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Abstract 

 

1,2-Dioxines, also known as endoperoxides are a specific type of cyclic peroxide, 

characterised by an unsaturated six-membered peroxide ring. They are abundant in 

nature and have been isolated from many natural products and have been shown to 

exhibit a wide spectrum of biological roles. Ozonolysis is a well established method for 

the oxidative cleavage of alkenes, although examples involving 1,2-dioxines are 

extremely rare. 

 

The furanoid and anhydrofuran linalool oxides have been established as common 

compounds in wine and as natural products from other sources. Previous methods of 

synthesis have followed a variety of different routes although many experimental 

details are unclear and of limited value.  It was therefore felt that a gap exists in the 

literature with regard to an effective synthesis for these compounds and the 

development of a new synthetic pathway to afford both compounds, and analogues 

thereof, from a common starting material would be of value.  

 

The aim of this project was therefore to combine these areas and utilise 1,2-dioxine 

chemistry for the synthesis of the furanoid and anhydrofuran linalool oxides, with a key 

step in the synthesis being the ozonolysis of a bicyclic bridged 1,2-dioxine to yield the 

necessary keto-aldehyde precursor.  

 

Since little attention has been focussed on exploring the ozonolysis reaction of bicyclic 

alkenes, particularly the alkene moiety of bicyclic 1,2-dioxines, the first part of this 

thesis is focussed on investigating the scope of this novel reaction. A range of 1,4-

disubstituted bicyclic 1,2-dioxines and a steroidal 1,2-dioxine were used for this study, 

with their synthesis outlined in Chapter 2. Chapter 3 presents the results for this section 

of work, where it was found that upon reaction with ozone, the nature of substrates at 

the bridgehead positions of the 1,2-dioxines had a major influence on the outcome of 

the reaction; with some of the substrates giving the expected dialdehydes, whilst others 

behaved in an unexpected manner towards ozone. Additional experiments were then 

conducted to provide further insight into these unusual results. The potential mechanism 
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involved in these rearrangements is also discussed, with several plausible options 

presented. 

 

Chapter 4 presents some Ab-Initio computational analyses to support the preliminary 

mechanistic insights into the ozonolysis reaction, with specific regard to bicyclic 1,2-

dioxine systems. This was done by examining the relative energy differences for all 

possible isomers involved in each stage of the proposed mechanism in order to locate 

the lowest energy pathway, and therefore that which is most likely followed. 

 

The second part of this thesis, presented in Chapter 5, was to utilise this novel 

transformation as a key step in the synthesis of both the furanoid and anhydrofuran 

linalool oxides, from a common starting material. The pathway began with the synthesis 

of a new bicyclic 1,2-dioxine, followed by successful ozonolysis and ring-contraction 

into the core 2,2,5-trisubstituted THF. It was found that having a hydroxyl  to either 

the furan or dioxine ring systems could be problematic and led to unwanted ring-

opening and further rearrangements. Investigations revealed that this could be 

overcome upon protection of the hydroxyl, thereby enabling structural manipulation of 

the other functional groups to proceed smoothly.  

 

Research along the synthetic pathway did reveal a new potential route to 

dioxabicyclo[3.2.1]octanes, with two new bicyclic compounds formed as a result of 

selective 1,6-cyclisation of a cis--hydroxydione intermediate, a reaction previously 

unseen within the literature. 

 

Time was a limiting factor in being able to complete the total synthesis of the desired 

compounds, but the major ground work was achieved. The C2 functionalisation of the 

THF ring was successfully completed, and some new and novel chemistry was 

uncovered, which has further enhanced the understanding of the chemical nature of 

these types of compounds, along with their potential use in the synthesis of these 

important wine aroma compounds and other natural products. 
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