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UBoost: Boosting with the Universum
Chunhua Shen, Peng Wang, Fumin Shen, Hanzi Wang

Abstract—It has been shown that the Universum data, which
do not belong to either class of the classification problem
of interest, may contain useful prior domain knowledge for
training a classifier [1], [2]. In this work, we design a
novel boosting algorithm that takes advantage of the available
Universum data, hence the name UBoost. UBoost is a boosting
implementation of Vapnik’s alternative capacity concept to the
large margin approach. In addition to the standard regulariza-
tion term, UBoost also controls the learned model’s capacity
by maximizing the number of observed contradictions. Our
experiments demonstrate that UBoost can deliver improved
classification accuracy over standard boosting algorithms that
use labeled data alone.

Index Terms—Universum, kernel methods, boosting, column
generation, convex optimization.

I. INTRODUCTION

Universum inference means training a classifier with the
help of Universum examples—the examples that do not belong
to either of the classes of interest.

Suppose that, apart from the labeled training examples, we
are given a set of unlabeled examples, termed Universum
examples, which are collected from the same domain with
the labeled examples and we know that these unlabeled
data do not belong to either class. Now let us assume that
all possible decision functions are categorized into a finite
number of equivalence classes Γ1, . . . ,Γl. Functions in the
same equivalence classes have the same training error, namely
the empirical risk. Based on the maximal contradiction on
Universum principle introduced by Vapnik and his colleagues
[1], [2], here our goal is to find an equivalence class which
has a large number of contradictions for training boosting
classifiers. The contradiction happens when two functions in
the same equivalence class have different signed outputs on a
sample from the Universum.
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Weston et al. [2] proposed an algorithm, termed Universum
support vector machines (USVM), which has a regularization
term for the Universum in addition to the standard SVM ob-
jective function. Their experimental results show that USVM
outperforms those SVMs without considering Universum data,
e.g., the standard SVM algorithm. Sinz et al. [3] analyzed the
behavior of USVM and show that USVM makes the normal
of the decision plane orthogonal to the principal directions of
the Universum data. Then they present a least squares version
of the USVM algorithm, which has a closed-form solution,
and discuss the relationship with Fisher discriminant analysis
(FDA) and oriented principal component analysis (OPCA).
Zhang et al. [4] proposed a graph based semi-supervised
algorithm, which learns from the labeled data, unlabeled data
and the Universum data simultaneously. Besides experiments
on standard benchmark data sets, there are also some computer
vision applications that utilize Universum data, such as human
pose recognition [5], [6] and gender classification [7]. Note
that as pointed out in [2], Universum training data should con-
tain the information about the domain of the learning problem
of interest. An example is handwritten digit recognition (see
the experiments in Section III). In this case, the Universum
data can be handwritten symbols other than the digits to be
classified from the same data set.

Inspired by the success of USVM, in this work, we propose
an boosting algorithm, referred to as UBoost. UBoost learns
a strong classifier, with a minimal classification error on
labeled data and a maximal contradiction on the Universum
data. Given the optimization problem, we derive a meaningful
Lagrange dual formulation. Based on the derived dual prob-
lem, we are able to iteratively solve the original optimization
problem using the column generation technique from convex
optimization [8]. Therefore, compared with standard boosting
algorithms such as AdaBoost [9], the proposed UBoost has the
following compelling properties.

• Besides labeled data from two classes, UBoost exploits
Universum data as well. Improved classification accuracy
is expected over conventional boosting algorithms that do
not use Universum data.
To our knowledge, this is the first boosting implemen-
tation of Vapnik’s maximal contradiction on Universum
principle.

• Inspired by the work of [10], we use column generation
to facilitate the optimization of the formulated UBoost
problem. So the proposed UBoost is totally corrective in
the sense that at each iteration, the coefficients of all the
selected weak classifiers are updated. In contrast, stage-
wise boosting like AdaBoost only updates the selected
weak classifier’s coefficient at current iteration, usually
leading to slower convergence.
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Our experiments verify the usefulness of Universum data for
classification problems, which confirms the conclusion on
USVM [2]. Before proceeding, we introduce some notation
used in the sequel.

Boosting algorithms have been extensively studied in the
literature [9], [10], [11], [12], [13], [14]. Boosting refers
to a method for learning an accurate classifier by linearly
combining a set of only moderately accurate weak classifiers.
Similar to SVM, standard boosting is often trained on labeled
data by minimizing a convex surrogate of the non-convex
Bayes zero-one loss. Typically, the exponential loss (as in
AdaBoost), logistic loss (LogitBoost) and hinge loss (LPBoost
[15]) are employed. It has been shown in [16] that stage-wise
boosting can be viewed as coordinate descent optimization in
the functional space. Recently, Shen and Li [10] demonstrated
that AdaBoost, LogitBoost and boosting with generalized
hinge loss can all be seen as entropy maximization in the
dual. They explicitly established the dual problems of a class
of boosting algorithms. We follow this line of research in the
sense that we also explicitly formulate the optimization prob-
lem using the `1 norm regularization and derive the Lagrange
dual problem. Based on the dual problem, we design a new
boosting algorithm using column generation. As mentioned,
the main difference is that the proposed UBoost considers the
Universum data and therefore the optimization problem does
not fall into the framework of [10].

The remaining content is organized as follows. In Section
II, we discuss the proposed UBoost algorithm. In Section III,
we show experiments of UBoost on various data sets. We
demonstrate that the Universum data indeed help improve the
test accuracy in general. We conclude this work in Section IV.

Notation The following notation is used throughout this
paper. Suppose that we are given a set of M labeled ex-
amples {(x1, y1), . . . , (xM , yM )} ∈ Rd × {1,−1}, and a
set U = {x′1, . . . ,x′N} ∈ Rd called the Universum, which
contains N unlabeled examples. H is the entire set of possible
weak classifiers, i.e., H = {hk(·) : x→ {1,−1}, k = 1, . . . }.
Note that the dimension of H can be infinite. Boosting
algorithms learn a strong classifier F (x) =

∑
k wkhk(x),

where w ≥ 0 is the coefficients of weak classifiers. We define
the matrix H ∈ ZM×K such that it stores the predictions of
all weak classifiers over labeled examples; i.e., Hik = hk(xi).
Likewise, the matrix H ′ ∈ ZN×K is defined such that its
(j, k)-th entry is hk(x′j). We use Hi = [Hi1 Hi2 · · · Hik · · · ]
to denote the i-th row of H , which is the output vector of all
weak classifiers on example xi. Analogously, H ′j denotes the
j-th row of H ′.

II. THE UBOOST ALGORITHM

We present the main results in this section. As explained
previously, the main idea here is to exploit the unlabeled
Universum data that do not belong to either class of the
training data. The intuition is that these Universum data
contain information about the problem domain of interest and
this information can be used to train an improved boosting
classifier.

A. Motivation

Weston et al. [2] presented the algorithm USVM, which
uses the ε-insensitive loss for Universum:

1

2
‖w‖22 + C

M∑
i=1

ϕ[yifw,b(xi)] +D

N∑
j=1

ρ[fw,b(x
′
j)], (1)

where ϕθ[t] = max{0, θ − t} is the hinge loss function, and
ρ[t] = ϕ−a[t] + ϕ−a[−t] is the ε-insensitive loss (see Figure
1). fw,b(x) = w>Φ(x) + b is the learned classifier. Φ(·) is
the feature mapping function, which may only be available
through its inner product. Instead of training an SVM with
the Universum, we are interested in designing a boosting
algorithm with Universum.

Collins et al. [17] showed that AdaBoost is equivalent to
minimize the exponential loss with regularization. Shen and
Li presented an `1-norm regularized version of the standard
AdaBoost, named AdaBoost-CG [10], which can be expressed
as:

min
w

1

M

M∑
i=1

exp(−yiF (xi)) +D1>w, s.t. w ≥ 0, (2)

where D controls the trade-off between the exponential loss
and the regularization term. Of course other regularization
functions may be used here.

Our goal is to find an optimal w, which maximizes margins
for labeled data and simultaneously minimizes the absolute
values of margins for Universum data. The second loss plays
the role of maximizing the observed contradictions, which
helps to control the generalization capacity of the learned
machine as shown in [1]. In this work, we mainly use the
`2 loss for the Universum data for its simplicity. Note that we
can also use other loss functions such as the ε-insensitive loss.

Similar to AdaBoost-CG, we add an `2 loss for the Univer-
sum data into the optimization problem (2), which implements
UBoost:

min
w

1

M

M∑
i=1

exp(−yiF (xi)) +
C

2N

N∑
j=1

F (x′j)
2

+D1>w,

s.t. w ≥ 0. (3)

Here F (xi) = Hiw is the learned strong classifier.
Figure 1 illustrates the loss functions that can be used in

USVM and UBoost. The hinge loss and the exponential loss
can be applied on the margins of labeled data (i.e., yiF (xi),
i = 1, 2, . . . ,M ), while the ε-insensitive loss or the `2 loss
can be applied on the decision values of the Universum
data (i.e., F (x′j), j = 1, 2, . . . , N ). Intuitively, when the ε-
insensitive loss or the `2 loss is applied to the Universum
data, it encourages the decision values on the Universum data
to stay close to the decision hyper-plane.

It is difficult to directly optimize the problem (3) because we
do not have access to all the weak classifiers in most cases. In
other words, the matrix H is unknown. Even if we do know all
the weak classifiers, usually the number of all possible weak
classifiers is extremely large, which corresponds to the variable
w with exponentially large dimensions. Next, we derive a
meaningful Lagrange dual problem of (3) and show how to
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Fig. 1: Four loss functions mentioned in this work. The hinge loss and
the exponential loss decrease monotonously with the margin and can be
applied on labeled data. The ε-insensitive loss and the `2 loss penalize
decision values with large absolute values.

use column generation to approximately solve (3) based on
the derived dual.

B. The Lagrange dual of UBoost

First, we introduce two auxiliary variables z ∈ RM and
z′ ∈ RN and rewrite (3), where zi = −yiHiw and z′j = H ′jw:

min
w

1

M

M∑
i=1

exp(zi) +
C

2N

N∑
j=1

z′j
2

+D1>w,

s.t. zi = −yiHiw,∀i; z′j = H ′jw,∀j; w ≥ 0.

(4)

It is these two sets of auxiliary variables that lead to an
interesting dual problem as we show next. Note that given
a primal optimization problem, one can have many different
forms of dual problems—not all of these dual problems can
lead to a column generation based optimization strategy.

The Lagrangian L(·) associated with the problem (4) is

L(w, z, z′︸ ︷︷ ︸
primal

,λ,u,v︸ ︷︷ ︸
dual

) =
1

M

M∑
i=1

exp zi +
C

2N

N∑
j=1

z′j
2

+D1>w

− λ>w −
M∑
i=1

ui(zi + yiHiw)−
N∑
j=1

vj(z
′
j −H ′jw). (5)

Then the dual function is

g(λ,u,v) = inf
w,z,z′

L(w, z, z′,λ,u,v) =

− sup
z

(
u>z − 1

M

M∑
i=1

exp zi

)
− sup

z′

(
v>z′ − C

2N

N∑
j=1

z′j
2
)

+ inf
w

must be 0︷ ︸︸ ︷(
D1> − λ> −

M∑
i=1

uiyiHi +

N∑
j=1

vjH
′
j

)
w,

= −
M∑
i=1

ui(log(Mui)− 1)− C

2N

N∑
j=1

v2j . (6)

By collecting all the constraints from the Lagrangian equation
and eliminating λ, we obtain the dual problem of (4) as
follows:

max
u,v

−
M∑
i=1

ui(log(Mui)− 1)− C

2N

N∑
j=1

v2j

s.t.

M∑
i=1

uiyiHi −
N∑
j=1

vjH
′
j ≤ D1>.

(7)

Since the primal problem (4) is convex and strictly feasible,
and the Slater’s condition holds, strong duality holds between
problems (4) and (7). This guarantees that the optimal objec-
tive value of (4) is equal to the optimal objective value of
(7).

Based on the KKT optimality conditions [8], the gradient
of Lagrangian over primal and dual variables must vanish at
the optimal point. We can establish the relationship between
the optimal primal variables and the optimal dual variables:

u∗i =
1

M
exp z∗i , v∗j =

C

N
z′∗j . (8)

These equalities enable us to compute the optimal dual vari-
ables from the primal variables.

C. Optimization of UBoost using column generation

Since the total number of possible weak classifiers is
generally very large (even infinite), we have difficulties to
directly solve the problem (4) or its dual (7). To tackle this
difficulty, an optimization technique called column generation
can be applied to the dual problem. As an iterative method,
column generation adds the most violated constraint to the
restricted master problem at each iteration. Therefore, at each
iteration we solve a relaxed version of the original problem.

For UBoost, each constraint in the dual problem corresponds
to a selected weak classifier in the primal. In theory, any
violated constraint can be added into the master problem in the
iterative procedure of column generation. However, in practice,
to speed up the convergence of column generation, we use the
following criterion to find the most violated constraint to add
into the master problem, namely the best weak classifier at
each round:

h?(·) = argmax
h(·)

 M∑
i=1

uiyih(xi)−
N∑
j=1

vjh(x′j)

 . (9)

Algorithm 1 summarizes the framework of column gener-
ation for UBoost. At each iteration, we can solve the primal
problem or the dual problem, which are equivalent. In our case,
the primal problem (3) is a smoothed convex minimization
problem with simple non-negativeness constraints, and the
dual problem is a complicated nonlinear concave maximization
problem with linear constraints. Usually interior point methods
are used to solve problems like (7) [8]. So in practice, we
employ L-BFGS-B [18] to solve the primal problem (3), which
is much faster than to solve the dual problem.

L-BFGS-B, which is a quasi-Newton algorithm, can be
used to optimize a bound-constrained convex problem. This
tool is efficient and use less memory to store the value and
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Algorithm 1 Column generation for UBoost.
Input:
• A set of labeled examples {(x1, y1), . . . , (xM , yM )}, and a set of

unlabeled Universum examples {x′1, . . . ,x′N}.
• Termination threshold ε > 0;
• Regularization parameter C and D;
• Maximum iteration kmax (optional) .

Initialization:
1) k = 0 (no weak classifiers selected);
2) w = 0 (all primal coefficients are zeros);
3) ui =

1
M

, i = 1, . . . ,M ; vj = 1
N

, j = 1, . . . , N .
while true do

1) Find a new weak classifier h?(·) by solving (9);
2) Check the termination condition:

if
∑M

i=1 uiyih(xi)−
∑N

j=1 vjh(x
′
j) < D + ε,

then break;
3) Add h?(·) to the restricted master problem, which

corresponds to a new constraint in the dual;
4) Solve the dual problem (7) or the primal problem (4) to

obtain updated u, v and w.
5) Increment weak classifiers k = k + 1 ;
6) (optional) if k ≥ kmax, then break.

Output: The final classifier is F (x) =
∑

k wkhk(x).

gradient of the objective function. Since the optimal points
for adjacent iterations should not be far away, the results of
the last iteration is used as a “warm-start” initialization point
for the current iteration. In our experiments, this warm-start
dramatically reduces the computation time.

We can see that the primal variable w is the weak classifier
weights, while z stands for the margins of labeled exam-
ples and z′ stands for the “absolute margins” of unlabeled
examples. Furthermore, the dual variables u and v are the
weights for labeled and unlabeled examples, respectively.
Similar to standard boosting algorithms like AdaBoost, the
weights measure how important they are for selecting the
best weak classifier at each iteration. Different from standard
boosting algorithms, the weight of the Universum data v can
be negative. So in UBoost, the magnitude of vj , which shows
how much a particular Universum datum deviates from the
decision hyper-plane, is the importance measure.
ε-insensitive loss Here we discuss the case that ε-insensitive

loss is used on the Universum data. The primal problem can
be written as:

min
w,η,ξ

1

M

M∑
i=1

exp(zi) +
C

2N

N∑
j=1

(ηj + ξj) +D1>w,

s.t. zi = −yiHiw,∀i;
H ′jw ≤ ε+ ηj ;H

′
jw ≥ −ε− ξj ,∀j;

η ≥ 0, ξ ≥ 0,w ≥ 0.

(10)

The dual problem is

max
u,v,s

−
M∑
i=1

ui(log(Mui)− 1)− ε1>(v + s)

s.t.

M∑
i=1

uiyiHi +

N∑
j=1

(sj − vj)H ′j ≤ D1>.

0 ≤ v ≤ C

2N
;0 ≤ s ≤ C

2N
.

(11)

The column generation technique can be applied as before.
The optimization procedure including the subproblem of find-
ing the most violated constraint is similar to the case of the
square loss. However, now the primal is not a simple convex
optimization anymore—it has a set of linear constraints. So
L-BFGS-B is not applicable. In general, the ε-insensitive loss
is more expensive to solve mainly because it is not smooth. In
this case, we can use interior point methods based solvers such
as Mosek1 to solve the primal problem (or the dual problem),
which outputs both the primal and dual solutions. Therefore, in
our experiments, we have used the square loss for simplicity.

III. EXPERIMENTS

We compare the proposed UBoost algorithm against a few
existing boosting algorithms on various data sets in this
section.

A. Artificial data

We construct two sets of 2-dimensional data to show the
difference between AdaBoost and UBoost, intuitively. The
first data set contains 100 labeled data (50 positive data and
50 negative data) and 100 Universum data. The labeled data
follow the Gaussian distribution with the mean of µ±1,2 = ±0.3
and the standard deviation of σ1,2 = 0.08. The unlabeled data
follow the Gaussian distribution with the mean of µ1,2 = 0 and
the standard deviation of σ1,2 = 0.1. 25 weighted FDA weak
classifiers are learned by AdaBoost and UBoost, respectively.

The second data set contains 1000 labeled data (500 positive
data; 500 negative data) and 1000 Universum data. The
positive data follows Gaussian distribution (N (0, 0.25I)), and
the negative data form a circle with radius 2.0. The Universum
data form a circle with radius 1.3. 200 decision stumps are
learned by AdaBoost and UBoost.

From Figure 2 (a) and (b), we can find that, in both
cases, when the same type and number of weak classifiers
are used, the decision boundaries of AdaBoost seems to
be more complex than UBoost. AdaBoost tends to correctly
classify all the labeled examples, resulting in an over-fitting
decision boundary. However, UBoost try to make a trade-off
between the classification accuracy on labeled data and the
contradictions on the unlabeled data, which prevents it from
overfitting to outliers.

B. Handwritten symbols

In this section, we compare the performances of UBoost
and a few other classifiers including AdaBoost, AdaBoost-
CG [10], LPBoost [15] on the task of handwritten symbols
classification. Three data sets are evaluated: MNIST2, USPS3

and ABCDETC [2]. The advantage of using handwritten
symbols datasets is that, it is easy to obtain a Universum set.
For example, if we use digits “3” and “6” as the labeled data,
then all the other digits can be used as Universum data. Figure
3 shows some samples from these three data sets.

1http://www.mosek.com
2http://yann.lecun.com/exdb/mnist/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass/



SHEN ET AL.: BOOSTING WITH THE UNIVERSUM 5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
AdaBoost

U−Boost

(a) Artificial data (two Gaussians)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 
AdaBoost
U−Boost

(b) Artificial data (circle and pie)

Fig. 2: Decision boundaries learned by AdaBoost and UBoost on artificial
data. Plot (a) shows the result to classify two Gaussian distributed data,
with Gaussian distributed Universum data in the middle of positive and
negative data points. Plot (b) shows the result to classify a circle and a
pie, with the Universum data forming a circle between two classes.

Our experiments are carried out on raw pixel features as
well as pyramid histogram of gradient (PHOG) features4.
The raw pixel features are straightforward but have relatively
weaker performance in most cases. The PHOG feature is a
popular descriptor in computer vision community and shown
to achieve better performance for digit classification [19].

First, normalization is performed on images such that the
`2-norm of raw pixel values is 1. Second, given an input image,
the local gradients of pixels are computed by performing
convolution on the image with oriented derivative filters. For

4The code are downloaded from the authors’ website http://www.cs.
berkeley.edu/∼smaji/projects/digits/

(a) MNIST

(b) USPS

(c) ABCDETC

Fig. 3: Samples from the data sets of MNIST, USPS and ABCDETC.

each pixel, there are two responses in the horizontal and
vertical directions, based on which the magnitude and orien-
tation are calculated. Third, histograms can be constructed for
cells with a pyramid of sizes and half-size overlap. In each
cell, the magnitude of all pixels are aggregated into a set of
orientation bins by linear interpolation between bin centers to
avoid aliasing. The final feature space is concatenated by all
histograms, which are weighted corresponding to cell sizes.

There are a few options to generate gradient histograms,
such as types of filters, signed or unsigned orientation angles
and number of orientation bins. We make the choices which
are reported as the best in [19], namely using the oriented
Gaussian derivative (OGF) filter, signed orientation angle (0-
360) and 12 orientation bins.

The number of weak classifiers for AdaBoost is cross
validated from {100, 200, 500, 1000}. The regularization pa-
rameter of LPBoost (the parameter D in Equation 4 of [15])
is chosen from {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}
using cross validation. There are two parameters C and D in
our universum boosting UBoost. Both of these two parameter
are chosen from candidates {2−17, 2−15, 2−13, 2−11, 2−9,
2−7, 2−5} with cross validation. The pair of parameters with
the highest accuracy on validation set are selected. The UBoost
algorithm is terminated when the stopping criterion is met
or the maximum number of weak classifiers is reached (we
set the maximum number of weak classifiers to 1000 in the
experiments). All the results reported in this section are the
average of 10 independent runs. We have used these setting for
all the experiments in this work. We use decision stumps as
weak classifiers. Decision stump is a single-level decision tree
on single feature dimension, which is the simplest decision
tree.

MNIST The MNIST data set has a set of 28×28 gray-level
images of handwritten digits (0-9). There are 60000 examples
(about 6000 per digit) for training and 10000 examples (about
1000 per digit) for testing.

We construct gradient histograms with cell sizes 14 × 14,
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7×7, 4×4 and weights 1, 2, 4, which span a 2172 dimensional
feature space.

Like the experiments performed in [2], we use digits “5”
and “8” to form a binary classification problem. We randomly
split “5”s and “8”s in the original training set (totally 11272
examples) into the training subset and validation subset with
various sizes (500, 1000, 2000 or 3000 for training and the
1000 for validation), and still use “5”s and “8”s of the original
test set for testing performance. The test set size is 1866.

Weston et al. [2] indicated that digits “3” and “6” are
the most helpful as Universum data to improve classification
performance. Therefore, we use all “3”s and “6”s in the
original training set (totally 12049 examples) as Universum
data.

The results are demonstrated in Table I. UBoost beats
AdaBoost, AdaBoost-CG [10] and LPBoost [15] in all cases
with different features and training sizes. We have compared
our algorithm with two totally corrective boosting methods,
AdaBoost-CG and LPBoost, to justify whether the improve-
ment is brought by the totally corrective optimization. Actually
on this data set, AdaBoost-CG and LPBoost perform slightly
worse than AdaBoost. It confirms the usefulness of Universum
data. More experiments in the sequel affirm this observation.
As an illustrative comparison, RBF kernel USVM’s results
reported in [2] are 1.60%, 1.10%, 0.75%, 0.55% for training
size 500, 1000, 2000, 3000 respectively. So our UBoost with
raw pixels is worse than these results but UBoost with PHOG
performs better than RBF USVM.

We run one more experiment to compare boosting with
USVM. See Table II for details. For this experiment, the
Universum data are generated by random averaging of the
positive and negative data. Random averaging means that we
create an artificial image by randomly selecting a pair of
training data points, one for each class; and then constructing
the mean of these two data points. We have reported the results
of USVM with both linear and RBF kernel. UBoost performs
better than linear USVM but worse than nonlinear USVM,
which is expected. We again observe that UBoost performs
better than conventional boosting.

USPS The USPS dataset contains 7291 examples for train-
ing and 2007 for test, in which each example is a 16 × 16
graylevel image of one digit.

Likewise with MNIST, we run experiments to classify “5”
and “8” with “3” and “6” as Universum data. In this setup,
there are 1098 labeled training examples, 326 labeled test
examples and 1322 Universum examples.

The cell sizes for gradient histograms are 8× 8, 4× 4 and
2 × 2, and the weights with respected to these sizes are 1, 2
and 4. Finally, 2688-dimensional features are generated.

First, we randomly sample 100, 300, or 600 examples
from the original training set for training and 400 examples
are for validation. All the 1322 examples of digits “3” and
“6” are used as Universum data. Both raw pixel feature and
PHOG feature are evaluated individually. Table III shows
the results for this setup, and in most cases, our algorithm
achieves better performance over AdaBoost, AdaBoost-CG
and LPBoost. Especially on the PHOG feature, when the
training set size is small, the improvement is significant.

Second, we use the same training data size and different
Universum data sizes (100, 300, 500, 1000, 1322). Only the
PHOG feature is used for this setup. From Table IV, we
can see that, UBoost outperforms the other three boosting
algorithms in all cases. On the other hand, the performance of
UBoost improves with growing Universum data size.

ABCDETC The ABCDETC data set used in [2] collects
19646 images of 78 common symbols, including digits (“0-
9”), uppercase letters (“A-Z”), lowercase letters (“a-z”), and
other symbols (“, . ! ? ; : = − + / ( ) $ % ” @”).
Those symbols are written in pen by 51 subjects (5 examples
per symbol per subject), and then saved as 100× 100 binary
images.

The original images are shrunk into 32×32 graylevel images
by bilinear interpolation in nearest 2× 2 neighborhood (anti-
aliasing is performed). Gradient histograms are computed with
cell sizes 16× 16, 8× 8, 4× 4 and corresponding weights 1,
2, 4, making 2688 feature dimensions.

In this experiment, we try to classify lower-case letters “a”
and “b”, with various training/validation/test splits (20, 50,
100, 150 or 200 for training, 200 for validation and the rest
for test) and Universum data sets (digits, uppercase letters,
lowercase letters without “a” and “b”, other symbols). Since
we use all possible examples to construct Universum data, the
four Universum data sets’ sizes are not the same: 2544, 6569,
5975 and 4049 respectively.

Table V reports the results. Again we can find that, UBoost
outperforms AdaBoost and other boosting in most cases.

Experiments on these three handwritten digits recognition
tasks clearly show the effectiveness of the proposed UBoost
algorithm. We can draw the conclusion that properly designed
Universum data indeed help to improve the classification
accuracy in most cases. This finding is consistent with the
results in USVM [2].

C. Gender classification using face images

It has been shown in [7] that Universum data help in the
context of gender classification using SVM. Here we follow
the experiment protocol of [7] to verify if Universum data
improve the performance of UBoost for gender classification.
As in [7], we collect face images of 32 male and 20 female,
10 face images per person5. The experiments are conducted
on the original data without any normalization or histogram
equalization. Each images is converted to 256-level gray-
scale and down-sampled to 45 × 50 pixels to form a 2250
dimensional vector. See [7] for details about this data set.

We evaluate the performance of our method on this data set
with three different settings. First, we adopt the experiment
setup of [7], in which 13 subjects are randomly selected
for training, and the rest 39 subjects for testing. For each
individual, three face images are randomly selected—one for
training, one for cross validation and the third one for testing.
Therefore, the size of the training and validation set is 13 and
test size is 39. Second, For each individual, three images are
randomly selected for training, validation and testing. So the
size of training, validation and testing set are all 52. Third,

5http://cswww.essex.ac.uk/mv/allfaces/faces94.html
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TABLE I: Classification error rates (standard deviations) in percentage on the MNIST data. Digits 5 and 8 are used as labeled data, and digits 3
and 6 as Universum data. The validation size is 1000.

Image feature Method Training data size
500 1000 2000 3000

Raw pixels

AdaBoost 5.58 (0.48) 4.57 (0.46) 3.88 (0.41) 3.26 (0.41)
AdaBoost-CG 5.84 (0.53) 4.68 (0.36) 3.87 (0.27) 3.94 (0.45)
LPBoost 6.61 (1.02) 7.80 (3.81) 6.51 (0.82 6.31 (0.84)
UBoost 5.39 (0.66) 4.36 (0.34) 3.31 (0.29) 3.10 (0.21)

PHOG

AdaBoost 0.46 (0.12) 0.45 (0.10) 0.27 (0.06) 0.14 (0.05)
AdaBoost-CG 0.67 (0.20) 0.35 (0.14) 0.30 (0.10) 0.30 (0.11)
LPBoost 0.92 (0.24) 0.71 (0.59) 0.66 (1.80) 0.42 (0.24)
UBoost 0.28 (0.09) 0.24 (0.08) 0.24 (0.13) 0.13 (0.07)

TABLE II: Comparison of UBoost and USVM on the MNIST data set
using raw pixels. Samples of handwritten digits 5 and 8 are used for
classification. Each sample is represented as a 784 dimensional vector.
We set the training set size as 1000, validation set size as 1000 and test
set size as 1866. 1000 Universum samples are generated via random
averaging.

Method
AdaBoost 4.57 (0.46)
AdaBoost-CG 5.01 (0.25)
LPBoost 5.84 (0.47)
UBoost 4.46 (0.33)
USVM (Linear) 4.62 (0.37)
USVM (RBF) 1.20 (0.19)

TABLE III: Classification error rates (standard deviations) in percentage
on the USPS data with different training data sizes. The validation size
is 400. Digits “5” and “8” construct labeled data, and the Universum data
are made up of digits “3” and “6”.

Feature Method Training data size
100 300 600

Raw pixels

AdaBoost 5.82 (0.90) 4.57 (1.01) 3.96 (0.59)
AdaBoost-CG 6.84 (1.05) 4.88 (0.82) 4.08 (0.66)
LPBoost 6.90 (1.07) 4.91 (1.22) 4.42 (1.01)
UBoost 5.82 (0.43) 4.51 (1.09) 3.65 (0.99)

PHOG

AdaBoost 3.22 (1.33) 1.75 (0.46) 1.69 (0.39)
AdaBoost-CG 3.62 (1.26) 1.90 (0.50) 1.90 (0.52)
LPBoost 3.37 (1.26) 2.09 (0.50) 2.15 (0.50)
UBoost 1.90 (0.40) 1.10 (0.30) 1.44 (0.96)

two images are randomly selected from each individual. So
the size of training, validation and testing set are all 104. The
experiment results are summarized in Table VI. The mean
and standard deviation are reported on 10 independent runs.
Universum samples are generated from the training samples by
random averaging of pairs of male and female face images, as
shown in Figure 4. Clearly, our UBoost outperforms AdaBoost,
AdaBoost-CG and LPBoost in most cases, especially when the
training size is small. Again, we see that UBoost performs
better than the two totally corrective boosting algorithms,
too. As a comparison, the best error rate of USVM in [7]
is 10.8% ± 2.4% using 13 training examples. Note that the
selected face subjects in their work can differ from ours.

D. Action recognition

In this section we test our algorithm on the KTH human
action recognition data set [20]. The KTH data set consists
of 2387 video sequences. They can be categorized into six
types of human actions including boxing, hand-clapping,
jogging, running, walking and hand-waving. These actions
are performed by 25 subjects and each action is performed

Fig. 4: Examples of female and male faces and the corresponding
Universum sample obtained by averaging the two images that have
different class labels.

multiple times by the same subject. The length of each video
is about four seconds at 25 fps, and the resolution of each
frame is 160×120. We randomly split all the video sequences
based on the subjects into 10 pairs, each of which contains all
the sequences from 16 subjects for training and those from
the remaining 9 subjects for testing. The space-time interest
points (STIP) [21] are extracted from each video sequence and
used to represent the visual content. The descriptors extracted
from all the training sequences are clustered into 4000 clusters
using k-means algorithm. These cluster centers form the visual
codebook. Accordingly, each video sequence is characterized
by a 4000-dimensional histogram indicating the occurrence
of each visual word in this sequence. To achieve a compact
and discriminative representation, the visual word merging
algorithm, agglomerative information bottleneck (AIB) [22],
is applied to merge the histogram bins to reduce the dimen-
sionality. Finally, each video sequence is represented by a
{50, 100, or 200}-dimensional histogram.

In this experiment, we classify the hand-clapping and hand-
waving sequences as the positive and negative classes, respec-
tively. Out of about 1500 training samples and 850 testing
samples, we randomly selected 100 samples for both training
set and testing set. The training set are then divided into
training subset and validation subset with both 50 samples. We
generate about 250 Universum samples for UBoost from all
the training samples by random averaging the extract features.

We compare different boosting algorithms on three different
dimensions (50, 100, 200), and the results of 10 independent
runs are reported in Table VII.

As we can see, UBoost is the best among the compared
boosting methods. This is consistent with the previous results
on other data sets. We also find that AdaBoost, AdaBoost-
CG and LPBoost perform similarly in terms of test accuracy.
In [10] it is shown that the totally corrective AdaBoost-
CG converges much faster than AdaBoost, but there is no
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TABLE IV: Classification error rates (standard deviations) in percentage on the USPS data set using PHOG features with different Universum
data sizes. The training size is 500 and validation size 400. Digits “5” and “8” are the labeled data; the Universum data are digits “3” and “6”. For
AdaBoost, AdaBoost-CG and LPBoost, the results do not change because no Universum data are used.

Method Universum data size
100 300 500 1000 1322

AdaBoost 1.87 (0.60) 1.87 (0.60) 1.87 (0.60) 1.87 (0.60) 1.87 (0.60)
AdaBoost-CG 1.93 (0.65) 1.93 (0.65) 1.93 (0.65) 1.93 (0.65) 1.93 (0.65)
LPBoost 1.93 (0.56) 1.93 (0.56) 1.93 (0.56) 1.93 (0.56) 1.93 (0.56)
UBoost 1.66 (0.58) 1.53 (0.20) 1.44 (0.63) 1.289 (0.35) 1.17 (0.52)

TABLE V: Classification errors (standard deviations) in percentage on ABCDETC dataset. Lowercase letters “a” and “b” are used as labeled
data. Four types of Universum data are evaluated, which are digits (0-9), uppercase letters (A-Z), lowercase letters (c-z), and other symbols
(, . ! ? ; : = − + / ( ) $ % ” @ ).

Feature Method Type of Universum data Training data size
20 50 100 150 200

Raw pixels

AdaBoost None 44.53 (6.49) 38.96 (5.4) 31.87 (2.84) 30.63 (3.83) 27.61 (3.68)
AdaBoost-CG None 45.29 (5.72) 39.38 (5.25) 34.16 (3.09) 33.65 (3.96) 29.36 (5.54)
LPBoost None 43.81 (5.46) 38.46 (5.07) 32.39 (1.60) 31.00 (4.51) 29.17 (4.85)

UBoost

Lowercase 39.83 (2.63) 35.10 (4.61) 30.24 (2.42) 28.99 (3.80) 26.42 (3.37)
Uppercase 41.59 (2.79) 37.68 (2.66) 30.81 (3.50) 28.11 (3.64) 28.53 (4.46)

Digits 39.72 (2.65) 35.79 (4.01) 30.00 (2.04) 29.43 (3.20) 25.60 (4.07)
Symbols 42.25 (2.96) 36.83 (3.36) 33.88 (3.38) 29.12 (3.75) 26.06 (3.62)

PHOG

AdaBoost None 17.33 (6.24) 11.78 (2.24) 7.27 (1.86) 5.91 (1.68) 3.85 (1.88)
AdaBoost-CG None 18.69 (6.03) 13.13 (2.69) 8.71 (2.1) 7.11 (1.57) 4.77 (1.82)
LPBoost None 17.27 (6.32) 12.66 (2.37) 7.89 (2.06) 6.54 (1.81) 4.68 (1.86)

UBoost

Lowercase 12.35 (2.70) 8.26 (1.75) 5.22 (1.45) 3.77 (1.51) 2.11 (1.23)
Uppercase 13.49 (2.57) 8.26 (1.86) 4.35 (0.69) 3.14 (1.19) 2.29 (1.74)

Digits 12.32 (2.45) 8.11 (1.98) 4.88 (1.23) 3.71 (1.34) 2.20 (1.38)
Symbols 12.73 (2.32) 7.76 (2.09) 4.21 (1.46) 3.46 (1.27) 2.48 (1.44)

TABLE VI: Classification error rates (standard deviations) in percentage
on gender classification with face images. We can see that Universum
data improve test accuracy in most cases.

Method # Universum Training data size
13 52 104

AdaBoost − 26.41 (1.24) 1.92 (1.57) 0.96 (0.91)
AdaBoost-CG − 26.41 (1.24) 1.92 (1.11) 1.35 (1.22)
LPBoost − 28.97 (1.73) 1.92 (2.22) 1.32 (1.14)

UBoost
100 15.13 (5.19) 1.15 (2.07) 0.67 (0.79)
500 21.03 (6.26) 0.77 (2.07) 1.46 (1.52)

1000 15.13 (8.67) 0.96 (1.36) 0.58 (0.67)

statistically significant difference between AdaBoost-CG and
AdaBoost. We observe the same phenomenon.

E. Traffic sign classification

In this section, we perform traffic sign classification on
the German Traffic Sign Recognition Benchmark (GTSRB)6

data set, which has more than 40 classes and 50, 000 images
in total. In our experiment, we select 3 pairs of classes for
classification (see examples in Figure 5). Since there are no
label information for the on-line test dataset, we generate
the training subset, validation subset and test subset from
the original training data. Similar to the action classification
task, we randomly selected 100 samples for both training
and testing. The training set are then divided into training
subset and validation subset with both 50 samples. For both
UBoost and USVM, 1000 Universum samples are generated
by random averaging. The PHOG features of 1568-dimension
are computed for each image. Here we have deliberately used
a small amount of training data. When a large training set is

6http://benchmark.ini.rub.de/index.php?section=dataset

Fig. 5: Samples of traffic signs from the GTSRB data set.

TABLE VII: Classification error rates (standard deviations) in percent-
age on the KTH data set (training set size and validation set size
are 50; test set size is 100). We use the “hand-clapping” and “hand-
waving” actions as the positive and negative samples respectively for
classification. We have used 250 Universum samples generated by
random averaging.

Method Feature dimension
50 100 200

AdaBoost 9.90 (6.13) 9.10 (6.54) 5.60 (4.60)
AdaBoost-CG 9.70 (6.77) 7.40 (5.10) 5.70 (4.52)
LPBoost 8.60 (5.29) 7.90 (4.75) 6.10 (4.53)
UBoost 6.40 (4.42) 5.37 (2.92) 4.90 (4.56)

used, all the algorithms can achieve very high accuracy and
the difference between different methods becomes negligible.

Comparison of different boosting methods and USVM with
the linear kernel on three pairs of traffic sign sample sets
is summarized in Table VIII. All the results in this section
are the average of 10 independent runs. Here again, UBoost
generally outperforms those boosting methods that do not
exploit Universum data. UBoost is also slightly better than
linear USVM for two cases out of three.

IV. CONCLUSION

We have proposed a new boosting algorithm which can
exploit the unlabeled Universum data in the training procedure.
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TABLE VIII: Classification error rates (standard deviation) in percentage
of different boosting methods and linear USVM on three pairs of traffic
sign sets.

Method “20” vs “30” “20” vs “50” “20” vs “80”
AdaBoost 3.20 (2.90) 4.60 (4.68) 3.90 (1.66)
AdaBoost-CG 4.60 (4.90) 5.70 (4.69) 7.00 (3.62)
LPBoost 4.60 (4.91) 5.70 (4.60) 6.80 (3.91)
UBoost 2.80 (1.69) 3.50 (3.06) 2.60 (1.08)
USVM 3.00 (2.58) 4.70 (1.06) 1.90 (0.99)

We have extended Vapnik’s principle of maximal contradiction
on Universum data to boosting learning. Experiments on a
few classification tasks—including handwritten symbol clas-
sification, gender recognition, action recognition and traffic
sign classification—show promising results over conventional
boosting methods such as AdaBoost, AdaBoost-CG and LP-
Boost, which do not use Universum information. Future work
will study on UBoost with different loss functions and how
to effectively design and obtain Universum data for more
computer vision and machine learning problems. As pointed
out in [2], in some scenarios poorly generated Universum data
may not help. It remains unclear about how to generate or
select Universum data that always improve the classification
accuracy.
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