Investigation of Uncertainties Associated with the MammoSite[™] Breast Brachytherapy Technique: Monte Carlo Simulations and TLD Measurements

Saleh M Ben Saleh

Thesis submitted for the degree of Doctor of Philosophy in The School of Chemistry and Physics, The University of Adelaide

> Supervisors A/Prof. Eva Bezak Dr. Martin Borg

November 2010

ii

Contents

Abstract	xviii
Signed statement	xxi
Acknowledgements	xxiii
1. General introduction	1
1.1 Breast cancer and radiotherapy	1
1.1.1 MammoSite brachytherapy	1
1.1.2 Uncertainties in MammoSite brachytherapy	2
1.1.3 Combining MB and EBRT	2
1.2 Aims of the current thesis	3
1.3 Thesis outline	3
2. Literature review	5
Part one: MammoSite brachytherapy technique	5
2.1.1 Introduction	5
2.1.2 External beam whole breast irradiation	5
2.1.3 Accelerated partial breast irradiation	6
2.1.4 MammoSite brachytherapy technique	6
2.1.4.1 Dosimetry of MammoSite	7
2.1.4.2 MammoSite and cosmetic outcomes	12
2.1.4.3 Long term follow-up data	13
2.1.4.4 MammoSite treatment complications	14
2.1.4.5 Uncertainties in MammoSite brachytherapy	15
2.1.5 Combing MB and EBRT	16
2.1.6 Conclusions	16
Part two: Monte Carlo technique	17
2.2.1 Introduction	17
2.2.2 What is Monte Carlo?	17
2.2.3 Physics of Monte Carlo simulation process	19
2.2.3.1 Photon transport	19
2.2.3.2 Electron transport	20

2.2.4 EGSnrc Monte Carlo code	23
2.2.4.1 The EGSnrc user code	23
2.2.4.1.1 BEAMnrc user code	23
2.2.4.1.2 DOSXYZnrc user code	25
2.2.5 Modelling of ¹⁹² Ir HDR brachytherapy source	28
2.2.6 Modelling of the linear accelerator	31
2.2.7 Conclusions	36
3. Modelling of high dose rate ¹⁹² Ir brachytherapy source	38
3.1 Introduction	38
3.2 Materials and methods	38
3.2.1 Description of ¹⁹² Ir source	38
3.2.2 Source modelling	40
3.2.3 Voxel size effects	42
3.2.4 Importing of CT data to EGSnrc Monte Carlo code	43
3.2.5 Simulation of MammoSite brachytherapy treatment	43
3.3 Results and discussions	44
3.3.1 Source modelling	44
3.3.2 Voxel size	47
3.3.3 Dose calculations in breast	49
3.4 Conclusions	50
4. Uncertainties in source position and balloon deformation and	51
their impact on NTCP and TCP	
4.1 Introduction	51
4.2 Materials and methods	52
4.2.1 Monte Carlo simulations	52
4.2.2 DVH analysis	52
4.2.3 Physical dose conversions	54
4.2.3.1 Biological effective dose	54
4.2.4 NTCP calculations	56
4.2.4.1 The Lyman model	56
4.2.4.2 The relative seriality model	58
4.2.5 TCP calculations	59
4.3 Results and discussion	61

4.3.1 Monte Carlo calculations	61
4.3.2 NTCP analysis	63
4.3.3 TCP analysis	66
4.4 Conclusions	67
5. Uncertainty in contrast concentration inside the MammoSite	69
balloon: Monte Carlo simulations and thermoluminescent	
dosimetry measurements	
5. Introduction	69
Part one: Monte Carlo simulation	69
5.1.1 Introduction	69
5.1.2 Materials and methods	71
5.1.2.1 Design of tissue equivalent breast phantom	71
5.1.2.2 Contrast medium within the MammoSite balloon	72
5.1.2.3 Monte Carlo simulation	73
5.1.3 Results	74
5.1.4 Discussion and conclusion	77
Part two: Thermoluminescent dosimetry measurements	78
Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78
Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction 5.2.1.1 TLD theory	78 78 78
Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction 5.2.1.1 TLD theory 5.2.2 Materials and methods	78 78 78 78 79
Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction 5.2.1.1 TLD theory 5.2.2 Materials and methods 5.2.2.1 Dose measurements using TLDs	78 78 78 79 79
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 78 79 79 79
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 78 79 79 79 80
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 80
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84 84
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84 85 87
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84 85 87 88
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84 85 87 88 88
 Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction	78 78 79 79 79 80 80 81 84 85 87 88 88 88
Part two: Thermoluminescent dosimetry measurements 5.2.1 Introduction 5.2.1.1 TLD theory 5.2.2 Materials and methods 5.2.2.1 Dose measurements using TLDs 5.2.2.2 LiF TLD 5.2.2.3 TLD annealing cycle 5.2.2.4 Description of TLD reader 5.2.2.5 Determination of sensitivity correction factor 5.2.2.6 Dose linearity range for TLD chips 5.2.2.7 MammoSite experimental study 5.2.3 Results 5.2.3 TLD calibration 5.2.3.3 Phantom measurements using TLDs	78 78 78 78 79 79 79 80 80 81 84 85 87 88 88 89 89

brachytherapy and external beam whole breast irradiation	
7. Combined dose distributions for MammoSite breast	117
6.4 Conclusion	115
6.3.4 Wedged field	110
6.3.3 MLC field	109
6.3.2 Asymmetric (half-blocked) field	108
6.3.1 Open field	108
6.3 Results and discussion	108
6.2.6 Dose calculations with DOSXYZnrc code	106
6.2.5 Phase space files	106
6.2.4.3 Directional bremsstrahlung splitting	106
6.2.4.2 Range rejection	105
6.2.4.1 Electron and photon transport parameters	104
6.2.4 Selection of variance reduction in Beamnrc	104
6.2.3.4 Physical wedge modelling	103
6.2.3.3 MLC modelling	101
6.2.3.2 Asymmetric (half-blocked) field	101
6.2.3.1 Open field	100
6.2.3 Beamnrc models	100
6.2.2 Linear accelerator model	97
6.2.1 Monte Carlo simulation	97
6.2 Materials and methods	97
6.1 Introduction	96
6. Monte Carlo simulation of linear accelerator treatment head	96
5.2.4 Discussion and conclusion	94
5.2.3.6 Tumour control probability results	93
5.2.3.5 Dose reduction factor	91

7.1 Introduction	117
7.2 Materials and methods	119
7.2.1 Monte Carlo simulation of EBRT treatment	119
7.2.2 Validation of EBRT model	121
7.2.3 Monte Carlo simulation of MB treatment	124

7.2.4 Dose combination of MB and EBRT	124
7.3 Results	126
7.4 Discussion and conclusion	129
8. Conclusions and further work	131
8.1 Conclusions of the thesis	131
8.2 Future work	135
Appendix	136
A. Source model input and list file	136
A.1 DOSXYZnrc input file	136
A.2 DOSXYZnrc list file	136
B. Matlab code	140
C. Calculations of sensitivity correction factors	141
D. Monte Carlo modelling of the medial field	143
D.1 BEAMnrc model	143
D.1 DOSXYZnrc model	148
Bibliography	150

viii

List of Tables

	Page
Table 2.1. Patient characteristics including total dose, volume of lumpectomy cavity,volume of ipsilateral breast, volume of ipsilateral lung and heart volume.	8
Table 2.2. Summary of dosimetric comparison.	10
Table 2.3. Average volume and dose parameters for interstitial and MammoSitebrachytherapy patients.	11
Table 2.4. Clinical results of cosmetic outcomes and tumour recurrence using the MSB.	13
Table 3.1. Dose ratio for different centre voxel sizes at 3 cm from the source.	48
Table 4.1. Parameters selected to calculate relative effectiveness.	55
Table 4.2. Summary of parameters used to calculate NTCP.	58
Table 4. 3. Parameters selected to calculate TCP for MammoSite treatment plans.	61
Table 4.4. Calculated NTCP values for the left lung with the Lyman model.	65
Table 4. 5. NTCP values for development of various skin complications using theLyman model.	66
Table 4.6. NTCP values for tissue fibrosis with the relative seriality model.	66
Table 4.7. Variation in the PTV and dose due to balloon deformation.	67
Table 5.1. Compositions and densities of the simulated contrast solutions.	74
Table 5.2. An illustration of TLD irradiation readout for obtaining SCF of a TLD chip.	83
Table 5.3. Sensitivity correction factor for each TLD-100 chip used in the currentstudy.	89
Table 5.4. The dose reduction factor values at 1 cm from the balloon surface, for balloon filled with saline and / or various contrast concentrations. The relative uncertainty is 1.8%.	93
Table 5.5. TCP resulting from the combined uncertainties encountered in theMammoSite technique.	94

	Page
Table 6.1. Description of the CMs which were used in modelling of the linac head inBEAMnrc code.	98
Table 7.1. Summary of the whole breast external beam irradiation treatment plan.	119
Table C1. Calculations of sensitivity correction factor for each TLD-100 chip.	141

List of Figures

	Page
Figure 1.1. The MammoSite® Radiation Therapy System, courtesy of Hologic	2
Corporation and affiliates.	-
Figure 2.1. The MammoSite [®] Radiation Therapy System, courtesy of Hologic	6
Corporation and affiliates.	Ū
Figure 2.2. Schematic diagram illustrating a shower of particles simulated by	19
Monte Carlo for radiation transport.	
Figure 2.3. Flow chart showing steps involved in photon transport (reproduced	21
from [47]).	
Figure 2.4. Flow chart illustrating involved in electron transport for class I and	22
Class II Monte Carlo algorithms (reproduced from [47]).	
Figure 2.5. The steps involved in using the BEAMnrc system (adapted from	25
[39]).	
Figure 2.6. A schematic flowchart illustrating the steps for DOSXYZnrc	27
simulation.	
Figure 2.7. A flowchart for use of CT data with DOSXYZnrc.	28
Figure 2.8. Schematic drawing of linear accelerator components modelled in a	32
typical Monte Carlo simulation.	_
Figure 3.1. A schematic diagram of the Nucletron 'microSelectron' ¹⁹² Ir HDR	39
source.	
Figure 3.2. The fluence spectrum for the microSelectron-HDR brachytherapy	39
source.	
Figure 3.3. Schematic of the source geometry (not to scale) used in the Monte	41
Carlo simulation. It is a representation of the cylindrical shape of 192Ir source	
approximated in DOSXYZnrc code.	
Figure 3.4. The modelled ¹⁹² Ir source placed at the middle of a cubic water	42
phantom (phantom not to scale).	
Figure 3.5. Steps involved for Monte Carlo dose calculation in the breast.	44
Figure 3.6. A comparison of the dose fall-off as a function of distance for the ¹⁹² Ir	16
models with three different dimensions.	70

Figure 3.7. Comparison of the dose fall-off, for the modelled ¹⁹²Ir source, as a 46 function of distance between the TLD measurements and Monte Carlo simulation. The uncertainties in Monte Carlo calculation and TLD measurements were 1.8% and 3% respectively. Figure 3.8. Two dimensional dose distribution around the modelled ¹⁹²Ir source 47 with dimension 0.6 x 0.6 x 3.6 mm³. The modelled source was placed at the centre of a water phantom. **Figure 3.9.** A plot of dose scored starting at 3 cm from the source with different 48 voxel Sizes. The Monte Carlo statistical uncertainty was within 2%. Figure 3.10. Voxel size and CPU ratio. 48 Figure 3.11. Dose distribution around the modelled ¹⁹²Ir source with voxel size 49 of (a) 1.5 mm³ and, (b) 4 mm³. The voxel size effect is clearly visible. Figure 3.12. 2D dose distribution at 1 cm from the balloon surface. 49 Figure 4.1. Dose distribution as calculated by Plato BPS (v 14.3.2, Nucletron). 53 Figure 4.2. Step function representation of a dose volume histogram. 57 Figure 4.3. Dose distributions obtained for the ¹²⁹Ir source at the balloon centre. 62 Figure 4.4. Dose difference map between dose distribution produced by the 62 source positioned in the middle of the balloon and the source shifted by 4 mm. **Figure 4.5.** Source deviation produces (a) an increase in the dose in regions of 63 the PTV and (b) reduction of the dose in other portions of the PTV in a plane 1.0 cm from the balloon surface. The uncertainty in Monte Carlo calculation was within 1.8%. 64 Figure 4.6. Differential equivalent dose based DVH of the left lung from MammoSite treatment plan with the ¹⁹²Ir source at the centre of the balloon, as calculated by Plato BPS (v 14.3.2, Nucletron). Figure 4.7. Differential equivalent dose based DVH of the right lung from 64 MammoSite treatment plan with the ¹⁹²Ir source at the centre of the balloon, as calculated by Plato BPS (v 14.3.2, Nucletron). Figure 4.8. Differential equivalent dose based DVH of the heart from MammoSite 65 treatment plan with the ¹⁹²Ir source at the centre of the balloon, as calculated by Plato BPS (v 14.3.2, Nucletron). Figure 4.9. The impact of the balloon deformation on TCP. 67

Page

Figure 5.1. Balloon inside a phantom filled with (a) saline only, (b) saline and	71
contrast.	
Figure 5.2. Diagram of the breast phantom design.	72
Figure 5.3. The inflated balloon placed inside a designed breast tissue	73
equivalent phantom which is attached to the Rando® anthropomorphic phantom.	
Figure 5.4. CT images of the breast phantom obtained from CT scanner (a)	73
saline only, (b) contrast only.	
Figure 5.5. Comparison of the dose fall-off as a function of distance for the	75
MammoSite balloon filled with saline only to that filled with contrast only,	10
starting at 1 cm from balloon surface. The uncertainty in Monte Carlo calculation	
was within 1.8% at 1 cm from the balloon surface and slightly more than 2% else	
where.	
Figure 5.6. Comparison of the dose fall-off as a function of distance between the	75
MammoSite balloon filled with saline only to that filled with 50% saline plus	75
50% contrast, starting at 1 cm from the balloon surface. The uncertainty in	
Monte Carlo calculation was within 1.8% at 1 cm from the balloon surface and	
slightly more than 2% else where.	
Figure 5.7. Comparison of the dose fall-off as a function of distance between the	76
MammoSite balloon filled with saline only to that filled with 85% saline plus	, 0
15% contrast, starting at 1 cm from the balloon surface. The uncertainty in	
Monte Carlo calculation was within 1.8% at 1 cm from the balloon surface and	
slightly more than 2% else where.	
Figure 5.8. Monte Carlo 2 D dose distribution for balloon filled with (a) saline	77
only and (b) contrast only.	
Figure 5.9. Energy level diagram of the TLD process.	79
Figure 5.10. Oven and aluminium blocks that were used for annealing and	80
cooling of TLDs respectively.	00
Figure 5.11. Harshaw 3500 (Harshaw / Bicron, USA) automatic TLD reader.	81
Figure 5.12. Schematic diagram of a TLD reader.	04
5	81
Figure 5.13. Experimental setup for the measurement of the sensitivity	82
correction factor of the LiF TLD-100 chips.	

Page

Page

Figure 5.14. Positions of TLDs at various distances from the balloon surface.	86
Figure 5.15. Experimental setup for dose measurements in the breast phantom	87
using TLD chips.	
Figure 5.16. Experimental measurement setup for irradiating the TLDs to HDR	87
source.	
Figure 5.17. Glow curve for LiF TLD-100 chips (the TLDs were read immediately	88
after irradiation).	00
Figure 5.18. Glow curve for LiF TLD-100 chips (read 1.5 hour after irradiation).	88
Figure 5.19. Glow curve for LiF TLD-100 chips (read at least 24 h after	00
irradiation)	00
Figure 5.20. Dose response curve for TLD-100 chips (2% relative deviation).	89
Figure 5.21. TLD measurements results of dose fall-off as a function of distance	90
for balloon filled with saline only and filled with contrast only. The measurement	50
uncertainty with TLDs was within 3% or less.	
Figure 5.22. TLD measurements results of dose fall-off as a function of distance	0.0
for balloon filled with saline only and filled with 50% saline plus 50% contrast	90
concentration. The measurement uncertainty with TLDs was within 3% or less.	
Figure 5.23. TLD measurements results of dose fall-off as a function of distance	01
for balloon filled with saline only and filled with 85% saline plus 15% contrast	91
concentration. The measurement uncertainty with TLDs was within 3% or less.	
Figure 5.24. Comparison of Monte Carlo simulation and TLDs measurements	0.0
showing the variation of dose as function of distance starting at 1 cm from the	92
balloon surface for a balloon filled (a) with saline only. (b) with 100% contrast	
concentration only. (c) with saline with the addition of 50% contrast	
concentration and (d) with saline with the addition of 15% contrast	
concentration. The uncertainties in Monte Carlo calculation and TLD	
massurements were 1.8% and 3% respectively	
Eigune E 2E Dese reduction factor (at 1 cm from helloon surface) attributeble to	
rigure 5.25. Dose reduction factor (at 1 cm from balloon surface) attributable to	92
attenuation from various contrast concentrations in the MammoSite balloon. The	

relative uncertainty in the DRF is 1.8%.

Page

Figure 5.26. TCP curve. It illustrates the impact of combined uncertainties	94
away and near the TCP gradient region.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Figure 6.1. Schematic representation of simulated geometry of Varian 600 C/D	100
linac head used in this study.	200
Figure 6.2. The geometry of a parallel circular beam (ISOURC = 19) with 2D	100
Gaussian distribution (curtesy [55]).	
Figure 6.3. Schematic geometry of linac illustrating the open field modelled in	101
Monte Carlo simulations.	
Figure 6.4. Geometry of the VARMLC component module (courtesy [55]).	102
Figure 6.5. Schematic geometry of linac illustrating the MLC modelled in Monte	102
Carlo simulations.	
Figure 6.6. Geometry of the PYRAMIDS component module (courtesy [55]).	103
Figure 6.7. Schematic geometry of linac illustrating a 45° physical wedge	104
modelled in Monte Carlo simulations.	
Figure 6.8. Voxel geometry used for calculation of dose deposition in a 30 cm x	107
30 cm x 30 cm water tank. The thickness was 0.3 cm for the first 3.0 cm depth,	
and 1.0 cm for further depths.	
Figure 6.9. PDD curves comparing the Monte Carlo simulation and	108
measurement in the water phantom for $10 \ge 10 \ge 10$ cm ² radiation field.	
Figure 6.10. Cross-plane profiles comparison of the Monte Carlo simulation and	109
measurements in the water phantom at 10 cm depth for $10 \ge 10 = 10$ cm ² field size.	
Figure 6.11. Cross-plane profiles comparison of the Monte Carlo simulation and	109
ion chamber measurement in the water phantom at 10 cm depth for a half-	
blocked field.	
Figure 6.12. Measured and Monte Carlo simulated profiles along the leaf	110
direction of a 10 x 10 cm ² MLC shaped beam in water medium.	
Figure 6.13. The measured and Monte Carlo simulation PDD curves for a $10 \ge 10$	110
cm ² field in water with a 15^0 physical wedge.	
Figure 6.14. The measured and Monte Carlo simulation data for a $10 \ge 10 = 10$	111
field in water with a 15^0 physical wedge at dmax.	
Figure 6.15. The measured and Monte Carlo simulation data for a $10 \ge 10 = 10^{2}$	111
field in water with a 15^{0} physical wedge at 5 cm depth.	

Page Figure 6.16. The measured and Monte Carlo simulation data for a 10 x 10 cm² 111 field in water with a 15[°] physical wedge at 10 cm depth. Figure 6.17. The measured and Monte Carlo simulation data for a 10 x 10 cm² 112 field in water with a 15° physical wedge at 15 cm depth. Figure 6.18. The measured and Monte Carlo simulation PDD curves for 10 x 10 112 cm^2 field in water with a 30[°] physical wedge. Figure 6.19. The measured and Monte Carlo simulation data for a 10 x 10 cm² 113 field in water with a 30° physical wedge at 5 cm depth. Figure 6.20. The measured and Monte Carlo simulation data for a 10 x 10 cm² 113 field in water with a 30° physical wedge at 10 cm depth. Figure 6.21. The measured and Monte Carlo simulation PDD profile for a 10 x 10 114 cm^2 field in water with a 45[°] physical wedge. Figure 6.22. The measured and Monte Carlo simulation data for a 10 x 10 cm² 114 field with a 45[°] physical wedge at 5 cm depth in water. Figure 6.23. The measured and Monte Carlo simulation data for a 10 x 10 cm² 115 field with a 60° physical wedge at 5 cm depth in water. Figure 6.24. The measured and Monte Carlo simulation data for a 10 x 10 cm² 115 field with a 60° physical wedge at 10 cm depth in water. Figure 7.1. Standard external beam breast radiotherapy treatment plan. Two 120 physical wedges are placed in the beam to compensate for missing tissue in order to achieve a conformal dose distribution throughout the irradiated breast. Figure 7.2. Summary of the steps involved in the construction of a linac model 121 using BEAMnrc. Figure 7.3. MLC shaping for (a) the medial, and (b) the lateral fields treatment 121 plans. Figure 7.4. Mapcheck (Sun Nuclear Corporation) 2 dimensional detector for 122 verification of radiotherapy dose distributions. Figure 7.5. Two dimensional dose matrices extracted from (a) the Pinnacle³ 127 treatment planning system and (b) Monte Carlo simulations. Figure 7.6. The difference between the Pinnacle³ 2 D dose matrix and Monte 127 Carlo simulation. Figure 7.4. Comparison between measured relative dose and Monte Carlo 128 computed relative dose using γ algorithm in Mapcheck software. Figure 7.5. Combined dose distribution from EBRT and MB techniques. 128

Abstract

The MammoSite Radiation Therapy System is a novel brachytherapy technique for treatment of patients with early stage breast cancer. It is used as a sole radiation treatment or in combination with external beam radiotherapy. There are several uncertainties associated with the dose distribution from the MammoSite brachytherapy.

In this research study, the ¹⁹²Ir brachytherapy source was accurately modelled using the EGSnrc Monte Carlo code. A voxel size of 1.5 mm³ was found to be suitable for dose calculations as reducing the voxel size any further would increase the simulation time without improving the accuracy of dose simulation.

The impact of uncertainties in balloon deformation and source position on the tumour control probability (TCP) and the normal tissue complication probability (NTCP) were assessed. The effects on the treatment outcome were assessed from (a) organ differential dose volume histograms (dDVHs) obtained from the Plato brachytherapy planning system and (b) EGSnrc Monte Carlo simulations based on actual computed tomography (CT) images of a breast cancer patient who underwent MammoSite brachytherapy treatment.

This study gave low probabilities for developing heart and lung complications.

Monte Carlo calculations showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. A 4 mm source deviation produced underdosing of some portions of the PTV by 40% leading to poor treatment outcomes. Furthermore, 4 mm uncertainty in source deviation leads to overdosing of regions of the PTV by about 40%. This results to an excessive dose to the skin and increases the probability of skin complications.

Balloon deformation and incorrect source position had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. The current study suggested that

the MammoSite treatment protocols should allow for a balloon deformation of less than 2 mm and a maximum source deviation of \leq 1 mm.

The extent of the dose perturbation for various concentrations of the contrast medium in a MammoSite balloon was investigated using Monte Carlo simulations and thermoluminescent dosimeters (TLDs) measurements. The Monte Carlo simulation was performed using CT images of in-house tissue equivalent breast phantom. The breast phantom was also used for TLD measurements.

The measured and Monte Carlo calculated doses were in agreement within the measurement uncertainty and Monte Carlo statistical errors. The dose reduction resulting from the use of high atomic number contrast (Iodine) caused considerable uncertainty in the MammoSite dose. Our results showed that 100%, 50% and 15% contrast concentrations reduced the dose at the prescription point by 10%, 5% and 2% respectively relative to the dose calculated with the balloon filled with saline (water) only.

The BEAMnrc and DOSXYZnrc Monte Carlo codes were used to model an external beam radiotherapy treatment and simulate a dose distribution using a patient CT data set respectively. The external beam radiotherapy model was validated with measurements and the data analysis was performed using the gamma function algorithm.

The gamma function analysis algorithm was used and the acceptance criteria for comparison were set to distance-to-agreement of 2 mm and 2% dose difference. An excellent agreement (99.4% of detectors passed the criteria) was found between the Monte Caro computed dose maps and the measured ones. This proved that a reliable Monte Carlo model was constructed and used for dose calculations from EBRT treatment. The simulated dose distribution from EBRT was combined with the simulated MammoSite dose distribution.

Finally, it would be beneficial (to the oncologist) to visualize the final (combined) dose distributions from the two modalities to assist with an assessment of treatment plans and the treatment outcome. Currently, combining the dose distributions from

the two modalities is difficult to achieve because the two modalities use different planning systems and different dose calculations algorithms and the patient anatomy looks different (balloon is present for brachytherapy). Consequently, the project aimed to build a Monte Carlo linac model to calculate dose delivery to a breast due to external beam radiotherapy.

Having MC models (EBRT & MB) constructed and verified, the dose distributions calculated from each modality were converted using appropriate algorithms to equivalent dose distributions and combined to yield the total dose distribution to a breast from the combined treatment.

Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: DATE:

Acknowledgements

I wish to acknowledge the scholarship support of the Libyan government, which made this project possible.

I am extremely grateful to have had A/Prof. Eva Bezak as my principal supervisor. She was always available to discuss issues related to my project. She taught me the skills of a researcher. Her guidance, intelligence and support were invaluable. I would also like to express my sincere gratitude to my co-supervisor Dr. Martin Borg for his clinical advice.

I strongly appreciate the encouragement, moral support and help from the staff of the Medical Physics Department at the Royal Adelaide Hospital: Thomas Rutten, Daniel Ramm, John Lawson, John Schneider, Tim Willams, Kim Quach, Scott Penfold, Raelene Nelligan, Siva Saranandarajah, Mohammad Mohammadi and Christine Robinson. A special thanks to Dr. Justin Shepherd for proof reading the thesis.

I would also like to thank Thuc Pham for sharing his knowledge of the Monte Carlo technique with me. Special thanks to Hologic Corporation who have supplied me with their MammoSite images.

My friendship with my fellow graduate students has been a delightful part of my life.

Finally my greatest thanks go to my family for their love and support.

Publications in refereed journals

The work in this thesis has been published and presented in the following:

- Saleh benSaleh, Eva Bezak and Martin Borg, "Review of MammoSite brachytherapy: Advantage, disadvantages and clinical outcomes". Acta Oncologica 48: 487-494 (2009).
- Saleh benSaleh, Eva Bezak and Thuc Pham, "Combined Dose Distribution for External Beam Whole Breast Irradiation and MammoSite Breast Brachytherapy: Monte Carlo Investigation" published in Proceedings of Medical Physics and Biomedical Engineering World Congress 2009.
- Bensaleh S and Bezak E. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness. Australas Phys Eng Sci Med 2010; 33:35-44.

Papers submitted to refereed journals

Bensaleh S, Bezak E, "The effect of uncertainties associated with MammoSite® brachytherapy on the dose distribution in the breast: Monte Carlo simulations and TLD measurements" submitted to Brachytherapy.

Papers in preparation

Bensaleh S, Bezak E, "Combined dose distribution for MammoSite brachytheray and external beam breast irradiation" to be submitted to Medical Physics.

Conference presentations

International

- Saleh benSaleh and Eva Bezak "MammoSite Brachytherapy Tecnique Review, Monte Carlo Modelling and Measurements of Uncertainties" International Conference on Medical Physics, Radiation Protection and Radiobiology (2009), Feburary11-13, Jaipur, India [Invited Paper].
- Saleh benSaleh, Eva Bezak and Thuc Pham, "Combined Dose Distribution for External Beam Whole Breast Irradiation and MammoSite Breast Brachytherapy: Monte Carlo Investigation" Medical Physics and Biomedical Engineering World Congress 2009. Munich, Germany.

National

- Saleh benSaleh, Eva Bezak and Martin Borg, "Dose Investigation of the MammoSite Applicator using Monte Carlo Method". Engineering and Physical Science in Medicine (2007), October 14-18, Fremantle, Western Australia.
- Saleh benSaleh and Eva Bezak, "Investigation of the Dose Reduction in the Breast due to Various Contrast Concentrations in the MammoSite Balloon: Monte Carlo Simulations and TLD Measurements". Engineering and Physical Science in Medicine (2008), November 16-20, Christchurch, New Zealand.
- Saleh benSaleh and Eva Bezak, "The Effect of Source Positioning Errors on TCP & NTCP in MammoSite[®] Breast Brachytherapy". Engineering and Physical Science in Medicine (2008), November 16-20, Christchurch, New Zealand.
- Saleh benSaleh and Eva Bezak, "Quantitative Analysis of Dose Reduction in MammoSite Brachytherapy Breast Cancer Technique by Monte Carlo Simulations". Australian Institute of Physics 18th National Congress (2008), November 30th – December 5th, Adelaide, South Australia.

- Saleh benSaleh and Eva Bezak, "Monte Carlo Modelling of Combined Dose Distributions in Breast Radiotherapy" Engineering and Physical Science in Medicine (2009), November 8-12, Canberra, Australia.
- Bensaleh S, Bezak E. Dose equivalent for the combination of external beam breast irradiation and MammoSite breast brachytherapy: Monte Carlo simulations. 3rd Modelling of Tumour (MOT) Meeting. 2010. Adelaide, Australia.

Other presentations

- Saleh benSaleh and Eva Bezak, "Dose Uncertainties in MammoSite Breast Brachytherapy" Postgraduate Student Papers Night. Adelaide, Australia. 2006. Sponsored by ACPSM, SAMBE and EACBE (SA branches) [**].
- Saleh benSaleh, Eva Bezak and Martin Borg, "Dose Investigation of the MammoSite Applicator using Monte Carlo Method" Postgraduate Student Papers Night. Adelaide, Australia. 2007. Sponsored by ACPSM, SAMBE and EACBE (SA branches) [*].
- 3. Saleh benSaleh and Eva Bezak, "Investigation of the Effects of Contrast Medium on the MammoSite Dose distribution: Monte Carlo Simulations and TLD Measurements". Student Paper Competition 2008, sponsored by the South Austral Branch of the Australian Radiation Protection Society.

* Awarded first prize

**Awarded second prize

TO MY FAMILY