Electronic Collisions with Molecules of Biological Relevance

Christopher J. Colyer

A thesis submitted for the degree of Doctor of Philosophy at the University of Adelaide March 4th 2011

Table of Contents

Abstr	ract	vii
Decla	aration	ix
Ackn	owledgements	xi
List c	of Abbreviations	xiii
List c	of Figures	XV
List c	of Tables	xix
1 Ir	ntroduction	1
1.1	History of Electron Impact Ionization	1
1.2	Molecular (e, 2e)	3
1.3	Ionizing Radiation	10
1.4	Charged Particle Track Structure Analysis	12
1.5	Summary of Thesis	14
2 F	undamentals of Electron Collisions	17
2.1	Overview	17
2.2	Elastic Collisions	17
2.3	Ionization	20
2.4	Defining Cross Sections	22
2	2.4.1 Single Differential Cross Section	22
2	2.4.2 Double Differential Cross Section	24
2	2.4.3 Triple Differential Cross Section	24

3	E	xperi	mental Techniques and Apparatus	37
	3.1	0	verview	37
	3.2	Ez	xperimental Apparatus	37
	3	8.2.1	The Vacuum Chamber	39
	3	3.2.2	Molecular Beam Source	41
	3	3.2.3	The Electron Source	44
	3	8.2.4	Analysers and Detectors	47
	3	8.2.5	Fast Timing Electronics and Computer Control	51
	3.3	Ez	xperimental Techniques	53
	3	3.3.1	The Coincidence Technique	53
	3	3.3.2	Coincidence Energy Resolution	58
	3	3.3.3	Alignment of Spectrometer	58
	3.4	E	xperimental Calibration	60
	3	8.4.1	Energy Calibration	60
	3	8.4.2	Angular Calibration	62
	3	8.4.3	Spectrometer Consistency	64
4	F	ormi	c Acid	69
	4.1	In	troduction	69
	4.2	Sa	ample Preparation	71
	4.3	Bi	inding Energy Spectrum	71
	4.4	A	ngular Distributions	74
5	Т	etrah	ydrofuran	81
	5.1	In	troduction	81
	5.2	Sa	ample Preparation	84
	5.3	B	inding Energy Spectrum	85
	5.4	A	ngular Distributions	88
6	Т	he Py	vrimidine Bases	97
	6.1	In	troduction	97

6.2	Physical Characteristics	100
6.3	Elastic Angular Distributions	102
6.4	Binding Energy Spectrum	106
6.5	Triply Differential Angular Distributions	110
7 Co	nclusion	117
7.1	Summary of Results	117
7.2	Future Directions	119
8 Ap	pendix A: Experimental (e, 2e) Data	121
8.1	Formic Acid	121
8.2	Tetrahydrofuran	123
8.3	Thymine	125
9 Ap	pendix B: Experimental Elastic Data	127
9.1	Cytosine	127
9.2	Thymine	129
Bibliog	graphy	131

Abstract

Experimental studies of radiation damage in living tissue indicate that it is not just the primary ionizing particle responsible for the bulk of the radiation damage, but also secondary species generated by the ionizing particle. There is much interest in how these secondary particles, commonly electrons, interact with bio-molecules and in particular DNA.

In this thesis, I report relative triple differential cross section measurements for the electron impact ionization of formic acid, tetrahydrofuran and thymine. Formic acid can be considered one of the simplest building blocks for biological systems, particularly in the formation of glycine and amino acids. Tetrahydrofuran is a simple ring structure that can be used as a good approximation to the sugar component of the deoxyribose backbone. Thymine, together with cytosine, guanine and adenine, are the DNA bases and their interactions with electrons are considered to be of great importance. Single differential cross sections for elastic electron interactions with cytosine and thymine are also reported.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Christopher J. Colyer and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where reference has been made in the text.

I give consent for this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Christopher J. Colyer March 4th 2011

Acknowledgements

There are many different organisations that have supported me during my PhD for the last four years that I would like to acknowledge. I would also like to take this opportunity to acknowledge a number of different people, who without their support and assistance this thesis would not be possible.

Firstly I would like to acknowledge the financial support of an Australian Postgraduate Award and further financial support from the Centre for Antimatter-Matter Studies. A big thank you to all the members of the Centre for Antimatter-Matter Studies for many scientific discussions, a host of different professional development opportunities and the opportunity to work with so many different, motivated people who have a common interest. I would also like to acknowledge the many people that I have collaborated with over the last four years. In no particular order, thank you to Igor Bray, Gustavo García, Friedrich Hanne, Don Madison, Ola Al-Hagan and Christophe Champion.

I would like to acknowledge the assistance of the mechanical and electronic staff at the University of Adelaide. Thanks to Blair Middlemiss, Trevor Waterhouse and Neville Wild, and a very special thank you to Peter Apoefis who has been absolutely instrumental in the operation of the laboratory. I would personally like to acknowledge the assistance of the staff of the Flinders University electronics workshop, in particular Bill Drury, Wayne Peacock and John Pesor, for being the only people who could fix a series of very troublesome power supplies. Thank you also to Prof. Michael Brunger for helping me to skip the queue to get work done.

I would like to thank the members of the Laser Lab initially for their hospitality, and later for their friendship. I would personally like to thank Sam Wallace, Mable Fong and Alex Gentleman, all of whom are PhD students who didn't necessarily start at the same time as I but who will hopefully all finish at the same time! Thank you to my co-workers over the past four years: Dr. Mark Stevenson, Dr. Leigh Hargreaves and Dr. Susan Bellm. Thank you for helping me, educating me and treating me as an equal. I wish you all the very best in your future endeavours.

I would like to thank my associate supervisor, Prof. Jesper Munch for providing administrative advice and support to myself and the other members of my research group, at a university to which we were all very new. Thank you to all the staff and students of the School of Chemistry and Physics for your friendship and support.

I would like to give a very special thank you to my principal supervisor, Prof. Birgit Lohmann. She has not only been a brilliant supervisor who has had to deal with challenging workloads and circumstances of her own and also those of her final student, she has also become a trusted friend. Thank you for the opportunity to work with you, which was a result of good luck rather than good planning, and for all the other opportunities that came with it. It has been a pleasure, and I hope you find success and fulfilment in your new role.

Finally, I would like to acknowledge the love and support of my family. To Kate, my wife, and Melanie, my daughter, I dedicate the publication of this thesis to you.

List of Abbreviations

1CW	One Centre Coulomb Wave
ADC	Analogue-to-Digital Convertor
BBK	Branner, Briggs and Klar
BNC	Bayonet Neill-Concelman
CEM	Channel Electron Multiplier
CF	Conflat
CFD	Constant Fraction Discriminator
СРЕ	Correlation, Polarization and Exchange
DAQ	Data Acquisition
DDCS	Double Differential Cross Section
DEA	Dissociative Electron Attachment
DNA	Deoxyribose Nucleic Acid
DS3C	Dynamic Screening of Three Two-Body Coulomb Interactions
DSB	Double Strand Breaks
DWBA	Distorted-Wave Born Approximation
EMS	Electron Momentum Spectroscopy
FBA	First Born Approximation
FBA-TCC	First Born Approximation-Two Centre Continuum
FWHM	Full Width at Half Maximum
НОМО	Highest Occupied Molecular Orbital
IAM	Independent Atom Method
ICS	Integral Cross Section
LUMO	Lowest Unoccupied Molecular Orbital
M3DW	Molecular Three-Body Distorted-Wave

MAC	Magnetic Angle Changer
МСР	Microchannel Plate
MTCS	Momentum Transfer Cross Section
NI	National Instruments
NIM	Nuclear Instrumentation Module
OAMO	Orientation Averaged Molecular Orbital
OFHC	Oxygen-Free High Conductivity
PCI	Post Collision Interaction
PSD	Position Sensitive Detector
PTFE	Polytetrafluoroethylene
PWIA	Plane Wave Impulse Approximation
RNA	Ribose Nucleic Acid
SBR	Signal-to-Background Ratio
SCAR	Screening Corrected Additivity Rule
SDCS	Single Differential Cross Section
SS	Stainless Steel
SSB	Single Strand Breaks
TAC	Time-to-Amplitude Convertor
TC	Thermocouple
TDCS	Triple Differential Cross Section
THF	Tetrahydrofuran
TTL	Transistor-Transistor Logic

List of Figures

Figure 1.1: Loss of supercoiled DNA	11
Figure 1.2: Example charged particle track structure	12
Figure 2.1: Example elastic integral cross section	18
Figure 2.2: Example elastic SDCS	19
Figure 2.3: The hierarchy of cross sections	21
Figure 2.4: An illustration of a SDCS	23
Figure 2.5: Example DDCS	25
Figure 2.6: Momentum transfer vector diagram	26
Figure 2.7: Symmetric kinematic arrangements	27
Figure 2.8: Asymmetric kinematic arrangements	28
Figure 2.9: Example TDCS in coplanar symmetric geometry	29
Figure 2.10: Example TDCS in non-coplanar symmetric geometry	30
Figure 2.11: Example TDCS in non-coplanar symmetric (intermediate plane) geometry.	30
Figure 2.12: Example TDCS in coplanar asymmetric geometry	32
Figure 2.13: s-type and p-type momentum profiles	33
Figure 2.14: Example TDCS in coplanar costant mutual angle geometry	34
Figure 3.1: External photograph of the vacuum chamber	36
Figure 3.2: Photograph of the electronics racks	38
Figure 3.3: Scale diagram of the molecular beam oven	40
Figure 3.4: Schematic diagram of the cold finger	41
Figure 3.5: Schematic diagram of the electron gun	43
Figure 3.6: A cylindrical lens system	44
Figure 3.7: Photograph of the (e, 2e) spectrometer's internal components	45
Figure 3.8: Schematic diagram of the hemispherical electrostatic energy analysers	45
Figure 3.9: Electron trajectories through a hemispherical analyser	47

Figure 3.10: Cross section of a channel electron multiplier	49
Figure 3.11: Fast timing electronics	50
Figure 3.12: Example of a coincidence timing spectrum	52
Figure 3.13: Schematic diagram of the scattering volume	57
Figure 3.14: Primary argon Auger lines measured by the scattered analyser	59
Figure 3.15: Example of a measured helium binding energy spectrum	61
Figure 3.16: Argon 60 eV elastic SDCS	62
Figure 3.17: Scattered analyser DDCS	63
Figure 3.18: Helium DDCS for 10 eV ejected electrons.	64
Figure 3.19: Helium TDCS calibration measurement	65
Figure 4.1: The role of formic acid	68
Figure 4.2: Formic acid binding energy spectrum	70
Figure 4.3: Formic acid momentum density profiles	71
Figure 4.4: Plot of TDCS for formic acid with $E_0=100 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-10^{\circ}$	73
Figure 4.5: Plot of TDCS for formic acid with $E_0=100 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-15^{\circ}$	73
Figure 4.6: Plot of TDCS for formic acid with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-5^{\circ}$	74
Figure 4.7: Plot of TDCS for formic acid with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-10^{\circ}$	74
Figure 4.8: Plot of TDCS for formic acid with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-15^{\circ}$	75
Figure 4.9: Centre of mass diagram	77
Figure 5.1: Location of THF in DNA	80
Figure 5.2: THF binding energy spectrum	83
Figure 5.3: THF momentum density profiles	85
Figure 5.4: Polar plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-5^{\circ}$	87
Figure 5.5: Polar plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-10^{\circ}$	88
Figure 5.6: Polar plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-15^{\circ}$	88
Figure 5.7: Comparison of recoil peak magnitudes	89
Figure 5.8: Cartesian plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-5^{\circ}$	90
Figure 5.9: Cartesian plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-10^{\circ}$	91
Figure 5.10: Cartesian plot of TDCS for THF with $E_0=250 \text{ eV}$, $E_b=10 \text{ eV}$, $\theta_a=-15^{\circ}$	91
Figure 5.11: Comparison of HOMOs for THF and methane	93
Figure 6.1: The chemical structure of the DNA double helix	96
Figure 6.2: Chemical structure of the pyrimidine and purine nucleobases	97
Figure 6.3: Vapour pressure of the nucleobases	99
Figure 6.4: Cytosine elastic SDCSs	100
Figure 6.5: Thymine elastic SDCSs	103

Figure 6.6: Thymine binding energy spectrum	.105
Figure 6.7: Polar plot of TDCS for thymine with $E_0=250 \text{ eV}$, $E_b=20 \text{ eV}$, $\theta_a=-10^{\circ}$.108
Figure 6.8: Polar plot of TDCS for thymine with $E_0=250 \text{ eV}$, $E_b=20 \text{ eV}$, $\theta_a=-15^{\circ}$.109
Figure 6.9: Comparison of binary peak shapes	.110
Figure 6.10: Cartesian plot of TDCS for thymine with $E_0=250 \text{ eV}$, $E_b=20 \text{ eV}$, $\theta_a=-10^{\circ}$.111
Figure 6.11: Cartesian plot of TDCS for thymine with $E_0=250 \text{ eV}$, $E_b=20 \text{ eV}$, $\theta_a=-15^{\circ}$.112

List of Tables

Table 3.1: Main Auger lines of argon in the energy range 200-208 eV	59
Table 4.1: Formic acid binding energies.	70
Table 5.1: THF binding energies	
Table 5.2: Polynomial fit parameter values for THF	87
Table 6.1: Thymine binding energies	
Table 6.2: Polynomial fit parameter values for thymine	
Table 8.1: Experimental data for formic acid binding energy spectrum	119
Table 8.2: Experimental data for formic acid TDCSs	121
Table 8.3: Experimental data for THF binding energy spectrum	121
Table 8.4: Experimental data for THF TDCSs	
Table 8.5: Experimental data for thymine binding energy spectrum	
Table 8.6: Experimental data for thymine TDCSs	124
Table 9.1: Experimental data for cytosine elastic SDCSs	126
Table 9.2: Experimental data for thymine elastic SDCSs	127