^(p[2]) + (-log(v))^(p[2]))^(p[1]/p[2])

+ (-log(w))^(p[1]))^(((1/p[1]) - 1) - 1) * (((1/p[1]) - 1)

* ((-log(w))^((p[1]) - 1) * ((p[1]) * (1/w)))) * ((1/p[1]) *

(((-log(u))^(p[2]) + (-log(v))^(p[2]))^(((p[1]/p[2]) - 1)

- 1) * (((p[1]/p[2]) - 1) * ((-log(v))^((p[2]) -1) * ((p[2])

* (1/v)))) * ((p[1]/p[2]) * ((-log(u))^((p[2]) - 1) * ((p[2])

* (1/u))))))))

sum(-log(L))

}

MLE_parameter.nlm = nlm(MLE_parameter, p=c(2,3.5),hessian=TRUE)

Here, u1, u2 and u3 have been represented as u, v and w respectively. θ1 and θ2 are

represented by the vector p.
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Appendix D

Regression results from Chapter 6

This appendix provides the regression results from fitting a linear trend to both soi

and mei respectively.

> time <- c(1:length(SOI))

> summary(lm(SOI ~ time))

Call:

lm(formula = SOI ~ time)

Residuals:

Min 1Q Median 3Q Max

-32.2975 -6.5270 0.2228 6.8294 33.0623

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9328988 0.6129669 3.153 0.001659 **

time -0.0034862 0.0009824 -3.549 0.000404 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.07 on 1078 degrees of freedom

Multiple R-squared: 0.01155,Adjusted R-squared: 0.01063

F-statistic: 12.59 on 1 and 1078 DF, p-value: 0.0004037
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> time <- c(1:length(MEI))

> summary(lm(MEI ~ time))

Call:

lm(formula = MEI ~ time)

Residuals:

Min 1Q Median 3Q Max

-1.95202 -0.71914 -0.02792 0.64517 2.98650

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.458321 0.074549 -6.148 1.38e-09 ***

time 0.001556 0.000199 7.818 2.20e-14 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9478 on 646 degrees of freedom

Multiple R-squared: 0.08643,Adjusted R-squared: 0.08501

F-statistic: 61.11 on 1 and 646 DF, p-value: 2.196e-14



Appendix E

Statistical significance tests

This appendix gives a brief background of the statistical tests used to determine if two

or more probability distributions are from the same distributions.

Kolmogorov-Smirnov (K-S) test

The Kolmogorov-Smirnov (K-S) test is used to decide whether there is evidence that

two empirical distribution functions are from different probability distributions, at a

given significance level [44]. Let two random samples of sizes m and n from continuous

populations FX and FY have order statistics X(1), . . . , X(m) with empirical distribution

denoted by Sm(X) and Y(1), . . . , Y(n), with empirical distribution Sn(X) respectively.

The null hypothesis is that the population distributions are identical. The K-S test

criterion is the maximum absolute difference between the two empirical distribution,

Dm,n:

Dm,n = max
x
| Sm(x)− Sn(x) |

To calculate the probability of Dm,n greater than or equal to the observed, that is

P (Dm,n ≥ d) where d is the observed of maxx | Sm(x) − Sn(x) |, the combined

sample of m+ n observations are first arranged in increasing order of magnitude. On

a coordinate system, this arrangement can be represented as a path. Then, d is the

largest of the differences | u/m−v/n |=| nu−mv | /mn where u and v are coordinates

of all points on the path.

The total number of arrangements of mX and nY random variables is
(
m+n
m

)
, under
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H0 each of the corresponding paths is equally likely. The probability of an observed

Dm,n not less than d is the number of paths which have points at a distance from the

diagonal not less than nd, defined as A(m,n), divided by
(
m+n
m

)
. Hence

P (Dm,n ≥ d) = 1− P (Dm,n < d) = 1− A(m,n)/

(
m+ n

m

)
Small values of this probability are evidence that the population distributions differ.

Kruskal-Wallis (K-W) test

The K-W test is a distribution-free alternative to a one-way analysis of variance, where

the data are replaced by their ranks. Gibbons [44] provide a detailed explanation.

Under H0, there is a single sample of size N from the same population. The N

observations are combined into a single ordered ascending sequence, keeping track of

which observation belongs to which sample. Ranks are assigned to this sequence. If

adjacent ranks are evenly distributed among the k samples, which would be true for

a random sample from a single population, the total sum of ranks,
∑N

i=1 i = N(N +

1)/2, would be divided proportionally according to sample size among k samples.

The expected sum of ranks for the ith sample, containing ni observations would be
ni
N
N(N+1)

2
= ni(N+1)

2
.

Gibbons [44] denote the actual sum of ranks assigned to the elements in the ith sample

as Ri. A useful test criterion is a weighted sum of squares of deviations, with the

reciprocals of the respective sample sizes used as weights. The Kruskal-Wallis (K-W)

test statistic is defined as:

H =
12

N(N + 1)

k∑
i=1

1

ni

[
Ri −

ni(N + 1)

2

]2

If the ranked sample data is recorded in a table of k columns, where the entries in the

ith column are the ni ranks occupied by the elements in the ith sample, then Ri is

the ith-column sum. The hypothesis rejected for H ≥ χ2
α,k−1. Both tests are usually

applied when the underlying population locations or means are unknown.
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