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Table A.1: MILD combustion modelling summary

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

de Joannon et al.
[45]

2000 − − CH4 Chemkin − PSR Warnatz
(40 species +
170
reactions)

− − Their numerical analysis with an O2

content of 5% in the reactant mixture
showed that MILD combustion can be
represented by a two-stage oxidation
process, in which the first stage occurs
in rich diluted conditions, that involves
species such as CO and H2.

Fleck et al. [61] 2000 [171, 61] CGRI 320 kW
CH4

TASCflow standard k − ε ED global
two-step

optically
dense gas

− Predictions of temperature, velocities
and major species depart from mea-
sured values. The results suggest that
reactions close to the burner exit are
controlled by turbulent mixing.

Ishii et al. [95] 2000 − Regenerative
slab reheat
furnace with
four burners

840 kW /
burner
NG

Fluent standard k − ε ξ / β−PDF 15 species
with
equilibrium

− Post-
processing
thermal,
prompt
and reburn

Only NOx emissions at the exhaust
were used for validation. Turbulence
and super-equilibrium O atoms had a
strong influence on the predictions of
NO. While prompt-NO levels were not
reported, reburning was found to be
negligible.

Coelho et al. [32] 2001 [154, 147] FLOX�

(REKU-
MAT)

5.4 kW
CH4

Fluent
4.8 +
PIPES

standard k − ε EPFM ITM-RWTH
(49 species +
547
reactions)

Fluent:
DTM
PIPES:
DO

Post-
processing
unsteady
EPFM

Discrepancies for mean and RMS ve-
locities. Underprediction of mean res-
idence times close to the burner exit.
NOx was one order of magnitude lower
than experiments at exhaust.

Orsino et al. [146],
Mancini et al.
[123]

2001,
2002

[189, 194,
193]

NFK-HRS
with a pre-
combustor
chamber

580 kW
NG

IFRF
solver,
Fluent
5.4

standard k − ε EBU,
EDC,
ξ / β−PDF

global
two-step,
11 species
with
equilibrium,
13 species
with
equilibrium

IFRF:
DTM,
Fluent:
DO

Post-
processing
thermal,
prompt
and reburn

Equilibrium models did not capture
flame propagation in the fuel jet re-
gion. Nonetheless, major species pro-
files were well predicted and NOx at
the exhaust agreed with experiments.
Thermal-NO formation accounted for
95% of emissions, while reburn was neg-
ligible.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Choi & Katsuki
[27]

2002 − counter-flow
laminar flat
flame

CH4 Chemkin − 1D laminar
flame
calculations

GRI-2.11 − NOx

chemistry
included

The numerical study showed that NO
destruction or reburn is possible in
MILD conditions due to intense mixing
of the reactants with flue gases.

Evrard et al. [57] 2002 [57] FLOX�

(REGE-
MAT)

200 kW
NG

Fluent
5.4

standard k − ε
with standard
wall functions

ξ / β−PDF,
ED

15 species
with
equilibrium
and global
one-step

DO Post-
processing
thermal
and
prompt

Both combustion models overpredict
wall temperatures and hence radiative
heat fluxes. Turbulence affected NOx

predictions, which were only qualita-
tive, and the prompt-NO route was
negligible.

Tabacco et al.
[180]

2002 [180] FLOX�

(REKU-
MAT)

40 kW
CH4

Fluent,
Chemkin
III

Realizable
k − ε

ξ / β−PDF,
ED,
PSR

equilibrium
assumption,
global
one-step, and
GRI-3.0

DO Post-
processing
thermal,
prompt,
N2O-
intermediate
and reburn

The equilibrium assumption is not suit-
able for the large ignition delays. NOx

predictions are sensitive to turbulent
fluctuations and departed at least one
order of magnitude from the experi-
ments. A PSR study with detailed ki-
netics revealed that although thermal-
NO still contributes significantly to NO
formation, N2O−intermediate is the
main pathway.

Dally et al. [37] 2004 [37] FLOX�

(REKU-
MAT)

7 kW
CH4,
CH4/N2,
CH4/CO2

Fluent +
RIF
solver

modified
standard k − ε
(Cε1 = 1.52)

EPFM detailed
chemistry

− NOx

chemistry
included

A comparison between measured and
predicted temperatures at the furnace
centreline showed fair agreement for the
pure methane case and fairly large dis-
crepancies for the CO2 and N2 dilution
cases. Contour plots revealed a shift of
the stoichiometric mixture fraction to
higher scalar dissipation regions when
fuel was diluted with inert gases.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Hekkens
[87, 88, 86]

2004 [64, 2] NFK-HRS
in the
reverse-flow
HEC
furnace

950 kW
NG

Fluent
6.1

standard k − ε
with standard
wall functions

ξ / β−PDF,
modified ED
(A = 0.6,
B = 1023),
EDC

equilibrium
assumption,
laminar
flamelet
concept,
global
four-step

DO − Axial velocities were consistently over-
predicted for the air jet and under-
predicted for the fuel jet in the near
burner region for all combustion mod-
els. In general, temperatures were over-
predicted with fairly large discrepan-
cies in the reaction zone, where the
weak fuel jet entrains the strong air
jet. The equilibrium assumption is not
suitable to represent the initial fuel jet
propagation.

Park et al. [150] 2004 − counter-flow
diffusion
flame

H2-Air
diluted
with
steam

Chemkin − 1D laminar
flame
calculations

GRI-3.0 optically-
thin
approxi-
mation

NOx

chemistry
included

Steam was numerically added to the air
stream in mole fractions from 0.3 - 0.85.
The added H2O caused a significant in-
crease in OH radicals, but as expected,
thermal-NO formation decreases.

de Joannon et al.
[44]

2004 − jet stirred
flow reactor

CH4/O2/N2

mixture
Chemkin
3.6

− transient PSR -
AURORA

Warnatz (34
species + 164
reactions),
Battin-
Leclerc &
Barbe (64
species + 439
reactions)

− − The dynamic behaviour of CH4 oxida-
tion was characterised with both mea-
surements and modelling at a temper-
ature range from 1000 K to 1300 K
for a variety of equivalence ratios in
PSR conditions . The cyclic oscilla-
tions were classified according to in-
let temperatures, C/O ratios and res-
idence times. It was reported that the
CH3 recombination path is the major
mechanism controlling the temperature
oscillations. The effect of heat losses
was not included.



A
ppendix

A
:

M
ILD

M
odelling

Sum
m

ary
195

Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Christo & Dally
[31],
Christo et al.
[29, 30]

2004,
2005,
2007

[39, 38] Jet in Hot
Coflow
(JHC)

80% CH4

+ 20% H2

by mass

Fluent
6.2

modified
standard k − ε
(Cε1 = 1.6)

EDC,
TPDF + EMST

Smooke,
GRI-3.0
without NO
reactions,
ARM-19

DO − In general, the EDC model with de-
tailed kinetic mechanisms (e.g. GRI
3.0) yielded more accurate predictions
than the TPDF model for conditions
representative of MILD combustion,
i.e. axial distance from the jet exit
lower than ≈100 mm and O2 levels in
the coflow lower than 6%. At down-
stream locations, where the surround-
ing air mixes with the jet and coflow
causing localised extinction, the TPDF
model provided the best agreement
with the experiments regardless of the
kinetic mechanism used. Although
turbulent mixing was accurately pre-
dicted, neither models captured the lo-
cation for flame stabilisation.

Yang & Blasiak
[201]

2005 [200] HiTAC
burner

200 kW
LPG

STAR-
CD

standard k − ε FRED global
five-step

DTM Post-
processing
thermal,
prompt,
N2O-
intermediate
and reburn

A comparison with NOx emission mea-
surements showed that NO predictions
can be significantly improved when the
N2O-intermediate pathway is consid-
ered for excess air ratios (λ) less than
15%. NOx emissions are overpredicted
by a factor of two for λ = 25% due
to the higher temperatures, which trig-
ger the thermal-NO route. To decrease
the discrepancies at high temperatures,
the deactivation of the N2O mechanism
for temperatures above 1850 K was pro-
posed.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Gkagkas et al. [68] 2005 [21] Cabra
burner

H2 joint
scalar
PDF
solver

modified
standard k − ε
(Cε2 = 1.8)

TPDF +
modified Curl

Li et al. [112] − − A low temperature pre-ignition region
was characterised by peak values of
H2O2 and HO2, while high concentra-
tions of O, H, and OH radicals were an
indication of autoignition. The mod-
elling results showed that the TPDF
approach was able to predict the igni-
tion phenomena for diluted conditions
similar to MILD combustion.

Christo & Dally
[28]

2005 [39, 38] Jet in Hot
Coflow
(JHC)

80% CH4

+ 20% H2

by mass

Fluent
6.2

standard k − ε,
RNG k − ε,
Realizable
k − ε,
modified
standard k − ε
(Cε1 = 1.6)

laminar
flamelet,
ξ / β−PDF,
FRED,
EDC

Three-step
global,
Smooke,
GRI-3.0
without NO
reactions

DO − The modified k − ε provided the best
agreement. Conserved scalar type
models are inadequate for MILD con-
ditions. For better accuracy detailed
kinetic mechanisms must be used and
differential diffusion effects should al-
ways be included.

Kim et al. [100] 2005 [39, 38] Jet in Hot
Coflow
(JHC)

80% CH4

+ 20% H2

by mass

VODE
solver
with a
laminar
flamelet
library

modified
standard k − ε
(Cε1 = 1.5)

CMC GRI-2.11 − NOx

chemistry
included

A single mixture fraction parameter
was used to define a three-stream mix-
ing problem. Model predicted major
species and temperatures reasonably
well. Good predictions of NO profiles.

Awosope &
Lockwood [10]

2005 [199, 189,
111]

FLOX� ,
NFK-HRS
with a pre-
combustor
chamber,
TECHNION
afterburner

CH4,
50% C3H8

+ 50%
C4H10 by
volume

FAFNIR-
3D

standard k − ε ξ / β−PDF,
laminar flamelet

CH4:
Warnatz (28
species + 72
reactions),
C3H8 +
C4H10:
Marinov [124]
(36 species +
200
reactions)

noneq.
diffusion

Post-
processing
thermal,
and
prompt

Local extinction was important when
high momentum jets are used to induce
internal flue gas recirculation for strong
dilution. Only qualitative agreement
was found for CO profiles. The prompt-
NO route was found to be negligible.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Yang & Blasiak
[202]

2005 − Single fuel
jet in a
oxygen
deficient
high
temperature
cross-flow

0.5 kW
C3H8

STAR-
CD

RNG k − ε ED,
modified ED
(A = 1,
B = 0.5)
(A = 2,
B = 0.5),
ξ / β−PDF

global
three-step,
11 species
with
equilibrium

DTM Post-
processing
thermal,
and
prompt

The empirical constant A in the ED
model was changed to slow combustion
rates. The numerical analysis showed
an increased reaction zone volume for
5% O2 levels in the cross-flow air. The
low oxygen concentrations decreased
NO formation, despite the fact that the
fuel residence time in the reaction zone
increased.

Nicolle & Dagaut
[141]

2006 − − CH4 Chemkin
4.0

− PSR, PaSR,
PFR - Senkin

skeletal
mechanism
derived from
[35] (95
species + 265
reactions),
GRI-3.0,
Konnov-0.5

− NOx

chemistry
included

The kinetic modelling analysis showed
the sequential nature of the nitrogen
chemistry at constant temperature in
MILD conditions. During the ignition
period, the NO–HCN conversion reac-
tions are particularly active. The NO-
reburning mechanism is mainly related
to the fuel-ignition chemistry and de-
pends on the equivalence ratio and mix-
ing times. In the post-ignition period,
the thermal-NO and N2O-intermediate
pathways increase in importance.

Sabia et al. [163] 2007 [44, 42] jet stirred
flow reactor

CH4–H2/
O2/N2

mixture

Chemkin
3.7

− transient PSR -
AURORA

(34 species +
164
reactions),
(99 species +
734
reactions)

− − The effect of hydrogen addition on
methane combustion was studied for
MILD conditions. As expected, the ad-
dition of H2 in molar fractions from
0.25% to 0.9% caused an increase in
reactivity and a reduction of instabil-
ities related to thermokinetic tempera-
ture oscillations.

Galletti et al. [67] 2007 [67] Enel radiant
tube

13 kW
CH4

CFX 5.7 modified
standard k − ε
(Cε1 = 1.6)

FRED global
one-step

DTM Post-
processing
thermal
and
prompt

Only wall temperatures are available
for validation. An axisymmetric model
overestimated KV in the burner by 15-
20% when compared to a 3D model.
Despite the difference, a regression
equation for NO emissions as a func-
tion of KV is proposed.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Dally & Peters
[36]

2007 − − CH4/O2/N2

mixture
Chemkin
4.1

− transient PSR -
AURORA

GRI 3.0,
Smooke

− − The PSR calculations for CH4 and
C2H4 at a low temperature range of
1000 K to 1300 K showed that tempera-
ture oscillations are independent of the
inlet temperature. It was also found
that oscillations are controlled by a rad-
ical scavenging mechanism followed by
heat loss to the surroundings, rather
than a recombination channel.

Kumar et al. [107] 2007 [105, 106] High
intensity
low-emission
burner

3 kW and
150 kW
C3H8

CFX 5.6 standard k − ε EDC skeletal
mechanism

− − A flame extinction criteria was initially
proposed to predict the lift-off height
of CH4, C3H8 and H2 flames and then
used capture the flame propagation in
a MILD burner. Essentially, if Da < 1
then the average reaction rate was set
to zero in the EDC model. Tempera-
tures were overpredicted by ≈ 200 K
throughout the furnace for the 3 kW
case. The overprediction of O2 concen-
trations at a downstream location, and
particularly on the fuel jet region, im-
plies that the reaction zone structure
is not fully captured. No velocity data
was available for validation.

Mancini et al.
[122]

2007 [189, 194,
193]

NFK-HRS
with a pre-
combustor
chamber

580 kW
NG

IFRF
solver,
Fluent
5.4,
Chemkin
3.7

standard k − ε,
RNG

EBU,
ξ / β−PDF,
PSR network

global
two-step, 13
species with
equilibrium,
& GRI-3.0

IFRF:
DTM,
Fluent:
DO

Post-
processing
thermal,
prompt
and reburn

The failure of RANS models to pre-
dict the weak fuel jet structure is due
to discrepancies in predicting entrain-
ment. There is little combustion within
the fuel jet, which means the tempera-
ture increase and the presence of NO is
a result of entrainment.
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Table A.1: MILD combustion modelling summary (continued)

Author(s) Year Exp. data Burner
configuration

Fuel Software
package

Turbulence
model

Combustion
model

Kinetic
mechanism

Radiation
model

NOx

model
Comments

Lupant et al. [117] 2007 [57, 118,
117]

FLOX�

(REGE-
MAT)

200 kW
NG

Fluent
6.1

standard k − ε
with standard
wall functions

ED,
FRED,
modified ED
(A = 0.6,
B = 1020),
ξ / β−PDF

global
one-step,
global
two-step,
15 species
with
equilibrium

DO Post-
processing
thermal
and
prompt

Temperatures were largely overpre-
dicted in the near burner region for all
combustion models. Using the mea-
sured air inlet temperature as an in-
put and modifying the empirical con-
stants in the ED model resulted in a
better agreement. However, the loca-
tion of the reaction zone was not cap-
tured based on O2 profiles and OH vi-
sualisation. Exhaust NOx was on the
same order of magnitude than in the
experiments .

Duwig et al. [54] 2008 [54] Flameless
gas turbine
combustor

460 kW
C3H8

LES code
+
Cantera

LES chemistry
tabulated with
PSR
calculations

San Diego
(46 species +
235
reactions)

− − The numerical results provided an in-
sight into the unsteady aerodynamics
of the flameless combustor. The analy-
sis determined that the unburned gases
entrained the same amount of combus-
tion products before reaction, meaning
a 0.5 global dilution rate.

Kim et al. [99] 2008 [189, 194,
193]

NFK-HRS
with a pre-
combustor
chamber

580 kW
NG

AIOLOS-
3D

standard k − ε EDC global
three-step,
global
four-step

DO Thermal,
prompt,
and reburn

A comparison of four different global
reaction mechanisms for CH4 showed
fairly large discrepancies in the near
burner region for temperature and ma-
jor species. To improve the predictions
a modified Jones and Lindstedt mech-
anism [97] was proposed. Although a
better agreement was seen for CO and
H2, the global mechanism still did not
capture the weak fuel jet structure. No
information on the relative contribu-
tion of each NO formation pathway was
presented.



Appendix B Temperature
Correction

B.1 Methodology

The correction to the temperature measurements for radiation was determined
from a steady-state energy balance on the thermocouple bead surface. The actual
gas temperature (Tg) was determined from the measured temperature (Ttcb) and
net radiation flux between diffuse-gray surfaces in an enclosure according to

Tg = Ttcb +
Atcbεtcb

∑N
w=1 σG1w (T 4

tcb − T 4
w)

h
, (B.1)

where Atcb is the thermocouple bead surface area, εtcb is the thermocouple bead
surface emissivity, N is the total number of surfaces (i.e. walls) in the enclosure, σ
is the Stefan-Boltzmann constant, G1w is the fraction of radiation emitted by the
thermocouple bead that is incident on a particular wall surface w in the furnace
enclosure and is absorbed [168], Tw is the surface temperature of wall w in the
enclosure, and h is the convection coefficient. Catalytic and oxidation effects were
neglected, as well as conductive heat transfer along the ceramic sheath.

The convective heat transfer coefficient, h, was calculated for a sphere from
the expression [91];

Nu =
hDtcb

k
= 2 +

(
0.4Re1/2 + 0.06Re2/3

)
Pr0.4

(
μ

μs

)1/4

(B.2)
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⎡
⎢⎢⎢⎢⎣

0.71 < Pr < 380

3.5 < Re < 7.6× 10−4

1.0 <

(
μ

μs

)
< 3.2

⎤
⎥⎥⎥⎥⎦

where Dtcb is the thermocouple bead diameter, Nu is the Nusselt number, Re is
the Reynolds number, Pr is the Prandtl number, k is the thermal conductivity,
and μ is the dynamic viscosity. Air was used to approximate furnace gas prop-
erties for determining the parameters of equation B.2. The air jet bulk velocity
(U) was used to calculate the Reynolds number. All properties were evaluated
at Ttcb, except μs, which was evaluated at the film temperature defined as

Tf =
Ttcb + Tair

2
. (B.3)

The thermocouple bead diameter (Dtcb) was determined from an image ob-
tained with an Olympus BX60MF microscope using a 5× magnification objec-
tive. The image was processed with an open source image manipulation program.
Figure B.1 shows the original image and processed image used to determine Dtcb.
First, the process involved converting the image to a grayscale and applying an
edge detection and enhancement algorithm to sharpen the image and reveal the
circumference of the bead. Then, a calibration disc with a 1 mm scale was used to
find a pixel-to-length ratio for images taken at a 5× magnification and generate a
marker. Finally, the average circumference of the bead (red circle) was compared
to the marker size, resulting in Dtcb ≈ 1.2 mm.

The G1w correction factor was obtained for each probe position by matrix
inversion from a system of equations (equation 6.37 of Ref. [168]) written in
compact notation as

[Gkw] = m−1f ; m = δkw + (εw − 1)Fkw ; f = εwFkw ; (B.4)

where 1 ≤ k ≤ 7, εw is the emissivity for surface w, Fkw is the configuration or
view factor between surface k and w of the enclosure, δkw is the Kronecker delta,
defined as

δkw =

⎧⎨
⎩1, k = w

0, k �= w
(B.5)
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(a) original image (b) processed image

Figure B.1: Images used to determine the thermocouple bead diameter. The red
circle represents the average circumference of the bead.

The bead emissivity used in the calculations was ε1 = 0.22, which is based on
acceptable values of small diameter platinum-rhodium wires [83, 175], and the
furnace wall emissivity was ε2 = ε3 = ε4 = ε5 = ε6 = ε7 = 0.93, which is the value
provided by the manufacturer of the insulation material. This procedure always
resulted in corrected temperatures lower than the adiabatic flame temperature.

B.2 Error Propagation

Some degree of uncertainty is associated with the methodology described in the
previous section, since the parameters used in the calculations (equation B.1)
are not precisely known. The errors introduced by each parameter will affect
the resulting final gas temperature. A common approach to determine the total
uncertainty (ΔTg) is through an error propagation analysis. In this analysis, an
estimated deviation is attributed to each parameter (Table B.1) and the propa-
gation of errors is calculated from the following expression:
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Δf =

√√√√ n∑
i=1

(
∂f

∂ai
·Δai

)2

(B.6)

ΔTg =

√(
∂Tg

∂Tw

·ΔTw

)2

+

(
∂Tg

∂εtcb
·Δεtcb

)2

+

(
∂Tg

∂Dtcb

·ΔDtcb

)2

+

(
∂Tg

∂U
·ΔU

)2

.

Table B.1: Estimated uncertainty of the parameters used to calculate the tem-
perature correction

Parameter (ai) Unit Δ

Tw
◦C ±10%

εtcb − ±15%
Dtcb mm ±5%
U m/s ±5%

The results of the error estimation procedure are shown in Table B.2, where
δ represents the correction between raw and actual gas temperatures in absolute
and relative terms.

Table B.2: Error estimates for in-furnace temperature data for the baseline op-
erating conditions

TC position Tair = 25◦C Tair = 450◦C

x y z δ δ ΔTg δ δ ΔTg

(mm) (mm) (mm) (◦C) (%) (%) (◦C) (%) (%)

-100 0 42.5 -40.2 -3.3 1.3 -8.6 -0.7 1.2
-100 55 42.5 -39.2 -3.2 1.3 -13.4 -1.1 1.2
-100 110 42.5 -37.7 -3.1 1.3 -8.7 -0.7 1.2
-100 140 42.5 -30.4 -2.6 1.3 -1.2 -0.1 1.3
-100 0 142.5 -43.6 -3.6 1.2 -16.6 -1.3 1.1
-100 55 142.5 -40.8 -3.4 1.2 -16.2 -1.3 1.1
-100 110 142.5 -41.7 -3.4 1.2 -8.4 -0.7 1.2

continued on next page
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Table B.2: Error estimates for in-furnace temperature data for the baseline op-
erating conditions (continued)

TC position Tair = 25◦C Tair = 450◦C

x y z δ δ ΔTg δ δ ΔTg

(mm) (mm) (mm) (◦C) (%) (%) (◦C) (%) (%)

-100 140 142.5 -25.4 -2.2 1.3 -8.8 -0.7 1.2
-100 0 242.5 -31.8 -2.7 1.3 4.4 0.4 1.4
-100 55 242.5 -37.2 -3.1 1.3 -6.7 -0.5 1.2
-100 110 242.5 -43.0 -3.5 1.2 -12.0 -1.0 1.2
-100 140 242.5 -23.1 -2.0 1.4 5.3 0.5 1.4
-100 0 342.5 -16.2 -1.4 1.4 3.3 0.3 1.3
-100 55 342.5 -31.8 -2.7 1.3 -7.3 -0.6 1.2
-100 110 342.5 -41.5 -3.4 1.2 -15.0 -1.2 1.1
-100 140 342.5 -17.5 -1.5 1.4 6.3 0.5 1.3
-100 0 442.5 -28.3 -2.4 1.3 -6.8 -0.6 1.2
-100 55 442.5 -33.6 -2.8 1.3 -9.0 -0.7 1.2
-100 110 442.5 -35.6 -3.0 1.3 -10.6 -0.9 1.1
-100 140 442.5 -15.5 -1.4 1.4 2.3 0.2 1.3
-100 0 542.5 -26.2 -2.2 1.3 -8.5 -0.7 1.2
-100 55 542.5 -27.7 -2.4 1.3 -10.2 -0.8 1.1
-100 110 542.5 -25.9 -2.2 1.3 -11.8 -0.9 1.1
-100 140 542.5 -18.8 -1.6 1.4 -5.5 -0.4 1.2

0 0 42.5 80.1 11.7 3.0 73.8 9.1 2.6
0 55 42.5 -33.4 -2.8 1.3 -11.5 -0.9 1.2
0 110 42.5 -1.4 -0.1 1.5 33.7 3.2 1.8
0 140 42.5 -17.2 -1.5 1.4 7.7 0.7 1.4
0 0 142.5 8.8 0.8 1.6 30.3 2.8 1.7
0 55 142.5 -22.7 -2.0 1.4 -20.7 -1.6 1.1
0 110 142.5 -39.7 -3.3 1.3 -11.8 -0.9 1.2
0 140 142.5 -26.4 -2.3 1.3 -2.8 -0.2 1.3
0 0 242.5 -22.9 -2.0 1.4 4.2 0.4 1.4
0 55 242.5 -21.3 -1.8 1.4 -15.7 -1.2 1.1

continued on next page
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Table B.2: Error estimates for in-furnace temperature data for the baseline op-
erating conditions (continued)

TC position Tair = 25◦C Tair = 450◦C

x y z δ δ ΔTg δ δ ΔTg

(mm) (mm) (mm) (◦C) (%) (%) (◦C) (%) (%)

0 110 242.5 -45.1 -3.7 1.2 -19.5 -1.5 1.1
0 140 242.5 -44.5 -3.6 1.2 -1.3 -0.1 1.3
0 0 342.5 -24.3 -2.1 1.3 -3.5 -0.3 1.2
0 55 342.5 -24.0 -2.1 1.4 -13.0 -1.0 1.1
0 110 342.5 -50.8 -4.1 1.2 -26.6 -2.0 1.0
0 140 342.5 -28.8 -2.4 1.3 -6.8 -0.6 1.2
0 0 442.5 -24.3 -2.1 1.3 -6.0 -0.5 1.2
0 55 442.5 -27.2 -2.3 1.3 -10.1 -0.8 1.1
0 110 442.5 -35.8 -3.0 1.3 -15.7 -1.2 1.1
0 140 442.5 -17.6 -1.5 1.4 -2.5 -0.2 1.2
0 0 542.5 -15.3 -1.3 1.3 -3.7 -0.3 1.2
0 55 542.5 -16.6 -1.5 1.3 -7.3 -0.6 1.2
0 110 542.5 -17.6 -1.5 1.3 -10.2 -0.8 1.1
0 140 542.5 -9.3 -0.8 1.4 -0.6 0 1.3

100 0 42.5 -41.6 -3.4 1.2 -15.4 -1.2 1.1
100 55 42.5 -38.2 -3.2 1.3 -13.5 -1.1 1.2
100 110 42.5 -39.4 -3.3 1.3 -14.6 -1.2 1.2
100 140 42.5 -27.4 -2.3 1.3 -2.7 -0.2 1.3
100 0 142.5 -51.8 -4.1 1.2 -15.9 -1.3 1.1
100 55 142.5 -49.1 -4.0 1.2 -22.5 -1.7 1.1
100 110 142.5 -51.3 -4.1 1.2 -21.8 -1.7 1.1
100 140 142.5 -29.8 -2.5 1.3 -6.5 -0.5 1.2
100 0 242.5 -44.0 -3.6 1.2 -22.8 -1.8 1.1
100 55 242.5 -50.6 -4.1 1.2 -24.2 -1.9 1.1
100 110 242.5 -49.9 -4.0 1.2 -20.3 -1.6 1.1
100 140 242.5 -29.4 -2.5 1.3 -4.7 -0.4 1.3
100 0 342.5 -30.4 -2.6 1.3 -13.2 -1.0 1.1

continued on next page
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Table B.2: Error estimates for in-furnace temperature data for the baseline op-
erating conditions (continued)

TC position Tair = 25◦C Tair = 450◦C

x y z δ δ ΔTg δ δ ΔTg

(mm) (mm) (mm) (◦C) (%) (%) (◦C) (%) (%)

100 55 342.5 -31.6 -2.7 1.3 -17.5 -1.4 1.1
100 110 342.5 -36.0 -3.0 1.3 -13.8 -1.1 1.1
100 140 342.5 -20.6 -1.8 1.4 -13.0 -1.0 1.1
100 0 442.5 -23.0 -2.0 1.4 -7.6 -0.6 1.2
100 55 442.5 -22.3 -1.9 1.4 -11.0 -0.9 1.1
100 110 442.5 -23.6 -2.0 1.4 -9.6 -0.8 1.1
100 140 442.5 -15.7 -1.4 1.4 1.7 0.1 1.3
100 0 542.5 -21.3 -1.8 1.3 -4.8 -0.4 1.2
100 55 542.5 -16.8 -1.5 1.3 -7.7 -0.6 1.2
100 110 542.5 -16.7 -1.5 1.3 -8.4 -0.7 1.2
100 140 542.5 -13.6 -1.2 1.4 -1.4 -0.1 1.2



Appendix C Control Logic

This is a simplified flowdiagram that illustrates the main steps involved in the
logic integrated in the BMS that controls the MILD combustion burner system.
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Figure C.1: Flowdiagram of the control logic integrated in the burner manage-
ment system (BMS).



Appendix D Particle Size
Distribution

This histogram shows the particle size distribution of the fused white alumina
powder used to seed the central air jet for the LDA measurements. The particle
size analysis was carried out by Pulver Technology Ltd., which is the company
that supplied the seeding material.
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Figure D.1: Al2O3 particle size distribution. (Source: Pulver Technology Ltd.)
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Appendix E Velocity for
Nonreacting Isothermal
Conditions

The results presented in Figures 7.1 through 7.4 are repeated here for convenience
to show the comparison for the realizable k − ε turbulence model alone.
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Figure E.1: Comparison of measured (open symbols) and predicted (blue lines)
mean axial velocity (Vz) profiles across the y−axis for nonreacting conditions at
x = 0 (left) and x = −10 (right) for the realizable k − ε turbulence model at
various axial locations.
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Figure E.2: Comparison of measured (open symbols) and predicted (blue lines)
mean radial velocity (Vx) profiles across the y−axis for nonreacting conditions
at x = 0 (left) and x = −10 (right) for the realizable k − ε turbulence model at
various axial locations.
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Figure E.3: Comparison of measured (open symbols) and predicted (blue lines)
mean axial velocity (Vz) profiles across the x−axis for nonreacting conditions at
y = −10 (left) and y = 30 (right) with the exception of y = 5 (lower right) for
the realizable k − ε turbulence model at various axial locations.
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Figure E.4: Comparison of measured (open symbols) and predicted (blue lines)
mean radial velocity (Vx) profiles across the x−axis for nonreacting conditions at
y = −10 (left) and y = 30 (right) with the exception of y = 5 (lower right) for
the realizable k − ε turbulence model at various axial locations.



Appendix F Compositional Struture
Contours

It must be noted that the mole fraction contours of all species presented in this
Appendix are displayed on a wet basis.
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(a) (b)

(c) (d)

Figure F.1: Predicted CH4 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.2: Predicted CH4 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.3: Predicted CH3 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.4: Predicted CH3 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.5: Predicted O2 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.6: Predicted O2 mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.7: Predicted CO mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.8: Predicted CO mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.9: Predicted CH2O mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.10: Predicted CH2O mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.11: Predicted OH mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.12: Predicted OH mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.13: Predicted O mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.14: Predicted O mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.
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(a) (b)

(c) (d)

Figure F.15: Predicted H mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at the x− z and y − z centreline planes.
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(a) (b)

(c) (d)

Figure F.16: Predicted H mole fraction contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case, (a) and (b) without air preheat,
Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the EDC model
with the Smooke mechanism at different x− y planes.



Appendix G NOx Contours

It must be noted that the mole fraction contours of all species presented in this
Appendix are displayed on a wet basis.
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(a) (b)

(c) (d)

Figure G.1: Predicted NO mole fraction contours on a wet basis with stoichio-
metric surface (ξst = 0.0552) overlaid for the baseline case, (a) and (b) without
air preheat, Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the
EDC model with the Smooke mechanism at the x−z and y−z centreline planes.
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(a) (b)

(c) (d)

Figure G.2: Predicted NO mole fraction contours on a wet basis with stoichio-
metric surface (ξst = 0.0552) overlaid for the baseline case, (a) and (b) without
air preheat, Tair = 25◦C, and (c) and (d) with air preheat, Tair = 450◦C, for the
EDC model with the Smooke mechanism at different x− y planes.
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.3: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case without air preheat, Tair = 25◦C, for
the EDC model with the Smooke mechanism at the x− z centreline plane. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.4: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case without air preheat, Tair = 25◦C, for
the EDC model with the Smooke mechanism at the y − z centreline plane. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.5: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case without air preheat, Tair = 25◦C,
for the EDC model with the Smooke mechanism at different x − y planes. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.6: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case with air preheat, Tair = 450◦C, for
the EDC model with the Smooke mechanism at the x− z centreline plane. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.7: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case with air preheat, Tair = 450◦C, for
the EDC model with the Smooke mechanism at the y − z centreline plane. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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(a) Total (b) Thermal

(c) Prompt (d) N2O-intermediate

Figure G.8: Predicted NO reaction rate contours with stoichiometric surface
(ξst = 0.0552) overlaid for the baseline case with air preheat, Tair = 450◦C, for
the EDC model with the Smooke mechanism at different x − y planes. The
thermal, prompt and N2O-intermediate NOx models were considered (Full NO
case shown in Table 7.2).
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