

Schools of Mechanical and Chemical Engineering

The University of Adelaide

Investigating the use of Concentrated Solar Energy to Thermally Decompose Limestone

Richard Alexander Craig

Thesis Submitted for the Degree of Doctorate of Philosophy May 2010

Calcination

Splendor Solis (1532-35)

Abstract

The objectives of this research investigation are to answer fundamental questions regarding the effectiveness of using concentrated solar energy as the sole heating source for the thermo-chemical decomposition of limestone-marble, supplied by Penrice, Angaston. Specifically, scientific analyses are used to investigate the energy requirements for the efficient manufacture of quicklime using solar thermal energy. To achieve these aims, the energy requirements for an industrial scale solar lime manufacturing system were first evaluated. The main conclusion from this analysis is that the thermal efficiency of a solar energy supplied lime manufacture system compares favourably with the best fossil fuelled system. A good heat recovery system as well as a comprehensive preheating system is recommended to minimise the energy losses from the system.

A zero dimensional model was then used to determine that the most energy efficient shape for a travelling grate solar furnace is a triangular cross section. This shape maximise the exposure of the limestone to the radiant energy while minimising structural heat losses. This analytical evaluation also identified that the open area of entrance and exit openings, which allow the process materials to flow through the kiln and for the exhaust gases to escape the kiln, should be minimised. Thirty three times more heat flux is lost through these openings than through the kiln structure. Minimising the openings area therefore improves kiln thermal efficiency.

This investigation then evaluated the maximum bed thickness for the limestone when using a grate bed system within the proposed solar furnace. Due to the nature of radiation it is recommended that the limestone layer be no thicker than 2.5 times the nominal diameter of the limestone in use. This thickness optimises the exposure of the stone to the direct radiation and increases the heat transfer to the stones lower within the bed and allows for the unrestricted diffusion of CO_2 away from these stones.

The investigation then experimentally quantified the effects of radiant heat flux intensity on the calcination kinetics of the Penrice, Angaston marble as a function of stone size. This experimental investigation involved comparing results from an electric muffle furnace, an atmospherically open solar radiation furnace, and an enclosed triangular shaped solar radiation furnace. The muffle furnace provided a baseline values to which the solar calcination rates could be compared.

The open system solar calcination experiments showed that the preheating time of the stone is directly proportional to the illuminated surface area of the stone and the intensity of the heat flux to which it is exposed. Additionally, the reaction rate is directly proportional to the radiant heat flux, and is independent of the stone size for heat fluxes greater than 430kW/m².

The enclosed solar furnace experiments identified a 45% improvement in decomposition time could be achieved by using the triangular shaped solar furnace compared to the open solar system calcination. This benefit to the calcination time is best for the more intense heat fluxes and for the larger stone sizes. The measured calcination times were similar to those found for a conventional rotary kiln. This demonstrates the practicalities of using solar radiation technology for interchange with, or as a supplementary heating source to, a combustion driven lime manufacturing industrial plant.

A multi-zone two dimensional mathematical model was then used to evaluate the radiant heat exchange within the triangular solar furnace. The developed mathematical scheme provides a comprehensive package with a validated base model for future evaluations of solar furnace designs. A modified shrinking core calcination model was then developed, which uses an energy balance approach to calculate the preheating times and calcination rates for the Penrice marble exposed to various intensities of radiant heat flux. This version of the heat transfer based shrinking core model was used after considering the one sided heating of the stone from the point source radiation.

Declaration of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Richard Alexander Craig

on this 1st day of May, 2010

Acknowledgments

It is with great thanks and the generosity of many people that I see the completion of this research project. I would like to start by thanking Professor Gus Nathan and Associate Professor Peter Mullinger for their generous support, advice and guidance throughout this very rewarding process. Their academic and practical views provided significant balance to this daunting task.

I would like to thank the academic and general staff from both the School of Mechanical Engineering and School of Chemical Engineering for their help and support during my post graduate studies. In particular A.Prof Bassam Dally for heat transfer advice, Mr Bill Finch and Mr Silvio De leso for technical assistance with the experimental rig construction, A.Prof Peter Ashman and A.Prof Richard Kelso for professional research advice and Billy Constantine for his computer wizardry in code writing and saving my data on more than one occasion.

To the friends that I made within the Department of Mechanical Engineering: Joshua Smith, Ricky Morgans, Tonia Camporeale, Jackie Munn, Daniel Handley, Kelly Parish, Cris Birzer, Eyad Hassan, Matthew Tetlow, Shahrooz Afshar, Grant England, Kimberly Clayfield and David Thompson thanks to all of you for your advice, assistance, comic relief, creative diversions and friendship over the years.

Parts of this project could not have been conducted without the help of colleagues and fellow members of the Turbulence, Energy and Combustion (TEC) Group from The University of Adelaide whom helped with data processing and theoretical modeling solutions that made aspects of this research somewhat easier. Special acknowledgment goes to Burkhard Seifert whom spent considerable time assisting with the heat flux measurements.

Acknowledgment also goes to Dr Barry Jenkins for his modeling guidance and providing assistance and access to his version of the Hottel zero dimensional model.

A big thank you goes to Graham Kelly from the Mechanical Engineering Thebarton Research Laboratory whose technical support, interesting conversations and worldly advice will always be remembered. Thanks to Andrew Graetz at Penrice Quarry, Angaston and to Penrice Soda Holdings Limited for the marble samples and allowing me exclusive access to the quarry. Thanks also to Mark Joraslafsky and Northern Cement Limited for providing access to the Mataranka limestone quarry.

This work was financially supported by the South Australian State Energy Research Advisory Committee (SENRAC). I would like to thank SENRAC for the valuable experience and opportunities that I have gained from this project.

Most importantly, a million thanks to my lovely Alice. I could not have completed this work without your wonderful love and support during the course of this project. Sorry it has taken so long.

This Thesis is dedicated to my clever and beautiful daughters Tahlia and Charlotte. May it inspire you to achieve your dreams also.

Table of Contents

List of Figures xiv List of Tables xxiv Nomenclature xxxi

Chapter 1

Introduction		
1.1	Current Environmental Issues	1
1.1.1	The Greenhouse Effect	1
1.1.2	Global Warming	1
1.1.3	Global Emissions of CO ₂	3
1.2	Carbon Sequestration	4
1.2.1	Carbon Sequestration via Mineral Carbonation	5
1.3	The Thermal Decomposition of Limestone	6
1.4	Conventional Lime Kilns	7
1.5	The Use of Alternative Energy for Lime Manufacture	11
1.6	CO ₂ Mitigation using Solar Lime Manufacture	
1.7	Scope and Structure of Thesis	
1.7.1	Thesis Structure	

Chapter 2

Literature Review		19
2.1	Introduction	
2.2	Limestone	19
2.2.1	Lime	20
2.2.2	Uses for Limestone and Lime	21
2.3	Mechanisms and Kinetics of Calcination	22
2.3.1	Mechanisms of Calcination	25
2.3.2	Kinetics of Calcination	27
2.3.3	The Effect of Carbon Dioxide Partial Pressure	27
2.3.4	Re-Carbonation	29
2.3.5	The Rate of Calcination	
2.3.6	Effects of Heating Rate	
2.3.7	Effects of Limestone Particle Size	34
2.4	Modelling the Calcination Reaction	35
2.4.1	Models Used For Non-Catalytic Gas-Solid Reactions	35
2.4.2	The Shrinking Core Model	
2.4.3	The Uniform Conversion Model (Homogeneous Model)	
2.4.4	The Grain Pellet Model	40
2.4.5	Calcination Modelling of Non Uniformly Heated Limestone	41

Page

2.5	Controlling Parameters for Lime Kiln Design	43
2.5.1	Kiln Size and Production Rate	44
2.5.2	Stone Size Reduction	45
2.5.3	Optimising Furnace Shape for Radiant Heat Transfer	47
2.5.4	Basic Process Considerations	48
2.6	Solar Thermal Lime Manufacture	
2.6.1	Solar Chemical Reactors Used For Lime Manufacture	50
2.6.2	Evaluation of Existing Reactor Designs	
2.7	Economics of Commercial Scale Solar Lime Manufacture	63
2.8	Approaches to Modelling a Lime Kiln	63
2.8.1	Computational Fluid Dynamics	64
2.8.2	Flux Modelling	65
2.8.3	Zonal Modelling	66
2.8.4	Summary of Modelling Approaches	68
2.9	Conclusions from the Literature Review	
2.10	Aims and Objectives of the Current Research	

Zero Dimensional Studies of a Solar Lime Furnace		73
3.1	Introduction	
3.2	Theoretical Energy Requirements for Quicklime Production	74
3.2.1	System Requirements for Conventional Energy	74
3.2.2	Assumptions Used in the Energy Balance	75
3.2.3	Heat and Mass Balance for Conventional Lime Kilns	76
3.2.4	Heat and Mass Balance for Solar Lime Furnaces	78
3.2.5	Analysis of the Solar Furnace Heat and Mass Balances	82
3.2.6	Comparison of the Heat and Mass Balances	82
3.2.7	Conclusions from the Process Efficiency Analysis	83
3.3	Furnace Design Using a Zero Dimension Thermal Radiation	
	Hottel – Zone Model	84
3.3.1	Application of the 0-D Zone Model	86
3.3.2	Assumptions used in the 0-D Zonal Model	87
3.3.3	Effect of Changing Kiln Length	88
3.3.4	Effect of Changing Kiln Shape	91
3.3.5	Effect of Varying Aspect Ratio	
3.3.6	Effect of Varying Kiln Opening Size	
3.3.7	Effect of Varying Kiln Structural Dimensions	
3.3.8	Comparisons of Structural and Openings Heat Losses	
3.3.9	Conclusions from the 0-D Zone Modelling	102

Experimenta	al Apparatus and Techniques	104
4.1	Introduction	104

4.2	Temperature Measurement	
4.3	Sample Collection and Preparation	
4.3.1	Composition of Penrice Marble	
4.3.2	Sample Preparation	
4.3.3	Sieving	
4.3.4	Mass Sizing	
4.3.5	Drying	
4.4	Muffle Furnace Experimental Apparatus	
4.4.1	Electric Muffle Furnace	
4.4.2	Crucible Bowl	
4.4.3	Flat Bed Ceramic Fibre Refractory Board	114
4.4.4	Analytical Balance	
4.5	Solar Simulation Experimental Apparatus	
4.5.1	General Description of Apparatus	
4.5.2	Xenon Short Arc Radiation Source	
4.5.3	Cinemeccanica - Milano Lamphouse	
4.5.4	Total Heat Flux Transducers	
4.5.5	Beam Deflection Mirror	
4.5.6	Calcination Platform	
4.5.7	Equipment Frame	
4.5.8	Data Collection and Analysis	
4.6	Solar Calcination Experiments	
4.6.1	Experimental Procedure	
4.7	Experimental Solar Furnace	
4.7.1	Temperature Measurements within the Furnace	
4.7.2	Experimental Procedure	

Radiant Heat Flux Distribution Measurement		136
5.1	Introduction	
5.2	Heat Flux from Electrical Power Supply	
5.3	Surface Temperature Measurement	140
5.4	Heat Flux Transducer Measurement	145
5.4.1	Measurement Procedure	146
5.4.2	Data Collection and Analysis	148
5.4.3	Transducer Measurement Results	149
5.4.4	Error Analysis for Transducer Measurements	
5.5	Heat Flux Measurement Using Digital Imagery	
5.5.1	Experimental Arrangement for Digital Imagery	
5.5.2	Image File Conversion	
5.5.3	Background Light and Measurement Noise	
5.5.4	Image Intensity Adjustment	
5.5.5	Image Perspective Transformation	

5.5.6	Image Processing Program	165
5.5.7	Calibration of Image to Heat Flux	166
5.5.8	Calculation of Heat Flux at the Near Focal Region	168
5.5.9	Error Analysis for Digital Imagery	173

Muffle Furr	Muffle Furnace Calcination Experiments	
6.1	Introduction	
6.2	Experimental Methodology	
6.2.1	Sample Preparation and Experimental Apparatus	
6.2.2	Crucible Bowl Experiments	
6.2.3	Constant Bed Diameter Experiments	
6.2.4	Constant Mass Bed Experiments	180
6.2.5	Single Stone Calcination Experiments	
6.3	Results	183
6.4	Analysis of Results	
6.5	Conversion Rate and the Arrhenius Equation	
6.6	Error Analysis for the Muffle Furnace Calcination Experiments	
6.7	Conclusions from the Muffle Furnace Experiments	201

Chapter 7

Calcination Measurements of Penrice Marble Directly Exposed

to High Inte	o High Intensity Radiation	
7.1	Introduction	203
7.2	Experimental Methodology	204
7.2.1	Experimental Apparatus	204
7.2.2	Single Stone Calcination Experiments	204
7.2.3	Measurement Accuracy	205
7.3	Results	209
7.4	Analysis of Results	212
7.5	Comparison of Results from Muffle Furnace Calcination and Open System Radiation Calcination Experiments	217
7.6	Conclusions from Open System Radiation Calcination Measurements	218

Calcination of Penrice Marble within a Solar Furnace		
8.1	Introduction	220
8.2	Experimental Methodology	221
8.2.1	Experimental Apparatus	221
8.2.2	Single Stone Calcination Experiments	221
8.2.3	Measurement Accuracy	224
8.3	Results	
8.4	Analysis of Results	232

8.5	Comparison of Results from Enclosed Solar Furnace and	
	Open System Calcination Experiments	238
8.6	Conclusions from the Enclosed Solar Furnace Calcination	
	Measurements	240

Multi-Zone	Two-Dimensional Studies of a Solar Lime Furnace	241
9.1	Introduction	241
9.2	Principles of the Zone Method	
9.2.1	Direct Exchange Areas	
9.2.2	Total Exchange Areas	
9.2.3	Non-Grey Flux Exchange	245
9.2.4	Total Energy Balances	247
9.2.5	Monte Carlo Probability Distribution Technique	248
9.3	The RADEX Program	249
9.4	Calibration of the 2-D Multi-Zone Model	
9.4.1	Details of the Modelling Parameters	
9.4.2	Radiation Pseudo-Source Temperature	253
9.4.3	Sensitivity Analysis of the Calibration	254
9.5	Heat Flux Modelling of the Open Calcination System	258
9.5.1	Sensitivity Analysis of the Open System Modelling	
9.5.2	Comparison of Calculated and Measured Heat Flux for the Open System	262
9.6	Heat Flux Predictions for the Enclosed Triangular Solar Furnace	264
9.6.1	Sensitivity Analysis for the Enclosed Triangular Solar Furnace Modelling	266
9.6.2	Comparison of Calculated and Measured Heat Flux for the Enclosed Triangular Solar Furnace	
9.6.3	Comparison of Calculated Heat Flux between the Enclosed Triangular Furnace and the Open System	
9.7	Conclusions from the Multi-zone Modelling	270

10.1Introduction27210.2Model Overview27310.3Assumptions Used in the Modelling27510.4Mass, Volume and Surface Area of the Marble Samples27610.5The Energy Balance27810.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	Modelling the Calcination of Limestone		
10.2Model Overview27310.3Assumptions Used in the Modelling27510.4Mass, Volume and Surface Area of the Marble Samples27610.5The Energy Balance27810.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.1	Introduction	272
10.3Assumptions Used in the Modelling27510.4Mass, Volume and Surface Area of the Marble Samples27610.5The Energy Balance27810.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.2	Model Overview	
10.4Mass, Volume and Surface Area of the Marble Samples27610.5The Energy Balance27810.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.3	Assumptions Used in the Modelling	275
10.5The Energy Balance27810.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.4	Mass, Volume and Surface Area of the Marble Samples	
10.5.1Reflectivity, Absorptivity and Emissivity28010.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.5	The Energy Balance	278
10.5.2Radiant Heat Transfer between the Sample and the Platform28610.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.5.1	Reflectivity, Absorptivity and Emissivity	280
10.5.3Convective Heat Transfer28810.5.4Conductive Heat Transfer291	10.5.2	Radiant Heat Transfer between the Sample and the Platform	286
10.5.4 Conductive Heat Transfer291	10.5.3	Convective Heat Transfer	288
	10.5.4	Conductive Heat Transfer	291

10.6	Time to Heat the Marble to the Calcination Temperature	292
10.7	Calculation of Calcination Time	
10.7.1	Energy Available for Calcination	
10.7.2	Stone Surface Temperatures	
10.7.3	Shrinking Core Calculation and Results	
10.7.4	Analysis of Calculated Shrinking Core Results	312
10.8	Comparisons with the Experimental Results	
10.8.1	Comparison of Measured and Calculated Calcination Times for the Open Solar System	313
10.8.2	Comparison of Measured and Calculated Calcination Times for the Enclosed Triangular Solar Furnace.	315
10.9	Sensitivity Analysis of the Calcination Model	
10.10	Calcination Rate Calculation	
10.11	Validation of the Calcination Modelling	
10.12	Conclusions from the Calcination Modelling	330

Conclusions	s and Further Work	332
11.1	Zero Dimensional Studies of a Solar Lime Furnace	
11.2	Multi-Zone Two Dimensional Studies of a Solar Lime Furnace	
11.3	Muffle Furnace Calcination Experiments	333
11.4	Open System Calcination Experiments	
11.5	Enclosed Solar Furnace Calcination Experiments	335
11.6	Modelling the Calcination of Limestone	
11.7	Recommendations for Further Work	337
11.7.1	Process Modelling	337
11.7.2	Solar Furnace Design and Radiation Modelling	337
11.7.3	Mathematical Calcination Model	
11.7.4	Experimental Investigations into the Calcination of Limestone using Solar Radiation	338
11.7.5	The Road to Industrial Solar Lime Manufacture	
Appendix A		
Appendix B		
Appendix C		
Appendix D		
Appendix E		
Appendix F		
Appendix G		
Bibliograph	у	

List of Figures

Chapter	1	Page
Figure 1-1:	Contribution to total CO ₂ equivalent emission by sector in 2004.	4
Figure 1-2:	Cross-section of a continuous vertical shaft kiln.	9
Figure 1-3:	Cross-section of a preheater short rotary kiln.	9
Figure 1-4:	An early conceptual design of a flash calciner (floatation kiln).	10
Figure 1-5:	A conceptual diagram of a rotating Calcimatic kiln.	11
Figure 1-6:	Variation of concentrator type with concentration ratio and equilibrium temperatures for earth and space.	14

24
25
26
28
42
50
51
53
54
55
55
55
56
57
58
58

Figure 3-1:	Energy and mass flow diagram for a typical fossil fuel burning lime- producing system.	74
Figure 3-2:	Solar system evaluation case 1: Generic lime kiln with sufficient air to fully preheat the limestone.	79
Figure 3-3:	Solar system evaluation case 2: Evolved CO ₂ as sole preheating medium, heat from hot lime product lost from system.	79
Figure 3-4:	Solar system evaluation case 3: Heated air bypasses calcination zone. Evolved CO_2 used for preheating limestone within separate chamber	80
Figure 3-5:	Alternative case 3 solar system: Preheated CO ₂ bypasses calcination zone and preheats the limestone feed.	81
Figure 3-6:	Calculated comparative nett energy consumption for a typical lime manufacturing process using different forms of energy based on a constant mass of limestone.	83
Figure 3-7:	Representation of the 0-D zone model.	84
Figure 3-8:	A representation of a rotary kiln showing the total length and characteristic diameter dimensions.	89
Figure 3-9:	Predicted thermal efficiency of a 4m diameter rotary kiln, for increasing kiln length and percentage of limestone fill within the kiln.	90
Figure 3-10	: Kiln cross sectional shapes with the same cross sectional area.	91
Figure 3-11	: Comparison of round, square, triangular and elliptical cross-section kilns, with 95% of base bed area coverage.	92
Figure 3-12	: Comparison of round, square, triangular and elliptical cross-section kilns, with 25% bed area coverage.	93
Figure 3-13	: Cross sectional diagrams of furnace shape for right angle triangle with varying θ between 15° and 75°.	94
Figure 3-14	: Thermal efficiency of a right angled triangle cross-section kiln with increasing length and change of roof angle from 15° to 75°.	95
Figure 3-15	Cross-sectional view of a square kiln showing the change in cross sectional shape as the kiln width is increased but the cross-sectional area remains constant.	96
Figure 3-16	: Effects of changing the kiln width on thermal efficiency while maintaining a constant cross sectional area, but increasing kiln length.	97
Figure 3-17	Plot of heat loss from the kiln structure for kiln length for variations in kiln width.	97
Figure 3-18	: Characteristic dimensions and surface areas for changes in kiln width. The differences between the square cross sectional kiln and 2x width kiln cases are indicated.	98
Figure 3-19	: Variation in kiln thermal efficiency as the floor area coverage Is increased.	99
Figure 3-20	: Variation in thermal efficiency as the area of openings is increased with all other kiln parameters remaining constant.	100
Figure 3-21	: Variation in kiln thermal efficiency as the characteristic dimensions of the kiln are altered for constant opening area.	101

Figure 3-22:	Distribution	of heat loss fro	om a 3m high	, 6m wid	de and is 75m long	
	kiln when	changing the ki	ilns height up	to 6m.	-	102

Figure 4-1:	Mass loss from marble samples dried for varying lengths of time.	112
Figure 4-2:	 a). Photo of the electric Carbolite muffle furnace used for the muffle furnace experiments. b). schematic showing location of the temperature measurement points within the muffle furnace. 	113
Figure 4-3:	Photograph of the solar simulator apparatus showing the lamphouse, the solar furnace, the mirror mounting, the analytical balance platform and the camera traverse.	118
Figure 4-4:	Photo of a HLR Osram 3kW Xenon short-arc lamp.	119
Figure 4-5:	Spectral intensity of a Xenon arc lamp compared with extraterrestrial and ground level solar irradiance.	120
Figure 4-6:	Orthographic drawing of a Zenith X6500H lamphouse.	121
Figure 4-7:	Calculated beam diameter as a function of distance from the rear of the lamphouse's reflector.	122
Figure 4-8:	Reflectance of stainless steel, aluminium and silver between $0.3 \mu m$ and $2.5 \mu m.$	124
Figure 4-9:	Solar reflectance from an aluminium mirror as the surface anodises over time.	125
Figure 4-10	A pictorial view of the calcination platform showing the locations of the analytical balance, isolation tube, heat shield and calcination platform.	127
Figure 4-11	: An isometric view of the equipment frame showing the lamphouse, mirror mounting and analytical balance rest.	128
Figure 4-12	: Photograph of one gram marble samples placed on the calcination platform ready for exposure to the simulated solar radiation.	130
Figure 4-13	: Sectional drawing of the solar furnace in front of the lamphouse with side wall removed for clarity.	131
Figure 4-14	: Photograph of the solar furnace with the rear wall removed, showing the calcination platform system.	132
Figure 4 15	Pictorial representation of the walls of the solar furnace showing the locations of the permanent (solid) and transitional (white) temperature measurement points.	134
Chapter	5	

Figure 5-1:	Dimensional parameters used to characterise the radiation beam emitting from the lamphouse.	136
Figure 5-2:	Calculated beam diameter D_b , and average heat flux q_{elec} , as a function of distance S, from focal point for 49% conversion efficiency.	139
Figure 5-3:	Diagram showing the temperature measurement locations on the ceramic board target illuminated by the radiation beam.	142

LIST OF FIGURES

Figure 5-4:	Heat flux transducer distances from the focal point for the 'no mirror' measurements.	147
Figure 5-5:	Transducer measurement distances for the two mirror positions.	148
Figure 5-6:	Transducer (92242) measurement of the heat flux at an axial distance $S_4 = 1040$ mm from the focal point.	150
Figure 5-7:	Transducer (92242) measurement of the heat flux at an axial distance $S_3 = 790$ mm from the focal point.	150
Figure 5-8:	Transducer (92242) measurement of the heat flux at an axial distance $S_2 = 690$ mm from the focal point.	150
Figure 5-9:	Transducer (92242) measurement of the heat flux at an axial distance S ₁ = 540mm from the focal point.	150
Figure 5-10:	Comparison of measured () and calculated () using Eq [5.3] maximum heat flux for axial distances from the focal point.	152
Figure 5-11:	Normalised rms heat flux profile of the radiation beam, without a mirror.	153
Figure 5-12:	Heat flux measurements for S_7 = 790mm, with the 45° aluminium mirror located at 90mm from the focal point.	154
Figure 5-13:	Heat flux measurements for S_6 = 690mm, with the 45° aluminium mirror located at 90mm from the focal point.	154
Figure 5-14:	Heat flux measurements for S_5 = 540mm, with the 45° aluminium mirror located at 90mm from the focal point.	154
Figure 5-15:	Comparison of measured (•) and calculated (—) using Eq [5.5] maximum heat flux for axial distances from the focal point when the mirror was located 90mm from the focal point.	155
Figure 5-16:	Heat flux measurements for S_8 = 540mm with the 45° aluminium mirror located before the focal point.	156
Figure 5-17:	Pictorial diagram of the experimental setup used for the heat flux measurements using digital imagery.	161
Figure 5-18:	Diagram showing observed intensity from a Lambertian surface for a normal and off-normal observer.	164
Figure 5-19:	Calibration pixel gradient of illumination at 525mm from focal point using 1/60 shutter speed and 22 aperture stop.	167
Figure 5-20:	Calibration pixel gradient of illumination at 525mm from focal point using 1/90 shutter speed and 22 aperture stop.	167
Figure 5-21:	Plot of the calculated heat fluxes for distances of 100mm to 30mm from the focal point using two different camera shutter speeds.	170
Figure 5-22:	Measured heat flux distribution at S = 100mm from the focal point using a shutter speed of 1/60.	171
Figure 5-23:	Calculated isorad contour image at S = 100mm from the focal point using a shutter speed of 1/60.	171
Figure 5-24:	Measured heat flux distribution at S = 50mm from the focal point using a shutter speed of 1/90.	172
Figure 5-25:	Calculated isorad contour image at S = 50mm from the focal point using a shutter speed of 1/90.	172

Figure 6-1:	Photo of the crucible bowl inside the preheated muffle furnace.	177
Figure 6-2:	Photo of a 1.000 gram (d_c = 9.44mm) Penrice marble sample placed in the muffle furnace set at T _F = 1000°C.	183
Figure 6-3:	Calcination profiles of Penrice marble at $T_F = 900^{\circ}C$ and $T_F = 1000^{\circ}C$ conducted on 100g samples of four different diameters placed in a crucible in the muffle furnace.	184
Figure 6-4:	Calcination profiles of 40 gram Penrice marble at $T_F = 900^{\circ}C$ and $T_F = 1000^{\circ}C$ conducted on four different nominal diameters spread evenly over an area of 80mm diameter in the muffle furnace.	184
Figure 6-5:	Calcination profiles of Penrice marble at $T_F = 900^{\circ}C$ and $T_F = 1000^{\circ}C$ conducted on four different particle size ranges spread evenly over an area of 80mm diameter with a bed thickness of 1.5 times the particle diameter in the muffle furnace.	185
Figure 6-6:	Calcination profiles of 100g samples of 3mm nominal diameter Penrice marble spread to form five different bed thicknesses at at T _F = 1000°C in the muffle furnace.	185
Figure 6-7:	Calcination profiles of 200g samples of 10mm nominal diameter Penrice marble spread to form five different bed thicknesses at $T_F = 1000^{\circ}C$ in the muffle furnace.	186
Figure 6-8:	Calcination profiles of Penrice Marble at T _F = 900°C and T _F = 1000°C conducted on single marble samples of three different d _c in the muffle furnace.	186
Figure 6-9:	Calcination profiles for 1.000g (d _c = 9.44mm) Penrice marble for varying muffle furnace temperatures.	187
Figure 6-10	 Photographs taken after calcination showing the heights of the 20mm and 27mm thick beds of the 10mm nominal diameter Penrice marble. 	192
Figure 6-11	: Measured calcination rate verses bed thickness for the 3mm and 10mm nominal diameter Penrice marble. Also showing the fit with Equations [6.4] and [6.5] with 95% confidence limits.	
Figure 6-12	Relationship between particle diameter (d _c) and calcination rate for various bed thicknesses and muffle furnace temperatures (T _F).	194
Figure 6-13	 Measured calcination rates verses muffle furnace temperature for d_c = 9.44mm Penrice marble. Also showing the fit with Equation [6.6] with 95% confidence limits. 	195
Figure 6-14	 Arrhenius plot of the calcination of Penrice marble from the 100 gram crucible experiments for the four different particle size ranges for T_F = 900°C and T_F = 1000°C. Slopes of CaCO₃ conversion taken for X=50%. 	197

Figure 7-1:	Calcination profiles of four single 6.54mm nominal Penrice marble stones exposed to a radiant heat flux of 280±20 kW/m ² at S = 75mm in the open atmosphere solar calcination system.	206
Figure 7-2:	Calcination profiles of four single 6.54mm nominal Penrice marble stones exposed to a radiant heat flux of 430±30 kW/m ² at S = 50mm in the open atmosphere solar calcination system.	207
Figure 7-3:	Calcination profiles of single Penrice marble stones exposed to a radiant heat flux of 175±10 kW/m ² in an open atmosphere solar system.	209
Figure 7-4:	Calcination profiles of single Penrice marble stones exposed to a radiant heat flux of 280±20 kW/m ² in an open atmosphere solar system.	210
Figure 7-5:	Calcination profiles of single Penrice marble stones exposed to a radiant heat flux of 430±30 kW/m ² in an open atmosphere solar system.	210
Figure 7-6:	Calcination rate (dm/dt ₅₀) verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm.	214
Figure 7-7:	Photo of the 13.62mm nominal diameter stone before calcination.	215
Figure 7-8:	Photo of the 13.62mm nominal diameter stone after calcination at 430 kW/m ² .	215
Figure 7-9:	Preheat time verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm, and $d_c = 13.62$ mm calcined at 175 ± 15 kW/m ² , 280 ± 20 kW/m ² , and 430 ± 30 kW/m ² .	215
Figure 7-10	Plot showing relationship between the preheat time and projected area, for each stone size exposed to 175±15kW/m ² , 280±20kW/m ² , and 430±30kW/m ² .	216
Figure 7-11	: Calcination completion time verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm exposed to 175 ± 15 kW/m ² , 280 ± 20 kW/m ² , and 430 ± 30 kW/m ² in the open solar system.	217
Figure 7-12	2: Comparison between open solar system and muffle furnace measurements of calcination rate for $d_c = 6.54$ mm, $d_c = 9.44$ mm, and $d_c = 13.62$ mm.	218
Chapter	8	
Figure 8-1:	Photo of the solar furnace enclosure with the rear wall removed showing the calcination platform on which the marble is placed.	222
Figure 8-2:	Heat flux measurement of the preheated calcination platform prior to marble placement, for S = 100mm.	223
Figure 8-3:	Heat flux measurement with isorad contours showing placement of the $d_c = 6.54$ mm (0.333g) Penrice marble in the beam, for S = 100mm.	223
Figure 8-4:	Heat flux measurement with isorad contours showing placement of the $d_c = 9.44$ mm (1.000g) Penrice marble in the beam, for S = 100mm.	223

Figure 8-5:	Heat flux measurement with isorad contours showing placement of the 13.62mm (3.000g) Penrice marble in the beam, for S = 100mm.	223
Figure 8-6:	Calcination profiles of five single $d_c = 6.54$ mm Penrice marble stones exposed to a radiant heat flux of 300 ± 25 kW/m ² at S = 75mm in the enclosed solar furnace.	225
Figure 8-7:	Calcination profiles of five single $d_c = 6.54$ mm nominal Penrice marble stones exposed to a radiant heat flux of 450 ± 30 kW/m ² at S = 50mm in the enclosed solar furnace.	225
Figure 8-8:	Calcination profiles of single Penrice marble stones placed at S = 100mm and exposed to a radiant heat flux of 200±15 kW/m ² in the enclosed solar furnace.	227
Figure 8-9:	Calcination profiles of single Penrice marble stones placed at S = 75mm and exposed to a radiant heat flux of 300±25 kW/m ² in the enclosed solar furnace.	227
Figure 8-10	 Calcination profiles of single Penrice marble stones placed at S = 50mm and exposed to a radiant heat flux of 450±30 kW/m² in the enclosed solar furnace. 	228
Figure 8-11	 Calcination profile for d_c = 11.90mm (2.000 gram) single Penrice marble stones placed at S = 70mm and exposed to a radiant heat flux of 325±25 kW/m² in the enclosed solar furnace. 	228
Figure 8-12	 Calcination profiles for d_c = 13.62mm (3.000 gram) and d_c =16.15mm (5.000 gram) single Penrice marble stones placed at S = 60mm and exposed to a radiant heat flux of 385±25 kW/m² in the enclosed solar furnace. 	229
Figure 8-13	Completion time verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm, $d_c = 11.90$ mm, $d_c = 13.62$ mm and $d_c = 16.15$ mm Penrice marble calcined in the enclosed solar furnace.	233
Figure 8-14	Preheat time verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm, $d_c = 11.90$ mm, $d_c = 13.62$ mm and $d_c = 16.15$ mm Penrice marble in the enclosed solar furnace.	234
Figure 8-15	 Plot showing relationship between the preheat time and illuminated surface area, for each stone size exposed to 200±15kW/m², 300±25kW/m², and 450±30kW/m². 	235
Figure 8-16	Calcination rate (dm/dt ₅₀) verses radiant heat flux for $d_c = 6.54$ mm, $d_c = 9.44$ mm, $d_c = 11.90$ mm, $d_c = 13.62$ mm and $d_c = 16.15$ mm Penrice marble calcined within the solar furnace.	235
Figure 8-17	 Measured wall temperatures on the internal surface of the solar furnace at the thermocouple locations presented in Figure 4-15 when the calcination platform is positioned at S = 100mm, S = 75mm, S = 70mm, S = 60mm and S = 50mm and therefore exposed to radiant heat fluxes of 200±15kW/m², 300±25kW/m², 325±25kW/m², 385±25kW/m² and 450±30kW/m² respectively. 	237

Figure 8-18:	Comparison of conversion rates for the Enclosed Triangular Solar	
	Furnace (ETSF) measurements, the Open Solar System (OSS)	
	measurements and the muffle furnace (MF) measurements for	
	dc = 6.54mm, dc = 9.44mm and dc = 13.62mm.	238

Figure 9-1:	Incident, emitted and reflected radiant fluxes at a surface element.	245
Figure 9-2:	Experimental apparatus used for radiation source measurement.	251
Figure 9-3:	Representation of the experimental apparatus used in RADEX for the source temperature calculations.	252
Figure 9-4:	Calculated heat flux received at the transducer location for variations in pseudo-source temperature.	254
Figure 9-5:	Representation of the open solar system (OSS) experimental apparatus used in RADEX.	258
Figure 9-6:	Calculated heat flux on the surface of the calcination platform at various distances S, from the focal point for the OSS.	259
Figure 9-7:	Comparison of modelling results and measured heat flux at the calcination platform for the OSS.	263
Figure 9-8:	Representation of the Enclosed Triangular Solar Furnace (ETSF) experimental apparatus used in RADEX.	264
Figure 9-9:	Calculated heat flux on the surface of the calcination platform at various distances S, from the focal point for the ETSF.	266
Figure 9-10	: Comparison of calculated and measured heat flux on the calcination platform for the ETSF.	269
Figure 9-11	: Comparison of calculated heat fluxes on the calcination platform for the ETSF and OSS for various distances S from the focal point.	270

Figure 10-1:	Representation of the marble sample on the platform irradiated by radiation.	274
Figure 10-2:	Heat flux exchange between the radiation source, the marble sample and the calcination platform.	_279
Figure 10-3:	Representation of the view factor: sphere to coaxial disk in a parallel plane.	_286
Figure 10-4:	Representation of the view factor: rectangle to coaxial disk in a parallel plane.	_287
Figure 10-5:	Representation of the contact area between the marble sample and the platform.	_291

Figure 10-6:	Plot showing the calculated energy absorbed into the sample as a function of heat flux from the radiation source received by the three marble samples for the triangular furnace (solid line) and the open system (broken line).	294
Figure 10-7:	Calculated radiative heat transfer between the platform and the 9.44mm (1.00g) marble sample for a fixed direct heat flux of 200kW/m ² in the Open Solar System (OSS).	295
Figure 10-8:	Calculated radiative heat transfer between the platform and the 9.44mm (1.00g) marble sample for a fixed direct heat flux of 200kW/m ² in the Enclosed Triangular Solar Furnace (ETSF).	295
Figure 10-9:	Calculated conductive heat transfer between the platform and the three marble samples for a fixed direct heat flux of 200kW/m ² in the OSS.	296
Figure 10-10	: Calculated conductive heat transfer between the platform and the three marble samples for a fixed direct heat flux of 200kW/m ² in the ETSF.	296
Figure 10-11	: Calculated convective heat transfer between the boundary layer air and the three marble samples for a fixed direct heat flux of 200kW/m ² in the OSS.	297
Figure 10-12	: Calculated convective heat transfer between the boundary layer air and the three marble samples for a fixed direct heat flux of 200kW/m ² in the ETSF.	297
Figure 10-13	: Calculated radiative heat transfer between the three marble samples and the surrounding atmosphere for a fixed direct heat flux of 200kW/m ² in the OSS.	298
Figure 10-14	: Calculated radiative heat transfer between the three marble samples and the surrounding atmosphere for a fixed direct heat flux of 200kW/m ² in the ETSF.	298
Figure 10-15	: Calculated energy available for heating the three marble samples for a fixed direct heat flux of 200kW/m ² in the OSS.	299
Figure 10-16	: Calculated energy available for heating the three marble samples for a fixed direct heat flux of 200kW/m ² in the ETSF.	299
Figure 10-17	: Plot showing the calculated times to heat the marble samples to 1173K when exposed to heat fluxes between 100kW/m ² and 600kW/m ² .	301
Figure 10-18	: Plot showing the calculated net energy available for calcination as the temperature of the marble sample increases for an incident radiant heat flux of 175kW/m ² for the OSS.	303
Figure 10-19	: Temperature / time and fractional calcination / time curves for a 44.45mm (1 ³ / ₄ inch) cube of marble calcined at 1100°C.	
Figure 10-20	: Representation of the calcination time against sample surface temperature for the three surface temperature scenarios for q _{incident} = 200kW/m ² .	307

Figure 10-21:	Comparison of calculated and measured calcination times for the $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm Penrice marble exposed to radiant heat fluxes of 175kW/m ² , 280kW/m ² and 430kW/m ² in an OSS.	315
Figure 10-22:	Comparison of calculated and measured completion times for the $D_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm Penrice marble exposed to radiant heat fluxes of 200kW/m ² , 300kW/m ² and 450kW/m ² in an ETSF.	
Figure 10-23:	Comparison of calculated calcination times with error bars for the three nominal diameter Penrice marble for the OSS and the ETSF.	326
Figure 10-24:	Calculated fractional calcination verses normalised calcination time using the modified shrinking core mathematical model.	.327

Appendix D

Figure D-1:	Photo of d _c = 2.855mm marble spread over refractory board to form 80mm diameter circle, before calcination.	349
Figure D-2:	Photo of d _c = 0.375mm marble spread over refractory board to form 80mm diameter circle, before calcination.	349
Figure D-3:	Calcination profiles of 40 gram samples of four different sized Penrice marble exposed to radiation with an average heat flux of approximately 115 kW/m ² .	351
Figure D-4:	Calcination profiles of four different sized Penrice marble spread to form a bed 1.5 times the marble's nominal diameter, and exposed radiation with an average heat flux of approximately 115 kW/m ² .	351
Figure D-5:	Photo of d_c = 2.855mm marble spread over refractory board to form 80mm \emptyset circle, after calcination.	353
Figure D-6:	Photo of $d_c = 0.375$ mm marble spread over refractory board to form 80mm Ø circle, after calcination.	353

Appendix G

Figure G.1:	Calculated radiative heat transfer between the platform and the $d_c = 6.54$ mm (0.333g) marble sample for a fixed direct heat flux of 200kW/m ² in the OSS.	358
Figure G.2:	Calculated radiative heat transfer between the platform and the $d_c = 6.54$ mm (0.333g) marble sample for a fixed direct heat flux of 200kW/m ² in the ETSF.	358
Figure G.3:	Calculated radiative heat transfer between the platform and the $d_c = 13.62mm (3.000g)$ marble sample for a fixed direct heat flux of 200kW/m ² in the OSS.	358
Figure G.4:	Calculated radiative heat transfer between the platform and the $d_c = 13.62$ mm (3.000g) marble sample for a fixed direct heat flux of 200kW/m ² in the ETSF.	358

List of Tables

Chapter	2	Page
Table 2-1:	Operating output and range of stone sizes for various commercial lime kilns.	44
Table 2-2:	Specifications for four types of crushers used on limestone.	46
Table 2-3:	Advantages and disadvantages of the fluidise bed and cyclone solar furnaces.	59
Table 2-4:	Advantages and disadvantages of the rotary kiln and flat bed solar furnaces.	60
Table 2-5:	Comparison of the advantages and disadvantages of thermal radiation modelling techniques for solar furnaces.	69

Chapter 3

Table 3-1:	Calculated results from energy balances using various fossil fuels as the heating source for lime furnaces.	77
Table 3-2:	Results from energy balance analysis of three solar lime furnaces with 100% and 80% effective heat transfer.	81

Chapter 4

Table 4-1:	Measured thermocouple temperature for iced and boiling water for both before and after (in parentheses) use within the experiments.	106
Table 4-2:	Screen Sizes at Penrice quarry, Angaston.	107
Table 4-3:	Marble size ranges stockpiled at the Penrice quarry, Angaston.	107
Table 4-4:	Component weight % dry basis, of some South Australian limestone.	108
Table 4-5:	Selected sieve sizes and resulting nominal diameter of marble particle.	109
Table 4-6:	Mass sizes of marble and nominal characteristic diameter.	110
Table 4-7:	Furnace temperatures measured using thermocouple D.	114
Table 4-8:	Specifications for the Xenon XBO 5000W / HBM OFR lamp.	120

Table 5-1:	Percentage of the total radiant energy emitted within the UV, Visible and IR spectral bands from a xenon-arc bulb. Note: total = 100.2%	400
	(Source: Oriel Instruments, 1998).	138
Table 5-2:	Conversion of electrical energy into radiation from xenon arc lamps. Note: total = 49%.	138
Table 5-3:	Measurement of temperatures in centigrade taken at 30mm intervals with the board positioned normal to the beam at S = 150mm.	142

le 5-4: Measurement of temperatures in centigrade taken at 22.5mm intervals with the board positioned normal to the beam at S = 100mm.	142
Table 5-5: Measurement of temperatures in centigrade taken at 20mm intervals with the board positioned normal to the beam at S = 90mm.	143
Table 5-6: Calculated average heat flux (W/m ²) within the radiation beam at S =150mm.	144
Table 5-7: Calculated average heat flux (W/m ²) within the radiation beam at $S = 100$ mm.	144
Table 5-8: Calculated average heat flux (W/m ²) within the radiation beam at $S = 90$ mm.	144
Table 5-9: The total power within the radiation beam calculated from the temperature measurements.	145
Table 5-10: Maximum heat flux measured for the 'no mirror' case at four axial Distances S, from the focal point.	151
Table 5-11: Maximum measured heat flux for the first mirror case at three axial distances, S, from the focal point and comparison to the 'no mirror' measurement.	155
Table 5-12: Maximum measured heat flux for the second mirror case at an axial distances of S = 540mm from the focal point and comparison with the'no mirror' and 1st mirror measurements.	157
Table 5-13: Error in the heat flux intensity measurement due to path length accuracy.	159
Table 5-14: Maximum error in the heat flux intensity measurement due to all sources of error.	159
Table 5-15: Camera settings used for the calibration and measurement of the heat flux intensity.	166
Table 5-16: Calculated heat flux between S = 100mm and S = 30mm using two different camera shutter speeds.	169
Table 5-17: Maximum possible variation in the digital imagery heat flux measurements.	174

Table 6-1:	Bed depth for the 40g marble samples placed to form an 80mm diameter bed.	179
Table 6-2:	Bed depth and measured mass to obtain a bed thickness of 1.5 x d _c .	180
Table 6-3:	Measured and calculated bed depth for variations in bed diameter for the 100g, d_c = 3mm and 200g, d_c = 10mm marble samples.	181
Table 6-4:	Mass of marble and the calculated nominal characteristic diameter d _c , using Eq [6.3].	182
Table 6-5:	Calcination rates for the 100g crucible muffle furnace experiments.	_187

Table 6-6: Calcination rates for the 40g flat bed muffle furnace experiments.	188
Table 6-7: Calcination rates for the bed thickness of 1.5 x d _c muffle furnace experiments.	188
Table 6-8: Calcination rates for 100g samples of d_c = 3mm Penrice marble at T_F = 1000°C in the muffle furnace.	188
Table 6-9: Calcination rates for 200g samples of $d_c = 10$ mm Penrice marble at $T_F = 1000^{\circ}$ C in the muffle furnace.	189
Table 6-10:Calcination rates and time to complete calcination for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm marble for muffle furnace temperature of $T_F = 900^{\circ}$ C and $T_F = 1000^{\circ}$ C.	189
Table 6-11: Calcination rates for $d_c = 9.44$ mm (1.000g) marble for muffle furnacetemperatures between $T_F = 850^{\circ}$ C and $T_F = 1000^{\circ}$ C.	189
Table 6-12: Arrhenius parameters for the calcination of Penrice Marble for the 100 gram crucible experiments with 900°C < T _F < 1000°C, for chemical conversion dm/dt ₅₀ .	197
Table 6-13: Variation in Arrhenius parameters from all muffle furnace calcinationexperiments using 900°C < T_F < 1000°C and dm/dt ₅₀ .	198

Table 7-1:	Comparison of preheating time, calcination rate and time to complete calcination for $d_c = 6.54$ mm Penrice marble exposed to either 280 ± 20 kW/m ² or 430 ± 30 kW/m ² for the open atmosphere solar calcination system.	_208
Table7- 2:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 175±15kW/m ² in an open atmosphere solar system.	211
Table 7-3:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 280±20kW/m ² in an open atmosphere solar system.	_211
Table 7-4:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 430±30kW/m ² in an open atmosphere solar system.	_212
Table 7-5:	Average CO ₂ release rate for Penrice marble exposed to radiant heat flux of 175±15kW/m ² , 280±20kW/m ² or 430±30kW/m ² .	_213

Table 8-1:	Average measured heat flux on the projected surface area of stone at various distance (S) from the focal point.	223
Table 8-2:	Comparison of preheating time, calcination rate and time to complete calcination for $d_c = 6.54$ mm Penrice marble exposed to either 300 ± 25 kW/m ² or 450 ± 30 kW/m ² .	226

Table 8-3:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 200±15kW/m ² in an enclosed solar furnace.	230
Table 8-4:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 300±25kW/m ² in an enclosed solar furnace.	_230
Table 8-5:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 450±30kW/m ² in an enclosed solar furnace.	_230
Table 8-6:	Preheating time, calcination rate and time to complete calcination for 11.90mm (2.000g) Penrice marble exposed to a radiant heat flux of 325±25kW/m ² in an enclosed solar furnace.	231
Table 8-7:	Preheating time, calcination rate and time to complete calcination for single Penrice marble exposed to a radiant heat flux of 385±25kW/m ² in an enclosed solar furnace.	231
Table 8-8:	Summary of measured wall temperatures on the internal surface of the solar furnace at the permanent thermocouple locations presented in Figure 4-15 when the calcination platform is positioned at S = 100mm, S = 75mm, S = 70mm, S = 60mm and S = 50mm from the focal point and therefore exposed to radiant heat fluxes of 200 ± 15 kW/m ² , 300 ± 25 kW/m ² , 325 ± 25 kW/m ² , 385 ± 25 kW/m ² and 450 ± 30 kW/m ² respectively.	.232

Table 9-1:	Median wavelength of emitting and absorbing spectral bands for H ₂ O and CO ₂ .	_246
Table 9-2:	Grey gas parameters used in mixed grey gas correlations for CO_2 and H_2O mixtures.	_247
Table 9-3:	Specifications for reflectivity, emissivity and temperature used for model calibration.	251
Table 9-4:	Simulated radiation pseudo-source temperature variation and the resulting received heat flux at the transducer measurement location.	_253
Table 9-5:	Variation in pseudo-source temperature to achieve the measured heat flux tolerances.	_256
Table 9-6:	Comparison of calculated heat flux by changing various modelling parameters.	_256
Table 9-7:	Calculated heat flux on the calcination platform for various distances S from the focal point for the open solar system (OSS).	_259
Table 9-8:	Comparison of calculated heat flux at the simulated calcination platform, after changing various modelling parameters in the OSS model.	261
Table 9-9:	Variation in error for the calculated heat flux received at the surface of the calcination platform in the OSS model.	_262

Table 9-10:	Comparison of calculated and measured heat flux on the calcination platform for the OSS.	_263
Table 9-11:	Calculated heat flux on the calcination platform for S = 100, S = 75 and S = 50 for the ETSF.	_265
Table 9-12:	Comparison of calculated heat flux at the simulated calcination platform, after changing various modelling parameters in the ETSF model.	_267
Table 9-13:	Variation in error for the calculated heat flux received at the surface of the calcination platform in the ETSF model.	_268
Table 9-14:	Comparison of calculated and measured heat flux on the calcination platform for the ETSF.	_269

Table	10-1:	Calculated number of moles, volume, total surface area, characteristic diameter and projected area of the Penrice marble samples.	278
Table	10-2:	Solar absorptivity for marble and limestone.	282
Table	10-3:	Solar absorptivity of lime.	283
Table	10-4:	Emissivity of lime.	285
Table	10-5:	Reflectivity from the surface of the marble for solar and infrared radiation.	285
Table	10-6:	View factors for stone to platform radiation exchange.	287
Table	10-7:	View factors for platform to stone radiation exchange.	288
Table	10-8:	Calculated air temperature of the natural convection boundary layer using the measured platform temperatures.	290
Table	10-9:	Calculated contact area between the marble sample and the platform	292
Table	10-10	Energy distribution of 200kW/m ² direct radiation received by the three marble sample sizes.	293
Table	10-11	 Average, maximum, minimum and standard deviation of the measured wall temperatures for the furnace enclosure for variations in distance S between the calcination platform and focal point. 	297
Table	10-12	 Calculated time (in seconds) to heat the marble samples from 298K to 1173K using heat fluxes between 100kW/m² and 500kW/m² in the OSS or ETSF. 	300
Table	10-13	Calculated maximum temperature of the marble samples when exposed to various incident heat fluxes in the OSS and ETSF.	303
Table	10-14	Proposed surface temperatures for the three sizes of Penrice marble	305
Table	10-15	Calculated additional heating time (in seconds) to heat the three marble samples from 1173K to the proposed surface temperature for the three surface temperature scenarios for all the q _{incident} of interest in the OSS and ETSF.	308

Table 10-16:	Time (in minutes) to complete calcination of the three nominal diameter Penrice marble for the three sample surface temperature scenarios for the OSS and ETSF assuming a concentric shrinking core model.	311
Table 10-17:	Time (in minutes) to complete calcination of the three nominal diameter Penrice marble for the three sample surface temperature scenarios for the OSS and ETSF assuming an eccentric shrinking core model.	311
Table 10-18:	Comparison of calculated (using eccentric model) and measured preheating times and calcination times for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm Penrice marble exposed to 175 kW/m ² 280kW/m ² and 430 kW/m ² in the OSS.	313
Table 10-19:	Comparison of calculated (using eccentric model) and measured preheating times and calcination times for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm Penrice marble exposed to 200kW/m ² , 300kW/m ² and 450kW/m ² in the ETSF.	316
Table 10-20:	Changes in the calculated calcination time for variation of emissivity of CaO for $d_c = 6.54$ mm and $d_c = 13.62$ mm Penrice marble in the OSS and ETSF.	319
Table 10-21:	Changes in the calculated calcination time for variation of absorptivity of CaO for d_c = 6.54mm and d_c = 13.62mm Penrice marble in the OSS and ETSF.	320
Table 10-22:	Changes in the calculated calcination time for variation of thermal conductivity of the CaO layer on $d_c = 6.54$ mm and $d_c = 13.62$ mm Penrice marble in the OSS and ETSF.	321
Table 10-23:	Comparison of calculated calcination time by varying the illuminating radiant heat flux for both $d_c = 6.54$ mm and $d_c = 13.62$ mm Penrice marble in the OSS and ETSF.	322
Table 10-24:	Maximum variation in calculated calcination time for $d_c = 6.54$ mm, $d_c = 9.44$ mm and $d_c = 13.62$ mm Penrice marble in the OSS and ETSF.	324
Table 10-25:	Calculated calcination times with maximum and minimum tolerances for d _c = 6.54mm, d _c = 9.44mm and d _c = 13.62mm Penrice marble Penrice marble using the heat fluxes from the OSS and ETSF investigations.	325
Table 10-26:	Calculated rates of calcination for $d_c = 6.54$ mm, $d_c = 9.44$ mm, and $d_c = 13.62$ mm Penrice marble exposed to the heat fluxes from the OSS and ETSF investigations.	328
Table 10-27:	Measured heat fluxes and platform temperatures used for the calculation of calcination times for $d_c = 1$ 1.90mm, $d_c = 13.62$ mm and $d_c = 16.15$ mm Penrice marble.	329
Table 10-28:	Comparison of calculated and measured preheating and calcination times for $d_c = 11.90$ mm, $d_c = 13.62$ mm and $d_c = 16.15$ mm Penrice marble exposed to 325 kW/m ² and 385 kW/m ² .	329

Table 11-1: Calcination rates and completion times for single stone	marble
in a muffle furnace at either $T_F = 900^{\circ}C$ or $T_F = 1000^{\circ}C$	C334

Appendix A

Table A-1: Enthalpy analysis for four fuels and two solar energy	furnaces. 341
--	---------------

Appendix D

Table D-1: Bed depth for the 40g marble samples placed to form an 80mm diameter bed exposed to the radiation beam.	348
Table D-2: Mass and measured bed depth of samples to obtain a bed thickness of 1.5 times the particle diameter.	349
Table D-3: Calcination rates for the 40 gram flat bed experiments exposed to an average 115kW/m ² .	352
Table D-4: Calcination rates for the bed thickness of 1.5 x d _c exposed to an average 115kW/m².	352

Appendix E

Table E-1:	Measured wall temperatures on the internal surface of the solar furnace at the thermocouple locations presented in Figure 4-15 for various calcination platform distances 'S' from the focal point and the associated radiant heat fluxes.	355
Table E-2:	Measured wall temperatures on the external surface of the triangular solar furnace at the thermocouple locations presented in Figure 4-15 when the calcination platform is positioned at S = 100mm from the focal point and therefore exposed to a radiant heat flux of 200 ± 15 kW/m ² .	356

Appendix F

Table F-1: Avera	age characteristic specifications for air su	rrounding the heated
pla	atform.	

Nomenclature

Abbreviations and Constants

°C	Degrees centigrade
CaCO₃	Calcium Carbonate, Limestone, Marble
CaO	Calcium Oxide, Lime, Quicklime
CMOS	Complementary Metal Oxide Semiconductor
CO ₂	Carbon Dioxide
ETSF	Enclosed Triangular Solar Furnace
g	grams
К	Kelvin
kg	kilograms
kW	kilowatt
m	metre
MJ	megajoule
mm	millimetre
N ₂	Nitrogen
0-D	Zero-Dimensional
OSS	Open Solar System
SCM	Shrinking Core Model
TGA	Thermogravimetric Analyser
TIFF	Tagged Image Files Format (also TIF)

Roman Symbols

b _d	limestone bed depth (mm)
C _A	reactant gas concentration
d _c	marble / limestone nominal diameter (mm)
D	furnace/kiln diameter (m or mm)
D'	dimensionless firing density
D _e	effective diffusivity through the product layer (mm ⁻¹)
D _{eq}	furnace/kiln characteristic equivalent diameter (mm)
D _b	radiation beam diameter (mm)
dm	conversion gradient of CaCO ₃ to CaO
Ea	activation energy of the reaction (kJ/kg or kJ/mol)
gg, GG	gas to gas heat exchange
gs, GS	gas to surface heat exchange
(GS ₁) _R	total exchange area with allowance for effect of surface zones in radiative equilibrium
g	gas phase (Italic)
h	enthalpy (J)
Н	kiln height (m or mm)
H _F	enthalpy flux in the feed stream entering the chamber per hour
Imeasured	bit level of each pixel within the image
In	irradiation normal to the surface
k	Arrhenius rate constant (sec ⁻¹)
K	attenuation factor (extinction coefficient) (m ⁻¹)
K _p	equilibrium constant
k _s	reaction rate constant
L	kiln length (m or mm)

Roman Symbols (Cont)

L	number of volume elements
M _B	molecular weight of the solid reactant (g/mol)
М	number of surface elements
mo	initial mass of limestone (g)
m _t	mass of calcining sample at any time (t)
m ₃	mass of calcining sample equal to 3% of the stones final mass (g)
m ₅₀	mass of calcining sample equal to 50% of the stones final mass (g)
m ₇₅	mass of calcining sample equal to 75% of the stones final mass (g)
m ₁₀₀	final mass of calcining sample at 100% calcination (g)
Ng	number of gray gases
Р	total resistance pressure (pa)
P _{CO2}	partial pressure of CO ₂ (pa)
Pv	vapour pressure (pa)
q	radiant heat flux (W/m ²)
Q	heat (or power), (W)
Q'	dimensionless furnace efficiency
Q _{out}	energy leaving a surface or gas zone (J/s)
R	Universal Gas Constant = 8.314 J/ K. mol
R^2	coefficient of determination
r	distance between each zone (m)
r _c	radius of the un-reacted limestone core at any time (mm)
r _o	initial radius of the solid limestone (mm)
S	distance from the focal point along radiation beam (m)
Ss, SS	surface to surface heat exchange
sg, SG	surface to gas heat exchange
Т	temperature (K)
t	time (s or min)
t ₅₀	time to achieve 50% calcination (s or min)
t ₇₅	time to achieve 75% calcination (s or min)
t_{100}	time to complete (100%) calcination (s or min)
T _{AF}	adiabatic flame temperature (K)
ambient	ambient temperature (K)
board	measured board temperature (K)
	base temperature (K)
I Platform	temperature of calcination platform (K)
	muffle furnace temperature (K)
W	kiln width (m or mm)
X	fractional calcination
X _{CO2}	molar traction of carbon dioxide
X _{ls}	rate of conversion of limestone used in Arrhenius equation
X _{N2}	molar traction of nitrogen
y 1	constant mole fraction of CO ₂

Greek Symbols

α	absorptivity
3	emissivity
ρ_{m}	bulk density of the reacting particle
ρ	reflectivity
σ	Stefan-Boltzmann constant = $5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$

Greek Symbols (Cont)

Δ	Change in Parameter
θ	Roof angle for triangular shaped furnace (deg)
τ	transmissivity factor

Subscripts

Air	ambient air
В	bulk phase
b	stoichiometric coefficient
beam	within the radiation beam
d,c	calculated bed depth
d,m	measured bed depth
elec	calculated from electrical power
Ex	exhaust gases
g	gas phase
Lime	quicklime
LS	limestone
m1	mirror position 1
m2	mirror position 2
max	maximum
OS	open system
React	calcination reaction
S	solid phase
temp	calculated from temperature measurement
TSF	triangular solar furnace

Superscripts

е	equilibrium
i	interfacial