ENDOTHELIAL FUNCTION & GENETIC POLYMORPHISMS IN CEREBRAL SMALL VESSEL DISEASE

A study investigating the relationships between endothelial function, genetic polymorphisms and cerebral small vessel disease

ADA KARMAN LAM

Discipline of Medicine THE UNIVERSITY OF ADELAIDE SOUTH AUSTRALIA

A thesis submitted in fulfilment of the requirements for the degree of PhD in Medicine March 2010

TABLE OF CONTENTS:

THESIS ABSTRACT	IV
DECLARATION	VI
ACKNOWLEDGEMENTS	VII
CONFERENCE PRESENTATIONS	VIII
PUBLICATIONS	IX
LIST OF FIGURES	X
LIST OF TABLES	XI
INDEX OF ABBREVIATIONS	XIII

INTRODUCTION	N	1
--------------	---	---

2	CHAPTER 1 CEREBRAL SMALL VESSEL DISEASE	
3	LACUNAR INFARCTION	1.1
4	Leukoaraiosis	1.2
6	METHODS TO CATEGORISE SVD	1.3
10	Risk Factors of SVD	1.4
12	GENETICS IN SVD	1.5
17	SUMMARY	1.6

СНАРТ	FER 2 ENDOTHELIAL FUNCTION	18
2.1	THE ENDOTHELIUM	18
2.2	ENDOTHELIAL DYSFUNCTION	24
2.3	METHODS TO MEASURE EF	
2.4	INFLUENTIAL FACTORS OF EF	36
2.5	CLINICAL IMPLICATIONS OF ED	44
2.6	SUMMARY	50

СНАРТ	ER 3 GENETIC POLYMORPHISMS	51
3.1	SELECTION OF CANDIDATE GENETIC POLYMORPHISMS	51
3.2	INTERLEUKIN-6 (IL-6) -174G/C	52
3.3	NADH/NADPH-OXIDASE (N-OX) P22 PHOX 242 C/T	54
3.4	TISSUE PLASMINOGEN ACTIVATOR (TPA)	57
3.5	ENDOTHELIAL NITRIC OXIDE SYNTHASE (ENOS)	60
3.6	Endothelin-1 (ET-1)	61
3.7	PARAOXONASE (PON1)	63
3.8	HAPLOTYPE STUDIES	64
3.9	SAMPLE SIZE CALCULATIONS	65
3.10	SUMMARY	66

CHAPTER 4 STUDY AIMS AND RATIONALE		
	4.1 Study Aims & Hypotheses	
	4.2 Study Design	
	4.3 JUSTIFICATION OF STUDY	

69	CHAPTER 5 RESEARCH METHODS	
69	CLINICAL METHODS	5.1
75	LABORATORY METHODS	5.2
	STATISTICAL METHODS	5.3

CHAP	TER 6 RESULTS	85
6.1	STUDY SAMPLE	85
6.2	ASSOCIATION BETWEEN CEREBRAL SMALL VESSEL DISEASE AND	
	ENDOTHELIAL FUNCTION	90
6.3	ASSOCIATION BETWEEN GENETIC POLYMORPHISMS AND ENDOTHELIAL	
	FUNCTION	95
6.4	Association Between Genetic Polymorphisms and Cerebral Small	
	VESSEL DISEASE	100
6.5	Results Summary	106

СНАРТ	ER 7 DISCUSSION	109
7.1	INTRODUCTION	109
7.2	ASSOCIATION BETWEEN CEREBRAL SMALL VESSEL DISEASE AND	
	ENDOTHELIAL FUNCTION	110
7.3	Association between Genetic Polymorphisms and Endothelial	
	FUNCTION	113
7.4	ASSOCIATION BETWEEN GENETIC POLYMORPHISMS AND CEREBRAL SMALL	
	VESSEL DISEASE	120
7.5	STUDY LIMITATIONS	130
7.6	CONCLUSION	137

 APTER 8 FUTURE DIRECTIONS	CHAP
 1 THE IDEAL STUDY	8.1
 2 Genetics	8.2
 3 IMAGING	8.3
 4 OTHER RELATED STUDIES	8.4

FINAL CONSIDERATIONS	145
	1 10

BIBLIOGRAPHY14	6
----------------	---

APPENDIX 1: PUBLICATION: CEREBRAL SMALL VESSEL DISEASE – GENETIC
RISK ASSESSMENT FOR PREVENTION AND TREATMENT192
APPENDIX 2: DNA EXTRACTION PROTOCOL
APPENDIX 3: LOGISTIC REGRESSION MODEL ADJUSTMENT (LA)207
ADDENIDIV 4. LOCIETIC DECIDERCION MODEL ADHIGTMENT (LI) 211
APPENDIX 4: LOGISTIC REGRESSION MODEL ADJUSTMENT (LI)211

Thesis Abstract

Background

The pathogenesis of cerebral small vessel disease (SVD), encompassing lacunar infarction (LI) and leukoaraiosis (LA), is heterogeneous, with impaired endothelial function (EF) and altered fibrinolysis proposed as important contributors. Genetic factors are involved and may exert their influence via the above mechanisms.

The aim of this study was to explore the relationship between EF and SVD, and to examine the role of candidate polymorphisms in both EF and SVD.

Methods

The study cohort consisted of patients who had undergone a brain magnetic resonance image (MRI) scan for non-vascular indications. Vascular risk factors were collected by interviewing participants. SVD was classified using a modified Fazekas rating scale, where SVD burden was divided into three categories: absent/mild, moderate and severe. LI was graded separately.

EF was assessed using applanation tonometry (ApT) and the radial pulsewave. A global EF score that accounts for both endothelium-dependant and –independent vasodilation was used as the index for comparison. A higher global EF score indicated better EF.

Participants were genotyped using the sequence-specific polymerase chain reaction (PCR-SS) for eight candidate polymorphisms chosen based on biological plausibility and/or previous study evidence: interleukin-6 (IL-6) -174 G/C, NADPH oxidase p22 phox 242 C/T, tissue plasminogen activator (tPA) 20324 C/T, tPA -4360 G/C, tPA -7351 C/T, endothelial nitric oxide synthase (eNOS) -786 T/C, endothelin-1 (ET-1) 138 D/I and paraoxonase-1 (PON1) -107 C/T.

Statistical analyses were performed using Intercooled Stata 9.2, GraphPad Prism and the SNPstats. Regression models were adjusted for the appropriate variables.

Results

A total of 132 participants were assessed. All participants were genotyped and 84 of these 132 participants also had their EF assessed using ApT, but only 72 participants were successful.

Participants were graded separately for LI and LA. LA controls (n=119) were defined as participants with absent/mild LA, and LA cases (n=13) were participants with moderate or severe LA. LI controls (n=126) were participants without a radiologically defined LI and LI cases (n=6) were participants with radiologically defined LI.

The results of the study can be summarised as follows:

- there was no significant difference between the EF of cases and controls. Subgroup analyses showed that the risk of LA decreased as the global EF values increased after adjusting for confounding influences, but the relationship was not significant (p=0.23);
- 2. there were no significant differences in EF between the genotypes of the eight candidate polymorphisms, except for the tPA 20324 C/T, where the TT genotype was associated with higher EF compared to the CC/CT genotypes (p=0.02);
- the tPA 20324 TT genotype was significantly associated with an increased risk of LI compared to the CC/CT genotypes (p=0.03), although the association is under powered. No other significant associations were found.

Although the intent was to achieve a pre-determined sample size, the methodology, and in particular the exclusion criteria, restricted recruitment and consequently the study was under powered to achieve its goals. The study could therefore be considered a pilot study and any conclusions forthwith require validation in a larger sample.

Conclusion

The tPA 20324 TT genotype was significantly associated with LI, while also being significantly associated with better EF. This result may be a Type I error reflective of the small sample size. However, the result does support the hypothesis that impaired fibrinolysis has an important pathogenic role in LI. This study does not support impaired EF as a significant pathogenic contributor to SVD.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Ada Lam and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works:

Lam AK et al; Cerebral small vessel disease – Genetic risk assessment for prevention and treatment; *Molecular Diagnosis and Therapy* 2008; 12(3): 145-156 [Wolters Kluwer Health | Adis]

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository. The Library catalogue, and the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:..... Date:.....

Acknowledgements

I would like to sincerely thank my principal supervisor, Dr Jim Jannes, for the time, effort, support and encouragement he has given me throughout my candidature. His belief in my abilities and his guidance has enabled me to mature as a scientific researcher.

I also thank my other supervisors Dr Anne Hamilton-Bruce and Dr Simon Koblar for their input throughout all stages of my PhD.

My gratitude extends to Ms Skye McLennan for helping me recruit and interview participants where possible, Dr Sandy Patel and Dr EeWin Khoo for their radiological input, Mr Austin Milton for his scientific support and training in laboratory techniques, Mr John Fields for his statistical advice and Ms Sally Michail and Ms Helve Doecke for identifying grammatical errors.

Lastly, I thank my parents for their never-ending love and support throughout the entire process.

Conference Presentations

Poster Presentation:

"Endothelial Function in Cerebral Small Vessel Disease – A Pilot Study". 6th World Stroke Congress, Vienna, Austria, September 2008

Poster Presentation:

"Endothelial Function in Cerebral Small Vessel Disease – A Pilot Study". The Queen Elizabeth Hospital Research Day, Adelaide, Australia, October 2008

Platform Presentation:

"Endothelial Function in Cerebral Small Vessel Disease". 6th Asia Pacific Conference Against Stroke and 20th Stroke Society of Australasia ASM, Cairns, Australia, September 2009

Platform Presentation:

"Endothelial Function in Cerebral Small Vessel Disease". The Queen Elizabeth Hospital Research Day, Adelaide, Australia, October 2009

Publications

Lam A, Hamilton-Bruce M, Koblar S, Khoo EW, Patel S, Jannes J; Endothelial function in cerebral small vessel disease; *International Journal of Stroke* 2009; 4(S1):2.

Lam A, Hamilton-Bruce MA, Jannes J, Koblar SA; Cerebral small vessel disease: Genetic risk assessment for treatment and prevention; *Molecular Diagnosis and Therapy* 2008; 12(3): 145-156.

Lam AK, Hamilton-Bruce MA, Khoo E, Patel S, Koblar SA, Jannes J; Endothelial function in cerebral small vessel disease (CSVD): A pilot study; *International Journal of Stroke* 2008; 3(S1):374.

McLennan SN, Lam AK, Mathias JL, Koblar SA, Hamilton-Bruce MA, Jannes J; Vasodilation reponse and cognition; *Cerebrovascular Diseases* 2010; in submission.

Chen CS, Rudkin AK, Lee AW, **Lam AK**, Patel S, Khoo E, Hamilton-Bruce MA, Jannes J, Koblar SA; Association of retinal nerve fibre layer brain volume change in leukoaraiosis; *Journal of Neurology, Neurosurgery and Psychiatry* 2010; in submission.

LIST OF FIGURES

FIGURE 1.1 – CLASSIFICATION OF ISCHAEMIC CVD	2
FIGURE $1.2 - T_2 MRI$ of the brain showing a lacunar infarction, configure	MED BY THE
FLAIR	3
FIGURE $1.5 - T_2 MRI$ of the brain showing severe LA confirmed by the F	FLAIR5
FIGURE $2.1 - THE$ major modulators and pathways involved in EF & dy	SFUNCTION 19
FIGURE 2.2 –PERIPHERAL & ARTERIAL WAVEFORM	
FIGURE 2.3 – THE VARIOUS RISK FACTORS FOR ENDOTHELIAL DYSFUNCTION	
FIGURE 2.4 – PROPOSED PATHWAYS OF EF IN SVD	48
FIGURE 3.1 – GENE STRUCTURE OF IL-6	53
FIGURE 3.2 – GENE STRUCTURE OF N-OX P22 PHOX	55
FIGURE 3.3 – STRUCTURE OF THE ENOS GENE	60
FIGURE 3.4 – THE GENE STRUCTURE OF PREPROENDOTHELIN	62
FIGURE 3.5 – GENE STRUCTURE OF PON1	64
FIGURE 5.1 – RECRUITMENT PATHWAY	70
FIGURE $5.2 - D$ IGITALLY ENHANCED PHOTOGRAPH OF THE GEL UNDER UV LIGH	т80
FIGURE 5.3 – CHROMATOGRAM SHOWING THE DNA SEQUENCE OF THE TPA 203	324 C/T
POLYMORPHISM USING THE CONSENSUS PRIMER	
FIGURE 6.1 – BREAKDOWN OF THE RECRUITMENT PROCESS	85
FIGURE 6.2 – BOX AND WHISKERS PLOTS SHOWING THE DISTRIBUTION OF GLOBA	AL EF AAIX 91

LIST OF TABLES

TABLE $1.1 - A$ summary of different visual rating scales
TABLE $1.2 - M$ ultivariate odds ratio and 95% CIs for a family history of stroke 14
TABLE $1.3 - Relationship$ between age of stroke and positive family history of
STROKE
TABLE $2.1 - CEREBRAL EF$ and systemic EF in LI patients, controls with similar risk
FACTORS AND HEALTHY CONTROLS
TABLE 3.1 – EFFECT OF THE N-OX P22 PHOX 242 C/T POLYMORPHISM ON SVD
TABLE 3.2 – SAMPLE SIZE ESTIMATES FOR CANDIDATE POLYMORPHISMS. 66
TABLE 5.1 – MRI DETAILS 72
TABLE 5.2 – OLIGONUCLEOTIDE PRIMER SEQUENCES 77
TABLE 5.3 – FINAL CONCENTRATIONS OF PRIMERS 78
TABLE 6.1 – REASONS FOR EXCLUSION AFTER SCREENING #1
TABLE $6.2 - Reasons$ why the invitees declined to participate
TABLE 6.3 – REASONS FOR EXCLUSION AFTER SCREENING #2
TABLE 6.4 – DESCRIPTIVE STATISTICS OF ALL 132 PARTICIPANTS BASED ON THE LA
CLASSIFICATION
TABLE 6.5 – DESCRIPTIVE STATISTICS OF ALL 132 PARTICIPANTS BASED ON THE LI
CLASSIFICATION
TABLE $6.6 - Univariate$ analyses of known cerebrovascular risk factors with LA.90
TABLE 6.7 – UNIVARIATE ANALYSES OF KNOWN CEREBROVASCULAR RISK FACTORS WITH LI90
TABLE $6.8 - Descriptive$ statistics of all the participants who underwent ApT
BASED ON THE LA CLASSIFICATION
TABLE 6.9 – DETERMINATION OF WHICH VARIABLES SHOULD BE INCLUDED IN THE MULTIPLE
LOGISTIC REGRESSION MODEL FOR LA AND ED93
TABLE $6.10 - Descriptive$ statistics of participants who underwent ApT based on
THE LI CLASSIFICATION94
TABLE 6.11 – GENOTYPE DISTRIBUTION FOR ALL APT PARTICIPANTS (N=72) 95
TABLE 6.12 – GENOTYPE DISTRIBUTION FOR SVD-FREE CONTROLS (N=65). 95
TABLE 6.13 – UNADJUSTED LINEAR REGRESSION OF INDIVIDUAL GENOTYPES WITH GLOBAL
EF (N=72)96
TABLE $6.14 - U$ NADJUSTED LINEAR REGRESSION OF DOMINANT AND RECESSIVE MODELS
WITH GLOBAL EF (N=72)

TABLE 6.15 – Adjusted values of the tPA 20324 C/T recessive and N-Ox p22 242 C/T $$
RECESSIVE LINEAR REGRESSION MODELS (N=72)
TABLE $6.16 - Unadjusted linear regression of dominant and recessive models$
WITH GLOBAL EF IN SVD-FREE CONTROLS (N=65)99
TABLE 6.17 – ADJUSTED VALUES OF THE TPA 20324 C/T RECESSIVE LINEAR REGRESSION
MODEL (N=65)100
TABLE 6.18 – SUBJECT NUMBERS (TOTAL N=132) AND P-VALUES FOR HARDY-WEINBERG
CALCULATIONS FOR EACH POLYMORPHISM
TABLE 6.19 – GENOTYPE DISTRIBUTION BASED ON LA
TABLE $6.20-Univariate$ analyses for all polymorphisms with LA102
TABLE $6.21 - Multivariate$ analyses for each polymorphism with LA103
TABLE 6.22 – GENOTYPE DISTRIBUTION BASED ON LI. 104
TABLE $6.23 - Univariate$ analyses for all polymorphisms with LI105
TABLE $6.24-Multivariate$ analyses for each polymorphism with LI105
TABLE $6.25 - Post-hoc$ statistical power calculations and estimated sample sizes
REQUIRED FOR EACH CANDIDATE POLYMORPHISM106
TABLE 8.1 – SUMMARY OF THE FEATURES OF THE IDEAL SVD STUDY

Index of Abbreviations

ACE	angiotensin converting enzyme
ACEI	angiotensin converting enzyme inhibitor
ADMA	asymmetric dimethylarginine
AGE	advanced glycation end products
AIx	augmentation index
AngII	angiotensin II
ApT	applanation tonometry
ARB	angiotensin receptor blocker
ATP	adenosine triphosphate
ATR	angiotensin receptor
BH4	tetrahydrobipterin
Ca ²⁺	calcium ions
CAD	coronary artery disease
	cerebral autosomal dominant arteriopathy stroke and ischaemic
CADASIL	leukoencephalopathy
CarVD	cardiovascular disease
CF-PWV	carotid-femoral pulsewave velocity
cGMP	cyclic guanosine monophosphate
CRP	C-reactive protein
DAG	1,2-diacylglycerol
DDAH	dimethylarginine dimethylaminohydrolase
DWM	deep white matter
ECE	endothelin converting enzyme
ED	endothelial dysfunction
EDCF	endothelium derived contracting factor
EF	endothelial function
eNOS	endothelial nitric oxide
ET-1	endothelin-1
ET_A	endothelin receptor type A
ETB	endothelin receptor type B
FLAIR	fluid attenuated inversion recovery
FMC	Flinders Medical Centre, Bedford Park, Adelaide, SA
FMD	flow-mediated dilation

GTN	glyceryl trinitrate
GTP	guanosine triphosphate
HDL	high density lipoprotein
HUVEC	human umbilical vein endothelial cell
ICAM-1	intercelllar adhesion molecule-1
LA	leukoaraiosis
IL-6	interleukin-6
iNOS	inducible nitric oxide synthase
LDL	low density lipoproteins
LMH	Lyell McEwin Hospital, Elizabeth Vale, Adelaide, SA
LSM	lymphocyte separation medium
MCP-1	monocyte chemoattractant protein-1
MI	myocardial infarction
MMP	metalloproteinase
MRI	magnetic resonace imaging
NADH	nicotinamide adenine dinucleotide
NADPH	nicotinamide adenine dinucleotide phosphate
NF-κB	nuclear factor-κB
NO	nitric oxide
N-Ox	NADPH oxidase
NSF	N-ethylmaleimide-sensitive factor
nNOS	neuronal nitric oxide synthase
OCSP	Oxfordshire Community Stroke Project
PAI-1	plasminogen activator inhibitor-1
PBS	Dulbecco's Phosphate Buffered Solution (Calcium and Magnesium free)
PCR-SS	polymerase chain reaction (sequence specific)
PGI ₂	prostacyclin
РКС	protein kinase C
PLC	phospholipase C
PON-1	paraoxonase-1
PV	periventricular
PWA	pulse-wave analysis
RAH	Royal Adelaide Hospital, Adelaide, SA
RAS	renin-angiotensin system
ROS	reactive oxygen species

SGP	strain gauge plethysmography
SM	smooth muscle
SNP	single nucleotide polymorphism
SOD	superoxide dismutase
SVD	small vessel disease (cerebral)
TIA	transient ischaemic attack
TNF-α	tumour necrosis factor-α
TOAST	Trial of Org 10172 in Acute Stroke Treatment
tPA	tissue plasminogen activator (protein)
TQEH	The Queen Elizabeth Hospital, Woodville South, Adelaide, SA
VCAM-1	vascular adhesion molecule-1
vWF	von Willebrand factor
WMH	white matter hyperintensity