Expression and function of osteopontin variants in HCV-related liver disease and hepatocellular carcinoma

Renée Jade Phillips, B. Biotech (Hons)

THE DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY THE SCHOOL OF MOLECULAR AND BIOMEDICAL SCIENCE THE UNIVERSITY OF ADELAIDE

A dissertation submitted to The University of Adelaide

In candidature for the degree of

Doctor of Philosophy in the Faculty of Science

April 2010

Table of Contents

Table of Contents	ii
Abstract	xi
Declaration	xiii
Presentations and publications related to this thesis	xiv
Acknowledgements	xvi
List of Figures and Tables	xvii
Abbreviations	xxii
Materials Providers	xxix
CHAPTER 1: Introduction	1
1.1 Hepatitis C Virus (HCV)	1
1.1.1 Natural history and classification	1
1.1.2 Epidemiology of HCV infection worldwide and in Australia	2
1.1.3 Routes of transmission	2
1.1.4 Types and outcomes of HCV infection	3
1.1.4.1 Acute and chronic infection	3
1.1.4.2 Progression of CHC-related liver disease	5
1.1.4.3 Pathogenesis of CHC-related liver disease	6
1.1.5 Treatment of infection	9
1.1.6 Viral genome and proteins	9
1.1.7 Viral replication	11

1.2 Hepatocellular Carcinoma (HCC)	13
1.2.1 Introduction	13
1.2.2 Epidemiology	13
1.2.3 Underlying causes of HCC tumor development	14
1.2.3.1 Virally-induced HCC	14
1.2.3.1.1 Hepatitis B Virus	14
1.2.3.1.2 Hepatitis C Virus	15
1.2.3.2 Non-viral causes of HCC	18
1.2.4 Treatment options and survival rates	19
1.2.5 Diagnosis	20
1.2.5.1 Current diagnostic techniques	20
1.2.5.2 Diagnostic biomarkers of HCC	21
1.3 Osteopontin (OPN)	22
1.3.1 Introduction	22
1.3.2 Molecular structure	23
1.3.3 Expression, distribution and regulation of OPN	24
1.3.4 OPN receptors	26
1.3.4.1 CD44	26
1.3.4.2 Integrins	27
1.3.5 Alternatively spliced variants of OPN	28
1.3.6 Functions of OPN and its role in tumorigenesis	29

1.3.7	Downstream signaling pathways regulated by OPN	31
1.3.8	Osteopontin as a biomarker of disease and predictor of poor prognostic outco	me in
cancer.		33
1.3.9	OPN and HCV-related liver disease	34
1.3.9	OPN expression and function during liver injury	34
1.3.9	OPN expression in patients with chronic HBV and HCV infections	36
1.3.9	OPN expression in HCC and its potential use as a diagnostic and progno	stic
biom	narker	37
1.4 Pr	elude to this study	39
1.5 Ai	ims of this project	40
CHAPTER 2	2: Materials and Methods	41
2.1 Ge	eneral Reagents	41
2.1.1	Plasmid vectors	41
2.1.2	Synthetic oligonucleotides	42
2.2 Ti	ssue Culture Techniques	42
2.2.1	Tissue culture medium	42
2.2.2	Maintenance of cell lines	42
2.2.3	Transient transfection of plasmid DNA	43
2.2.4	Stable transfection of plasmid DNA to generate over-expressing cell lines	43
2.2.5	Transient transfection of Stealth TM siRNA oligonucleotides	44
2.2.6	Preparation of conditioned media	44

2.2.7	Cellular proliferation	45
2.2.8	Trypan blue exclusion	45
2.2.9	Cultured cell lines used in this study	45
2.3 Me	olecular Biology Techniques	47
2.3.1	Transformation of competent bacteria	47
2.3.2	Mini-preparation (small scale) of plasmid DNA	48
2.3.3	Maxi-preparation (large scale) of plasmid DNA	48
2.3.4	Extraction of total RNA and cDNA synthesis	49
2.3.5	RNA quantitation	50
2.3.6	Primer design	51
2.3.7	Polymerase Chain Reaction (PCR)	51
2.3.8	Agarose gel electrophoresis	52
2.3.9	Real-time quantitative PCR	52
2.3.10	GeneScan® genotyping PCR	53
2.3.11	Gel purification	53
2.3.12	DNA sequencing	54
2.3.13	Restriction endonuclease digestion	54
2.3.14	DNA ligation	55
2.3.15	Immunofluorescence staining and microscopy	55
2.3.16	Extraction of cellular protein	56
2.3.17	Protein quantification	56

2.3.18	SDS-PAGE and protein transfer	56
2.3.19	Western blotting	57
2.3.20	Serum harvest from whole blood	57
2.3.21	ELISA	58
2.3.22	In vivo tumor growth in nude Balb/c mice	58
2.3.23	Murine blood collection via eye bleed	59
2.3.24	Murine blood collection via heart venupuncture	59
2.3.25	Mouse urine collection	60
2.3.26	Immunohistochemical staining	60
2.4 D	ata Analysis	61
CHAPTER	3: Expression and quantification of osteopontin and its alternatively splic	ed variants
in cultured	cell lines and liver tissue	62
3.1 In	ntroduction	62
3.2 R	esults	64
3.2.1	mRNA expression of OPN and its variants in cultured cell lines	64
3.2.2	mRNA expression patterns of OPN and its variants in non-diseased, HC	CV-infected
and HO	CC-tumor bearing liver tissue	65
3.2.3	Quantitation of OPN in different stages of HCV-related liver disease	66
3.2.4	Quantitation of OPN in HCC tumor tissue compared to cognate non-nec	oplastic liver
		68
3.2.5	Quantitative assessment of OPN variant expression: real-time RT-PCR	68
3.2.5	5.1 Primer design and validation	69

3.2.5	.2 Evaluation of primer efficiency	. 70
3.2.5	.3 Ability of primers to accurately quantitate relative OPN levels from known	
input	dilution series	. 71
3.2.5	.4 Ability of primers to accurately quantitate relative OPN levels from mixed	
input	samples	. 72
3.2.5	.5 Analysis of primer cross-reactivity	. 73
3.2.6	Quantitative assessment of OPN variant expression: GeneScan® Genotyping PCl	R
		74
3.3 Di	scussion	. 76
3.3.1	Expression of OPN and its variants in HCC-derived cell lines and HCV-infected	
and HC	C tissues	. 76
3.3.2	Quantitation of OPN variants	. 79
3.3.3	Future directions	. 81
CHAPTER 4	4: OPN and its role in cellular proliferation of HCC cell lines in vitro	. 82
4.1 Int	roduction	. 82
4.2 Re	esults	. 83
4.2.1	Generation of OPN variant expression vectors	. 83
4.2.2	Confirmation of OPN expression following transient transfection of OPN variant	t
vectors		. 83
4.2.3	OPN ELISA for detection of secreted OPN	. 84
423	1 Ontimisation of in-house OPN ELISA	84

4.2.3.	2 Confirmation of OPN secretion following transient transfection of OPN variar	ıt
vecto	rs 8	35
4.2.4	Intracellular detection of OPN splice variants	36
4.2.5	Generation of OPN stable transfectant Huh-7 cell lines	38
4.2.6	Effect of OPN on HCC-derived cell line proliferation	39
4.2.6.	1 Effect of intracellular OPN expression on hepatoma cell proliferation9	0
4.2.6.	2 Secreted OPN increases proliferation of naïve hepatoma cells	1
4.2.6.	Blocking cell surface binding of OPN abrogates hepatoma cell proliferation. 9	2
4.2.7	Effect of OPN-CD44 interaction on hepatoma cell proliferation	13
4.2.7.	1 CD44 expression in carcinoma cell lines)4
4.2.7.	2 Effect of cellular CD44 status on OPN-induced increases in carcinoma cell	
prolif	Peration9)5
4.2.7.	.3 Effect of siRNA knockdown of CD44 on OPN-induced increases in cellular	
prolif	Peration 9)6
4.2.7.	.4 Optimisation and validation of CD44 knockdown)6
4.2.7.	.5 Effect of siRNA knockdown of CD44 on OPN-induced increases in cellular	
prolif	Feration9)9
4.2.7.	6 Effect of blocking CD44-OPN interactions on OPN-mediated increases in	
carcii	noma cell proliferation)()
4.2.8	Effect of OPN on CD44 expression)1
4.3 Dis	scussion10)2

4.3.1	OPN increases proliferation of hepatoma cell lines in a paracrine manner through	gh
interac	ction with CD44	. 102
4.3.2	Future directions	. 105
CHAPTER	. 5: Effect of osteopontin expression on subcutaneous tumor growth in vivo in a nu	ıde
Balb/C mo	use model	. 107
5.1 In	ntroduction	. 107
5.2 R	Results	. 108
5.2.1	Development of subcutaneous Huh-7 xenograft tumors in nude Balb/c mice	. 108
5.2.2	Effect of OPN on Huh-7 derived xenograft growth.	. 111
5.2.3	Detection of OPN expression and secretion in tumor xenografts derived from C	PN
stable	transfectant cell lines	. 114
5.2.4	Effect of tumor OPN secretion on growth of neighbouring Huh-7 derived	
xenog	rafts	. 116
5.3 D	Discussion	. 117
5.3.1	OPN expression increases growth rate of Huh-7 derived tumor xenografts	. 117
5.3.2	Future directions	. 120
CHAPTER	6: Osteopontin expression in HCV-related liver disease: cellular expression and i	ts
potential as	a serum biomarker	. 124
6.1 In	ntroduction	. 124
6.2 R	Cesults	. 126
6.2.1	Expression of OPN in patients with HCV-related liver disease and HCC compa	red
to non	-diseased individuals	126

6.2.1.1	Sample collection and patient characteristics
6.2.1.2	Serum OPN expression in HCV-related liver disease, including HCC 127
6.2.1.3	Cellular OPN expression in HCV-related liver disease, including HCC 131
6.2.2	Expression of OPN in patients with HBV and alcohol related liver disease and HCC
-	
6.3 Disc	ussion
6.3.1	Serum and liver OPN levels are increased in HCV-related liver disease including
НСС	
6.3.2 I	Future directions
CHAPTER 7:	Concluding Remarks
Appendix 1	
Appendix 2	
Bibliography .	

Abstract

Osteopontin (OPN) is a highly secreted multi-functional sialoprotein that is widely expressed in tissues, blood and urine. It is involved in a number of normal physiological functions, but is also significantly elevated in a number of cancers. While OPN is significantly expressed in hepatocellular carcinoma (HCC) little is known as to its role and if it is expressed in the pre-cancerous hepatitis C virus (HCV) infected liver.

In this thesis we show that OPN is expressed in the liver and in HCC as three variants, the full-length protein OPN-A and two splice variants OPN-B and OPN-C. Through production of stable Huh-7 cells expressing the OPN variants, we show for the first time that all variants increase proliferation of a range of cultured hepatoma cell lines in a paracrine manner through interactions with the cell surface OPN receptor CD44. Similarly, OPN-A (and to a lesser extent OPN-B and -C) accelerated Huh-7 derived tumor growth in a nude mouse model. We also show for the first time expression of all three OPN variants in the non-diseased liver as it was previously thought that splicing was a feature specific for tumor cells.

Clinically, OPN is known to be highly expressed in HCC, however, its expression in chronic hepatitis C is not well documented. In this thesis we show that OPN mRNA expression is elevated in the HCV-infected liver with a trend towards increased expression as liver disease progresses. Consistent with an increase in mRNA, serum OPN levels were also increased in the HCV-infected liver although we could find no correlation with degree of liver disease. However, our sample size was small and this section of the thesis needs repeating with a larger HCV-infected patient cohort. Furthermore, we show that elevated OPN expression is not specific to the HCV-infected liver as OPN is also elevated in the HBV-infected and alcoholic liver

suggesting that HCV does not drive OPN expression but is more likely as a result of the inflammatory process in the viral infected liver. Interestingly we also show that there is a shift of OPN expression from bile duct epithelial cells in the non-diseased liver to the hepatocyte in the HCV-infected liver which raises the question as to the role of OPN in hepatocyte transformation to facilitate the development of HCC. Our evaluation of serum OPN expression also suggests that OPN has potential as both a diagnostic and potentially prognostic biomarker for not only HCC (arising from HBV and HCV infections and alcohol abuse) but also the earlier stages of HCV-related liver disease.

This work for the first time characterises the expression of all OPN variants in the liver including HCC and may be useful for identifying targeted OPN-based therapeutic approaches for HCC and other cancers. Furthermore it also suggests that monitoring OPN in chronic hepatitis C may be useful in monitoring liver disease progression and early detection of HCC.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renée Jade Phillips and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Renée Jade Phillips, B. Biotech (Hons)

April, 2010

Presentations and publications related to this thesis

Publications:

Renée J. Phillips, Karla J. Helbig, Kylie van der Hoek, Devanshi Seth and Michael R. Beard (2010). Osteopontin increases hepatocellular carcinoma cell growth through interactions with CD44. *Submitted (Hepatology)*.

Conference Presentations (presenter in bold type):

Renée J. Phillips, Karla J. Helbig, Andrew R. Ruszkiewicz and **Michael R. Beard**. Osteopontin is significantly expressed in advanced HCV-related liver disease and can accelerate Huh-7 growth *in vitro* and in a nude mouse model. *4th Hong Kong-Shanghai International Liver Congress*, Hong Kong, 2008.

Renée J. Phillips, Karla J. Helbig, Andrew R. Ruszkiewicz and Michael R. Beard. Osteopontin is significantly expressed in advanced HCV-related liver disease and can accelerate Huh-7 growth *in vitro* and in a nude mouse model. *42*nd *Annual Meeting of the European Association for the Study of the Liver*. Barcelona, Spain, 2007 (poster presentation).

Renée J. Phillips, Karla J. Helbig, Andrew R. Ruszkiewicz and Michael R. Beard. Osteopontin is expressed in advanced HCV-related liver disease and can accelerate hepatocyte growth *in vitro*. 13th International Meeting on Hepatitis C Virus and Related Viruses. Cairns, Australia, 2006.

Renée J. Phillips (McKay), Karla J. Helbig and Michael R. Beard. The role of osteopontin in hepatitis C virus-related liver disease and hepatocellular carcinoma. *Australian Society for Medical Research (ASMR) Medical Research Week Scientific Meeting (SA)*. Adelaide, SA, Australia, 2005.

Renée J. Phillips (McKay), Karla J. Helbig and Michael R. Beard. The role of osteopontin in hepatitis C virus-related liver disease and hepatocellular carcinoma. 2nd Australian Centre for Hepatitis Virology and HIV Virology National Scientific Meeting. Terrigal, NSW, Australia, 2005.

Acknowledgements

Firstly I would like to thank my principal supervisor Assoc. Prof. Michael Beard and co-supervisor Dr. Allison Jilbert for providing unwavering support, guidance, advice and encouragement over the course of both my Honours year and my PhD.

Sincere thanks to all current and former members of the Hepatitis C Research Group who have assisted me both professionally and personally over the last few years. Special thanks go to Dr. Karla Helbig who initiated the work on osteopontin that formed the starting point of my project and for her constant advice and suggestions, Mrs. Ljiljana Semendric and Mrs. Gorjana Radisic who taught me most of what I know technically, and Dr. Kylie van der Hoek for her invaluable help with immunohistochemistry and histology. Thank you also to Nick, Erin, Evelyn, Eddie, Susan and all our past honours students for your friendship, technical expertise, proof reading and snack food.

To everyone from other laboratories who helped me with reagents, equipment and advice, I could not have done it without you. Thank you to my fellow PhD students who have helped keep my sanity in check, and who understand so well the life of a graduate student. I would also like to acknowledge the following individuals and organisations who donated patient specimens for this study: Dr. Hugh Harley (Royal Adelaide Hospital), Dr. Ed Gane (Auckland Hospital), Dr. Tin Nguyen (Royal Prince Alfred Hospital), the Institute of Medical and Veterinary Sciences and the Australian Red Cross Blood Service.

Finally I would like to thank my husband Brad for encouraging me to continue with my studies, and my family and friends who have been very patient in allowing me to be a student for the past 10 years.

List of Figures and Tables

Figure Number On or follow		On or follows page:	;
Chapter 1			
Figure 1.1	Geographical distribution of HCV genotypes		1
Figure 1.2	Worldwide prevalence of HCV		2
Figure 1.3	Australian HCV notifications		2
Figure 1.4	Outcomes of HCV infection		3
Figure 1.5	Course of acute HCV infection		4
Figure 1.6	Course of chronic HCV infection		4
Figure 1.7	Natural history of chronic HCV infection		5
Figure 1.8	Pathogenesis of chronic HCV infection		7
Figure 1.9	HCV genome		10
Figure 1.10	HCV life cycle		11
Figure 1.11	Yearly worldwide HCC incidence		13
Figure 1.12	Proposed sequence of hepatocarcinogenesis		16
Figure 1.13	OPN gene structure and binding domains		23
Figure 1.14	Proposed OPN secondary structure		24
Figure 1.15	CD44 gene structure		26
Figure 1.16	OPN splice variants		29
Figure 1.17	OPN-induced tumor growth and metastasis pathways	5	32
Table 1.1	Previous OPN biomarker studies		34
Table 1.2	Diagnostic accuracy of OPN, AFP and PIVKA II in	НСС	38
Figure 1.18	Diagnostic effectiveness of OPN, AFP and PIVKA I	I in HCC	38

	Cha	pter	2
--	-----	------	---

Figure 2.1	pRc/CMV vector map	41
Table 2.1	Primers used in this study	41
Table 2.2	Cell culture requirements	42
Figure 2.2	G418 calculations for selection of stable transfectants	43
Table 2.3	Antibodies used in this study	55
Chapter 3		
Figure 3.1	OPN staining by IHC in human and murine HCC	62
Figure 3.2	OPN mRNA expression in cultured cell lines	64
Figure 3.3	Primer locations for concurrent amplification of OPN variants	64
Figure 3.4	OPN variant mRNA expression in cultured cell lines	64
Figure 3.5	OPN mRNA expression in liver and tumor tissue	65
Figure 3.6	OPN variant mRNA expression in human liver and tumor tissue	65
Figure 3.7	OPN variant mRNA expression in murine liver and tumor tissue	66
Table 3.1	Grouping of HCV mRNA samples based on fibrosis grade	67
Figure 3.8	OPN levels in HCV-infected livers of varying fibrosis grades	67
Figure 3.9	OPN levels in HCC tumor tissue and cognate cirrhotic tissue	68
Figure 3.10	Specificity of OPN variant real-time RT-PCR primers	70
Figure 3.11	Locations of OPN variant real-time RT-PCR primers	70
Figure 3.12	Specificity of OPN variant real-time RT-PCR primers (second set)	70
Figure 3.13	OPN variant primer pair efficiency	70
Figure 3.14	Alternative OPN-A primer pair amplification	71
Figure 3.15	Alternative OPN-A primer pair efficiency	71
Figure 3 16	Relative OPN variant quantitation	72

Table 3.2	Relative OPN variant quantitation	72
Table 3.3	OPN variant quantitation: single versus mixed template	73
Figure 3.17	Cross-reactivity of OPN-A primer pair	73
Figure 3.18	Cross-reactivity of OPN-B primer pair	73
Figure 3.19	Cross-reactivity of OPN-C primer pair	74
Figure 3.20	Locations of GeneScan® primers	74
Figure 3.21	Optimisation of GeneScan® amplification method	75
Figure 3.22	Validation of GeneScan® amplification method	75
Figure 3.23	GeneScan® results	75
Table 3.4	GeneScan® results	76
Chapter 4		
Figure 4.1	Confirmation of successful cloning of OPN variants	83
Figure 4.2	OPN variant over-expression following transient transfection	84
Figure 4.3	Optimisation of in-house OPN ELISA	85
Table 4.1	Secretion of OPN variants from transfected Huh-7 cells	86
Figure 4.4	Visualisation of OPN variants in transfected Huh-7 cells	87
Figure 4.5	OPN variant secretion from stable transfectant Huh-7 cells	88
Figure 4.6	OPN variant mRNA over-expression in stable transfectants	89
Figure 4.7	OPN expression and secretion from stable transfectants (WB)	89
Figure 4.8	OPN variant expression increases Huh-7 proliferation	91
Figure 4.9	OPN variant secretion increases Huh-7 proliferation	91
Figure 4.10	OPN variant secretion increases HepG2 proliferation	92
Figure 4.11	OPN antibody abrogates OPN-mediated Huh-7 proliferation	93
Figure 4.12	CD44 mRNA and protein expression in cultured cell lines	95

Figure 4.13	OPN variant secretion increases HeLa but not Hep3B proliferation	95
Figure 4.14	RNAi interference pathway	96
Figure 4.15	Huh-7 and HeLa siRNA transfection efficiency	97
Figure 4.16	Location of CD44 siRNA oligonucleotides	97
Figure 4.17	CD44 mRNA knockdown in Huh-7 and HeLa by siRNA	98
Figure 4.18	CD44 protein knockdown in HeLa by siRNA	99
Figure 4.19	Prolonged CD44 mRNA knockdown in Huh-7 and HeLa	99
Figure 4.20	Prolonged CD44 protein knockdown in HeLa	99
Figure 4.21	CD44 knockdown abrogates OPN-mediated Huh-7 and HeLa	100
	proliferation	
Figure 4.22	CD44 antibody abrogates OPN-mediated Huh-7 and HeLa	101
	proliferation	
Figure 4.23	OPN expression does not affect CD44 expression in Huh-7 cells	102
Chapter 5		
Table 5.1	Previous Huh-7 xenograft studies	109
Figure 5.1	Subcutaneous injection of Huh-7 into nude mice	109
Table 5.2	Day of Huh-7 tumor appearance	110
Figure 5.2	Representative Huh-7 tumor xenograft	110
Figure 5.3	Confirmation of human origin of Huh-7 xenograft	111
Table 5.3	Tumor take rate of OPN transfectant Huh-7 xenografts	112
Figure 5.4	Day of OPN transfectant tumor appearance	112
Figure 5.5	OPN transfectant xenograft growth	112
Figure 5.6	Visualisation of OPN transfectant tumors	113
Figure 5.7	OPN transfectant tumor histology	113

Figure 5.8	OPN variant mRNA expression in OPN transfectant tumors	114
Figure 5.9	OPN protein expression in OPN transfectant tumors (IHC)	115
Figure 5.10	Tumor groups for OPN secretion test	116
Table 5.4	Tumor take rate of OPN-A and Huh-7 tumors	116
Figure 5.11	Day of tumor appearance	117
Figure 5.12	OPN transfectant xenograft growth	117
Chapter 6		
Table 6.1	Previous OPN biomarker studies	124
Table 6.2	Patient characteristics: HCV-related liver disease and HCC	127
Figure 6.1	Serum OPN levels: HCV-related liver disease and HCC	127
Table 6.3	Serum OPN comparisons: HCV-related liver disease and HCC	128
Table 6.4	Grouping of HCV-infected serum samples by fibrosis grade	129
Figure 6.2	Serum OPN levels: HCV-related liver disease by fibrosis grade	129
Table 6.5	Patient characteristics: HBV, ethanol and HCV-related HCC	130
Figure 6.3	Serum OPN levels: HCV-related liver disease by activity score	130
Table 6.6	Serum OPN comparisons: HBV, ethanol and HCV-related HCC	131
Figure 6.4	OPN protein expression in HCV-related liver disease	132
Figure 6.5	OPN protein expression in HCV-related liver disease	132
Table 6.7	Patient characteristics: HBV, ethanol and HCV-related and HCC	134
Figure 6.6	Serum OPN levels: HBV, ethanol and HCV-related HCC	134
Table 6.8	Serum OPN comparisons: HBV, ethanol and HCV-related and HCC	135
Table 6.9	Patient characteristics: HBV-related liver disease and HCC	136
Figure 6.7	Serum OPN levels: HBV-related liver disease and HCC	136
Table 6.10	Serum OPN comparisons: HBV-related liver disease and HCC	137

Abbreviations

6-FAM 6-carboxyfluorescein

A adenosine

AFB₁ aflatoxin B1

AFLP amplified fragment length polymorphism

AFP alpha-fetoprotein

AFP-L3 lens culinaris agglutinin-reactive AFP

AFU α -1-fucosidase

aka also known as

ALT alanine transaminase

ANOVA analysis of variance

AP-1 activator protein 1

AP2 activating protein 2

AUC area under the curve

bp base pairs

BSA bovine serum albumin

C cytosine

°C degrees centigrade

CA 125 cancer antigen 125

CDC Centres for Disease Control

cDNA complimentary DNA

CHC chronic hepatitis C

cm centimeter(s)

CO₂ carbon dioxide

DAB 3,3'-diaminobenzidine

DAPI 4',6-diamidino-2-phenylindole

dATP deoxyadenosine-5'-triphosphate

DCP des-γ-carboxy prothrombin

dCTP deoxycytosine-5'-triphosphate

DFS disease-free survival

dGTP deoxyguanosine-5'-triphosphate

dH₂O deionised water

DMEM Dulbecco's Modified Eagle Medium with HEPES

DMSO dimethyl sulphoxide

DNA deoxyribonucleic acid

dNTP deoxyribonucleotide triphosphate

dTTP deoxythymidine-5'-triphosphate

ECM extracellular matrix

EDTA ethylene diamine tetra acetic acid

EGF epidermal growth factor

EGFR EGF receptor

ELISA enzyme linked immunosorbent assay

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

Eta-1 early T-cell activation factor

EtOH ethanol

F fibrosis

FCS foetal calf serum

FDA Food and Drug Administration

FITC fluorescien isothipcyanate

g/L grams per litre

G guanosine

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GEP granulin-epithelin precursor

GFP green fluorescent protein

GP73 golgi protein 73

GPC3 glypican 3

H&E haematoxylin and eosin

HAI histological activity index

HAV hepatitis A virus

HBV hepatitis B virus

HBx hepatitis B virus X protein

HCC hepatocellular carcinoma

HCV hepatitis C virus

HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid

HGF hepatocyte growth factor

HIV Human Immunodeficiency Virus

HRP horseradish peroxidase

HSC hepatic stellate cell

IDU injecting drug use(rs)

IF immunofluorescence

IFN-γ interferon gamma

IFN-λ interferon lambda

IgG immunoglobulin G

IHC immunohistochemistry

IL-x interleukin x

IMVS Institute of Medical and Veterinary Sciences

iNOS inducible nitric oxide synthase

IRES internal ribosome entry site

IRF-1 interferon regulatory factor-1

IU international units

kDa kilodalton

L litre

LB Luria Bertani broth

LDL low density lipoprotein

μg microgram(s)

μl microlitre(s)

μm micrometer(s)

μM micromolar

μmol micromole(s)

MAPK mitogen-activated protein kinase

mAU milli-absorbance units

mg milligram(s)

MIA melanoma inhibitory activity

ml millilitre(s)

mm millimeter(s)

mM millimolar

MCS multiple cloning site

mRNA messenger RNA

MW molecular weight

MWM molecular weight marker

n/a not applicable

n/avail not available

NAFLD non-alcoholic fatty liver disease

NANBH non-A non-B hepatitis

NASH non-alcoholic steatosis

NCI National Cancer Institute

n.d. not determined/not detected

ng nanogram(s)

NIH National Institute of Health

NHL normal human liver

NKT natural killer T

nm nanometer(s)

nM nanomolar

NML normal mouse liver

NTC no template control

OPN osteopontin

ORF open reading frame

OS overall survival

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PBS-T PBS-Tween 20

PCR polymerase chain reaction

PDGF platelet derived growth factor

peg-IFN-α pegylated interferon alpha

PEI percutaneous ethanol injection

pg picogram(s)

PIVKA-II protein induced by vitamin K absence

pmol picomole(s)

pro-MMP-2 pro-matrix metalloprotease-2

PSA prostate specific antigen

RISC RNA-induced silencing complex

RNA ribonucleic acid

RNAi RNA interference

ROC receiver operating characteristics

RPLPO ribosomal protein, large, P0

rpm revolutions per minute

RT-PCR reverse transcriptase PCR

SCCA squamous cell carcinoma antigen

SDS sodium dodecyl sulfate

SIBLING small integrin-binding ligand N-linked glycoprotein

siRNA short interfering RNA

SNP single nucleotide polymorphism

SPP1 secreted phosphoprotein 1

STAT-C specifically targeted antiviral therapy for hepatitis C

SVR sustained virological response

T thymidine

TAE Tris/acetic acid/EDTA

TEMED N,N,N',N'-tetramethylethylenediamine

TNF-α tumor necrosis factor alpha

Tris 3,3,5,5-tetramethylbenzidine

U/L units per litre

uPA urokinase plasminogen activator

US United States of America

UTR untranslated region

UV ultraviolet

VDRE vitamin D responsive element

VEGF vascular endothelial growth factor

v/v volume per volume

WB western blotting

WHO World Health Organisation

w/v weight per volume

Materials Providers

Ambion Austin, Texas, USA

Amersham Pharmacia Biotech (GE Healthcare) Piscataway, New Jersey, USA

AppliChem Darmstadt, Germany

Applied Biosystems Foster City, California, USA

BD Biosciences Franklin Lakes, New Jersey, USA

BDH (Merck) Poole, UK

Becton Dickinson Labware Franklin Lakes, New Jersey, USA

BioRad Laboratories Hercules, California, USA

Biotium Inc. Hayward, California, USA

Canon Tokyo, Japan

Cell Signaling Danvers, Massachusetts, USA

Chemicon (Millipore) Billerica, Massachusetts, USA

Corning Costar[®] Lowell, Massachusetts, USA

CSL Parkville, VIC, Australia

Dako Glostrup, Denmark

Diploma (Fonterra Brands) Mt. Waverley, VIC, Australia

Dynatech Laboratories Chantilly, Virginia, USA

GeneWorks Hindmarsh, SA, Australia

Gibco BRL (Invitrogen) Carlsbad, California, USA

Greiner Bio-one Frickenhausen, Germany

Invitrogen Carslbad, California, USA

Kodak Rochester, New York, USA

Livingstone Rosebery, NSW, Australia

Menzel-Glaser[®] Braunschweig, Germany

Mo Bio Laboratories Carlsbad, California, USA

Molecular Probes Eugene, Oregon, USA

Nalgene Rochester, New York, USA

NeoMarkers (LabVision) Fremont, California, USA

New England Biolabs Ipswich, Massachusetts, USA

Nunc (ThermoFisher Scientific) Roskilde, Denmark

Olympus Tokyo, Japan

Pharmacia (Pfizer) New York, New York, USA

Promega Madison, Wisconsin, USA

Qiagen Hilden, Germany

Roche Basel, Switzerland

R&D Systems Minneapolis, Minnesota, USA

Rockland Gilbertsville, Pennsylvania, USA

Santa Cruz Biotechnology Santa Cruz, California, USA

Sigma St. Louis, Missouri, USA

SPSS Inc. Chicago, Illinois, USA

Techno-Plas St. Marys, SA, Australia

Trace Biosciences Castle Hill, NSW, Australia