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Abstract 

The objectives of this research investigation are to answer fundamental questions regarding 

the effectiveness of using concentrated solar energy as the sole heating source for the 

thermo-chemical decomposition of limestone-marble, supplied by Penrice, Angaston.  

Specifically, scientific analyses are used to investigate the energy requirements for the 

efficient manufacture of quicklime using solar thermal energy.  To achieve these aims, the 

energy requirements for an industrial scale solar lime manufacturing system were first 

evaluated.  The main conclusion from this analysis is that the thermal efficiency of a solar 

energy supplied lime manufacture system compares favourably with the best fossil fuelled 

system.  A good heat recovery system as well as a comprehensive preheating system is 

recommended to minimise the energy losses from the system. 

A zero dimensional model was then used to determine that the most energy efficient shape 

for a travelling grate solar furnace is a triangular cross section.  This shape maximise the 

exposure of the limestone to the radiant energy while minimising structural heat losses.  This 

analytical evaluation also identified that the open area of entrance and exit openings, which 

allow the process materials to flow through the kiln and for the exhaust gases to escape the 

kiln, should be minimised.  Thirty three times more heat flux is lost through these openings 

than through the kiln structure.  Minimising the openings area therefore improves kiln thermal 

efficiency.   

This investigation then evaluated the maximum bed thickness for the limestone when using a 

grate bed system within the proposed solar furnace.  Due to the nature of radiation it is 

recommended that the limestone layer be no thicker than 2.5 times the nominal diameter of 

the limestone in use.  This thickness optimises the exposure of the stone to the direct 

radiation and increases the heat transfer to the stones lower within the bed and allows for the 

unrestricted diffusion of CO2 away from these stones.   

The investigation then experimentally quantified the effects of radiant heat flux intensity on 

the calcination kinetics of the Penrice, Angaston marble as a function of stone size.  This 

experimental investigation involved comparing results from an electric muffle furnace, an 

atmospherically open solar radiation furnace, and an enclosed triangular shaped solar 

radiation furnace.  The muffle furnace provided a baseline values to which the solar 

calcination rates could be compared.  
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The open system solar calcination experiments showed that the preheating time of the stone 

is directly proportional to the illuminated surface area of the stone and the intensity of the 

heat flux to which it is exposed.  Additionally, the reaction rate is directly proportional to the 

radiant heat flux, and is independent of the stone size for heat fluxes greater than 430kW/m2.   

The enclosed solar furnace experiments identified a 45% improvement in decomposition time 

could be achieved by using the triangular shaped solar furnace compared to the open solar 

system calcination.  This benefit to the calcination time is best for the more intense heat 

fluxes and for the larger stone sizes.  The measured calcination times were similar to those 

found for a conventional rotary kiln.  This demonstrates the practicalities of using solar 

radiation technology for interchange with, or as a supplementary heating source to, a 

combustion driven lime manufacturing industrial plant.   

A multi-zone two dimensional mathematical model was then used to evaluate the radiant 

heat exchange within the triangular solar furnace.  The developed mathematical scheme 

provides a comprehensive package with a validated base model for future evaluations of 

solar furnace designs.  A modified shrinking core calcination model was then developed, 

which uses an energy balance approach to calculate the preheating times and calcination 

rates for the Penrice marble exposed to various intensities of radiant heat flux.  This version 

of the heat transfer based shrinking core model was used after considering the one sided 

heating of the stone from the point source radiation. 
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Nomenclature 

Abbreviations and Constants 
 
°C  Degrees centigrade  
CaCO3 Calcium Carbonate, Limestone, Marble  
CaO  Calcium Oxide, Lime, Quicklime  
CMOS  Complementary Metal Oxide Semiconductor  
CO2   Carbon Dioxide  
ETSF  Enclosed Triangular Solar Furnace 
g  grams  
K  Kelvin  
kg  kilograms  
kW  kilowatt  
m  metre  
MJ  megajoule  
mm   millimetre  
N2   Nitrogen  
0-D  Zero-Dimensional 
OSS  Open Solar System 
SCM  Shrinking Core Model  
TGA  Thermogravimetric Analyser  
TIFF  Tagged Image Files Format (also TIF)  
 

Roman Symbols 
 
bd   limestone bed depth (mm) 
CA   reactant gas concentration  
dc  marble / limestone nominal diameter (mm) 
D  furnace/kiln diameter (m or mm) 
D'  dimensionless firing density  
De  effective diffusivity through the product layer (mm-1) 
Deq   furnace/kiln characteristic equivalent diameter (mm) 
Db  radiation beam diameter (mm) 
dm   conversion gradient of CaCO3 to CaO  
Ea  activation energy of the reaction (kJ/kg or kJ/mol) 

gg, GG  gas to gas heat exchange  
gs, GS  gas to surface heat exchange  
(GS1)R  total exchange area with allowance for effect of surface zones in radiative 

equilibrium  
g  gas phase (Italic)  
h  enthalpy (J) 
H  kiln height (m or mm)  
HF  enthalpy flux in the feed stream entering the chamber per hour  
Imeasured  bit level of each pixel within the image  
In   irradiation normal to the surface  
k  Arrhenius rate constant (sec-1)  
K  attenuation factor  (extinction coefficient) (m-1) 
Kp  equilibrium constant  
ks  reaction rate constant  
L   kiln length (m or mm)  
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Roman Symbols (Cont) 
 
L  number of volume elements  
MB   molecular weight of the solid reactant (g/mol) 
M  number of surface elements  
mo  initial mass of limestone (g) 
mt   mass of calcining sample at any time (t)  
m3   mass of calcining sample equal to 3% of the stones final mass (g) 
m50  mass of calcining sample equal to 50% of the stones final mass (g) 
m75  mass of calcining sample equal to 75% of the stones final mass (g) 
m100  final mass of calcining sample at 100% calcination (g) 
Ng  number of gray gases  
P   total resistance pressure (pa) 
PCO2  partial pressure of CO2 (pa) 
Pv  vapour pressure (pa) 
q  radiant heat flux (W/m2) 
Q  heat (or power), (W) 
Q’  dimensionless furnace efficiency  
Qout  energy leaving a surface or gas zone (J/s) 
R  Universal Gas Constant = 8.314 J/ K. mol  
R2  coefficient of determination  
r  distance between each zone (m) 
rc   radius of the un-reacted limestone core at any time (mm) 
ro   initial radius of the solid limestone (mm)  
S  distance from the focal point along radiation beam (m)  
Ss, SS  surface to surface heat exchange   
sg, SG  surface to gas heat exchange   
T   temperature (K)  
t  time (s or min)  
t50  time to achieve 50% calcination (s or min)  
t75  time to achieve 75% calcination (s or min)  
t100  time to complete (100%) calcination (s or min)  
TAF  adiabatic flame temperature (K)  
Tambient  ambient temperature (K)  
Tboard  measured board temperature (K)  
To  base temperature (K)  
TPlatform  temperature of calcination platform (K)  
TF  muffle furnace temperature (K)  
W  kiln width (m or mm)  
X   fractional calcination  
XCO2  molar fraction of carbon dioxide  
Xls  rate of conversion of limestone used in Arrhenius equation  
XN2  molar fraction of nitrogen  
y1  constant mole fraction of CO2  
 

Greek Symbols 
 
α  absorptivity  
ε   emissivity  
ρm   bulk density of the reacting particle  
ρ  reflectivity  
σ  Stefan-Boltzmann constant = 5.67x10-8 W/m2.K4  
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Greek Symbols (Cont) 
 
∆  Change in Parameter  
θ   Roof angle for triangular shaped furnace (deg) 
τ  transmissivity factor  
 
 
 
Subscripts 
 
Air  ambient air 
B   bulk phase 
b  stoichiometric coefficient  
beam  within the radiation beam  
d,c  calculated bed depth 
d,m  measured bed depth 
elec  calculated from electrical power  
Ex  exhaust gases 
g  gas phase 
Lime  quicklime 
LS  limestone 
m1  mirror position 1 
m2  mirror position 2 
max  maximum 
os  open system 
React  calcination reaction 
s  solid phase 
temp  calculated from temperature measurement  
TSF  triangular solar furnace  
 

Superscripts 
 
e  equilibrium 
i   interfacial 
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