

Candidate Tumour Markers

and Potential Therapeutic

Targets in Colorectal Cancer

Cassandra M. McIver, B. Sc. Hons

A Thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

School of Molecular & Biomedical Science Discipline of Physiology The University of Adelaide March 2006

Table of Contents

Abstract	vii
Acknowledgements	x
1. Introduction & Literature Review	1
1.1 Colorectal Cancer Epidemiology	2
1.2 Tumour Cell Dissemination in Colorectal Cancer Patients	4
1.3 Colorectal Cancer, Recurrence and Disseminated Disease	7
1.4 Tumour Cell Dissemination in Cancer Patients	9
1.5 Tumour Cell Dissemination into the Peritoneal Cavity	14
1.6 Identification of Genes Over-expressed in Colorectal Cancer	16
1.6.1 cDNA Arrays	16
1.6.2 SAGE Map/CGAP website	18
1.7 Potential Tumour-specific Markers Identified	19
1.8 Candidate Genes as Potential Therapeutic Targets	19
1.9 Alternative Therapeutic Strategies	22
1.9.1 Antibody-mediated Therapy	22
1.9.2 Antisense Oligonucleotide Gene Silencing	23
1.9.3 RNA interference (RNAi)-mediated Gene Silencing	24
1.10 Hypotheses	32
1.11 Aims	32
1.12 Significance & Expected Outcomes	33
2. Materials and Methods	34
2.1 Specimen collection	35
2.1.1 Tissue Samples	35
2.1.2 Blood and Intra-peritoneal Lavage Samples	35
2.2 Immunobead RT-PCR	36
2.2.1 Patient Samples	36

2.2.2 Control Samples	37
2.3 Cell Culture	38
2.4 RNA extraction	38
2.4.1 Tissue Specimens .	38
2.4.2 RNA Extraction for Microarray Hybridisation	39
2.4.2 <i>i</i> Agarose Gel Electrophoresis of RNA	39
2.4.3 RNA Extraction from Cell Culture Cells	40
2.4.4 RNA Extraction from siRNA Treated Cell Culture Cells	40
2.5 Gene Identification from cDNA Microarrays	40
2.5.1 Hybond Atlas Human 1.2 III Array (Human Cancer Array)	40
2.5.2 cDNA Microarray (glass slide)	41
2.6 Primer Design & Specificity	42
2.7 Reverse Transcription (RT)-PCR	43
2.7.1 Immunobead RT	43
2.7.2. Relative RT-PCR	44
2.7.3 Agarose Gel Electrophoresis	46
2.7.4 Statistical Analysis of Over-Expression	46
2.7.5 Southern Blotting	47
2.7.6 Quantitative Real-time RT-PCR	47
2.8 Cloning	47
2.8.1 Primer Design (Xi-Clone Conversion Kit)	47
2.8.2 Plasmid Eco-R1 Restriction Digest	50
2.8.3 Transformation	51
2.8.4 Sequencing	51
2.9 Transfection	51
2.9.1 Gene Therapy Systems Transfection	51
2.9.2 Electroporation	52
2.10 RNA interference	52
2.10.1 Design	52
2.10.2 siRNA Transfection	53
2.10.3 Statistical Analysis	54

2.11 Invasion Assay	54
2.11.1 Matrigel Coated Two-chamber Invasion Assay	54
2.11.2 Transfectants	55
2.11.3 Inhibitors and Antibodies	55
2.11.4 Statistical Analysis	56
2.12 Fluorescent Immunohistochemistry	56
2.12.1 Frozen Tissue Sections	56
2.12.2 Paraffin Embedded Tissue Sections	57
2.13 Apoptosis Assay	58
3. Identification of Genes Over-Expressed in Colorectal Cancer	59
3.1 cDNA Nylon Membrane Array	60
3.1.1 Hybond Atlas Human 1.2 III Array (Human Cancer Array)	60
3.2 Potential candidate Genes Identified	63
3.2.1 Laminin 37kD Receptor Precursor	63
3.2.2 Interferon-inducible protein (HIIP9-27)	65
3.2.3 Human Oligophrenin-1	71
3.3 Problems Using Nylon cDNA Arrays	73
3.4 cDNA Glass Slide Array (Adelaide Microarray Centre)	73
3.4.1 Array Hybridisation	73
3.5 Potential Candidate Genes Identified	80
3.5.1 Renal Dipeptidase (DPEP-1)	80
3.5.2 Human Axis Inhibitor (Axin2)	80
3.5.3 Melanoma Cell Adhesion Molecule (MCAM)	82
3.5.4 Glypican-5	84
3.6 Potential Candidate Markers Chosen	88

4. Identification of <i>DPEP-1</i> as a Potential Candidate Marker and as a	
Therapeutic Target for Colorectal Cancer	89
4.1 Introduction	90
4.2 Results	91

4.2.1 Over-expression of DPEP-1	91
4.2.2 Investigation of DPEP-1 as a potential therapeutic target	95
4.2.3 Xi-Clone TM Conversion and Directional Cloning	96
4.3 Discussion	105

5. Identification of LAM-y2 as a Potential Molecular Marker &

Therapeutic Target for Colorectal Cancer	110
5.1 Introduction	111
5.2 Validation of Over-expression	115
5.3 Characterisation of $LAM - \gamma 2$	120

6. Identification of Matrilysin (MAT) as a Potential Molecular Marker

for Colorectal Cancer	131
6.1 Introduction	132
6.2 Identification of MAT as a Potential Candidate Marker	135
6.3 MAT Expression and Immunobead RT-PCR	141
7. Immunobead RT-PCR	142
7.1 Introduction	143
7.2 Detection o Circulating Tumour Cells	143
7.3 Patients & Controls	147
7.4 Results	148
7.4.1 Specificity of Markers	148
7.4.2 CRC Patients	148
7.4.3 Non CRC Patients	153
7.5 Discussion	155
8. Discussion and Future Directions	163
8.1 Identification of Potential Markers	164
8.2 Immunobead RT-PCR	167

9. References	171
8.4 Future Research	169
8.3 Problems and Pitfalls	168

9. References

Appendix I: DPEP-1 Sequence Chromatography Appendix II: Publication McIver et al., 2004. Appendix III: Publication Lloyd et al., 2006.

Abstract

Aim: To identify candidate tumour-specific molecular markers for the detection of disseminated tumour cells in peripheral blood and intra-peritoneal lavage samples from patients undergoing surgical resection for CRC and as potential therapeutic targets.

Results: cDNA microarray screening identified Dipeptidase-1 (DPEP-1) to be overexpressed by ≥ 2 fold in colon tumour compared to normal colonic mucosal tissue in 56/68 (82%) patients. The laminin gamma-2 chain of laminin-5 (LAM- γ 2) and Matrilysin (MAT) were also identified as potential candidate molecular markers and found to be over-expressed in 22/30 (73.3%) and 47/53 (88.7%) patient matched samples respectively. Immunobead RT-PCR found DPEP-1, LAM-y2 and MAT positive cells in 82 of 168 (48.8%) CRC patients (14 Stage A, 32 Stage B, 17 Stage C and 19 Stage D). Of patients who were positive for one or more marker in any sample, 41 suffered disease relapse (recurrence) or death resulting from cancer progression within the follow-up period. Kaplan-Meier survival analysis, conducted on 110 early (A and B) stage patients, found those who were positive for any marker had significantly shorter disease-free survival than patients who were negative (P=0.026) and patients who were positive for any marker in their post-operative lavage samples also had a poorer survival outcome (P=0.038). Multivariate analysis showed that detection of disseminated tumour cells with any molecular marker remained significant (P=0.015, hazard ratio 3.459, 95% CI 1.272-9.410) and was independent of other risk factors of disease relapse, indicating patients that were positive for any marker were 3.5 times more likely to suffer relapse than patients who were negative. Further characterisation of DPEP-1 and LAM- $\gamma 2$ identified that HT29 cells transfected with the DPEP-1 construct migrated through a Matrigel[™]

invasion assay in greater numbers than untreated cells (P=0.007). RNA interference of *DPEP-1* found a significant difference in migration capacity between the mock transfected (MT) cells when compared to *DPEP-1* siRNA treated cells (P=0.034). Fluorescent immunohistochemistry located *DPEP-1* expression in the crypts of colon tumour tissue. Anti-LAM- γ 2 treated LIM 2099 cells migrated through the MatrigelTM invasion assay in significantly reduced in numbers when compare to non-treated and normal IgG₁ antibody treated cells (P=0.0006) and siRNA-mediated gene silencing of *LAM-\gamma2* significantly reduced the number of cells migrating through the MatrigelTM invasion assay (P=0.007).

Conclusions: *DPEP-1* and *LAM-\gamma2* are potential targets for tumour-specific therapeutic intervention. Immunobead RT-PCR using a panel of molecular markers has the ability to identify early stage CRC patients at risk of disease relapse.