

Petrogenesis of High Heat Producing Granite: Implication for Mt Painter Province, South Australia

Kamonporn Kromkhun, (M.Sc)

Geology and Geophysics School of Earth & Environmental Science University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide

January 2010

Table of Contentsi
Abstractvi
Disclaimerviii
Acknowledgementix
Chapter 1 Overview1
1.1 Granite classification2
1.2 A-type granites
1.3 High Heat Producing Granites
1.4 Distribution of High Heat Producing Granite5
1.4.1 Asia5
1.4.2 Africa6
1.4.3 North America
1.4.4 South America7
1.4.5 Europe7
1.4.6 Antarctica
1.4.7 Australia8
1.5 Thesis Aims
1.6 Structure of Thesis9
Chapter 2 Geology, Lithology and Petrography of magmatic rocks12
2.1 Previous work
2.2 Geological setting
2.3 Mesoproterozoic magmatic rocks15
2.4 Lithology of mafic-felsic magmatic rocks16
2.4.1 Pepegoona Volcanic17
2.4.2 Mount Neill Granite19
2.4.3 Box Bore Granite
2.4.4 Terrapinna Granite
2.4.5 Wattleowie Granite
2.4.6 Yerila Granite and microgranular enclaves24
2.4.7 Mafic dyke26
Chapter 3 Mineralogy28
3.1 Major minerals

Table of Contents

3.1.1 Feldspar	
3.1.2 Amphibole	35
3.1.3 Biotite	41
3.2 Accessory minerals	46
3.2.1 Zircon	46
3.2.2 Allanite	
3.2.3 Apatite	55
3.2.4 Ti minerals	57
3.2.5 U-Th minerals	59
3.3 Discussion	60
3.3.1 Relationships between accessory minerals and whole rocks	60
Chapter 4 Geochronology	65
4.1 Result	65
4.1.1 Pepegoona Volcanic	
	65
4.1.1 Pepegoona Volcanic	65 67
4.1.1 Pepegoona Volcanic4.1.2 Mt Neill Granite	65 67 68
4.1.1 Pepegoona Volcanic4.1.2 Mt Neill Granite4.1.3 Box Bore Granite	65 67 68 70
 4.1.1 Pepegoona Volcanic 4.1.2 Mt Neill Granite	65 67 68 70 70
 4.1.1 Pepegoona Volcanic 4.1.2 Mt Neill Granite	65 67 68 70 70 70
 4.1.1 Pepegoona Volcanic. 4.1.2 Mt Neill Granite 4.1.3 Box Bore Granite. 4.1.4 Terapinna Granite. 4.1.5 Wattleowie Granite. 4.1.6 Yerila Granite. 	65 67 68 70 70 70 72 73
 4.1.1 Pepegoona Volcanic. 4.1.2 Mt Neill Granite 4.1.3 Box Bore Granite. 4.1.4 Terapinna Granite. 4.1.5 Wattleowie Granite. 4.1.6 Yerila Granite. 4.1.7 Microgranular Enclaves of Yerila Granita. 	65 67 68 70 70 70 72 73 78
 4.1.1 Pepegoona Volcanic. 4.1.2 Mt Neill Granite 4.1.3 Box Bore Granite. 4.1.4 Terapinna Granite. 4.1.5 Wattleowie Granite. 4.1.6 Yerila Granite. 4.1.7 Microgranular Enclaves of Yerila Granita. 4.1.8 Mafic Dyke. 	65 67 68 70 70 70 72 73 78
 4.1.1 Pepegoona Volcanic. 4.1.2 Mt Neill Granite 4.1.3 Box Bore Granite. 4.1.4 Terapinna Granite. 4.1.5 Wattleowie Granite. 4.1.6 Yerila Granite. 4.1.7 Microgranular Enclaves of Yerila Granita. 4.1.8 Mafic Dyke. 	65 67 68 70 70 70 72 73 78 84
 4.1.1 Pepegoona Volcanic. 4.1.2 Mt Neill Granite 4.1.3 Box Bore Granite. 4.1.4 Terapinna Granite. 4.1.5 Wattleowie Granite. 4.1.6 Yerila Granite. 4.1.7 Microgranular Enclaves of Yerila Granita. 4.1.8 Mafic Dyke. 4.2 Discussion. 4.2.1 Crystallisation age of the Mt Painter Province felsic and 	

Chapter 5 Geochemistry	89
5.1 Result	89
5.1.1 Major elements	
5.1.2 Trace elements	99
5.1.3 Rare Earth Elements	103
5.2 Discussion	104
5.2.1 Relationships between felsic suites	
5.2.2 Relationships between enclaves and the Yerila granite	107
Chapter 6 Radiogenic isotopes	109
6.1 Nd-Sm isotopes	109
6.1.1 Results	109
6.1.2 Discussion of Nd-Sm isotopes	113
6.2 Rb-Sr isotopes	117
6.2.1 Result	117
6.2.2 Discussion of Rb-Sr isotopes	118
6.3 Whole Rock Pb isotopes	119
6.3.1 Result	119
6.3.2 Discussion of Pb isotopes	120
6.4 Pb isotopes in K-feldspar	121
6.4.1 Result	121
6.4.2 Discussion of Pb isotopes in K-feldspar	121
6.5 Hf isotopes of zircon	124
6.5.1 Result	125
6.5.2 Discussion of Hf isotopes	129
6.6 Summary	131
Chapter 7 Petrogenesis of the HHP granites and associated rocks Painter Province	
7.1 Typology	132
7.2 Tectonic environments	136
7.3 Emplacement conditions	139
7.4 Source regions	144
7. 5 Processes	146
7.5.1 Fractional crystallization	146

7.5.2 Mixing	148
7.5.3 Crustal melting	152
7.6 Formation of the HHP granites	153
7.7 Implication for tectonic evolutions	155
Chapter 8 High Heat Producing Granites of Australia	160
8.1. Mt Isa Inlier	. . 161
8.1.1 Proterozoic granite of Mt Isa Inlier	161
8.1.2 High heat producing granites of Mt Isa Inlier	164
8.1.3 Geochemistry	164
8.1.4 Typology and Tectonic setting	170
8.1.5 Nd-Sm Isotopes	172
8.1.6 Hf isotopes	172
8.1.7 Petrogenesis and Conclusion	175
8.2. Gawler Craton	176
8.2.1 Proterozoic granites and associated rocks of the Gawler Craton.	178
8.2.1.1 Younger Lincoln Supersuite	179
8.2.1.2 St Peter Suite	179
8.2.1.3 Hiltaba Suite	180
8.2.2 Geochemistry	181
8.2.3 Tectonic setting	187
8.2.4 Nd-Sm isotopes	188
8.2.5 Conclusion and petrogenesis	191
8.3. Curnamona Craton	191
8.3.1 Olary Domain	192
8.3.1.1 Mesoproterozoic granite of the Olary Domain	194
8.3.1.2 Mafic magmatism of the Olary Domain	195
8.3.1.3 The High Heat Production granites of the Olary rocks	196
8.3.1.4 Geochemistry	196
8.3.1.4 Tectonic setting and Typology	203
8.3.1.5 Nd-Sm Isotope	204
8.3.1.6 Conclusion and petrogenesis	206
8.3.2 Broken Hill Domain	
8.3.2.1 Felsic magmatism	207
8.3.2.2 Mafic magmatism	208

	8.3.2.3 The High Heat Producing granites of the Broken Hill Domain.	208
	8.3.2.4 Geochemistry	209
	8.3.2.5 Tectonic setting and typology	213
	8.3.2.6 Nd Isotopes	215
	8.3.2.7 Conclusion and petrogenesis	215
	8.4. Arunta Inlier	217
	8.4.1 Proterozoic granites of the Arunta Inlier	219
	8.4.2 High heat producing granites of the Arunta Inlier	220
	8.4.3 Geochemistry	221
	8.4.4 Nd Isotopes	226
	8.4.5 Conclusion and petrogenesis	227
	8.5. Concluding remarks	228
	8.5.1 Age and location distribution of the HHP Granites	228
	8.5.2 Lithology and Petrography	.229
	8.5.3 Geochemistry	231
	8.5.4 Nd Isotopes	.235
	8.5.5 Conditions of Crystallization	236
	8.5.6 Petrogenesis and tectonic significance	237
Chapter 9 Conclusion2		239
	9.1 Petrogenesis of HHP granite	239
	9.2 Mt Painter Province HHP granite conclusions	240
	9.3 Comparison with other Australian HHP Granites	244
	9.4 Focus for Further Studies	242
	Appendices	24 3
	Appendix 1 Methods	245
	Appendix 2 Sample listing	250
	Appendix 3 Mineralogy	256
	Appendix 4 Geochronology	.305
	Appendix 5 Geochemistry	320
	Appendix 6 Radiogenic isotopes	.331
	Reference	.340

Abstract

Mesoproterozoic granites and associated rocks from the Mt Painter Province, Curnamona Craton are high heat producing (HHP) granites; that they have heat production values greater than 5 μ Wm⁻³. The HHP granites form part of a coeval suite with mafic and felsic volcanic rocks including the Pepegoona Volcanic, Mt Neill, Box Bore, Terrapinna, Wattleowie and Yerila Granites, microgranular enclaves and mafic dykes that all yield U-Pb zircon LA-ICPMS crystallization ages ranging from ~1603 to 1504 Ma.

The HHP granites are equigranular to porphyritic, fine-grained to coarsegrained and perthitic with K-feldspar megacrystic phenocrysts. They typically consist of amphibole, clinopyroxene, plagioclase, biotite, ilmenite, magnetite, quartz, apatite, sphene, zircon, fluorite and allanite. Fractional crystallization of accessory minerals led to the observed variations in the trace element concentrations in the granites. The mafic and felsic rocks have high Fe# and enriched in incompatible elements, specifically U, Th, Zr, Y, Ce and REEs, and are low in Sr that are classified as A-type. The Yerila Granite and it's enclave are extremely enriched in U and Th, which are found in abundant allanite, zircon and sphene, and were concentrated in these rocks by fractional crystallization and accumulation. The other felsic units form by a mixing of mafic and felsic magmas and a lesser degree of fractional crystallization. The HHP rocks have ϵ Nd values ranging between -3 and +1 and ϵ Hf values mainly ranging from -2 and +4. Pb isotope compositions in K-feldspars yield an isochron age of 1746 Ma.

The HHP granitic and associated rocks were derived from fractional crystallization of crustal-contaminated mantle-derived magmas at emplacement levels with composition equivalent to the mafic dykes. This parental magma composition is assumed to be consistent with a mixture of mantle-derived magma with a ~20% crustal component. To explain these observations, a model is presented that the crustal-contaminated magmas, which were enriched in incompatible elements, were formed by a combination of partial melting of the lower crust and mantle-derived mafic magma. Mafic sills that emplaced at the mantle-crust boundary during extension tectonism at *ca*. 1.76 Ga caused partial melting of the crust. During the early Mesoproterozoic (1603-1504 Ma), crustal

thickening and extensional collapse or extension preceding thickening in a continental back-arc setting or mantle plume led to mantle upwelling and the generation of melt. There is evidence for mixing between evolved fractionated felsic magmas and the mafic magmas suggested multiple inputs of mafic magma. This mixing of felsic and mafic magmas occurred by convection before the felsic suites ascent to the near surface in low fO_2 , fH_2O and high temperature environments.

Comparing the results of this study with previous studies on HHP granites from other Australian Terranes suggests that they formed coevally with the mafic rocks and have crystallization ages ranging from ~1.82 to 1.49 Ga. A mixture of mantle-derived magma and crustal components are inferred as the main sources generating the HHP magmatic rocks. These granites are inferred to have been emplaced in intraplate or back arc settings by rifting or crustal extension.

Disclaimer

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Kamonporn Kromkhun and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Kamonporn Kromkhun

Date - 10/01/2010

Acknowledgement

This PhD research would not have been possible without the financial support of the Royal Thai Government and research funding by Geology and Geophysics, University of Adelaide. I would like to thank to my principle supervisor-Professor John Foden for his guidance, assistance and contributions throughout the research and also thank to my co-supervisor-Professor Martin Hand. Gratitude is extended to all the staff of the school for the fellowship and assistance rendered that made my stay very pleasant.

My fieldwork at Mt Painter areas were supported by the Sprigg's family, Heathgate Resources, Steve Hore, Jess Davey and Damian May. Thanks you for all help, accommodation, advice and support. I also extend my thanks to David Champion who provides the geochemical database for granitic rocks in Australia. Laboratory assistance by John Stanley and David Bruce are greatly appreciated.

Thanks to all officemates in the CERG tank for fun times always. I would like to thank Wallace Mackay and Graham Baines who helped make this thesis readable.

I have been encouraged greatly by the support of my family. This thesis is dedicated to them.