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Chapter 4

Image processing and cloud
detection

The Auger infrared cloud cameras provide images of the night sky but do not
automatically decide which parts of these images are actually cloud. A survey
of literature reveals much in the way of cloud detection algorithms, but most
are only applicable to satellite-based measurements, or require measurements
of the the infrared flux at multiple wavelengths. In this chapter different
image processing techniques are discussed, developed, applied and evaluated
with respect to images recorded by the Auger infrared cloud cameras.

There are several image processing techniques that are capable of
detecting clouds within cloud camera images. Firstly is the method of edge
detection, whereby different intensity gradients within an image are used
to segment the sky into different regions. And secondly is the thresholding
approach, whereby some intensity threshold is chosen for an image, above
which any pixels are considered to be cloud and below, considered to be
clear sky.

In order to facilitate manual processing of the large quantity of im-
ages recorded by the cloud cameras, a GUI program called PACMan (Pierre
Auger Cloud Manager) has been created. Images that are processed are
then converted and compressed into a format suitable for the cloud camera
database and subsequent analysis.

4.1 Edge detection

Edge detection is a process by which localized sharp changes in intensity
within an image are identified. As clouds are brighter in the infrared than
clear night sky, there is usually a strong contrast in intensity between clouds
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96 CHAPTER 4. IMAGE PROCESSING AND CLOUD DETECTION

and normal clear sky. Thus, edge detection algorithms provide an opportu-
nity to identify clouds within infrared images on cloudy nights. The lack of
distinguishing gradients on completely overcast nights makes it sometimes
unreliable however.

There are a wide variety of edge detection algorithms currently avail-
able - as they have multiple applications within machine learning, medicine,
industry and image processing. Generally an algorithm involves some form of
pre-processing of a particular image - filtering out noise, or enhancing edges
in an effort to improve the efficiency of the algorithm. Then once edges are
located, they may be used to segment the image into different regions - in
the case of the cloud camera images, cloudy and clear night sky regions.

4.1.1 The Canny edge filter

The primary algorithm investigated in this study is the Canny edge detec-
tion algorithm [47] due to its multiple variables and subsequent adaptability
to different situations. This algorithm sets out to optimize the detection
of a step edge obscured by Gaussian noise. In his creation of this algorithm
Canny wanted to fufill three goals: good detection, good localization and one
response to one edge. That is, he wanted a detector with a low probability
of falsely identifying or missing an edge, and that only has a single response
to a single edge that is located close to the real location of the edge. Af-
ter formulating these criteria mathematically he suggested that the optimal
filtering function may be approximated through a Gaussian filter.

A Gaussian filter is a weighted averaging filter, whereby the signal
from the pixels surrounding a particular pixel j are weighted and averaged
to provide a new signal for pixel j. The weights W are calculated using a
Gaussian function such as that seen in equation 4.1:

W (x, σ) =
exp(−x2/(2σ2))√

2πσ2
(4.1)

where x is the distance between the pixel being weighted and pixel j, and σ
is the standard deviation of the Gaussian function.

Filtering an image can help suppress the detection of any edges that
are the result of fluctuation in the intensity of an object (noise), as opposed
to the boundary between two objects. Increasing the σ value will reduce
sensitivity to both noise and actual edges within an image, and may decrease
the accuracy of edge localization. To improve processing time the filter is
usually applied as a convolution mask (much smaller than the image). An
example of the application of a Gaussian filter may be seen in figure 4.1,
where much of the speckly noise is removed.
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Figure 4.1: The result of a Gaussian filter applied to a cloud camera image with
σ = 1.0. [Left] Original image. [Right] Gaussian filtered image.

After application of a Gaussian filter the next stage of the Canny
edge detection algorithm is to calculate the edge strength and direction within
the image. One way of doing this is through the application of a Sobel
filter [168]. The Sobel filter consists of a pair of convolution masks, one
Gx estimating the gradient horizontally across the image, and the other Gy,
vertically. They take the form:

Gx =

 −1 0 1
−2 0 2
−1 0 1

 Gy =

 −1 −2 −1
0 0 0
1 2 1


e.g for a pixel at row j and column i with intensity S(j,i):

Gx = 2(S(j,i+1) − S(j,i−1)) + (S(j−1,i+1) − S(j−1,i−1)) + (S(j+1,i+1) − S(j+1,i−1))
Gy = 2(S(j+1,i) − S(j−1,i)) + (S(j+1,i−1) − S(j−1,i−1)) + (S(j+1,i+1) − S(j−1,i+1))

The two parameters Gx and Gy may be combined to estimate the overall
magnitude G and direction of the gradient θ (from the vertical), as seen in
equations 4.2 and 4.3:

G2 = G2
x + G2

y (4.2)

θ =

{
tan−1(Gx/Gy) Gy 6= 0
90.0◦ Gy = 0

(4.3)

The angle θ is generalized to one of four different directions: horizontally,
vertically or either of the two diagonal directions across the image. For
example an angle θ = 3◦ or 86◦ would be generalized to the vertical and
horizontal directions respectively. Other operators exist that may calculate
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a superior measure of horizontal and vertical gradients, such as the Scharr
filter [161], which suggests that the -1, 1, -2 and 2 within Gx and Gy be
replaced by -3, 3, -10 and 10 respectively.

Figure 4.2: Images demonstrating effect of the Sobel filter. Note that a Gaussian
filter has not been applied in this example. [Left] Original image. [Right] Sobel
gradient image.

An example of the Sobel filter in action may be seen in figure 4.2,
where the Sobel gradient G from equation 4.2 has been calculated for all but
the outermost boundary of pixels (since the convolution mask is 3x3). Darker
regions of the right-most image correspond to regions of strong gradient in
the left-most image and so indicate the local presence of edges. Note the
presence of edge gradients even in the absence of cloud in the upper half of
the image. This is due to the noise inherent within the image that will be
suppressed through application of a Gaussian filter. The regions of strongest
(darker) gradient in the rightmost image correspond with the edges of the
Earth and cloud within the left-most image.

The next stage of Canny’s edge detection algorithm is to locate all of
the edges within the image using non-maximum suppression. Non-maximum
suppression is a process that locates pixels that may be potentially identified
as being edges. Gradients are expected to be at their strongest closest to
the position of edges within an image. For each pixel i with a gradient
magnitude and direction associated with it, the gradient magnitude of pixels
to either side of it along the direction of the gradient at i are considered.
If the neighbouring gradient magnitudes are both less than the gradient of
pixel i, then pixel i is identified as being a potential edge. This results in
the identification of potential edge ‘ridges’ with the width of a single pixel
within the image.
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Two thresholds (the upper Tupper, and the lower Tlower) are then
used to identify those of the identified edges that are ‘true’ edges, and those
that are the result of noise within the image. If the gradient magnitude of a
particular pixel (that survived non-maxima suppression) is above Tupper then
it is marked as an edge. Due to the presence of noise, the magnitude of the
gradient of an edge in an image may vary in different parts of an image. To
identify those edges which happen to fall under the upper threshold Tupper,
a secondary lower threshold Tlower is used which marks any pixels with a
gradient above Tlower as an edge if it borders a pixel that has already been
identified as an edge (and survived the non-maxima suppression stage).

Figure 4.3: Images demonstrating application of Canny’s edge detection algorithm.
[Left] A test image with a random Gaussian fluctuation added to simulate noise.
[Right] An image showing edges detected (using Sobel filter) within the left-most
image. Grey lines correspond to edges identified by non-maxima suppression but
failed the thresholding stage. Green lines are edges identified by the non-maxima
suppression that passed the initial upper threshold cut. Blue lines are edges that
failed the upper threshold cut but passed the lower threshold.

This hysteresis thresholding is demonstrated within figure 4.3. On
the left is shown an image with different regions of intensity represented by
varying shades of grey, with random Gaussian variation simulating noise.
On the right the results of the Canny filter are shown - those pixels that
survived the non-maxima suppression stage are marked by a grey, green or
blue colour. Green pixels are those edges that had a gradient above Tupper,
and blue pixels are those that had a gradient above Tlower and bordered a
pixel already identified as an edge. Grey pixels are those pixels that passed
non-maxima suppression but that did not have a sufficiently strong gradient
to pass the thresholding stage, in this case they are primarily the result of
the Gaussian noise introduced into the image. The edges between the darker
lower left region and the central bright region are picked up by the upper
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threshold, but not those between the central and top right regions. The
lower threshold Tlower however allows these less apparent edges to be picked
up without any false edge detection due to Gaussian noise (since none of
the Gaussian related noise is attached to the edges identified by the upper
threshold).

Figure 4.4: Edges found in a cloud camera image using Canny’s edge filter. [Left]

Image recorded by the Los Leones cloud camera. [Right] Edges found by Canny’s
edge filter after using a 1σ Gaussian filter. Darker lines indicate edges found
using arbitrary thresholding levels, and light grey lines indicate pixels that passed
non-maxima suppression.

An application of Canny’s edge detection algorithm using arbitrary
Gaussian and thresholding values to a cloud camera image may be seen in
figure 4.4. The light grey lines indicate identified potential edges that did
not pass the hysteresis thresholding stage, while the black lines are edges
that did. Note that in a few places the shape of the cloud described by
the edge lines is not complete. That is, an edge that is obvious (to the
human eye) in the raw image to the left will not be detected in the right,
no matter the thresholding level used, as the non-maxima suppression phase
did not detect a potential edge there. This is likely due to the sometimes
complicated structure of the cloud. Thus at best, the Canny edge filter (with
an appropriate level of Gaussian filtering and threshold level) is likely best
to function as a rough indicator of cloud presence and position.

4.1.2 Application of Canny’s edge filter

With three different variables available, a great deal of customization is avail-
able for images on an individual basis, but given the large number of images
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it is prudent to try an optimitize a generic set of input values. There is cur-
rently no general rule for determining these parameters, therefore the degree
of Gaussian filtering required must be worked out uniquely for this appli-
cation, along with the gradient magnitude values for the two thresholding
levels.

Non-maximum suppression was applied to a full month’s (the Los
Leones cloud camera in March 2005) worth of data with various levels of
Gaussian filtering and the gradient magnitude of all the edges identified in
the sky recorded. These images have already been processed manually (see
section 4.3) to locate all of the cloud within them. This allows those edges
resulting from noise and real edges (associated with a boundary between
cloud and clear sky) to be identified within this set of data. An edge is said
to be associated with noise if it is more than 3 pixels away from a cloud/clear
sky boundary in the manually processed data.

Figure 4.5: Plot showing the number of non-maximum suppressed edge pixels
with a gradient magnitude above some threshold level for a month’s worth of cloud
camera data (Los Leones, March 2005). Red lines indicate edge pixels identified
that are not associated with real edges and green lines indicate edge pixels associated
with real edges. Different line thickness’ correspond to different levels of Gaussian
filtering preprocessing σ =0, 1 and 2 from thinnest to thickest line respectively.
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The distribution of the real and noise edge gradients seen by the
Los Leones cloud camera in March 2005, is represented in figure 4.5. The
green lines indicate the number of actual edge pixels surviving a particular
gradient threshold cut and the red lines indicate the number of noisy edge
pixels surviving that same cut. Different line thickness’ indicate different
degrees of Gaussian filtering, the thinnest representing no Gaussian filtering,
the thickest indicating filtering with σ = 2.0, and the third where σ = 1.0.

The thresholding levels and level of Gaussian filtering must be chosen
such that the number of true edges identified is maximized. Increasing the
level of Gaussian filtering decreases the number of edges detected in the non-
maxima suppression stage. In the case of the sample data set in figure 4.5,
increasing the filtering level from σ =0-1-2 decreases the total number of
noisy edges detected from 37.2 million to 32.7 and 18.2 million respectively.
At the same time the number of true edges detected drops from 1.8 million
to 1.3 and 1.1 million respectively. Note that on a fractional basis though,
a larger fraction of the real edges (28%) are lost than the noisy ones (12%)
for a σ = 1.0 filter. Whereas for a σ = 2.0 filter a larger fraction of the noisy
ones are lost (51%) as opposed to the real ones (39%).

At high threshold levels, more true edge pixels are being identified
than noisy edge ones. While at lower threshold levels more noisy edges
are being detected than real ones. The upper thresholding level is crucial
in initially identifying potential cloud edges therefore it must be as low as
possible, but not to the extent where more noise is being detected than real
edges. A good tradeoff would appear to use the crossing points between
the number of noisy and true edges (20800, 11600 and 7500 for σ =0, 1, 2
respectively) as the upper threshold, as any lower threshold will identify more
noisy edges than real ones. The number of noisy edges drastically increases
at lower thresholds, but the number of real edges identified also increases at
the same time. A good lower threshold was chosen to be the point where
80% of the noisy pixels (14800, 7400 and 4000 for σ =0, 1, 2 respectively)
are cut, as below this level the rate of noisy edge introduction appears to
drastically increase. These threshold levels may be expected to vary between
different cameras and camera flat-fieldings.

In order to evaluate the best level of Gaussian filtering to use it is
prudent to examine the effect of the thresholding upon a sample of images
(see figures 4.6 and 4.7). Three types of images are examined within these
figures - a cloudy image, a clear night sky image and an image of a completely
overcast night sky. Gaussian filters with σ = 0, 1 and 2 were applied with
the associated threshold levels described in the previous paragraph. Dark
lines indicate the location of detected edges, while light grey lines indicate
the position of edges that did not pass the thresholding level.



4.1. EDGE DETECTION 103

Figure 4.6: [Top left] Raw cloud camera image. [Top right] Edges detected
with no Gaussian filtering. [Bottom left] Edges detected with σ = 1 Gaussian
filtering. [Bottom right] Edges detected with σ = 2 Gaussian filtering.
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Figure 4.7: [Top left] Raw cloud camera image. [Top right] Edges detected
with no Gaussian filtering. [Bottom left] Edges detected with σ = 1 Gaussian
filtering. [Bottom right] Edges detected with σ = 2 Gaussian filtering.

The location of cloud boundaries are generally detected by the Canny
edge filter at all three Gaussian filtering levels. This suggests, in these cases
at least, that they were good choices to have made. An exception may be
found in the case of the σ = 0 filtered case of the partially cloudy conditions
(top-most right image in figure 4.6) where the defined threshold levels do not
adequately describe the faint, higher altitude, cloud in the top of the image.
The defined thresholds at higher levels (σ = 1 and 2) of Gaussian filtering
detects the faint cloud structure much more readily however, suggesting that
a degree of Gaussian filtering enhances the detection prospects for faint cloud.

Gaussian filtering also has the effect of significantly decreasing the
number of false noise edges detected by Canny’s filter. This may be observed
in the clear sky parts of the cloudy and completely clear images, and in the
cloudy (away from the edges) portion of the overcast image. The number of
these light grey ‘noisy’ edges is reduced with increasing degrees of Gaussian
filtering, also tending to appear more often in connected contours, similar to
those edges correlated with real cloud boundaries, but with a lower associated



4.2. IMAGE SEGMENTATION 105

gradient magnitude. This occurs as the Gaussian filter averages out and
removes the localized noisy signal fluctuations responsible for the extra edges
in the unfiltered image.

The number of edges detected that are associated with real bound-
aries are also reduced through an increased level of Gaussian filtering. In the
non-Gaussian filtered images, many edges are detected in the neighbourhood
of a boundary between cloud and clear sky (top image in figure 4.6), and
the boundaries between the two cloud layers in figure 4.7. This is due to
the presence of “auras” (see section 3.5.1) within the image creating extra
edge gradients between the aura and the cloud or clear sky. Application of
a Gaussian filter averages out the pixels in the aura region, reducing both
the rate of incidence and gradient magnitude of such edges. This (using no
Gaussian filter) makes the detection of the ‘exact’ size and shape of a cloud
more difficult, but improves the response of the algorithm to strong (those
with an aura) edge fragments.

In the case of the cloud camera images, using the Canny filter with
no Gaussian filtering actually improves the detection prospects for strong
cloud fragments, but has a low response to the fainter, higher altitude cloud
fragments. Application of a Gaussian filter suppresses much of the noise
associated with the image cloud or clear sky background, improving detection
of fainter cloud and slightly reducing the response of Canny’s filter to strong
cloud fragments. The key therefore is to select the minimal Gaussian filtering
level required to bring out faint cloud structure to maximise Canny’s filter’s
response to cloud camera images. In the case of this study, this would take
the form of a σ = 1.0 level of filtering, through presumably there may exist
some optimal level of filtering such as σ = 0.8 or 1.3, but this is beyond the
ability of this study to predict.

The dual thresholding levels used in figures 4.6 and 4.7 worked very
well, but were derived using data that had already been processed. No gen-
eralized scheme for estimating the optimal thresholding levels within each
image for Canny’s filter currently exists. Therefore effective application of
Canny’s algorithm requires a degree of human supervision, due to the sen-
sitivity of the edge finding algorithm and the diversity of cloud types that
may appear within cloud camera images.

4.2 Image segmentation

Thresholding is an image segmentation process by which some signal level
is chosen, and any pixels with a signal above this level are assigned to one
group, and any below are assigned to another group. Clouds appear brighter
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in the infrared than clear night sky, therefore a good choice of a threshold
will divide a cloud camera image into its cloudy and clear sky components
(cloud being those pixels with a signal strength above some threshold).

Image segmentation (thresholding) is a common technique used in
image processing and a variety of algorithms are available to calculate an
optimal threshold for a cloud camera image. In this study two algorithms are
examined, Otsu’s thresholding algorithm, and the K-means cluster analysis.
Such algorithms require examples of both cloud and clear night sky occuring
within an image to effectively calculate a threshold however, and typically
fail when presented with very isothermal scenes, such as on completely clear
or overcast nights. The apparent brightness of clear night sky also varies
with elevation. So to maximize effectiveness, these kinds of thresholding
algorithms must often be applied multiple times at different elevations in
a single image. The relationship between the clear sky signal and ground
based measurements of atmospheric parameters (see section 3.4.1) may also
be used to derive a threshold for a cloud camera image.

4.2.1 Otsu’s thresholding algorithm

The Otsu thresholding algorithm was proposed in 1979 [139] by Otsu, as
a means to choose a threshold level to segment a greyscale image into two
components. He postulated that at the optimal threshold, the between-class
variance of the two groups of pixels (one group consisting of those pixels
with signal above that threshold, and the other below) will be maximized.
The between-class variance (σ2

between) is a weighted measure of the difference
between the means of the two different groups and the mean of the overall
signal distribution within that image, as seen in equation 4.4:

σ2
between = wB(µ− µB)2 − wA(µ− µA)2 (4.4)

where wB and wA are the fraction of pixels below and above that threshold
respectively, and µ, µB and µA are the total mean, mean of the pixels below
the threshold and the mean above the threshold respectively.

Application of this algorithm is simply through the evaluation of
the between-class variance σ2

between for each possible threshold. The best
threshold is chosen to be the threshold which has the highest between-class
variance i.e.

1. Calculate the mean signal strength of all pixels.

2. Divide the pixels into two groups according to some threshold level.
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3. Calculate the mean signal strength and fraction of pixels in each indi-
vidual group.

4. Calculate the between-class variance using equation 4.4.

5. Repeat steps 2-4 until all potential thresholds have been evaluated.

6. Pick the optimal threshold as that threshold which had the largest
between-class variance.

Figure 4.8: Figure shows a cloud camera image (on the left) that has had the Otsu
thresholding algorithm applied to it (seen on the right). White represents regions
identified as being cloudy, and dark grey, as regions identified as clear night sky.

Figure 4.8 shows a cloud camera image that has had a threshold
level calculated by Otsu’s algorithm and applied. On the left may be seen
the original raw cloud camera image, and on the right is the thresholded
version of that image, white representing pixels above the threshold (thought
to be cloud) and dark grey as pixels below (thought to be clear sky). In this
particular image, much of the brighter cloud banks close to the horizon (along
with the ground) are identified as being cloud, but the higher elevation ‘hazy’
cloud is missed by the thresholding. This is because the threshold derived
by Otsu’s algorithm is strongly influenced by the strong signal of the horizon
cloud, and has been set too high for detection of the fainter higher altititude
cloud.

One way of overcoming this is through the use of a localized thresh-
old. Instead of using signals from the whole image to derive a threshold,
signals from parts of the image are used to derive a series of localized thresh-
olds for different sections of the image. This sometimes increases the effec-
tiveness of the automatic threshold detection for cloud. Within figure 4.9 is
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shown an image that has been thresholded by a series of localized thresholds.
In this case, the localized thresholds describe the cloud conditions more ef-
fectively than the universal threshold in figure 4.8. Each row of pixels has
an individual threshold derived from all the pixels within 50 rows of that
row, therefore at most, only 101 rows of pixels (32320 pixels) are being used
at once to derive an individual threshold. As the brighter cloud close to the
horizon is not being involved in calculation of the threshold for the top half of
the image, a lower threshold is derived that accurately captures the structure
of the lighter cloud. Such a thresholding approach is more computationally
expensive than the calculation of a single threshold.

Figure 4.9: Figure shows a cloud camera image (on the left) that has been thresh-
olded using localized thresholds (seen on the right). White represents regions iden-
tified as being cloudy, and dark grey, as regions identified as clear night sky.

Success of this automatic thresholding approach requires that Otsu’s
algorithm has had the opportunity to sample distributions of both clear sky
and cloud. The algorithm implicitly assumes that there exists, in the first
place, two distributions of signal to segment. Applying the algorithm to a
single distribution will result in that single distribution being split into two.
In the context of the cloud camera images, if a completely clear or completely
cloudy image is segmented through this approach, then there will be some
misidentification of clear and cloudy sky. An example of this is within figure
4.10 where the same localized Otsu thresholding approach used on figure
4.9 was applied to an almost completely clear night sky. Note in the upper
regions of the image that large quantities of clear sky are being identified as
cloud. This is because there is no actual cloud present in this part of the
image for Otsu’s algorithm to segment the clear sky against (no cloudy pixels
within 50 rows of this upper image portion), therefore it adopts an incorrect
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Figure 4.10: Figure shows a cloud camera image (on the left) that has been thresh-
olded using localized thresholds (seen on the right). White represents regions iden-
tified as being cloudy, and dark grey, as regions identified as clear night sky. The
‘white line’ seen across the centre of the right-most image is the result of the pixels
closer to the horizon being brighter than those at higher elevations, and Otsu’s
algorithm subsequently identifying them as cloud.

threshold at some level within the clear sky distribution, instead of above
it. The lower portion of the image is thresholded correctly, as both clear sky
and cloudy pixels are being used in the thresholding process.

Figure 4.11: Figure shows a cloud camera image (on the left) that has been thresh-
olded using localized thresholds (seen on the right). White represents regions iden-
tified as being cloudy, and dark grey, as regions identified as clear night sky.

Another problem with the automatic thresholding technique occurs
when multiple cloud layers are present. As seen in figure 4.11, Otsu’s al-



110 CHAPTER 4. IMAGE PROCESSING AND CLOUD DETECTION

gorithm has correctly identified the brighter, lower elevation cloud layer as
cloud, but the dimmer (but still cloudy) upper portion of the image has been
segmented as clear sky as it is the lower intensity distribution.

On its own at least, automatic segmentation is unreliable for the
detection of cloud and clear sky within cloud camera images. While the
algorithm is capable of distinguishing cloud and clear sky if both cloudy and
clear pixels are being considered, accuracy is lost when presented with images
that are completely clear, overcast or have multiple cloud layers, each with
different intensity distributions. Thus a generic application of an automatic
thresholding algorithm will not accurately locate the position of clouds in
some types of image.

4.2.2 K-means cluster analysis

K-means cluster analysis is a process by which some number of data points
are sorted into some number (‘K’) of clusters [129]. In the case of the cloud
camera images, this algorithm aims to partition a particular image into differ-
ent distributions of intensity, such as cloud or clear sky. Unlike the automatic
thresholding technique described in section 4.2.1, this algorithm may parti-
tion cloud camera images into several different classes, as opposed to just
two. As one of the problems with the automatic thresholding approach was
the chance that clouds of differing intensities may not be detected, K-means
cluster analysis may provide a superior method of cloud detection. An exam-
ple of an image that has been segemented in this way may be seen in figure
4.12.

Figure 4.12: An example of a cloud camera image being seperated into 4 different
partitions using the K-means clustering algorithm. On the left is the original im-
age, while on the right is the segmented image in which each partition is indicated
by a different shade of colour.

This algorithm functions first by randomly (or heuristically) assign-
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ing each pixel within an image to one of the ‘K’ partitions that the image will
be attempted to be segmented into. A series of means are then calculated for
each parameter the pixels are being segmented upon, for example if the pixel
signal is just being considered, then the mean signal is calculated for each
partition from the signals of the partitioned pixels. The variance (the square
of the difference between the mean and the pixel intensity) of each pixel
from these means is then evaluated, and the pixel reassigned to whichever
partition it has the least variance with. Then the means are recalculated and
the process continues until pixels are no longer being reassigned to different
partitions i.e.

1. Decide how many segments to partition the image into.

2. Assign (either randomly or heuristically) each pixel in the image to one
of the partitions.

3. Calculate the mean signal strength of the pixels in each partition.

4. Calculate the variance between each pixel’s signal and the mean signal
of each partition.

5. Reassign each pixel to the partition with which it has the least variance.

6. Repeat steps 3-5 until no pixels are being reassigned.

The K-means algorithm is guaranteed to converge, but the solution
arrived at by the algorithm is not necessarily unique as it depends upon
the initial seeding of the partitions. Randomly assigning the initial seeding
of the partitions sometimes results in different partitions being calculated
by the algorithm. An example may be seen in figure 4.13, where an image
undergoing the algorithm has resulted in two different partioned images. In
the bottom left image, the faint cloud in the upper regions of the image is
clearly identified as a seperate intensity distribution, while in the bottom
right image, the cloud is counted as being part of the clear sky distribution.
Both these results were initially seeded with a random distribution.

Also worth noting is that the algorithm does not always succeed in
partitioning the image into the number of partitions initially set by a user,
resulting in fewer partitions than demanded. This occurs as some partitions
merge due to lack of diversity in pixel signal distributions. While ultimately
depending upon the initial distribution of partitions, it is rare to obtain more
than 4 or 5 partitions in the cloud camera images.

Different strategies exist that can reduce or eliminate the degeneracy
of the segmentation solution for an image. Some of these include a more
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Figure 4.13: Image on the top has been grouped into 4 partitions using the k-
means algorithm. Two different results achieved may be seen on the bottom, with
different colours representing different partitioned regions.

Figure 4.14: On the left is a cloud camera image of overcast cloud conditions
which has been segmented into 4 different regions using the k-means algorithm.
On the right may be seen the result of the algorithm with different shades of grey
denoting different regions.
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refined approach to defining the initial assignment of partitions [22]. Or
repeating the algorithm several times upon a single image, and selecting the
result that best satisfies some quality criterion. Ultimately in the case of
the cloud camera images however, even if an ‘optimal’ partitioning result is
achieved there still remains the problem of identifying which partitions are
cloud, and which are clear sky. This problem is demonstrated in figure 4.14
where an overcast sky has been segmented into 4 regions using the K-means
algorithm. All of the regions identified, are regions that could be classified
as cloudy, including the partition corresponding to the darkest regions of
the image. This clustering algorithm, on its own at least, cannot be relied
upon to consistently correctly identify cloudy regions and suffers from the
possibility of degenerate solutions being arrived at - depending upon the
initial seeding conditions.

4.2.3 Atmospheric parameter based thresholding

Within section 3.4 it was suggested that it is possible to predict the signal
registered by the camera with parameterizations of the forms seen in equation
4.5 or equation 4.6.

S = A + Tsky

∞∑
i=1

Bi

(
(T 4

chop − T 4
sky)

T 4
sky

)i

(4.5)

S = A + B(T 4
chop − T 4

sky) (4.6)

where S is the camera signal output, Tchop is the effective temperature of the
camera chopper, Tsky is the effective temperature of the sky, and A, B and
Bi represent the fitted parameters. With these equations it is possible to
create a parameterization that predicts the signal registered by the camera
when viewing clear night sky. Such parameterizations are unique to different
cameras and flat fielding calibrations, however once developed would help an
automated thresholding procedure to be developed.

In order to create a parameterization for clear sky signal, a sample
of clear sky signals must be obtained, the effective temperature of the clear
sky known, and the temperature of the chopper must be known. Most of the
cloud cameras do not have an internal temperature sensor installed, there-
fore the chopper temperature approximation of ‘Tchop ≈ Tamb + 6.8’ from
section 3.4 must be used. The identification of clear night sky examples and
temperatures is more problematic however.

In his PhD thesis Maghrabi [130] suggested that the effective temper-
ature of clear sky may be parameterized as a function of ambient temperature
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and water vapor pressure, as seen in equation 4.7.

Tclear = a + bTamb + c
√

ε0 (4.7)

where Tclear and Tamb are the clear sky and ambient temperatures in degrees
Celsius, ε0 is the ground level water vapor pressure in mb and a, b and c
are the fitted parameters. A generalized form of this parameterization was
calculated by Maghrabi [130] from data collected in several locations around
the Earth at a zenith angle of 0◦, but application to the cloud cameras re-
quires a prediction of sky temperatures at multiple non-zenith angles and a
unique parameterization developed for the Auger Observatory site to maxi-
mize precision.

The cloud cameras are viewing a region of sky close to the horizon.
This means that extrapolation of the relevent effective sky temperatures from
the temperature directly overhead the camera is difficult, as the ln(sec θ) (θ =
zenith angle) approximation suggested by Maghrabi [130] breaks down close
to the horizon. Therefore a different parameterization of the form in equation
4.7 must be developed, that is valid for elevations close to the horizon, to
successfully describe the relevent effective sky temperatures.

Over a some limited range of temperatures (T ) it is reasonable to
approximate T 4 as some linear function of T . Applying such an approxima-
tion to equation 4.6 implies that the clear sky signal Sclear registered by a
cloud camera is proportional to the difference between the chopper and clear
sky temperatures, as seen in equation 4.8.

Sclear = a + b (Tchop − Tclear) (4.8)

where Sclear is the clear sky signal, Tchop and Tclear are the chopper and clear
sky temperatures respectively, and a and b are fitted parameters. Such a
linear fit to clear sky data is not as successful as the fit suggested in equation
4.6, having an RMS fit of 240, compared to that of equation 4.6, which has
a fit of 217 (using the data sample in section 3.4.1). It is, however, not a
poor fit either. Substituting equation 4.7 into equation 4.8 reveals a simple
linear parameterization in equation 4.9 between clear sky signal, ambient
temperature and water vapor pressure (ε0 in mb).

Sclear = A + BTamb + C
√

ε0 (4.9)

where A, B and C are fitted parameters. Fitting this parameterization side-
steps the problem of having to directly calculate the effective clear sky tem-
perature at low elevations, and only requires the selection of clear sky signals
and the availability of ambient temperature and relative humidity measure-
ments by on-site weather stations. The problem of selecting clear sky exam-
ples remains however.
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Figure 4.15: Mean signal recorded between 21.5 and 22.5 degrees of elevation
within an image, plotted against the square root of the measured water vapor pres-
sure at that time [Top] and ambient temperature [Bottom]. Los Leones images,
February to October 2007 were used. Red marks indicate measurements that oc-
cured while the average cloud fraction measured by all LIDARs was greater than
90%, and blue marks while the cloud fraction was 0%. Black marks are all other
measurements.
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The mean signal within Los Leones cloud camera images between
February and October 2007 have been plotted against ambient temperature
and the square root of the water vapor pressure in figure 4.15. This signal is
the mean of the pixel signal strengths within a particular image that lie within
half a degree of 22◦ elevation from the horizon. The ambient temperature
is the average temperature measured by all the weather stations at that
particular point in time. Weather stations do not directly measure water
vapor pressure, but it may be extrapolated from measurements of relative
humidity and ambient temperature with equation 4.10:

ε0 =
H

100
.exp

(
17.67Tamb

Tamb + 243.5

)
(4.10)

where ε0 is the water vapor pressure (mb), H is the relative humidity (%) and
Tamb is the ambient temperature (◦C). Red markers indicate measurements
that were taken at overcast (>90% LIDAR cloud coverage) times and blue
markers indicate measurements that were taken at very clear (0% LIDAR
cloud coverage) times.

Generally speaking, signals recorded on LIDAR-identified clear nights
have a lower average signal at 22◦ elevation than signals recorded at the same
elevation on cloudy nights. This is because on cloudy nights cloud is more
likely to be seen than clear night sky, which increases the infrared flux and
subsequent signal recorded by the camera. There appears to be some overlap
between the signals associated with clear and cloudy nights as some signals
identified as being clear are located in amongst groups of signals that have
been identified as cloud, and vice versa. This is because the cloud conditions
detected by the LIDAR sites above the fluorescence detectors are not nec-
essarily correlated with the cloud conditions observed by the cloud cameras
over the surface detector array. If a parameterization based upon equation
4.9 is to be created, then those signals that are associated with clear sky
conditions must be identified.

Identifying signals associated with clear night skies requires more
than just LIDAR information, as LIDAR cloud fraction measurements are
not always a measure of cloud conditions within a cloud camera’s field of
view. Another way of identifying cloudy conditions is through the RMS of
the mean signal recorded at a particular elevation. If both cloud and clear
sky are being observed at a particular elevation, then the RMS of the signals
at that elevation are going to be greater than if just clear sky or cloud fills
that particular part of the sky. This is because a section of sky containing
both cloud and clear night sky will have more variance in recorded pixel
signals than would otherwise be the case. Therefore by removing measure-
ments with a high RMS, the quality (in terms of an increase in the fraction
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of measurements coming from a purely clear night sky) of a set of signal
measurements will increase.

Figure 4.16: Distributions of the RMS of signals taken at 22◦ elevation by the
Los Leones cloud camera between February and October in 2007. [Left] RMS of
signals recorded on LIDAR measured cloud free nights. [Right] RMS of signals
on very cloudy (> 90% LIDAR cloud coverage) nights.

This is demonstrated in figure 4.16, where the distribution of the
RMS of signals at 22◦ elevation in images recorded by the Los Leones cloud
camera between February and October 2007 are shown. Signals on clear
nights typically have an RMS below around 350, while the RMS of signals
on cloudy nights have a much wider distribution of RMS values, with a sig-
nificant proportion of its distribution above 350. Both distributions have a
similar peak in their RMS values between 250 and 300, this is likely due to
completely clear or completely cloudy conditions within the section of sky
being considered. Parts of both distributions away from this peak are likely
due to mixed cloud conditions at the 22◦ elevation within the image. There-
fore a cut on RMS will remove those signals that are partly contaminated
by cloud, but will leave signals that are either completely cloud or clear sky
based.

Figure 4.17 shows the distribution of the mean signals of the mea-
surements in the left-most plot in figure 4.16 that have an RMS less than
345. The number 345 comes from the mean of that distribution added to the
RMS of that distribution, and acts as an almost arbitrary threshold between
the signals thought to be from a completely clear/overcast sky and a par-
tially cloudy sky. The signal distribution in figure 4.17 appears to contain
two different distributions, a large one centered at ≈22800, and a small one
at ≈26400. The large distribution is thought to consist of signals from com-
pletely clear skys, or from very faint, high altitude cloud, while the smaller
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Figure 4.17: Distribution of the mean signals at 22◦ within images recorded by
the Los Leones cloud camera between February and October 2007, that occurred on
clear nights (0% LIDAR cloud coverage), and that have an RMS of less than 345.

distribution is thought to contain signals from completely overcast examples
of the sky. Another cut, this time based upon signal strength is therefore
advisable in order to remove any overcast signals. Due to the LIDAR cloud
fraction cut (0%) already applied, most of the signals are going to be of the
completely clear variety. Applying a cut based upon the mean and RMS of
the figure 4.17 distribution will therefore likely preserve the clear signals as
the mean is being weighted primarily by clear signals already.

Multiple parameterizations of the form in equation 4.9 must be cre-
ated in order to successfully predict the signal expected from clear sky, as the
effective temperature of clear sky (and hence camera signal) is expected to
vary with zenith angle. Figure 4.18 demonstrates fits made to the 2007 Los
Leones (February to October) cloud camera data at elevations ranging from
3 to 29◦. In each image, within 0.5◦ of each degree of elevation, the mean
pixel signal is calculated along with its RMS and the ambient temperature
(Kelvin) and water vapor pressure at the time of the image recording. At
each individual elevation, this data then underwent the LIDAR, RMS and
signal strength cuts described earlier, in order to remove any cloud contami-
nated measurements. Equation 4.9 was then fitted to the surviving clear sky
data at each elevation. The top-left, top-right and bottom-left plots indicate
the value of the fitted A, B and C parameters respectively, at different ele-
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vations. The bottom-right plot indicates the residuals of equation 4.9 fitted
to the selected data at that elevation.

Figure 4.18: Plots describing the parameters and fitted RMS of equation 4.9 to
data from Los Leones between February and October in 2007. [Top Left] Variation
of fitted C parameter with elevation. [Top Right] Variation of fitted B parameter
with elevation. [Bottom Left] Variation of fitted A parameter with elevation.
[Bottom Right] Variation of the residuals (RMS) of the fit with elevation.

The C parameter, represented in the top-left plot of figure 4.18 rep-
resents the fitted constant associated with the square root of the water vapor
pressure. It is shown to increase approximately linearly from 29◦ of elevation
down to 6◦, below which it rapidly increases. This constant may be thought
of as representative of the effect the estimated water vapor pressure has upon
the camera signal. At progressively lower elevations, the optical thickness of
the clear sky night sky increases due to the increased water vapor content
seen along the line of sight. Therefore the effect of water vapor upon camera
signal is expected to increase at lower elevations, as is observed. Below ele-
vations of 6◦ the rate at which water vapor contributes to the camera signal
if much higher than at higher elevations. This is likely due the to optical
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depth, at elevations below 6◦, becoming large enough become an effective
black body - changing the response of the camera, as discussed in section
3.4.3.

The B parameter, shown in the top-right plot represents the fitted
constant associated with the ambient temperature. Like the parameter asso-
ciated with water vapor pressure (C), the clear sky signal dependence upon
temperature increases at lower elevations. Once again, this is likely due to
the increasing optical thickness at lower elevations better approximating a
black body, and thus increasing the emission of the infrared flux with respect
to temperature..

The A parameter, represented in the bottom-left plot of figure 4.18
represents the signal a particular parameterization predicts when faced with
a clear sky with an effective temperature of 0 Kelvin and no water vapor
pressure (ε0 = 0). This constant may be thought of a rough measure of the
dependence of temperature and water vapor pressure (through their B and
C parameters) on determining the signal at a particular elevation. At low
elevations, the B and C parameters take on greater values, increasing their
contribution to the predicted signal. Since a larger proportion of the signal is
being determined by water vapor and temperature, then the fitted parameter
A must decrease.

The final plot in the bottom-right corner of figure 4.18 shows the
residuals of the fitted parameterization compared with the fitted data. Above
6◦ of elevation the RMS tends to range between values of 400 and 440, while at
lower elevations the fit gets progressively worse with larger residuals. This is
likely because, at lower elevations, regions of sky very far away from the Pierre
Auger Observatory are being examined. The increased distance from the
observatory means that the cloud conditions being observed by the LIDARs
are less likely to be correlated, which results in an increase in the chance that
cloudy samples are surviving the quality cuts and contaminating the sample
of ‘clear sky’ examples the parameterization is being fitted to.

Once a parameterization is fitted for a particular elevation level it
may be used to estimate the signal strength expected to be seen for clear sky,
and compare this estimate against the actual signal. In order to effectively
use it as a cloud detection method however it must be used to set some
particular signal level, above which a pixel will be considered to be cloud,
and below which it is considered to be clear sky. As each parameterization
has an RMS associated with its residuals of the fit it may be useful to use
multiples of this RMS as a way of setting this threshold.

The Los Leones 2007, February to October data used to calculate
the fits in figure 4.18 were processed (all cloud present in images identified)
manually, allowing an evaluation of the success rate of a particular threshold
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level to take place. The parameterization at 22 degrees of elevation in figure
4.18 takes the form of equation 4.11, with an associated fitted RMS of σ =307.

Sclear = 21533 + 0.932Tamb + 511.2
√

ε0 (4.11)

where Sclear is the predicted clear sky signal, Tamb is the local ambient tem-
perature (in Kelvin) and ε0 is the ground level water vapor pressure (in mb).
In the tops plots of figure 4.19 are shown histograms showing the difference
(in terms of multiples of the fitted RMS σ) between the clear sky predicted
signal Sclear and the signals measured by pixels (between elevations 21.5-
22.5◦) identified as cloudy or clear by the manual processing.

Figure 4.19: Processed data was gathered from data recorded by the Los Leones
cloud camera in 2007, between February and October, and the difference be-
tween the signal measured by each camera pixel, and the predicted clear sky signal
recorded. [Left] The distribution of signal differences for pixels identified by pre-
vious analysis as being clear. [Right] The distribution of signal differences for
pixels identified by previous analysis as being cloud.

The left-most plot in figure 4.19 shows the distribution of the dif-
ference between predicted clear sky and actual pixel signal strengths, for
pixels identified as being free of cloud. The distribution shows a strong peak
centered at approximately 0σ, which is consistent with the idea that the LI-
DAR, RMS and signal quality cuts mentioned earlier have ensured that the
parameterization in equation 4.11 was fitted to mostly clear sky data. At
approximately 2σ there is another, smaller, peak that is likely the result of
very high altitude cirrus cloud of a very similar intensity to the clear night
sky. Due to its similarity it was likely mis-identified as being clear sky in the
manual processing process. Practically speaking, if such cloud is missed in
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an analysis it is generally unlikely to have any effect on any analysis, as this
cloud layer would usually be above the extensive air shower being observed
by the fluoresecence detector. There is also a distribution of pixels falling
below -5σ of the predicted clear sky signal. These are likely pixels associated
with the ‘auras’ sometimes observed around bright cloud banks (see section
3.5.1) that are an imaging artefact of the scene differencing process in the
camera.

In the right-most plot of figure 4.19 is shown the differences between
the signals of pixels identified as being cloud and the signal expected for a
clear night sky at 22◦ of elevation. Most of the pixels identified as cloud,
have signal intensities above the clear sky predicted signal. The peak and
distribution around and below 0σ, are likely clear sky pixels that have been
misidentified by cloud during the manual processing of the data. Above 0σ
are what appear to be 5 separate peaks. These are likely from very overcast
periods in the data, where there was a significant number of cloudy pixels
being recorded.

Figure 4.20: Plot of threshold cut vs fraction of all pixels (from figure 4.19) cor-
rectly identified at different thresholds.

The effectiveness of a particular threshold cut may be evaluated
using the data in figure 4.19. A threshold is defined is terms of some multiple
of the fitted residual RMS of equation 4.11 added to the predicted clear sky
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signal. Pixels with signal strengths above the threshold are considered to be
cloud, and those below are considered to be clear sky. In figure 4.20 is shown
the fraction of pixels (from the sample of data used for figure 4.19) that is
correctly identified for a given threshold level. A cloudy pixel is said to be
identified correctly if its signal strength is above the threshold, while a clear
pixel is correctly identified with a signal below the threshold. According to
this figure, the best threshold is at a level 2.7σ above the predicted clear sky
signal strength, with a success rate of approximately 85%.

There are a few reasons why the apparent success rate of this thresh-
olding process is not higher. Firstly is the presence of high altitude cirrus
cloud with a similar signal intensity to clear night sky. This parameterization
does not appear to have the precision necessary to distinguish between cloud
and clear sky in this situation, therefore the success rate is being negatively
affected by those cirrus, high altitude cloudy pixels being identified as clear
sky. The second reason is to do with the temperature and weather readings
used to create the clear sky signal parameterization. There is no guarantee
that the selection of water vapor pressures and ambient temperatures that
survive the quality cutting process (mentioned earlier), are representative of
the entire range of weather parameters that may be encountered during cam-
era operation. This means that the parameterization may have to extrapolate
the clear sky signals for temperatures or water vapor pressures much different
to that used to fit the parameterization in the first place. This reduces the
accuracy of the clear sky signal estimation, and so makes the thresholding
process less effective than it might otherwise be.

Also contributing to inaccuracy is the fact that the ground level
water vapor pressure is not a perfect predictor of the total atmospheric water
vapor content above ground level. The parameterization ultimately uses
an estimation of the vertical distribution of water vapor above the Earth’s
surface. Without a perfect description of the vertical water vapor profile
the effective emissivity of the atmosphere, and thus camera clear sky signal,
cannot be known.

It is therefore unlikely that a single threshold level can be sufficient
for a complete set worth of data, though the 2.7σ level mentioned here may be
a useful starting level. In a practical application of this thresholding process,
it may be necessary to adjust the threshold level for some sets of images as a
set of mostly overcast images will tend to favor a lower threshold, while a set
consisting mostly of clear sky images will tend to favor a higher threshold,
and hence σ level.
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4.3 Cloud detection algorithm evaluation

There are multiple ways to apply the different techniques described in the pre-
vious section to detect cloud within a cloud camera’s infrared images. Some
algorithms are more effective than others. In this section, different algorithms
will have their effectiveness evaluated using a sample of the Los Leones cloud
camera data (February to June, 2007) consisting of 17580 images that have
been manually scanned for cloud. Algorithms will be described, applied to
the test set of data, and the accuracy evaluated by the fraction of (clear or
cloudy) pixels that are in agreement with the manually processed version of
the image. In the final summary section the algorithms are discussed and
compared against one another.

4.3.1 Segmentation: Weather dependent threshold

Within section 4.2.3 is discussed a weather dependent threshold. Several
months worth of data is gathered, and with the aid of LIDAR and quality
cuts, a selection of clear night sky signals are identified and parameterized as
a function of ambient temperature and ground-level water vapor pressure. A
threshold using this parameterization may be determined as some multiple
of the RMS of the residual from the fit of the parameterization to the data.
Pixels with signal strengths above this threshold are considered to be cloud,
and pixels below as clear sky.

1. For several months worth of cloud camera data (from the same cam-
era and with the same flat-field calibration) calculate the mean signal
strength and RMS in each image, for each elevation between 3-29◦.

2. Record the average fraction of cloud measured by the LIDARs when
each cloud camera image was taken.

3. Using LIDAR cloud fraction, RMS and signal strength cuts determine
which mean signal strengths are from a cloud-free night sky.

4. For each elevation fit a parameterization of the form described in section
4.2.3, and record the RMS of the residuals from each fit.

5. Determine a threshold for each individual pixel within a particular
image as being the closest (in terms of elevation) parameterization plus
some multiple of the fitted residual RMS for that parameterization.

6. If a pixel is above this threshold, consider it as being cloud, if below,
then as clear sky.
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Figure 4.21: Figure shows the accuracy of cloud detection for various threshold
levels. Black marks indicate the mean accuracy within a 10% width bin. The
red lines indicate the mean accuracy during clear (<25%), partially (25-75%) and
overcast (>75%) cloud conditions.
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Figure 4.21 shows the accuracy of this algorithm with thresholds at
various multiples of residual RMS (sigma σ) above the paramaterization. An
overall mean accuracy of 80% at a threshold of 1.5σ improves with larger val-
ues of σ up until a mean accuracy of 86% at 3.0σ. Below 2.0σ this threshold-
ing method is more effective on cloudy nights, but above at higher threshold
levels, the algorithm is more effective on clear nights.

This improvement with higher threshold levels is likely due to a bias
in the data set towards clear nights. With an increasing sigma threshold
level, clear nights are more and more likely to be correctly identified and
overcast ones less so. This is also evident in the shift in the accuracy in
overcast conditions at different threshold levels - at 1.5σ there is nearly 85%
accuracy, at 3.0σ this has dropped down to 76%. A shift in the opposite
direction may be observed for clear night images. This apparent improvement
with higher levels of σ is simply the result of a larger portion being of clear
sky conditions, as a threshold increases the number of pixels classified as
clear sky will increase, which naturally favors clearer night-time conditions.

A better measure of the algorithm’s effectiveness is at whatever
threshold level the response from clear, partially clouded and overcast cloud
conditions is the same. If either clear or overcast conditions are being clearly
favored by a particular threshold level then it implies that the algorithm’s
effectiveness is a result of some numerical threshold level, as opposed to the
parameterization’s ability to predict clear sky signal. In the case of this par-
ticular data set, a threshold 2σ best approximates a level response implying
that the true effectiveness of this algorithm is approximately 80-83%.

4.3.2 Segmentation: Otsu’s algorithm

Otsu’s algorithm was discussed in subsection 4.2.1, and is a method for au-
tomatically choosing some threshold, based upon minimizing the inter-class
variance between the two classes of pixels that would result at a particular
threshold level.

Three applications of the algorithm are discussed here. In the first
application, the algorithm is applied to the entire image - combining infor-
mation from both pixels viewing the Earth and pixels viewing the night sky.
This sometimes has the effect of missing fainter cloud in the night sky if the
ground appears sufficiently bright, therefore the algorithm is also evaluated
using just pixels from the sky (the top-most 180 rows in the image) in the
second algorithm described here. The third algorithm simulates an estimated
distribution of clear sky signals and adds it to the data being evaluated by
Otsu’s algorithm. This provides an improvement to the accuracy of Otsu’s
algorithm on completely overcast days, as the addition of a guaranteed clear
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sky distribution allows better assignment of a threshold in such conditions.

Otsu’s algorithm applied to the whole image

Otsu’s algorithm provides a method for estimating a threshold, based upon
the between-class variance between different sets of pixels in an image. Pixels
with a signal intensity above this threshold are classified as being cloud, and
those below as being clear sky. A step-by-step guide to the algorithm is
shown below.

1. Calculate the mean signal strength of all pixels in the image.

2. Divide the pixels into two groups according to some threshold level.

3. Calculate the mean signal strength and fraction of pixels in each indi-
vidual group.

4. Calculate the between-class variance using equation 4.4.

5. Repeat steps 2-4 until all potential thresholds have been evaluated.

6. Pick the optimal threshold as that threshold which had the largest
between-class variance.

7. Assign any pixels in the image with a signal strength above the optimal
threshold as being cloud, and any below as clear sky.

Figure 4.22 shows the results of application of this algorithm to the
test set of data. Accuracy of the algorithm is evaluated by determining the
fraction of pixels that are correctly identified as cloudy or clear sky (according
to the manually twice-checked test set). The histogram on the left suggests
a generally high degree of success with a mean success rate of approximately
79%, with most of the images having more than 70% of their pixels correctly
classified as being clear or cloudy. On the right is a plot describing the mean
accuracy for images depicting different cloud conditions. For mostly clear
images with less than 25% of the pixels being cloud the mean accuracy is
nearly 92%. For partially cloudy conditions, with between 25% and 75% of
the pixels being cloud, the algorithm performs slightly less well with a mean
accuracy of 83%. During overcast conditions, with a greater than 75% cloud
coverage, the mean accuracy is much poorer with a a mean accuracy of 55%.

This algorithm has an impressive accuracy during very clear condi-
tions, but at increasingly overcast conditions it becomes much poorer. This
due to the apparent brightness of the land within the image field of view.
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Figure 4.22: Figure shows the accuracy in cloud detection of Otsu’s algorithm
being applied to images in the test set of data. [Left] Histogram of the algorithm’s
accuracy pertaining to the test set of 17580 cloud images. [Right] Plot showing
the mean algorithm accuracy in different cloud conditions. Black marks indicate
the mean accuracy within a 10% width bin with standard error on the mean. The
red lines indicate the mean accuracy during clear (<25%), partially (25-75%) and
overcast (>75%) cloud conditions.

The high signal from the bright pixels associated with the landscape will gen-
erally contrast very strongly with the much dimmer clear night sky thereby
allowing Otsu’s algorithm to arrive at a successful threshold, due to the pres-
ence of two well defined signal distributions. Fainter cloud appearing in the
image may be missed however, as there is greater similarity with the clear
sky distribution than with the much brighter landscape.

As the fraction of cloud in the image increases the size of the ‘bright’
distribution of pixels in the image increases and there is less contrast between
the cloud and clear sky signal distributions. This results in an increase in the
derived threshold, that begins to start identifying the dimmer regions of cloud
as clear sky. In completely overcast conditions there is no contrast available
between the clear sky and cloud, therefore the threshold is set somewhere
within the cloudy pixel distribution, and much the cloud is subsequently
falsely classified as being clear sky and the accuracy of the algorithm drops.

The performance of Otsu’s algorithm in a determining a threshold
that successfully segments clear and cloudy regions is dependent upon the
availability of information on both the signal intensity expected by clear sky
and cloud. The presence of the landscape always simulates a bright cloud
distribution, but without a clear sky distribution the threshold determined
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by Otus’s algorithm may be an overestimate.

Otsu’s algorithm applied to the sky

In this algorithm, Otus’s algorithm as applied as normal, but this time only
using the pixels that make up the sky region. The presence of the landscape
within the image may sometimes cause a threshold to be set too high, failing
to recognize the presence of fainter cloud in the night sky. By ignoring the
landscape the algorithm will become more sensitive to the presence of such
clouds, and set a correspondingly lower threshold.

1. Calculate the mean signal strength of pixels in the top 180 rows of the
image.

2. Divide the pixels in the top 180 rows into two groups according to some
threshold level.

3. Calculate the mean signal strength and fraction of these pixels in each
individual group.

4. Calculate the between-class variance using equation 4.4.

5. Repeat steps 2-4 until all potential thresholds have been evaluated.

6. Pick the optimal threshold as that threshold which had the largest
between-class variance.

7. Assign any pixels in the image with a signal strength above the optimal
threshold as being cloud, and any below as clear sky.

Figure 4.23 shows the results of this algorithm applied to the test set
of data. The histogram on the left demonstrates a low accuracy in correctly
identifying pixels, with a mean accuracy of 57%, and most of the images
having less than 80% of their pixels correctly identified. The right-most plot
describes the mean accuracy for images under different cloud conditions. For
mostly clear images with less than 25% of the pixels being cloud, the mean
accuracy is 48%. For partially cloudy conditions, with between 25% and
75% of the pixels being cloud, the algorithm has a mean accuracy of 83%.
During overcast conditions, with a greater than 75% cloud coverage, the
mean accuracy is 66%.

The performance of this algorithm is very poor during very clear
and overcast conditions. This is likely due to the lack of the availability of
both clear and cloud intensity distributions under these conditions. Without
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Figure 4.23: Figure shows the accuracy in cloud detection of Otsu’s algorithm
being applied to the sky regions of images in the test set of data. [Left] Histogram of
the algorithm’s accuracy pertaining to the test set of 17580 cloud images. [Right]

Plot showing the mean algorithm accuracy in different cloud conditions. Black
marks indicate the mean accuracy within a 10% width bin with standard error on
the mean. The red lines indicate the mean accuracy during clear (<25%), partially
(25-75%) and overcast (>75%) cloud conditions.

examples of both distributions, the threshold calculated by Otsu’s algorithm
will either be too low or high, resulting in a high error rate.

This algorithm performs more poorly than when it is applied us-
ing information from all the pixels in an image. This is because while the
algorithm may be more sensitive to fainter cloud conditions, these cloud
conditions are not common in actual cloud camera data. The algorithm per-
forms at its best in mixed cloud coverage conditions, likely because it is here
where both the clear sky and cloudy conditions are approximately equally
represented.

Otsu’s algorithm with false clear sky distribution

One of the drawbacks to the previous algorithms operating during very over-
cast conditions is the lack of a substantial distribution of signals associated
with a clear night sky, with which to establish a good threshold against.
The work done in section 4.2.3 has shown it is possible to estimate the clear
sky signal through the use of fitted parameterizations. In this algorithm, a
simulated distribution of 25600 clear sky signals is created from these pa-
rameterizations, and is added to the distribution of signals from a particular
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image before Otsu’s algorithm calculates a threshold. This ensures that at
least a quarter of the signals being evaluated by the algorithm always repre-
sent a clear sky signal

1. For several months worth of cloud camera data (from the same cam-
era and with the same flat-field calibration) calculate the mean signal
strength and RMS in each image, for each elevation between 3-29◦.

2. Record the average fraction of cloud measured by the LIDARs when
each cloud camera image was taken.

3. Using LIDAR cloud fraction, RMS and signal strength cuts determine
which mean signal strengths are from a cloud-free night sky.

4. For each elevation fit a parameterization of the form described in section
4.2.3, and record the RMS of each fit.

5. Randomly pick one elevation, and evaluate the parameterization to
yield the clear sky signal for the image in question.

6. Randomly draw a number from a Gaussian distribution with an RMS
and a mean equivalent to the parameterization picked in step 5.

7. Repeat steps 5-6, 25600 times.

8. Calculate the mean signal strength of all the image pixels and randomly
generated clear sky signals.

9. Divide all the pixel and random signals into two groups according to
some threshold level.

10. Calculate the mean signal strength and fraction of signals in each in-
dividual group.

11. Calculate the between-class variance using equation 4.4.

12. Repeat steps 9-11 until all potential thresholds have been evaluated.

13. Pick the optimal threshold as that threshold which had the largest
between-class variance.

14. Assign any pixels in the image with a signal strength above the optimal
threshold as being cloud, and any below as clear sky.
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Figure 4.24: Figure shows the accuracy in cloud detection of Otsu’s algorithm
(with a false clear sky distribution) being applied to the sky regions of images in
the test set of 17580 cloud images. [Left] Histogram of the algorithm’s accu-
racy pertaining to the test set of data. [Right] Plot showing the mean algorithm
accuracy in different cloud conditions. Black marks indicate the mean accuracy
within a 10% width bin with standard error on the mean. The red lines indicate
the mean accuracy during clear (<25%), partially (25-75%) and overcast (>75%)
cloud conditions.

Figure 4.24 demonstrates the cloud/clear sky classification accuracy
through the use of Otsu’s algorithm with an added fake clear sky distribution
of signals. The overall algorithm efficiency is nearly 85%, with it working
most effectively under clear sky conditions with a mean accuracy of 90%.
Under partially cloudy and overcast cloud conditions the algorithm functions
less effectively, with mean accuracies of 83% and 74% respectively.

This algorithm showed an increase of nearly 6% in the overall accu-
racy from the approach where Otsu’s algorithm was just applied to image
data, indicating that this approach is superior. The mean accuracy of dur-
ing clear sky and partially cloudy conditions are very similar to that of the
plain application of Otsu’s algorithm, the mean accuracy during overcast
conditions, however, show a substantial improvement of approximately 20%.
Artificially adding a clear sky distribution of pixels successfully increased the
ability of Otsu’s algorithm to pick an appropriate threshold level during over-
cast cloud conditions, where there would otherwise be no such distribution
available to provide a substantial contrast against the clouds.

A higher degree of accuracy was likely not achieved due to the width
of the false clear sky signal distribution created. Imprecision in the fitted
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parameterization (because it is an approximation) leads to the false clear
sky signals being drawn from a greater range of values than would be seen
in reality. Fainter, higher altitude cloud, will therefore sometimes have sig-
nal distributions similar to that of the broad simulated distribution. This
reduces the effectiveness of the fake clear sky signals as contrasts, and thus
the threshold derived by Otsu’s algorithm.

4.3.3 Segmentation: K-means cluster analysis

The K-means algorithm may sort information into different clusters based
upon several different variables. In this application, however, the only sorting
variable being considered is the signal intensity of each pixel. Applying
the K-means algorithms allows an image to be divided into several different
partitions, each of which may be assigned as being either clear or cloud
sky. In these cloud detection algorithms, the K-means algorithm is used to
segment images into three different partitions. The number three was chosen
as there are typically three distributions of pixels within an image belonging
to the landscape/bright cloud, faint cloud and clear night sky.

Initial seeding of the clusters is carried out randomly, therefore the
final assignment of pixels to different partitions may vary if the algorithm is
applied to the same image multiple times. In order to account for this, each
image is run through the algorithm several times, and the final partition
arrangement chosen that has the least variance between pixels and their
partition means.

Images cannot always be segmented into three partitions (in the test
set of data 47% of images cannot be segmented this way). This occurs in
very featureless images, such as very low altitude overcast cloud conditions
or very clear nights. If such an image is encountered in these algorithms, a
simple Otsu threshold is calculated and applied to the image to segment it
into cloudy and clear sky regions, as the failure to segment implies only one
or two strong distributions of pixels within the image.

Three partitions, favoring cloud

In this algorithm, the K-means algorithm is used to segment images into
3 partitions. The two partitions with the highest mean signal strength are
classified as being cloud (this includes the landscape), while the partition
with the lowest mean signal strength is classified as being clear sky. Images
are processed by the K-means algorithm several times, to find the partition
structure which minimizes the variance between the mean signal of a partition
and its constituent pixels, as this is taken to be the ‘best-fit’ case. Images
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that cannot be segmented in this way, have Otsu’s algorithm applied to them
to determine some threshold, above which pixels are considered to be cloudy.

1. Randomly assign each pixel in the image to one of three partitions.

2. Calculate the mean signal strength of the pixels in each partition.

3. Calculate the variance between each pixel’s signal and the mean signal
of each partition.

4. Reassign each pixel to the partition with which it has the least variance.

5. Repeat steps 3-5 until no pixels are being reassigned.

6. Check that all three partitions have members, if not go back to step 1.

7. Calculate the mean pixel intensity of each partition.

8. Calculate the total variance between each pixel’s intensity and its cor-
responding cluster’s mean intensity.

9. Repeat steps 1-8, 10 times.

10. If cannot partition this image into three clusters, apply the algorithm
in section 4.3.2 and end.

11. Use the partition with the lowest variance, calculated in step 8.

12. Assign the partition with the lowest mean intensity as clear sky, and
the two highest as cloud.

Figure 4.25 shows the effectiveness of this K-means segmentation al-
gorithm when it’s applied to the test set of data. Only 9246 of the images
were successfully segmented into three regions, the rest were segemented
using Otsu’s algorithm (see section 4.3.2). The overall mean effectiveness
of the algorithm was approximately 71%. During clear sky and partially
cloudy conditions, the algorithm performed similarly with a mean accuracy
of around 77%. During overcast cloud conditions however, the mean effec-
tiveness dropped to approximately 60%.

The drop in accuracy during overcast cloud conditions is likely due
to the algorithm’s assumption that there is always a clear sky distribution
of signals within the image. The partition with the lowest mean intensity is
always being assigned as clear sky, in the case of overcast conditions (where
there is not always a clear sky signal distribution) this will result in an
erroneous classification of this partition. The effectiveness of the algorithm
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Figure 4.25: Figure shows the accuracy in cloud detection using the K-means
segmentation algorithm (favoring cloud) being applied to images in the test set of
17580 cloud images. [Left] Histogram of the algorithm’s accuracy pertaining to
the test set of data. [Right] Plot showing the mean algorithm accuracy in different
cloud conditions. Black marks indicate the mean accuracy within a 10% width bin
with standard error on the mean. The red lines indicate the mean accuracy during
clear (<25%), partially (25-75%) and overcast (>75%) cloud conditions.

during less cloudy nights is conversely negatively affected by the presumption
that there are always two signal distributions associated with cloud. On
completely clear nights there is generally only two distributions, one from
the landscape and one from the clear sky itself. If the K-means algorithm
successfully segments the image, it is possible that two of the partitions will
be associated with the clear sky. Since two partitions are guaranteed to be
classified as cloud, then there will always be a mis-classification of clear sky
pixels as cloudy pixels in this situation.

Three partitions: favoring clear sky

Once again, much like the previous algorithm, an image is segmented into
three different partitions. In this case, however, only the partition with the
highest mean signal strength is classified as being cloud. The other two with
lower mean signal intensities are classified as being clear night sky.

1. Randomly assign each pixel in the image to one of three partitions.

2. Calculate the mean signal strength of the pixels in each partition.
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3. Calculate the variance between each pixel’s signal and the mean signal
of each partition.

4. Reassign each pixel to the partition with which it has the least variance.

5. Repeat steps 3-5 until no pixels are being reassigned.

6. Check that all three partitions have members, if not go back to step 1.

7. Calculate the mean pixel intensity of each partition.

8. Calculate the total variance between each pixel’s intensity and its cor-
responding cluster’s mean intensity.

9. Repeat steps 1-8, 10 times.

10. If cannot partition this image into three clusters, apply the algorithm
in section 4.3.2 and end.

11. Use the partition with the lowest variance, calculated in step 8.

12. Assign the partition with the highest mean intensity as cloud, and the
two lowest as clear sky.

Figure 4.26 shows the accuracy of this K-means segmentation algo-
rithm when its applied to the test set of data. As with the previous algorithm,
those images not segmented into three regions were segmented using Otsu’s
algorithm (see section 4.3.2). The overall mean effectiveness of the algo-
rithm was approximately 77%. During clear sky conditions, the algorithm
performed well with a mean accuracy of around 92%, and poorly during
overcast cloud conditions with a mean accuracy of 58%.

This clear sky favoring algorithm performs very similarly to the cloud
favoring algorithm in mixed cloud conditions, but performs much (≈ 10%)
better and much worse in clear and overcast conditions respectively. The
improvement in clear sky conditions comes about because there is generally
more spread in the signals associated with clear sky signals, than with the
signals registered for the landscape. Therefore a segmentation into three
partitions is likely to have two associated with the clear sky signals and one
with the landscape, and thus by assigning more partitions as clear sky the
image is more likely to have clear sky distributions correctly classified. The
accuracy for overcast cloud conditions gets worse, as in such conditions there
is little if any clear sky distribution present in the image. Therefore all three
partitions are likely to consist of cloudy sky or landscape distributions, and
by classifying more partitions as clear sky, the fraction of pixels incorrectly
identified as clear sky will increase.
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Figure 4.26: Figure shows the accuracy in cloud detection using the K-means
segmentation algorithm (favoring clear sky) being applied to images in the test set
of 17580 cloud images. [Left] Histogram of the algorithm’s accuracy pertaining to
the test set of data. [Right] Plot showing the mean algorithm accuracy in different
cloud conditions. Black marks indicate the mean accuracy within a 10% width bin
with standard error on the mean. The red lines indicate the mean accuracy during
clear (<25%), partially (25-75%) and overcast (>75%) cloud conditions.

4.3.4 Segmentation: Edge based

In this algorithm, Canny’s edge detection algorithm is used in conjunction
with Otsu’s thresholding algorithm to detect cloud through their boundary
with clear night sky. Canny’s edge detection algorithm is used to locate and
define the position of edges within the image. These edge contours initially
have a width of one pixel, but are expanded into larger ‘edge regions’ by
assigning any neighbouring pixels as being edges too. Each ‘edge region’
is then thresholded using Otsu’s algorithm, to identify which side of the
original edge contours are cloud, and which are clear sky. This last step
is demonstrated in the right-most image in figure 4.27, where white and
black are cloudy and clear sky pixels (identified through Otsu’s threshold
algorithm) respectively. Grey pixels are pixels that do not belong to any
‘edge regions’, and are later classified (seen in the bottom image in figure
4.27) depending upon the surrounding edge region pixels.

1. Smooth the selected image with a gaussian weighted averaging filter.

2. Work out the signal gradient and direction across each pixel in the
filtered image using a Sobel filter.
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Figure 4.27: An overview of the edge-based thresholding process. The raw top-most
image has Canny’s edge finding algorithm applied to it, locating regions of pixels
around the boundary between cloud and clear sky in the image. Each identified
edge region is then thresholded, as is seen in the right-most image. Grey indicates
pixels not part of an edge region, and white and black indicate pixels from the
‘edge regions’ that have been identified as cloud or clear sky respectively by Otsu’s
thresholding algorithm. For each region of grey pixels, the number of cloudy and
clear pixels along its boundaries are evaluated and used to classify the region as
either cloud or clear sky.
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3. Use non-maxima supression and hysteresis (see section 4.1.1) to locate
edges within the image.

4. Expand any edges identified into ‘edge regions’ by marking every non-
edge pixel adjacent to an edge pixel as an edge pixel as well.

5. For each ‘edge region’, apply Otsu’s algorithm to determine a signal
intensity threshold in that region.

6. Segment each individual ‘edge region’ based upon the calculated thresh-
old (see the right-most image in figure 4.27).

7. For each region of non-edge pixels, calculate the fraction of edge pixels
surrounding that region that have been indentified as cloud.

8. If there are more pixels identified as cloud surrounding a non-edge
region, than as clear sky, then assign that entire region as being cloud,
or vice versa.

This algorithm requires four different user-defined variable to func-
tion correctly: the level of Gaussian filtering, and the upper and lower thresh-
olds for the non-maxima suppression, the hysteresis process and the creation
of the edge regions. This gives the algorithm a great deal of flexibility in
its response to different types of images. For the purposes of evaluation, a
cloudy image was chosen at random from the test set of data and a set of
variables chosen such that this algorithm correctly identified all the cloud in
that image. These same variables were then used to evaluate the effectiveness
of this algorithm for the entire test set of data, the results of which may be
seen in figure 4.28.

Figure 4.28 shows the performance of the edge-based thresholding
algorithm when applied to the test set of data. The algorithms had a mean
accuracy of 58% on the test data, but most of the images were either very
successful (>95%) or very poor (<5%) is terms of cloud detection. During
overcast cloud conditions, the algorithm performed most poorly, with an
average detection accuracy of 40%. In clear, or partially cloudy conditions
however, the mean accuracy was around 65%.

A large fraction of the images that underwent this algorithm either
had most of their cloud detected accurately, or most of their cloud missed - as
seen in the histogram in figure 4.28. As there are some four different variables
in the algorithm (Gaussian filtering level, lower and upper threshold and the
size of the edge regions), and only one set of variables were used in this study,
then this could be interpreted to mean that either the algorithm will perform
very well, or very poorly. Those images that were well suited to the settings



140 CHAPTER 4. IMAGE PROCESSING AND CLOUD DETECTION

Figure 4.28: Figure shows the accuracy in cloud detection using the edge detection
based segmentation algorithm (favoring clear sky) being applied to images in the
test set of 17580 cloud images. [Left] Histogram of the algorithm’s accuracy per-
taining to the test set of data. [Right] Plot showing the mean algorithm accuracy
in different cloud conditions. Black marks indicate the mean accuracy within a
10% width bin with standard error on the mean. The red lines indicate the mean
accuracy during clear (<25%), partially (25-75%) and overcast (>75%) cloud con-
ditions.

of the study had a higher fraction of their cloud identified successfully, while
those images to which the settings were poorly suited, had very little of their
cloud identified correctly. Only a relatively small fraction of images had an
intermediate level of success between 10-90%.

This suggests that this algorithm has the potential to be very ef-
fective in successfully describing cloud conditions within the cloud camera
images. The catch is, however, that a user must first identify the right vari-
ables for the algorithm to work with a particular image. A poor choice of
thresholds and filtering levels may be too sensitive to noise within the image
and register it as cloud, or may not be sensitive enough, and incompletely
define the shape of any cloud present. Despite the potentially very good re-
sults offered by the algorithm, its potential for extremely poor results makes
it unreliable for unsupervised processing of large quantities of images.

Another interesting result is the poor cloud detection (40%) provided
by the algorithm during overcast cloud conditions. This is likely due to the
lack of strong edge gradients in such conditions. If the sky is completely
overcast, and the landscape at a similar intensity to the cloud, then there
may be no areas of contrast over which Canny’s edge detection algorithm
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may detect an edge, and so hence detect any cloud. In the cases where
appropriate edge gradients do exist, then lower intensity cloud regions are
going to be incorrectly identifed as clear sky. Clearly this algorithm is not
robust under such conditions.

4.3.5 Summary

The effectiveness of the cloud detection algorithms upon the test sample of
data is summarized within Table 4.1. Each algorithm has listed beside it
its effectiveness in clear sky, partially cloudy and overcast conditions. Also
noted is the overall mean success of the algorithm for the test set of data. To
aid the eye, those values above 80% are marked in blue, while those below
are marked in red. Values above 90% are additionally displayed in a bold
text font.

Algorithm A B C Overall
Weather dependent threshold 85% 83% 81% 83%
Otsu’s algorithm (whole sky) 92% 83% 55% 79%
Otsu’s algorithm (part of sky) 48% 84% 66% 57%
Otsu’s algorithm (false clear sky) 90% 83% 74% 85%
K-means cluster analysis (cloud bias) 77% 77% 59% 71%
K-means cluster analysis (clear sky bias) 92% 79% 48% 77%
Edge detection 67% 64% 40% 58%

Table 4.1: Cloud detection accuracy of algorithms upon a test set of images.
A, B and C represent the accuracy in clear, partially clouded and overcast
conditions respectively. ‘Overall’ represents the mean accuracy of the algo-
rithm for all the images in the test set. An algorithm accuracy above 80% is
represented by the color blue, while any values below are marked red.

Generally speaking, as shown within Table 4.1, the strongest per-
forming algorithms were those utilizing the weather dependent information
- the weather dependent threshold and Otsu’s thresholding algorithm with
the false clear sky distribution. Both of these algorithms achieved greater
than 80% effectiveness in most of the different cloud conditions. The only
algorithm with a 80% cloud detection effectiveness during overcast condi-
tions was also the weather dependent threshold. The poorest performing
algorithms, with no values above 80%, were the edge detection and K-means
(cloud bias) algorithms.

An interesting aspect to Table 4.1 is the generally poor response of
the cloud detection algorithms during completely overcast cloud conditions.
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With the exception of Otsu’s (false clear sky) algorithm, all of the processes
were successful in identifying clouds and clear sky 49-66% of the time. As
the pixels are either viewing the landscape or overcast night sky, there are
no pixels with associated clear sky signals that the cloudy pixels may be
contrasted against. With the exception of the weather dependent threshold
and Otsu’s (false clear sky) algorithms (which happen to be the most effective
algorithms), all of the detection algorithms require some sort of contrast
within the image. In overcast conditions, with its absence, the result is lower
intensity cloud being erroneousy identified as clear night sky.

This highlights the necessity for examples of both cloudy and clear
sky pixels within cloud camera images for the effective application of cloud
detection algorithms, however the situation is not as severe in the case of clear
night sky conditions. This is evidenced by the majority of the algorithms
achieving detection successes in excess of 80%. Despite the lack of cloud in
these conditions, the landscape of the Earth is present and able to provide a
contrast in intensities due to it usually bright intensity with respect to the
clear night sky. This point is further illustrated by the Otsu’s (part of sky)
algorithm, where Otsu’s threshold was calculated just using pixels viewing
the night sky. Without the landscape present the clear night sky was partially
segmented into cloud.

The predictive nature of the clear sky parameterization discussed in
sections 4.2.3 and 4.3.1 is clearly invaluable to the successful detection of
cloud in the cloud camera images, as it ensures that at least an estimation of
the clear sky brightness is always available. Two applications of this param-
eterization were examined in this study - the weather dependent threshold
and Otsu’s (false clear sky) algorithm. Of the two algorithms Otsu’s was,
on average, slightly more effective, with a mean accuracy of 85% - perform-
ing better than the raw Otsu’s (whole sky) algorithm’s approach, due to its
increased (but still below 80%) success in overcast cloud conditions. The
weather dependent threshold had a mean accuracy of 83%, but a more con-
sistent response across a variety of cloud conditions.

Despite its slightly inferior on-average performance, the weather de-
pendent threshold is probably the superior choice of the two clear sky param-
eterization algorithms. Neither algorithm provides a consistent 90% accuracy
in their cloud detection, therefore neither algorithm may be completely relied
upon to successfully describe cloud conditions. So the choice of algorithm
falls to the one that requires the least manual intervention on the part of
a human operator. The weather dependent threshold requires the choice of
some threshold (in terms of σ-variation from the fitted parameterization),
giving it a great deal more flexibility than the more rigid Otsu’s (false clear
sky) algorithm. A human user encountering an image which has been unsuc-
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cessfully processed by the latter algorithm will have to spend time picking
another algorithm, or some threshold level for the weather dependent thresh-
old. In the former case however, even if unsuccessful, a human user will know
what settings were used in the weather dependent threshold and thus be able
to pick a more successful thresholding level quite easily. Therefore of the two,
the weather dependent threshold is more desirable for large scale processing
applications.

4.4 Pierre Auger Cloud Manager (PACMan)

The PACMan (Pierre Auger Cloud Manager) GUI1 was created to facili-
tate processing of the large numbers of images recorded by the cloud cameras.
PACMan uses files with the .irp filename extension which contain (in a com-
pressed format) images, along with most of the information required to detect
cloud in those images. Several options are available within PACMan that can
not only initially create files of the .irp format, but also process images con-
tained within and convert them into a format suitable for uploading into the
cloud camera database. Manual supervision is still required for much of the
processing procedure, however the graphical nature of PACMan is designed
to make this process as painless as possible.

4.4.1 The .irp file format

The PACMan program stores images from the cloud cameras along with
relevant information in files with an .irp filename extension. These files
consist of a header containing information such as image pointing direction
and image recording time, followed by the actual stored image data itself.

File structure

The header of a .irp file consists of several integer and character arrays stored
in binary format, that not only provide generic information about the images
contained within, but also the location of different images within the file. In
order from the start of an .irp file, these arrays take the form:

1Graphical User Interface
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File id Identifies the file as being of .irp type char[3]=“irp”
Image num. Total number (N) of raw images stored in file. unsigned int
Eye Which cloud camera the images belong to. unsigned char
Type What number in a set an image is from. unsigned char[N]
Group What group an image is assigned to. unsigned char[N]
Position Position of an image within the file. unsigned long int[N]
Time Time in GPS seconds of image capture. unsigned long int[N]
Elevation Elevation of the image pointing direction. double[N]
Azimuth Azimuth of the image pointing direction. double[N]

After this initial header information, information describing each
raw image is added sequentially to the file along with a ‘processed’ version
of that image. Each image is stored via a series of arrays described below.
The actual use of the arrays is described in the following sections regarding
image compression.

K Length of ‘key chain’ array. unsigned short int
I Length of ‘keys’ array. unsigned short int
Processed data unsigned char[9600]
Raw data unsigned char[76800]
Key chain unsigned short int[K]
Keys unsigned short int[I]

Compression of processed data

Processed data is simply a binary white/black image indicating which pixels
within an image are cloud and which are of a clear night sky. The most
obvious method for compression is to represent each pixel in an image as a
single bit (either a 0 or 1). There are 8 bits in 1 byte, therefore it is possible
to represent 8 pixels of a processed image with a single char variable, and
thus the 76800 pixels of a cloud camera image with 9600 bytes (9600 char
variables).

Pixels are read from the processed image starting at its top left
corner and moving right until the end of the row is reached, at which point
pixels start being read on the left-hand side again one row below. If these
pixels are considered in blocks of 8, then they may be represented by a single
number between 0 and 255 by converting from binary i.e.

a b c d e f g h = 128a + 64b + 32c + 16d + 8e + 4f + 2g + h

where a, b, c, d, e, f , g and h = 1 if that particular pixel is cloudy, or 0 if it
is of clear night sky. e.g.
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1 1 0 0 1 0 1 0 = 202

Each of these numbers may be stored via a char variable - allowing
a the entire processed image to be stored using only 9.6 KB of hard disk.

Compression of raw data

Lossless compression of raw cloud camera images within the PACMan frame-
work is achieved through representation of the signal for each pixel by a single
1 byte char variable, as opposed to the 2 byte unsigned short integer required
to record each pixel’s data ordinarily. This compression is a form of “delta
compression”, which stores pixel signals as the difference between it and its
neighbour. Much like the case of the processed image data in the previous
section, the image is considered as a one dimensional array of numbers start-
ing at the top left corner of the image moving to the right, and starting on
the left-hand side one row below upon reaching the right-hand side of the
image.

1. The difference ∆ between the signal recorded by a pixel and the signal
recorded by the previous pixel is calculated for all (except the very
first) pixels in the image.

2. The 255 most frequently appearing values of ∆ are assigned a number
between 0 and 254.

3. A new pixel array (‘Raw Data’) is created which has had its original
pixel values substituted for values between 0 and 254 (from step 2),
and 255 for any pixel values which were not assigned a number in step
2. The very first pixel in the image is always assigned 255.

4. Other one-dimensional arrays - the ‘keys’ and ‘key chains’ arrays of
unsigned short int variables are created. The 255 entries in the ‘key
chain’ array correspond to the signals identified in step 2. And entries
within the ‘keys’ array correspond to the signal of pixels marked as 255
in step 3.

The hard disk space required to store a raw cloud camera image
uncompressed is 153.6 KB. With this compression algorithm, the hard disk
requirement becomes:

[storage] = 76.8 +
255 + k

500
KB
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where k is the number of pixels marked as 255. The extent of compression
is dependent upon how many of the pixels within an image have an identical
∆ value. Note that the effectiveness of this compression algorithm depends
upon how many identical signals are recorded within a particular image.
Typically, this algorithm reduces the storage requirement for a raw cloud
camera image to 55-65% of the original requirement.

Decompression using this algorithm involves using the Raw Data
array and subsituting any of the entries marked 255 contained therein as the
value stored in the ‘keys’ array e.g. the tenth entry of Raw Data marked
as 255 is equated as the tenth entry in the ‘keys’ array. Those ‘Raw Data’
entries marked as a non-255 value have their ∆ values looked up using the
‘Key Chain’ array, which is then added to the value of the previous entry in
the ‘Raw Data’ array to calculate the actual original value of that pixel.

4.4.2 Usage

The PACMan GUI is a program used to modify and access information stored
in .irp files. Not only can the raw and processed cloud camera images within
.irp be accessed and viewed, but options exist to sort and process them.
PACMan is a tool to aid in the processing of large quantity of data recorded
monthly by all four of the cloud cameras at the Pierre Auger Observatory.

Creation of the .irp file format

Files with the .irp extension readable by PACMan are created from the raw
data recorded by the cloud cameras. Cloud cameras provide a single file (of
.irb format) for each night’s observations. Multiple .irb files are combined
to form a single .irp file, usually containing a record of a month’s data from
a single eye. PACMan extracts and stores within the .irp file format the
raw image data, the time images were taken, the pointing direction of the
images, and which eye the images were recorded from. Creation of an .irp
file requires users to provide a list of the .irb files to be combined (in the
form of an ASCII text file) and to then follow various prompts by PACMan.

The .irb data contains both images captured in the field-of-view
scans and the full sky mosaic scans. Usually just images captured in the
field-of-view scans are added to any .irp files being created, but the option
exists to use mosaics images as well. A synthetic set of field-of-view images
may be created from several of the images in the mosaic image set. This
is achieved by calculating the pointing direction of all of the pixels of the
images of the mosaic image set and comparing them with the average pointing
direction of the pixels in the field-of-view image set. For each of the pixels in
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Figure 4.29: A ‘field-of-view’ image created from a mosaic image set.

the average field-of-view image set those pixels within the mosaic set within
around 0.2 degrees of that pixel are averaged to give pixel values for the
mosaic field-of-view image set. Such image sets sometimes have apparent
image discontinuities (as seen in figure 4.29) located at the boundaries of
those mosaic images that were used, which may sometimes complicate image
processing.

A single month’s data from a single eye typically requires 350-550
Mb of storage space in the .irp style format.

Viewing images

PACMan displays images through use of the GTK C++ graphics library.
Images within the file may be inspected on a set-by-set or individual basis
to evaluate the effectiveness of the application of a particular processing
algorithm.

Within figure 4.30 is an example of an image set being displayed
by PACMan. The five raw images are at the top, while their processed
counterparts (showing the pixels identified as cloud as being light grey/white)
are just below. The areas of highest contrast in the image are those parts
of the images that are estimated to be within the fluorescence detector’s
field-of-view, but not overlapping any of the neighbouring images (it is not
precise, and is only meant to be taken as a rough guide!). On the right-hand
side is a scrollable list showing all of the image sets contained in the .irp
file, and allowing a user to easily find one in particular. This viewing format
allows an operator to quickly assess the effectiveness of the application of a
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particular cloud detection algorithm, and determine an alternative strategy
if necessary.

Figure 4.30: A full field-of-view set of images stored in .irp file format, being
displayed by PACMan.

Processing images

The processing of the cloud camera images refers to the application of a
particular cloud detection algorithm (discussed in the previous sections) to
those images. Because of its adaptability, and reliability in all types of cloud
conditions, the weather dependent threshold has been chosen as the favored
algorithm.

Processing of a set of images is therefore carried out through several
phases. First of all, a set of clear sky parameterizations (at different eleva-
tions) must be created, through the fitting of suspected clear sky signals with
the measured ambient temperature and ground level water vapor pressure.
A simple system for the selection of such data is detailed in section 4.2.3.

The value of these parameterizations at the time of a particular im-
age recording is then calculated (using ambient temperature and ground level
water vapor pressure measurements made by the Pierre Auger weather sta-
tions) to estimate the clear sky brightness at different elevations. A thresh-
old is then calculated as some multiple of the residual RMS of that fit above
the predicted clear sky brightness level for each image. Pixels at elevations
greater (or below) than the highest elevation parameterization use the closest
parameterization available. Pixels above the threshold are taken as cloud,
and those below as clear sky. PACMan will perform this process automati-
cally, for a user supplied set of parameterizations.

The user then quickly scans the set of images using PACMan (seen in
figure 4.30), determining which sets of images have had their cloud success-
fully identified. PACMan may then be used to adjust the thresholding level of
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different sets of images to more optimal levels if necessary. Images recorded
at similar times will tend to respond best to the same level of thresholding,
therefore it is rarely necessary to adjust each individual set of images, rather,
several hours worth of images may be corrected by a single adjustment at a
time.

The lack of a single reliable cloud detection algorithm means that
manual scanning by a human is required to successfully process the data.
PACMan provides an easy-to-use interface, that provides a relatively simple
way of processing large numbers of cloud camera images that minimizes the
hassle associated with this process.

When an operator is satisfied that all of the cloud within an .irp file
has been identified, they may then use PACMan to convert the cloud camera
images into a format compatible with the Auger fluorescence detectors. This
format provides an interpretation of the cloud camera data which estimates
the level of cloud within the field of view of each cloud camera pixel.

4.5 Cloud camera database

The cloud camera database is one of the atmospheric databases maintained
by the Pierre Auger observatory. Cloud camera information is stored via a
cloud index calculated for each individual FD (fluorescence detector) pixel.
Due to the quantity of data recorded by the cloud cameras all collected
information is compressed before being uploaded into the database.

4.5.1 Format

Cloud camera images, in their raw processed format, do not provide much
information about the cloud conditions that may be affecting a particular
shower. This is because there is no explicit correlation between the regions
of sky being viewed by the fluorescence detector, and the regions of sky
recorded in the image. In addition the quantity of cloud camera images
available, makes storage of this information in its native format expensive.
Therefore a less storage-demanding and more useful format for the processed
cloud camera images has been developed.

Work done by Dr Andrew Smith has provided an estimate (after
correction of camera lens aberration effects) of the pointing direction of each
pixel in a particular cloud camera image, based upon the overall pointing
direction of the camera. The pointing direction of each of the fluorescence
detector’s pixels has been well measured in the past. Because the cloud
cameras are located very close to the detectors (they’re mounted on the roof),
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the pointing direction of the fluorescence detector pixels may be compared
directly with the pointing direction of pixels in the cloud camera.

The full viewing angular width of the fluorescence detector pixels is
approximately 1.5◦. Any cloud camera pixels with a pointing angle within
0.75◦ of the pointing direction of a pixel (for its associated fluorescence detec-
tor) are therefore taken to be representative of the cloud conditions in that
pixel’s field of view. The amount of cloud within that FD pixel is simply
taken as the fraction of those representative cloud camera pixels that have
been found to be viewing cloud. This cloud fraction is then further simplified
into a cloud index using the following table.

Fraction of cloud (%) Cloud Index
0-10 0
10-30 1
30-50 2
50-70 3
70-90 4
90-100 5

A full set of 5 cloud camera images are required to calculate the
cloud index for each of a fluorescence detector’s 2640 pixels. Most of the
pixels will have a cloud index of 0, or 5, as it is only if a particular pixel is
looking at the boundary between cloud and clear sky, that it will see a mixed
cloud fraction.

Each set of 2640 cloud indices, extracted from a set of cloud camera
images, is then assigned a validity time. As images are recorded every 5
minutes, this validity will typically extend 2.5 minutes before and after the
time the images were recorded. This validity time may be extended up to 10
minutes if there happens to be no closer (in time) set taken.

4.5.2 Compression

Each cloud index is stored in the Pierre Auger database with an associated
validity time (in the form of two numbers representing the lower and upper
bound of validity time in terms of gps seconds), and information about which
pixel in which camera it corresponds to. The large quantity of cloud camera
data that must be stored makes it worthwhile to attempt to reduce the
amount of storage space required to contain all the data. One way of doing
this is to increase the validity times of some of these indices, such that other
identical indices do not need to be stored.

If a particular pixel has a cloud index that is identical to a cloud
index in a bordering validity period, then only one database entry is made -
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Figure 4.31: Figure demonstrating the compression of validity times. A pixel
(highlighted in blue) has the same cloud index in both sets of images. Instead of
making two entries with two validity periods, a single entry is made, combining
both validity times into one. Other pixels in this example would undergo this same
process.

with an extended validity time covering both cloud index measurements, thus
reducing the required storage space. An example of this is shown in figure
4.31 where a particular pixel has the same cloud index in two neighbouring
sets of images.
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Chapter 5

Accuracy of cloud camera data

The accuracy of information stored in the cloud camera database depends
upon two main factors. Firstly the rate-of-capture of images by the cam-
eras: the slower the capture rate, the less certain we are of cloud conditions
between successive captures. Secondly is simply how successful the current
methodology is at identifying cloud in the cloud camera images, particularly
on very clear and very overcast nights. Unfortunately the lack of other inde-
pendent measurements of cloud conditions above the array makes it difficult
to quantify the effectiveness of the current analysis of cloud camera data.

5.1 Rate of image capture

The rate of image capture is a measure of how often the cloud cameras record
cloud conditions across their corresponding FD (fluorescence detector) field
of view. If images are recorded with a high rate of image capture, then cloud
information is less likely to be missed, but at the same time more processing
time must be spent on the images and more storage space made available.
With a low rate of capture, less time processing needs to be spent but there is
a correspondingly lower efficiency of recording cloud information. Images are
currently recorded every 5 minutes, and it is important to check the efficiency
of this so that it may be revised if necessary.

Cloud camera efficiency depends upon how often it encounters a
cloud with enough speed that it fails to record spatial information of that
cloud’s motion. This failure is demonstrated within figure 5.1. Within the
figure a set of images (image set 1) are taken showing a fragment of cloud just
about to leave an FD pixel, and by the time image set 2 is taken, this same
fragment of cloud has travelled across an entire pixel and has just entered a
third pixel, meaning the cloud camera has no record of the fragment of cloud

153
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Figure 5.1: Figure demonstrating a loss of cloud information. In image set 1,
cloud is about to leave the left-most pixel (moving to the right). By the time the
second set of images is recorded in set 2, the cloud has crossed the middle pixel
and has reached the right-most one.

being in the central pixel. Thus the cloud camera fails when the angular
velocity of cloud is such that it can pass through an entire FD pixel’s field-
of-view in between image sets i.e. when:

∆T ≤ ∆t

where ∆T is the time cloud takes to cross a pixel and ∆t is time between
image sets being recorded.

Working out the apparent angular speed of cloud is complicated by
the direction of cloud movement with respect to the FD pixel. A cloud
fragment moving at a particular speed perpendicular to a pixel’s pointing
direction is going to cross that pixel faster than if it were moving toward or
away from the FD pixel. To calculate the crossing time of a cloud fragment,
the distance that fragment must travel to cross an FD pixel’s field of view
(approximated by an ellipse with radii x, y0 and y as seen in figure 5.2) is
first estimated. Assuming that the cloud is moving parallel to the Earth’s
surface at a constant speed and a consistent direction (represented by the red
arrow S in figure 5.2), then using the parameters described in figure 5.2, the
distance (D) cloud must travel to cross the FD pixel’s field of view may be
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estimated using equations 5.1 and 5.2. The ellipse in figure 5.2 approximates
an overhead view of the shape of a pixel’s field-of-view at a height H, and a
cloud fragment’s speed and direction of travel relative to this footprint. Once
the distance is worked out, calculation of the crossing time (∆T ) is simply
equation 5.3.

Figure 5.2: Diagram demonstrating the geometry used to work out the crossing
time of cloud. H is the height of the cloud fragment, θ is the elevation of the FD
pixel looking at the cloud, S and α describe the speed and direction of the cloud
fragment and x, y, y◦ describe the shape of the ‘footprint’ of the FD pixel’s field of
view at the level of a fragment of cloud.

D =
1√

cos2(α)
y2 + sin2(α)

x2

+
1√

cos2(α)

y2
0

+ sin2(α)
x2

(5.1)

x = tan(0.75◦) H
sin(θ)

y = H( 1
tan(θ−0.75◦)

− 1
tan(θ)

)

y0 = H( 1
tan(θ)

− 1
tan(θ+0.75◦)

)

(5.2)

∆T =
D

S
(5.3)

Over 100 weather balloon flights have been undertaken above the
Auger array over several years and different seasons [111]. These balloon
flights provide details of wind speed and direction above ground level and
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thus an overview of the conditions experienced by clouds forming within
the field of view of the cloud cameras (see figure 5.3). Generally speaking,
the wind direction coincides with direction of cloud travel higher than 700m
above ground level, with the speed of clouds less than, or equal to the prevail-
ing wind speed - with larger banks of clouds moving more slowly [53][118].
Therefore assuming that cloud travel speed is equivalent to wind speed and
direction will allow a conservative estimate of cloud movement to be made.
Cloud height information from Auger LIDAR sites, complete the picture of
the distribution of clouds above the array [135].

Figure 5.3: Wind data [111] recorded by 109 weather balloons above the Auger
array. Each line represents a single flight.

Figure 5.3 describes the wind speed and direction above the Pierre
Auger Observatory recorded by 109 individual weather balloon flights. In the
left-most plot is shown measured wind speed vs balloon height. Windspeed
is suppressed close to the Earth’s surface, due to friction with the ground. It
increases to a maximum at approximately 9km above the Earth, correspond-
ing to the location of the tropopause above the observatory, before beginning
to decrease at higher altitudes. Wind direction is described in the right-most
plot and has little consistency close to the Earth’s surface, but at higher
altitudes (> 1.5 km) is mostly in a westerly direction.

The efficiency of a particular FD pixel is estimated through a com-
bination of information gathered by weather balloons and LIDAR. For an
Auger fluorescence detector pixel facing directly north at an elevation of 20◦,
the distance a fragment of cloud must travel to cross a pixel’s field of view
(D from equations 5.1 and 5.2), was calculated for each weather balloon
measurement of wind direction and corresponding height. The related wind
speed of each associated weather balloon measurement was assumed to be
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Figure 5.4: Results for a pixel facing North at 20◦ elevation. [Top left] Expected
crossing times for a fragment of cloud vs height during the weather balloon flights.
[Top right] Distribution of cloud heights measured by the Auger LIDAR. [Bot-

tom] The failure rate of the cameras for a small fragment of cloud vs image
taking frequency.
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equal to the speed of any cloud present, and used with the calculated value
of D and equation 5.3 to estimate the time ∆T a fragment of cloud takes to
cross the pixel’s field of view. The calculated crossing times are shown in the
top plot of figure 5.4 and the observed distribution of cloud height by the
LIDAR and CLF is shown in the plot below that. Each crossing time value
is weighted by the frequency with which cloud has been observed at that
associated height. The fraction of the measurements above a particular fixed
crossing time is taken to be the cloud detection efficiency of the pixel, if cloud
camera images are recorded that far apart from each other e.g. the weighted
fraction of measurements with crossing times above 1 minute is taken to be
the cloud detection efficiency if images are recorded every minute. This effi-
ciency for different image capture rates is shown in the bottom plot of figure
5.4.

According to figure 5.4 there is over a 95% chance of missing cloud
information by only taking pictures every 5 minutes, however it is important
to remember that this is a pessimistic estimate. Figure 5.4 does not take into
account the size of the cloud, the fact that cloud moves more slowly than
the prevailing windspeed. Also note that the efficiency in this plot is only
representative of a single pixel.

Figure 5.5: Graph showing the upper limit of the failure rate vs cloud size, for
images taken every minute, 2.5 minutes, 5 minutes and 10 minutes, for a pixel
facing North at 15◦ elevation.
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Figure 5.5 demonstrates how the efficiency of the cameras starts to
improve once the proper dimensions of a cloud are taken into account. The
calculation was carried out simply by adding some cloud width to the cross-
ing distance D, and calculating the crossing times, weighting them by the
cloud height distribution then calculating the efficiency for that particular
cloud width. The efficiency for several different image taking intervals are
shown in figure 5.5. These still overestimate the failure rate however, as
the dimensions of the cloud are highly simplified (only 1 of the 3 cloud di-
mensions are considered) and cloud speeds are still exaggerated. A more
complete understanding of the types of cloud conditions encountered above
the observatory is necessary to improve the accuracy of the estimate - but it
is not unreasonable to treat figure 5.5 as an upper limit.

Figure 5.6: Upper limit of the chance of failure by the cloud cameras (at various
image taking frequencies) for a bank of cloud of width 5000m vs pixel pointing
direction. [Left] Failure rate vs pixel elevation for a pixel pointing North. [Right]

Failure rate vs azimuth angle for a pixel at 15◦ elevation.

Efficiency of the cloud cameras also depends upon the pointing di-
rection of the pixel. Different pixels will therefore have different failure rates
as can be seen in figure 5.6. Pixels at lower elevations will have lower failure
rates as they are looking at much larger swathes of sky, therefore any cloud
within the pixel will take much longer to traverse that pixel’s field of view.
Pixels pointing East or West will also have a lower failure rate because (as
can be seen in figure 5.3) most of the cloud will be travelling East/West
across the array meaning they have to travel further (several times the dis-
tance for pixels facing North or South) to traverse a pixel’s field of view than
they otherwise would (due to the shape of the pixel’s field-of-view). The high
wind speeds measured by the balloons involved minimize such fluctuations
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of efficiency with azimuth angle to approximately 10% however.

Figure 5.7: Average chance of failure of pixels in the Los Leones cloud camera.
Plot shows the average failure probability of cloud detection in FD pixels for dif-
ferent cloud sizes and for different image taking frequencies. Central thick lines
represent the average probability for a particular image recording frequency, while
the lighter outside lines are the RMS of the failure probability of the pixels.

An overall upper limit of the failure rate for a particular camera
and image taking frequency can be calculated by simply taking the average
failure rate of all the fluorescence pixels at the detector site associated with
that camera. as can be seen in figure 5.7. Variation of the mean failure rate
is minimal (less than 2%) between different cameras, with the Coihueco and
Los Morados sites having the lowest failure rate due to their East/Westery
viewing direction. Substantial variations of the failure rate with azimuth
angle are very localized and no larger than 10% (see figure 5.6). Overall the
plot indicates very poor performance by the cloud cameras taking pictures
every 5 minutes - only dropping below a 20% failure rate for clouds of ‘width’
greater than 7.5km.

Three factors are not taken into account in this analysis, however.
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First is the actual speed of the cloud which tends to decrease with cloud
size and with the vertical thickness of the cloud, which would increase the
effective crossing time across the pixel. With these two factors accounted
for we would observe a suppression of the failure rate for all cloud sizes,
but especially so for larger cloud sizes (due to greater thickness and lower
cloud speed [53][118]). The failure rate is quite high for small cloud sizes
(<1km width) however (even if images are recorded every minute), so it is
likely that even if the two neglected factors were accounted for we would still
observe very high failure rates for small fragments of cloud. Thus care must
be taken when using cloud camera data to work out the position of small
fragments (particularly at higher elevations) of cloud some time before or
after a particular image is taken. And thirdly this analysis only studies the
ability of the cameras to always extrapolate the position of cloud between
image recordings - it is important to note that efficiency also depends upon
the difference between the time of interest and the time of image taking i.e. if
one is interested in the cloud conditions 30 seconds before a particular image
set is taken, the cloud detection efficiency is going to be better than if the
time of interest is 2 minutes earlier.

The cloud cameras currently record images every 5 minutes which,
according to this study, has a much higher failure rate that if images were
taken more frequently. Recording images more regularly would result in a
decrease in the cloud detection failure rate, but also result in a corresponding
increase in the amount of data that must be both stored and processed.
Therefore a balance must be struck between efficiency and practicality.

5.2 Comparison between cloud cameras

The four cloud cameras have some overlap in the volume of space they are
recording cloud conditions for. Therefore one of the most obvious checks to
perform is to compare the result obtained from different cameras at the same
time. Clouds come in a variety of shapes and sizes and may be difficult to
identify when viewed from different angles unless the height of that particu-
lar cloud is known, therefore information from the cloud cameras can only be
compared in a very general sense. Cloud height information allows an esti-
mate of the fraction of cloud seen above the Auger surface detector array by a
particular cloud camera. This in turn allows a comparison between different
cloud cameras for the fraction of cloud observed at a particular time.

If the height of a bank of cloud observed by a cloud camera is known,
we can estimate that cloud’s location above the Earth’s surface. This is
achieved by identifying the ‘footprint’ of space parallel to the Earth’s surface
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looked at by a fluorescence detector pixel at some particular height. The
shape of this footprint is described in figure 5.8 and with equations 5.4, and
its location over the Earth’s surface calculated using a particular height and
the pointing direction of the relevent FD pixel.

Figure 5.8: Diagram demonstrating the geometry used to work out the region of
sky seen by an FD pixel at a particular height H. θ is the elevation of the FD pixel,
and x, y, y◦ describe the shape of the ‘footprint’ of the FD pixel’s field of view at
a height H above the fluorescence site..

x = tan(0.75◦) H
sin(θ)

y = H( 1
tan(θ−0.75◦)

− 1
tan(θ)

)

y0 = H( 1
tan(θ)

− 1
tan(θ+0.75◦)

)

(5.4)

Using cloud height information from the CLF or LIDAR, these footprints
in conjunction with a cloud index calculated from cloud camera information
allow a birds-eye view of the cloud coverage above the observatory’s sur-
face detector array to be created (assuming that the cloud height is uniform
across the array). Figure 5.9 shows two such examples of extrapolating cloud
coverage information from cloud camera data, from two different cameras at
a particular point in time. The lowest cloud height measured at this point
in time was combined with the cloud coverage recorded by the cloud cam-
eras to create a birds-eye view of cloud coverage. The individual cloud index
(normally varying between 0 and 5) of each pixel is broken down into simply
whether that pixel sees no cloud (having an index of 0), or sees some cloud
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(having a non-zero index). To help ensure consistency when comparing be-
tween different cloud cameras, only the area between the four fluorescence
detector sites (neglecting each detector’s dead zone) has had its cloud cover-
age mapped.

Figure 5.9: Bird’s eye view of the cloud coverage seen by the Los Leones [Left]

and Coihueco [Right] cloud cameras at a particular point in time. Black and light
grey represents clear and cloudy sky respectively. The dark patch of grey in front
of the Los Leones and Coihueco sites is the dead zone in front of that particular
eye which lacks cloud information.

Within figure 5.9 may be seen a pair of cloud measurements made in-
dependently that agree quite well, however this method of comparison cannot
be expected to always be as successful for two reasons - even if all the cloud
cameras involved have identified cloud conditions quite accurately. Firstly,
the cloud cameras are taking pictures of cloud cover from the side-on, not
from directly below. This means that some of the cloud identified by the
cloud cameras comes from the vertical thickness of the cloud, as opposed to
the effective cloud coverage about the surface detector array. Since cloud
thickness is neglected in this analysis, the estimated cloud fraction is an
overestimate. Secondly the cloud height is estimated from CLF and LIDAR
measurements within relatively localized areas, and the assumption is made
that the height of any cloud seen is constant across the whole region being
considered. In reality, cloud banks can occur at multiple heights and this has
dire consequences for this analysis since if the cloud height is mis-identified,
then the cloud location is also going to be misidentified - which obviously
negatively affects the accuracy of this analysis.

Figure 5.10 is the result of a comparison between the cloud frac-
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Figure 5.10: Plots comparing the fraction of cloud seen by different cloud cameras
at the same time. [Left column] Black dots represent measurements of cloud
fractions, blue line indicates perfect agreement between the measurements and the
red dots and bars are the mean and standard errors respectively. [Right column]

Overall distribution of differences in measured cloud fractions.
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tions measured by different cloud cameras at the same time. As different
cloud cameras record images at the same time, this allows a comparison
between the fraction of cloud seen by different cameras to be made. All
available comparisons between cloud camera measurements were made from
data with cloud height measurements up until the end of 2007, and used in
this study. A total of 73610, 92980 and 78440 images were used in the com-
parison between Los Leones and Los Morados, Los Leones and Coihueco, and
Los Morados and Coihueco respectively. In the left-hand column the mean
cloud fraction (with standard error) measured by one camera is compared
with the cloud fraction measured by another camera, and in the right-hand
column the distribution of the disagreement of measured cloud fractions is
represented. Overall the comparison between the Los Leones and Coihueco
cameras show the best agreement, with the majority of the disagreement
between Los Morados andLos Leones/Coihueco occuring in the <45% cloud
fraction range. Los Leones also appears to be overestimating the cloud frac-
tion measured by Los Morados and Coihueco at >75% fractions.

Overall there is good agreement between the independently mea-
sured cloud fractions, 72% of the measurements made by the Los Leones and
Los Morados cameras are within 20% of agreement with each other. Simi-
larly, 78% and 71% of the measurements between Los Leones/Coihueco and
Los Morados/Coihueco are within 20% agreement with each other respec-
tively. The overall distribution (shown on the right-hand side of figure 5.10)
of the differences between the fraction of cloud measured is centred around,
or close to zero for all the different comparisons. This implies an overall
good agreement between cloud camera measurements, as there is little, if
any, overall systematic difference between them.

There appears to be, in some cases, some variation between cloud
fraction measurements between cameras under certain cloud conditions. There
is some indication of a bias of Los Morados observing more cloud on clear
nights than the Los Leones and Coihueco cameras, and Los Leones observing
more cloud on average than the other cameras in very cloudy conditions. A
possible explanation for Los Morados is that of the three cameras, it is the
only one actually pointing towards the Andes mountain range to the West
of the observatory. Thus if cloud height is underestimated, the Los Morados
camera is more likely to see extra cloud above the mountains appearing in
an otherwise clear day. Los Leones is slightly puzzling however, it is pointing
more towards the mountain range than the Coihueco camera so it may be
seeing more cloud from that (similar to Los Morados). There is no increase
in measured cloud fraction for the more cloudy nights from the Los Morados
camera (which agrees well with Coihueco) however. There may be some sort
of bias in the analysis of the Los Leones data where cloudy conditions are
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being overestimated - assuming of course that it is not the Los Morados and
Coihueco data!

Los Leones Los Morados Coihueco

Los Leones - 69% 90%
Los Morados 74% - 78%
Coihueco 71% 61% -

Table 5.1: Agreement between cameras on clear nights: e.g. 90% of times
thought to have less than 10% cloud cover by Los Leones, also had less than 10%
cloud cover measured by the Coihueco cloud camera.

Los Leones Los Morados Coihueco

Los Leones - 78% 78%
Los Morados 80% - 74%
Coihueco 87% 82% -

Table 5.2: Agreement between cameras on overcast nights: e.g. 80% of
times thought to have greater than 90% cloud cover by Los Morados, also had
greater than 90% cloud cover measured by the Los Leones cloud camera.

Another area of interesting comparison is how successfully the cloud
cameras are differentiating between cloudy and clear sky conditions. Due
to the nature of the cloud cameras, they are very poor are differentiating
between featureless scenes (i.e. clear or overcast nights), therefore it is in-
teresting to see how often this may lead to disagreement between cameras.
Within tables 5.1 and 5.2 may be seen the results of a comparison which
describes how often different cloud cameras agree about clear and overcast
conditions. Cloud fractions were calculated using the same method used in
figure 5.10. On average, about 26% of the time the cloud cameras appear
to disagree about conditions being clear, and about 20% of the time while
conditions are overcast. The lower disagreement rate for overcast conditions
is likely because completely overcast conditions are sometimes easier to con-
firm due to the texture of the cloud than completely clear conditions which
always lack such texture.
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5.3 Comparison with LIDAR data

Each fluorescence detector has a LIDAR installed nearby that can provide
independent measurements of cloud information. Every LIDAR provides not
only a measurement of the height of any nearby cloud, but also the fraction
of sky filled by cloud above each fluorescence detector. With cloud height
information the fraction of cloud above the array seen by a cloud camera may
be estimated and compared with the fraction of cloud seen by the LIDAR.
The LIDAR and cloud cameras are in this case deriving their cloud fractions
from different areas of the sky, therefore an exact correlation between the two
is not expected. Even so there does appear to be some correlation between
the two measurements, particularly on very clear and very overcast days.

The LIDARs are 351nm pulsed Nd:YLF lasers stationed at each of
the four fluorescence detectors [9]. Laser light is backscattered by the atmo-
sphere, and received by three mirrors at the LIDAR. This scattering informa-
tion not only helps determine the distribution of aerosols in the atmosphere
at a particular time, but also may be analysed to provide information on
cloud conditions [135]. Monthly models of the molecular atmosphere above
the Auger site are used to estimate and subtract the expected signal Rayleigh
scattered by the LIDAR laser. As clouds appear as strong echoes of the laser
signal they appear quite strongly in the resulting subtracted profile. This
information may then be used to estimate the height of any cloud, its optical
thickness and the fraction of cloud in the sky. Measurements are taken and
are available on an hourly basis.

The most obvious method of comparison is simply to compare the
fraction of cloud measured by the LIDARs with the fraction of cloud seen
by the cloud cameras. Using the method described in section 5.2, the lowest
cloud height measured at a particular time (from either CLF or LIDAR) is
used to determine the position of clouds observed by the cameras, which is
then used to determine the fraction of cloudy sky between the four fluores-
cence detector sites. Cloud fractions reported by the LIDAR are only from
sky within 45◦ of the zenith above the FD site (not regions covered by that
site’s cloud camera). If multiple cloud layers are detected, the average frac-
tion of each layer is averaged across a whole hour for a single measurement.
Thus a perfect relationship between the two cloud fraction measurements is
not to be expected.

Figure 5.11 contains a comparison between the average fraction of
cloud measured by the LIDARs at a particular point in time and the frac-
tion of cloud observed by each particular cloud camera at that same time.
Coihueco shows the best agreement between the two measurements, while
the Los Leones and Los Morados cloud cameras - while appearing to agree
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Figure 5.11: Plots comparing the fraction of cloud seen by cloud cameras and the
LIDARs at the same time. [Left column] Black dots represent measurements
of cloud fractions, blue line indicates perfect agreement between the measurements
and the red dots and bars are the mean and standard errors respectively. [Right

column] Overall distribution of differences in measured cloud fractions.
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well for cloud fractions >70%, tend to observe more cloud than the LIDAR
on clearer nights. Overall agreement between the LIDAR and cloud cam-
eras is not as good as between the cloud cameras themselves (see section
5.2) with only 61%, 56% and 58% (Los Leones, Los Morados and Coihueco
respectively) of the cloud camera fractions lying within 20% of the lidar data.

Within section 5.2 it was noted that Los Morados tended to report
more clouds on clear days than the other two cameras, this also is the case
when comparing it against LIDAR measurements in figure 5.11. This is likely
due to Los Morados pointing more directly towards the Andes mountains and
thus observing more clouds which are counted in the cloud fraction estimate
when the cloud height happens to be underestimated. Comparison with
the LIDAR also suggests that Los Leones experiences the same phenomenon
(probably due to the same reasons, given it is also partly pointing towards the
Andes), but unlike Los Morados this result was not evident in the comparison
with other cloud cameras - though it was noted that Los Leones appeared
to be recording extra cloud on cloudy days. One explanation may be that
it is Coihueco and Los Morados that has been underestimating the cloud on
cloudy days (instead of Los Leones overestimating), this would explain the
slight tendency of the LIDAR to record more cloud than Coihueco on cloudy
days in figure 5.11 - but no such tendency is evident in the Los Morados
comparison. Overall, on average, Coihueco shows good agreement with the
LIDAR cloud fraction measurements - better than the other two cameras
perhaps because, unlike the others it is not pointing at the Andes and is thus
consistently viewing the same type of sky as the LIDAR.

Figure 5.12: Plot demonstrating agreement between LIDAR measured cloud frac-
tion and cloud cameras. They are said to be in agreement if the difference between
the LIDAR and the cloud camera measured cloud fraction is less than 10%.
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The strongest agreement between LIDAR and camera measurements
occurs during time periods when the night sky is either very clear, or very
overcast - as seen in figure 5.12. A likely explanation for this is simply
because clouds are usually a localized phenomena. If a LIDAR records a
partial fraction of cloud there is no guarantee that the rest of the sky is
as cloudy, perhaps a single cloud just happened to be passing overhead at
the time. On the other hand, if there is a large amount of cloud structure
present at a particular time then the LIDAR is likely to record a very high
cloud fraction, that is correlated with the cloud structure in the area at large.
With the converse being true for no clouds being recorded by the LIDAR - no
clouds detected implying either clear or very sparsely cloud populated skies.

5.4 Comparison with CLF data

Another instrument that can detect the presence of clouds is the CLF (Cen-
tral Laser Facility). The CLF primarily studies aerosol content within the
atmosphere, but the strong scattering of its laser light off clouds means it is
capable of detecting and measuring the height of any clouds directly above
the facility. Using cloud height information measured by the CLF, cloud seen
by a cloud camera can be checked to see if it lies above the CLF - allowing
a cross-check between the two instruments.

The CLF is a 355nm pulsed YAG laser positioned within the center
of the Auger surface detector array [75][76]. Light scattered from the laser
fired into the atmosphere can (among other things) be used to measure the
abundance of aerosols over the Auger observatory at a particular time and can
help calibrate the observatory’s fluorescence detectors. During FD operation
the CLF laser is fired 200 times every hour and the results averaged to
provide hourly measurements of the aerosol extinction coefficient and the
vertical aerosol optical depth (VAOD). Clouds may also be detected by the
CLF - appearing as sharp steps in the measured VAOD profile. The lowest
base height of any observed cloud structure above the laser is recorded in a
database.

Using the method described in section 5.2, cloud detected by the
CLF can be cross-checked with cloud identified by the cloud cameras. Cloud
height is provided by the CLF database only once an hour and is the lowest
cloud height recorded by the CLF during that hour. This height is used to
estimate the position of cloud above the surface detector array (see figure
5.13). If cloud cameras identify cloud within a 2km lateral distance from
the CLF during any hour then the CLF and cloud camera are said to be in
agreement. Increasing the range of agreement from 2km to something higher
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Figure 5.13: Bird’s eye view of the area between the four fluorescence detectors.
Cloud height information has been used to estimate the position of cloud (cloud and
clear sky marked by light grey and black respectively) seen by the cloud cameras
over the array. The location of the CLF is marked in red.

will result in better correlation for obvious reasons.

Figure 5.14 demonstrates how often a correlation is seen between
cloud cameras and the CLF. For all three cloud cameras there is good agree-
ment at least 90% of the time while looking at clouds at lower altitudes. At
heights greater than around 8000m however, the correlation steadily drops
off to around 40%, or 20% in the case of Coihueco.

One possible reason for the drop in cloud camera/CLF agreement
with cloud height is the loss of resolution associated with higher cloud alti-
tudes. With increasing cloud heights, information from each individual pixel
is being assigned to an ever increasing area, while the region above the CLF
being considered remains the same. Thus the decision about whether the
CLF agrees with the cloud camera or not is being based upon a smaller and
smaller portion of the cloud camera’s data. Before dropping in agreement
above cloud heights of 8000m, there is on average approximately 90% agree-
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Figure 5.14: Plots describing the frequency at which the CLF and cloud cameras
agree on the presence of cloud above the CLF, as a function of the cloud height
reported by the CLF. If the cloud camera detects cloud above the CLF while the
CLF is reporting the presence of cloud (in the form of a reported cloud height),
then the cloud camera is said to agree with the CLF, for that particular CLF
measurement.

ment between the cloud cameras and the CLF, suggesting good accuracy in
the analyzed cloud camera data. Another possible reason for the poor cloud
camera and CLF agreement for higher altitude clouds may be due to their
lower infrared flux (see section 3.2.2). Higher altitude cirrus cloud is optically
thinner than lower altitude stratus cloud, and is often easily mistaken for a
clear night sky by the cloud cameras.

Another way of looking at the agreement between CLF and cloud
camera is in terms of cloud fraction measured by LIDAR in figure 5.15. In
order to remove the fall-off in correlation with cloud height observed in figure
5.14, all CLF measurements where the cloud height has been above 8000m
have been ignored in figure 5.15. The result indicates agreement between the
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Figure 5.15: Plots describing frequency at which the CLF and cloud cameras
agree on the presence of cloud above the CLF, depending upon the average fraction
of cloud present according to LIDAR measurements. CLF height measurements
>8000m above sea level have been neglected in these plots.

CLF and cloud cameras in this analysis varies according to the amount of
cloud present, with at least 60% agreement on very clear nights, and close to
100% agreement on very cloudy nights.

The stronger agreement between the instruments on cloudy nights
is likely due simply to the fact that more cloud is being observed by the
cloud cameras. Therefore during cloudy conditions, even if the cloud camera
analysis misses a particular piece of cloud above the CLF, there is a stronger
chance (than on a clearer night) that there is going to be another bank of
cloud observed passing above the CLF which will trigger agreement in this
analysis. The weakest agreement between the cameras and CLF occurs in
very clear conditions with only approximately a 60% (66% in Coihueco’s
case) agreement rate, which may be taken as a pessimistic lower estimate
on the sensitivity of the cloud camera analysis. It is important to remember
that (as seen in section 5.1) the movement of smaller clouds is more difficult
to record with the cloud cameras, and that on clearer nights we are more
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likely to encounter smaller clouds (since if they were bigger we would have
a larger cloud fraction by definition). Thus the cloud cameras may have
seen the cloud detected by the CLF, but due to its movement it was not
actually recorded as being over the CLF. With more regular cloud height
measurements from the CLF it will be possible to overcome this (since cloud
camera images could be correlated much better in time with the CLF) and
gain a much better estimate of the sensitivity of the cloud cameras.



Chapter 6

Applying cloud camera data to
events

Being able to provide a record of cloud conditions during the measurement
of extensive air showers is the ultimate goal of the cloud cameras. Within
this chapter is described the means by which cloud camera data is combined
with cloud height information to assess the location of any cloud with respect
to a particular extensive air shower. Several years of cloud camera data are
now available for analysis, and are used in this chapter to study the effect of
a cloud camera based quality cut upon extensive air showers.

6.1 Extensive air showers and the position of

cloud

Information from a cloud camera is strictly directional - the camera reveals
the direction in which cloud is seen, but not how far away it is. Thus the po-
sition of any observed cloud, from cloud camera data alone, cannot be known
with respect to any particular extensive air shower. In order to determine
the position of a cloud with respect to an extensive air shower, the cloud’s
height must be known (or estimated), then combined with information from
the cloud camera.

A cloud is said to be obscuring an air shower (in a particular fluores-
cence detector pixel) if the distance between it and the fluorescence detector
is less than the distance between the detector and the axis of the shower i.e.

Daxis ≥
H

sin(θ)
(6.1)

where Daxis is the distance between the FD pixel and the extensive air shower
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axis, H is the measured cloud base height1 above the detector and θ is the
elevation of the FD pixel in question.

Figure 6.1: Plots showing distribution of cloud indices. [Top left] Distribution
seen by cameras for all time. [Top right] Distribution of cloud indices associated
with pixels triggered by extensive air showers (no substantial quality cuts applied).
[Bottom] Distribution of cloud indices that are actually (according to LIDAR
cloud height information) obscuring an extensive air shower. Note that a cloud
index of 0 indicates that a pixel’s view of a shower is not obscured.

Figure 6.1 describes the fraction of triggered FD pixels reported for
each possible cloud index value. The plots were constructed out of hybrid

1The measured cloud base height is taken as the lowest cloud height measured by the
CLF or LIDAR at a particular time.
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event and cloud camera data up until the end of 2006. In order to ensure
no bias in the data toward cloud-free events (by other quality cuts) only the
geometry cuts (in appendix A) were used to select events. A cloud index
of 0 corresponds to no cloud within that particular pixel, and an index of 5
indicates that a particular pixel’s field of view is completely filled by cloud.

In the top-left plot may be seen the overall distribution of cloud
indices recorded by all the cloud cameras before the end of 2006. The top-
right plot is the distribution of cloud indices seen by the cloud camera in
the triggered pixels of the selected 67827 events. The bottom plot is the
distribution of actual obscuration for the 18253 events that had both cloud
camera and LIDAR cloud height information available. If a non-zero cloud
index was reported by the cloud camera but the LIDAR implied that the
cloud was behind the shower, then the index was converted to a 0.

As different cloud heights are sometimes reported by different LI-
DAR stations, only the lowest reported cloud height at a particular time is
used. The LIDARs are measuring the cloud height only from clouds directly
above each fluorescence detector, therefore it cannot be known with absolute
certainty if a particular bank of cloud in the cloud camera’s field-of-view has
the same cloud height as that reported. By using only the lowest measured
cloud height, the analysis is made as conservative as possible.

The plots in figure 6.1 demonstrate the necessity of combining cloud
height information with cloud camera measurements. Distributions of cloud
indices in triggered pixels during events and the overall distribution of recorded
indices are very similar, with a slight bias towards an index of 0 for the trig-
gered pixels. This is because fluorescence light from extensive air showers
is more likely to be seen by the Auger detectors when there is no obscuring
cloud.

Overall, nearly half of the triggered pixels in the top-right plot of fig-
ure 6.1 have some form of cloud being seen by the cameras and any quality
cut made by the cloud camera based on this data would have catastrophic
consequences for the final number of showers left for analysis. Using cloud
height information drastically cuts down the fraction of obscured pixels (as
seen in the bottom plot) - with only 20% or so of the overall triggered pixels
being flagged as being obscured by cloud. Clearly using cloud camera infor-
mation on its own is extremely conservative when applying quality cuts, as
the vast majority (≈ 80%) of triggered pixels are not seen to be obscured by
cloud when cloud height information is taken into account.
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6.2 Availability of cloud camera data

In this section the availability of cloud camera data on a month-by-month
basis is presented. Geometry quality cuts were used to select events between
2004 and 2007, which were then checked for the availability of cloud camera
data. Unfortunately cloud camera coverage is not as extensive as it could be
due to hardware problems in the camera systems.

From data recorded between the start of 2004 and the end of 2007
events were selected using basic geometry cuts described in appendix A. Each
of these 84249 events were then cross-checked with cloud camera data to see
if the cloud camera has data available during that particular event. The
fraction of events that had cloud camera data are presented in figure 6.2 on
a month-by-month basis.

The Los Leones, Los Morados and Coihueco cloud cameras came
online in April 2004, November 2005 and April 2005 respectively. Hard-
ware technical difficulties have occurred all throughout the operation of all
cameras - accounting for the less than perfect coverage for many months.
Severe hardware problems are responsible for the complete lack of usable
data recorded in September/October 2006 and January 2007 by the Los
Leones camera, September/October 2006 for the Los Morados camera and
August/September 2007 for the Coihueco cloud camera.

Hardware difficulties usually occur as a result of problems with the
cabling connecting the camera to the computer within the fluorescence de-
tector building and usually take the form of the pan-and-tilt device (that
the camera is mounted upon) failing to respond, or corrupted images being
received by the camera control computer. As a whole, 64%, 70% and 69%
of the selected events (measured by Los Leones, Los Morados and Coihueco
respectively) have cloud camera data available.
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Figure 6.2: Plots showing the fraction of selected events seen by a particular
fluorescence detector that have cloud camera data available on a month-by-month
basis between the beginning of 2004 and the end of 2007. Cloud camera data
recorded in 2008 and 2009 is currently still being processed.
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6.2.1 Availability of cloud height information

Cloud height information is important in that it allows the cloud cameras
to more accurately determine the position of any cloud above the Auger
observatory. LIDAR or CLF measurements are available for the vast majority
of events selected for this study, however clouds are not always detected by
these instruments. This may be due to a lack of cloud above the array, or
because none of the cloud present happens to be above the CLF or LIDAR
sites. Thus the actual availability of cloud height information is less than
would first appear. Cloud height information measured at other times may
possibly be used to increase the number of showers with cloud height data.

As in the previous section, 84249 events were selected according to
the basic geometry cuts described in appendix A between 2004 and the end of
2007. The CLF and LIDAR instruments were then checked for any available
measurements, the result of which may be seen in the upper plot in figure
6.3. Coverage is presented on a month-by-month basis and is available for
nearly every selected event after November 2005. Often the cloud camera
reports seeing cloud, yet neither the CLF or LIDAR detect cloud, despite
being operational - simply because none of the observed cloud happens to be
in a detectable position for either instrument. If no cloud is detected, then
the LIDAR/CLF data will not return a valid cloud height measurement. The
bottom plot of figure 6.3 shows the actual cloud height availability for all the
selected events which is, on average, about 60%.

Application of the cloud camera database usually requires both cloud
camera and cloud height information to be available. The fraction of selected
events that have enough information available to determine cloud obscuration
is represented in figure 6.4. Some events that only have cloud camera data
do not need cloud height information because no clouds were detected by the
cameras, which is why some months in figure 6.4 have coverage despite the
lack thereof in figure 6.3.
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Figure 6.3: Plots showing the availability of measurements made by the CLF or
LIDAR, and the availability of actual cloud height measurements for selected hybrid
events. [Top] Fraction of events that have a measurement made by the CLF or
LIDAR available. [Bottom] Fraction of events that actually have a cloud height
(< 13km) measured at the time.
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Figure 6.4: Plots describing the availability of sufficient cloud camera and height
data for selected hybrid events.
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Figure 6.5: Plot shows the fraction of events with cloud height information if
cloud height information is used from neighbouring periods of time. For example:
approximately 74% of selected events have cloud height information within 1 hour
of the event.

Cloud height measurement coverage may be extended by using other
measurements made at around the same time in question. Often, even if no
cloud measurement is available for a particular period of time, a measurement
is available in a neighbouring period as seen in figure 6.5. By using cloud
height information from within 6 hours of an event, the fraction of events
with cloud height coverage increases approximately 25%. Cloud conditions
can vary quite significantly over the course of the night however, so some
sort of safety margin may have to be introduced when using cloud heights
measured several hours distant - depending on how rapidly cloud height can
change.
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6.3 Cloudy event removal by quality cuts

Clouds may obscure or scatter extra light from an extensive air shower to-
wards a fluorescence detector. This results in unusual ‘dips’ or ‘bumps’ in
the measured shower longitudinal profile that may cause that measurement
to be discarded by existing quality cuts. In this section, a sample of events is
taken and checked for cloud contamination using cloud camera and LIDAR
information. The effectiveness of some existing quality cuts is then evalu-
ated by studying how the fraction of cloud obscured events changes with the
introduction of the cuts.

Figure 6.6: Plots describing the fraction of clear and cloud obscured events re-
maining after applying different levels of quality cuts. The thick line represents the
fraction remaining of cloud obscured events, and the thin line indicates the fraction
of cloud-free events remaining.

Events were selected using the geometry cuts specified in appendix
A then used in conjunction with the cloud camera database (and LIDAR) to
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determine which events were obscured by cloud. The attrition of both cloudy
and clear events with increasingly severe quality cuts is shown in figure 6.6,
where the fraction of the total events remaining after a particular cut is
displayed. Four types of quality cut are examined: firstly is the tracklength
cut where the total length of the measured shower longitudinal profile (in
g/cm2) is required to be above some value. Next are the χ2 and Xmax error

cuts, where the χ2

nDoF
and Xmax error of a fitted Gaisser-Hillas profile are

required to be below some value. Finally there is the LIDAR cloud fraction
cut, where the average (from all available measurements at a particular time)
fraction of cloud measured by LIDARs is determined and used to remove
events. In addition to the geometry cuts, quality cuts of χ2/nDoF < 2.5,
Xmax error < 50 g/cm2 and tracklength > 320 g.cm−2 are applied e.g. for
the analysis of tracklength, the geometry cuts are applied along with the
tracklength and χ2/nDoF quality cuts.

The tracklength quality cut, in the top-left of figure 6.6, shows a
decreasing fraction of events remaining with an increasingly strict (bigger) cut
on tracklength. In the range 100-250 g.cm−2, clear events are more likely to
be cut than cloud obscured events, but with stricter cuts both types of events
are affected equally by this quality cut. This is likely due to the detection of
more lower energy showers at larger distances from the fluorescence detector
on clear nights, compared with cloudy nights. These low energy and distant
showers appear with apparently small tracklengths as they are relatively dim
from the perspective of the fluorescence detector, and so will not trigger as
many FD pixels as a closer or more energetic shower would. The initial bias
towards clear night showers being removed by the tracklength cut, is likely
due to the removal of this extra low tracklength population of showers.

With the χ2/nDoF cut, cloudy showers are more likely to be re-
moved than clear night showers with an increasingly severe (lower) cut. The
χ2/nDoF cut removes showers which are poorly fitted by the Gaisser-Hillas
function. The bumps and dips that may be introduced by cloud within a
measured longitudinal profile make it more difficult for the Gaisser-Hillas
function to accurately described a particular profile. Thus the presence of
cloud interfering with an air shower may sometimes manifest itself through a
poor χ2/nDoF fit. This is demonstrated in the top-right plot of figure 6.6. A
stricter (lower χ2/nDoF value) results in a greater fraction of cloud obscured
events being cut than clear events. Below a cut of approximately 1.5 this
effect diminishes however. This is likely because those events that had their
interference by cloud manifest itself in the form of a poor χ2/nDoF value,
have all been cut by this point. Those cloud obscured events that remain all
have a χ2/nDoF value similar to that of clear events, and so, are no longer
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preferentially cut.

The Xmax error quality cut removes events that have a larger uncer-
tainty in the reconstructed Xmax value. It is clear from the bottom-left plot
of figure 6.6 that this quality cut does not substantially favor the removal of
either clear, or cloud obscured events. A large Xmax error value is a symp-
tom of a poorly fitting Gaisser-Hillas profile that is, in turn, a symptom of
interference by clouds. A χ2/nDoF cut of 2.5 has already been applied to
this set of data however, that has removed most of the poorly fitting, and
hence, most of the cloud obscured events already. With the presence of a
χ2/nDoF cut already in place, this quality cut has little effect on removing
cloud obscured events from a set of measured extensive air showers.

Cuts via LIDAR measured cloud fraction (seen in the bottom-right
of figure 6.6) are effective at preferentially removing cloud obscured events.
Cuts down to a LIDAR cloud fraction of 0.8 are seen to preferentially remove
cloud obscured events. Below this level the effect is not observed to increase
and the cloud fraction cut always removes approximately 16% more obscured
events than clear events. The lack of a direct correlation between the fraction
of cloud observed by the LIDAR and the actual cloud coverage over the array
is likely responsible for the lack of an increase in cut effectiveness at lower
cloud fractions. Of the quality cuts, this quality cut is the most effective at
preferentially removing cloudy events.

According to the cloud camera data, application of the profile quality
cuts mentioned here has limited effectiveness at removing cloud contaminated
events. The tracklength cut tends to preferentially remove cloud-free events,
while the χ2/nDoF cut tends to preferentially remove cloud-contaminated
events in this sample of data. Application of both these quality cuts may,
to some, degree cancel each other out, thereby limiting their effectiveness.
The LIDAR cloud fraction cut however, shows a relatively strong tendency
to preferentially remove cloud affected events.

6.4 Cloud induced Xmax measurement bias

Overcast cloud conditions would tend to introduce a bias towards measure-
ment of deeper developing showers by the Auger fluorescence detectors. A
number of events were selected using basic geometry, quality and cloud cover-
age cuts to determine the magnitude and nature of this bias. The magnitude
of this bias is apparent when comparing the mean reconstructed Xmax val-
ues for events recorded during clear and cloudy night sky conditions. This
has consequences for some mass composition studies, as cloud conditions can
make the measured shower sample appear to be of a lighter mass composition



6.4. CLOUD INDUCED XMAX MEASUREMENT BIAS 187

(more penetrating) than it otherwise would be.

Figure 6.7: Plots demonstrating difference in mean Xmax values during clear and
overcast conditions. [Top] Red markers indicated the mean Xmax value derived for
a particular energy on cloudy (>80% cloud coverage) nights and black markers are
the mean values derived on clear (<20% cloud coverage) nights. [Bottom] Plots
showing the difference in mean Xmax for cloudy and clear conditions for several
broad regions of energy.

Events were selected between the beginning of 2006 and end of 2007
that pass all the quality cuts described in appendices A and B. For each
event the average fraction of cloud (calculated using the method in section
5.2) seen by all available cloud cameras was calculated, along with the mean
cloud fraction of any available LIDAR cloud measurements. Events without
a cloud fraction measurement from either type of instrument were ignored,
along with any event that did not occur during very clear (<20% cloud
fraction) or very overcast (>80% cloud fraction) conditions. Only events that
are thought to be either very clear or very overcast were used in this study.
The mean value (with associated standard error) of the measured Xmax of
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the selected clear and overcast events are plotted seperately in figure 6.7 as
a function of their reconstructed energy.

Cloud fractions measured by the cloud cameras are used in the left
column of the figure 6.7 plots, while LIDAR data are used in the right column
plots. Both types of measurements suggest a tendency towards deeper mean
Xmax values during cloudy conditions when compared with clear night-sky
conditions. The cloud camera and LIDAR cloud fraction measurements de-
scribe mean Xmax shifts of different magnitude. Measurements made with
the cloud cameras indicate an overcast sky shows a mean shift of 9 g.cm−2,
while similar measurements made by the LIDAR indicate a mean shift of 13
g.cm−2.

The apparent deepening of the mean Xmax value during very cloudy
conditions is a consequence of the lower probability of shallower showers be-
ing successfully observed. With large quantities of cloud present, shallower
showers are likely to have much of their development obscured by cloud re-
sulting in either a complete failure of observation or a very poor measurement
that is subsequently discarded by quality cuts. Deeper developing showers
however, are likely to have more of their profile unobscured and subsequently
well measured. Therefore after quality cuts, any surviving measurements are
more likely to be of deeper developing showers resulting in a bias towards a
deeper mean Xmax value.

The bias towards deeper showers has consequences for mass com-
position analysis, as events with a proton primary particle tend to have
deeper developing showers than heavier primary particles of an equal energy.
Thus cloudy conditions may introduce a bias in fluorescence air shower mea-
surements towards showers of lighter compositions. The bias appears (the
standard error is greater for the cloud camera measurements) to be larger
when using LIDAR cloud fraction information than the cloud camera one,
likely because the cloud camera sometimes has difficulty resolving overcast
and clear sky conditions and thus the corresponding sample is likely to have
some cases where cloud conditions are mis-identified.

Currently, this bias is being accounted for via a quality cut made on
the LIDAR measured cloud fraction [162], as the database containing cloud
camera data was not available at the time of that analysis. This involves
vetoing any measured event that occurred during a >20% (LIDAR measured)
cloud fraction measurement. The cut removes approximately 20% of the
events from the data sample and was chosen as a good compromise between
improving data quality, while maintaining statistics. This is a conservative
cut in terms of shower profile quality, as the lack of LIDAR cloud spatial
information means that it does not take into account whether the detected
clouds are actually interfering with a particular shower or not. Measurements
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from the cloud camera give the spatial information for such interference to
be detected however.

6.5 Pixel level veto

The cloud camera based pixel veto attempts to improve the reconstructed
parameters of measured air showers that have been affected by cloud. Cloud
camera data is used to identify grammage bins2 within a measured longi-
tudinal profile that are obscured by cloud and remove them to improve the
accuracy of reconstruction. With the removal of particular grammage bins
from a profile, the fitted Gaisser-Hillas function (and so hence reconstructed
energy and Xmax) changes. The overall effectiveness of the technique is lim-
ited however, as an increase in uncertainty of parameters reconstructed from
a pixel vetoed shower is observed.

6.5.1 Methodology

The pixel veto involves removing grammage bins from a measured exten-
sive air shower that have been, according to the cloud camera, obscured
by cloud. Excessive light or lack thereof measured from a shower due to
cloud interference affects the fit made by the Gaisser-Hillas (GH) function
to the longitudinal profile of a shower and so its reconstructed energy and
Xmax. By removing cloud obscured parts of the shower from consideration,
the goodness-of-fit of the GH profile may be improved, and hence the recon-
structed energy and depth of maximum.

Fluorescence and Cherenkov light from extensive airs showers may
be scattered by cloud. Therefore the measured longitudinal profile of an air
shower passing through, or behind, cloud may contain unusual peaks or dips
due to cloud scattering either extra light towards or away from the Auger
fluorescence detectors. These abnormalities sometimes manifest in a form
of a poor χ2 fit for the GH function in the profile, therefore the most badly
affected showers are vetoed by the common χ2

nDoF
< 2.5 quality cut. By using

the cloud camera to locate and remove the anomalous regions of the shower,
the χ2 of the fitted GH function may be improved and so increase the number
of showers available for analysis.

The veto is carried out by identifying any grammage bins contami-
nated by cloud and removing them. Within the FdApertureLightFinder class

2A ‘grammage bin’ is a measurement (with associated error) of the energy deposited
by an extensive air shower at a particular depth. It is calculated by combining whatever
measurements were made by the fluorescence detector around that depth.
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of the Auger Offline reconstruction software, changes were made to the Find-
LightFlux and FindZeta functions. For each value of zeta3 (ζ) tested in the
FindZeta function, the contribution from any grammage bins with a ζ angle
that includes any obscured pixels are ignored. The best ζ angle identified by
the modified FindZeta function is then used in the FindLightFlux function,
where any grammage bins that contain cloud obscured pixels are discarded.

Figure 6.8: Demonstrating the method of the pixel veto. Top plots demonstrate
triggered pixels for the event. Blue are untriggered pixels, white are triggered pixels
and black are triggered pixels that are obscured by cloud. Green dots surrounded
by green circles represent pixels sampled for a particular grammage bin, while red
ones are grammage bins that have been discarded due to the veto.

This process is demonstrated in figure 6.8 where a dip belonging to
a cloud obscured region of an air shower is identified and removed by the
pixel veto process. It is important that whole grammage bins are removed
in the veto process - not just the contribution from cloud obscured pixels.
If only the contribution from cloud pixels is ignored then some grammage

3The zeta angle determines which FD pixels are included in the final reconstruction
of an extensive air shower. A small angle means that only the pixels close to the shower
detector plane of the extensive air shower are used in the analysis. A larger angle means
pixels pointing further away from the shower detector plane are also used.
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bins will be underestimating the amount of light in the shower, because they
would only be measuring part of the light which would otherwise be seen if
the cloud were not present. This results in dips in the profile remaining, and
in some cases becoming worse.

The pixel veto is a conservative cut on cloud conditions due to po-
tential variation of the height of different clouds at a given time. Cloud
height information is gathered from the CLF and LIDAR sites from a rela-
tively (when compared with the size of the surface detector array) small area
of sky. Unless a particular cloud detected by the camera is being directly
observed by either LIDAR or CLF, its height is being estimated from mea-
surements of other distributions of cloud. The pixel veto analysis uses only
the lowest cloud height reported at a particular time in an attempt to be
conservative, since if multiple cloud heights are being measured, there is no
way of knowing which cloud in the cloud camera image corresponds to which
measured cloud height. This means that sometimes a shower that falls in
front of a bank of cloud will be erroneously marked as being cloud obscured,
as the CLF or one of the LIDARs happened to record a cloud height much
lower than that of the cloud in question.

6.5.2 Shift in reconstructed parameters

Applying the cloud camera based grammage bin veto will cause a shift in
the reconstructed parameters of a shower if parts of that shower are found
to be obscured by cloud. In this section the grammage bin veto is applied to
a sample of events in 2006 and 2007 that passed the appendix A geometry
quality cut. By examining the shift in parameters as a result of an application
of the grammage bin veto, an appreciation may be gained for the added
uncertainty as a result of the veto.

Hybrid events were selected from the period between the start of
2006 and the end of 2007. A total of 74748 events were selected using the
geometry quality cuts seen in appendix A. Using the grammage bin veto
described in section 6.5.1, these events were re-processed to remove any cloud
contamination reported by the LIDAR and cloud cameras. 52609 of the 74748
events had cloud camera and cloud height information, and of these, only
11989 were reported as having parts of the shower track obscured. Only 1226
of the cloud obscured events passed the both the geometry (appendix A) and
profile (appendix B) quality cuts before and after application of the cloudy
pixel veto. Removing parts of a shower with the veto, and reconstructing an
event results in a shift of the reconstructed parameters as seen in figure 6.9,
which shows the shift of several parameters for those cloud obscured events
that passed the quality cuts both before and after the veto process.
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Figure 6.9: Plots showing shifts in several reconstructed parameters as a result of
the grammage bin veto. Events with cloud camera and cloud height data available,
that passed the quality cuts described in appendices A and B both before and after
the grammage bin veto was applied, were used in these plots.
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Energy is calculated from an FD measurement of a shower by inte-
grating the Gaisser-Hillas function fitted to the energy deposit profile. For
most of the events used in figure 6.9 there is less than a 1.5% shift in energy
as a result of the cloud camera grammage bin veto. This is to be expected,
as a large shift in energy would only be expected if the fitted Gaisser-Hillas
function saw a large shift in the fitted ( dE

dX
)max (energy deposited at Xmax)

value. A large shift would only occur if the fit was, in the first place, being
strongly influenced by a strong well defined peak or dip in the profile. Any
strong modulation in the profile would result in a higher χ2

nDoF
value that is

likely to have already been cut via quality cuts already applied to this set of
events.

An average increase of 1% is observed in the error of the recon-
structed energy (in the top-right plot of figure 6.9) This is likely due to the
tendency for fewer points to be available during the Gaisser-Hillas fit, some-
times leading to a less well defined profile. The lack of a distinct positive
offset in this distribution indicates that the cloud veto generally does not
substantially decrease the error in the reconstructed shower energy.

The reconstructed depth of shower maximum (Xmax) is also affected
by the grammage bin veto. Xmax shows a slight tendency to increase after
applying the cloud veto, as seen in figure 6.9. This is to be expected as a
shower is more likely to be vetoed in its shallower regions, since a deeper veto
requires the shower to be of higher energy or the presence of cloud lower in
the atmosphere. Cutting the shallower part of a shower usually deepens the
fitted Xmax, while cutting the deeper part results in a shallower fitted Xmax.

Much like the shift in reconstructed energy error, a slight increase in
the uncertainty of the reconstructed Xmax value is observed with the cloudy
pixel veto. This is, once again, due the fewer points available for the fitting
of a profile.

Tracklength will decrease or (occasionally) very slightly increase as
a result of the grammage bin veto, as seen in figure 6.9. Grammage bins re-
moved by the veto on either side of the shower profile will obviously decrease
the observed tracklength of the shower. Removing grammage bins within
the center of the profile will sometimes slightly increase the tracklength of
the shower however. This change is a result of a stage in the reconstruction
(the CombineAndFillFluxes function in the FdApertureLightFinder class) of
the shower where grammage bins with low signal are combined until a large
enough signal/noise ratio is achieved to create new grammage bins. If the
CombineAndFillFluxes function encounters a hole in the profile (such as that
introduced by this cloud camera veto) then this combination process stops
and begins anew on the other side of the hole. The atmospheric depth as-
signed to each particular grammage bin depends upon the effective depth of
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the grammage bins used to create it. Thus introducing a hole means different
grammage bins are being combined together, which results in the final gram-
mage bins appearing in subtly different spots which will sometimes result
in an apparent slight increase in total shower tracklength. This is also why
the quantity of energy deposited in each grammage bin may shift slightly
with the veto, or why the same number of grammage bins remain even after
cutting out data with the veto - as seen in figure 6.9.

Figure 6.9 shows that the goodness-of-fit of a GH function fitted to
the longitudinal profile of an extensive air shower can be both improved and
damaged by the cloud camera based grammage bin veto. A decrease indicates
that grammage bins have been removed that improved the fit of the Gaisser-
Hillas function to the profile. An increase indicates that grammage bins that
were relatively well fitting were cut while poorer fitting grammage bins were
left alone.

Figure 6.10: Plots demonstrating how the χ2 (of an air shower’s Gaisser-Hillas
fit) may be modified through the application of the grammage bin veto. Grey areas
within the plots represent areas of the shower which are obscured according to the
cloud camera and LIDAR. [Top] Decreasing χ2 of Gaisser-Hillas fit. [Bottom]

Increasing χ2 of Gaisser-Hillas fit.

The removal of cloud obscured grammage bins is demonstrated in
figure 6.10, where in the top plot a selection of poorly fitting grammage bins
were removed, resulting in a better fit. In the bottom plot, a selection of
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well fitting grammage bins were removed while a small bump located around
the Xmax is ignored. A slight increase after the grammage bin veto does
not necessarily mean that there exists some cloud effect that the veto has
missed however, as even in well measured air showers randomly removing
a good fitting point (relative to the others) may cause an increase if it is
slightly more poorly fitting than the others. It is to be expected that in some
instances the grammage bin veto will incorrectly remove non-cloud affected
shower regions as it is a conservative cut, as mentioned earlier. Another
possibility is that since clouds are not stationary with time, images taken by
the cloud camera may have been ’out-of-date’ and conditions may have been
clearer than suggested by the cloud camera.

6.5.3 Effectiveness

There are several different applications of the cloud camera based grammage
bin veto. In order to investigate these applications, events recorded during
2006 and 2007 were selected and had the cloudy pixel veto applied to them.
Firstly the deviation of vetoed grammage bins from the fitted GH profile
are examined, to see if the ‘bumps’ and ‘dips’ really are being removed by
the veto. Secondly those events that pass both the geometry (appendix
A) and profile (appendix B) quality cuts and that are confirmed clear of
cloud contamination are examined. Thirdly of interest are those events which
initially appear to be of good quality (passing both the geometry and profile
cuts) but later degrade in quality after the veto is applied. Lastly are those
events which at first are of poor quality (initially failing both quality cuts),
but show an improvement after application of the veto and passing the cuts.

Effectiveness at removing poorly fitting grammage bins

A selection of events from 2006 and 2007 were examined in order to study the
goodness-of-fit of those grammage bins that are being removed by the veto.
These events pass both the geometry and profile cuts descibed in appendix
A and B with the exception of the χ2/nDoF cut. The χ2 cut is not used, so
as to attempt to preserve any bumps or dips in the profiles. In addition, only
those events that were affected by the cloudy pixel veto (having grammage
bins removed from their analysis) were considered in this study.

Figure 6.11 describes the individual goodness of fit of grammage
bins left and grammage bins cut as a result of the cloud camera veto. The
goodness of fit of each individual grammage bin is described by its deviation,
which is simply the difference between it and the predicted Gaisser-Hillas fit
divided by the uncertainty associated with that grammage bin - as seen in
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equation 6.2.

Deviation =
dEgrammage

dX
− dEpredicted

dX

σ
(6.2)

where dEgrammage and dEpredicted are the measured energy deposit, and the
predicted energy deposit (through the Gaisser-Hillas fit) for the grammage
bin in question. σ is the error in the energy deposit in that grammage bin.

Figure 6.11: Plots describing the deviation from the Gaisser-Hillas fit of grammage
bins from events (obscured in some way by cloud) selected from March-June 2006
that survived the quality cuts in appendices A and B. [Left] Showing distribution
for grammage bins that were cut. [Right] Showing distribution for grammage bins
that were not cut in events obscured by cloud.

The plots in figure 6.11 describe the deviation of grammage bins
that have both been preserved, and cut by the cloudy pixel veto. Overall
about 6% of the grammage bins in cloud affected events were removed by the
veto. Both distributions are approximately centered at zero, as is expected
since they were used to derive the Gaisser-Hillas fit they are being compared
against. Both distributions also have approximately the same mean and
RMS values. This suggests that there is no substantial difference between
the two distributions, and indicates that the cloudy pixel veto is removing a
substantial number of well-fitting (and presumably) cloud free pixels.

This ineffectiveness is likely due to the conservative nature of the
veto. The cloud camera veto assumes all cloud coverage is at the lowest
cloud height measured at the time, which means that occasionally the cloud
camera is going to remove a perfectly good piece of the shower profile because
it underestimated its height - an example of this is the bottom event in figure
6.10 in the previous section. Even when a bump is successfully targeted by
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the veto, often some well-fitting grammage bins are also removed as a side
effect - also evidenced in figure 6.10, in the top-most profile.

Events that no longer pass profile quality cuts after application of
the veto

Of interest are those events which were initially considered to be ’good’ by
the profile quality cuts (appendix A), but later fail those same quality cuts
after application of the cloudy pixel veto. Given the apparent inefficiency of
the cloud veto at identifying cloud obscured track pixels, it is expected that
a number of events will have perfectly well fitting GH profile grammage bins
removed by the veto.

Of those showers that passed the geometry quality cuts (appendix
A) selected during 2006 and 2007, 8447 events had reconstructed energies
exceeding 1018eV. Of these, 5598 (66%) had enough information from the
cloud cameras and LIDAR to apply the cloud veto, 3836 of these events were
determined to be cloud-free and 1762 partially obscured by cloud. Of the
cloud-free events, 1510 (40%) passed the profile quality cuts (appendix B),
and 791 (45%) of the cloud obscured events passed the same cuts. After
application of the pixel veto only 466 (27%) of the cloud obscured events
still passed the profile quality cuts.

A greater fraction of the cloud obscured events initially passed the
profile quality cuts, than the non-cloud obscured events. This suggests one
of three things: firstly, that the effects of cloud upon a measured shower
profile are not significant. Secondly, that the cloud cameras are inefficient
at identifying cloud affected events. Or thirdly that the profile quality cuts
used are ineffective at removing cloud contaminated events.

The most likely explanation is a combination of the inefficiency of
the cloud veto at identifying cloudy events, and the ineffectiveness of cloudy
event removal by existing quality cuts. As mentioned in the previous section,
the veto uses a conservative estimate for the cloud height that may result
in identified cloud being thought closer than it actually is. In figure 6.9 it
was shown that (with the exception of the LIDAR cut which is not used
here) the usual quality cuts are not particularly effective at removing cloud
contaminated events - although this may tie back in with the inefficiency of
the veto, as cloud camera data was used to arrive at this conclusion.

A total of 325 events from the sample of events that initially passed
the appendix A and B quality cuts (and were > 1018eV) subsequently failed
those same cuts after applying the cloud camera grammage bin veto. Most
of these failed because the search for the best zeta value failed during recon-
struction (presumably because too much of the shower was removed). Those
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that succeeded in finding a best zeta value typically failed due to either the
tracklength or Xmax error quality cut.

The profiles of five of those events that failed the profile quality cuts
after the cloudy pixel veto, are shown in figure 6.12. It is interesting to
note that none of the profiles exhibit any obvious bumps or dips typically
associated with cloud intereference.

It is clear that application of the cloudy pixel veto can remove enough
information to cause an otherwise well-measured event to fail subsequent
quality cuts. This is due to fewer grammage bins being available, resulting
in a shortening of the observed tracklength, and a more poorly fitted Gaisser-
Hillas profile. Application of the cloudy pixel veto to all events within a set
of data may remove some cloud obscured events, but will also remove some
perfectly good ones at the same time.

Events that fail profile quality cuts, but pass after application of
the veto

A total of 61 events during 2006 and 2007 initially failed the appendix A and
B quality cuts, but later passed after application of the cloudy pixel veto.
Typically these events failed the profile quality cuts due to a poor χ2/nDoF
fit or large Xmax error. Application of the cloud veto, in these cases, results
in an improved Gaisser-Hillas fit to an extent where they now pass those
quality cuts.

Three of these events are shown in figure 6.13. All three events
initially failed the Xmax error cut, and one failed the χ2

nDoF
cut. Of the

events, only the top-most one appears to have a had a cloud induced effect
removed (the apparent Cherenkov splash at 830 g.cm−2), and it is also this

one which shows the most marked improvement in χ2

nDoF
- with a decrease

from 4.6 down to 0.7.
The large decrease of χ2

nDoF
with the veto is a result of several gram-

mage bins which strongly disagreed with the fitted GH profile being removed.
For the other events only a slight (0.6 and 0.1 for the middle and bottom

events respectively) improvement in the χ2

nDoF
observed. This makes sense,

because in those two of the three events the parts of the shower which were
removed tended to agree relatively well with the Gaisser-Hillas fit already,
but in the case of the cloud affected event, a portion of the shower that
disagreed quite strongly with the fit was removed - resulting in the superior
change in χ2

nDoF
value.

Evidently, shower profiles may be improved to an extent where they
can start passing quality cuts (in some cases) through the removal of some
grammage bins. To evaluate whether a ‘bad’ part of the shower is actually
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Figure 6.12: Events > 1018eV selected from March-June 2006 that initially passed
the quality cuts in appendices A and B, but later failed those same cuts after under-
going the cloud veto. Plots on the left are the normal reconstructed profiles, plots
on the right are the same profiles reconstructed, but with the cloud veto applied.
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Figure 6.13: Three events during 2006 and 2007 that initially did not pass the
quality cuts in appendix A and B, but later passed those same cuts after undergoing
the cloud veto. Plots on the left are the normal reconstructed profiles, plots on the
right are the same profiles reconstructed, but with the cloud veto applied.
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being removed by the veto the change in χ2

nDoF
might be examined, as a large

improvement corresponds to poorly fitting grammage bins being removed,
and a slight improvement to the removal of well fitting grammage bins.

A significant number of grammage bins that agree well with a fitted
Gaisser-Hillas profile are being removed by the cloud camera based grammage
bin veto cut. This is to be expected, given the (necessarily) conservative
nature of the cut. It is observed however, that if these bins are incorrectly
(they are not actually obscured by cloud) removed it can either lead to an
apparent improvement or worsening in event quality that may affect whether
it passes a given series of quality cuts. Thus the cloud pixel veto cannot be
completely trusted in ‘improving’ event reconstruction quality. A measure
of the degree of trust that can be associated with an application of the
grammage bin veto to a particular event is the change in χ2

nDoF
. A small

change suggests the veto is being conservative, while a large change may
correspond to a correct application. If the grammage bin veto is to be used
its effectiveness must be considered.

Figure 6.14: Histograms showing the shift in the χ2/nDoF parameters and esti-
mated error of the reconstructed Xmax and χ2/nDoF, for events that only passed
the appendix A and B quality cuts after the cloudy pixel veto.

Within figure 6.14 is shown the shift in the fitted GH χ2/nDoF and
estimated error in reconstructed Xmax for those events that initially failed
the appendix A and B quality cuts, only to pass them after the cloudy pixel
veto was applied. The histograms show that for the majority of events there
is an improvement in in the quality of Gaisser-Hillas profile fit. Those events
that show a decrease in the quality of fit but manage to pass the quality
cuts generally had their tracklength slightly improved (through the process
explained in section 6.5.1) by the veto, and already had good Xmax error and
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χ2/nDoF values.
It may be prudent to evalulate the effectiveness of the cloudy pixel

veto on an event-by-event basis by the improvement it delivers to the fit of
the GH function to the measured longitudinal profile. A quality cut based
upon the shift in the error of the reconstructed Xmax or χ2/nDoF may served
this purpose. For example, only apply the cloudy pixel veto to those events
which show a minimum of a 30 g.cm−2 improvement in the Xmax error, or
an improvement of at least 2 to the χ2/nDoF value.

If such a quality cut were to be applied in conjunction with the
cloudy pixel veto approximately 15 events during 2006 and 2007 may be
‘salvaged’ with the quality cuts described here. This would give less than a
1% increase to the size of the data sample available for analysis.

6.6 Summary

In this chapter was discussed the practical application of cloud camera in-
formation to FD measured extensive air shower data. Cloud camera data
only provides directional information, it does not measure how far away a
particular bank of cloud is from a fluorescence detector. This means that
the cloud cameras cannot determine if an observed cloud is in front of, or
behind a particular air shower. If the height of a bank of cloud is known,
this limitation may be overcome and the actual location of a bank of cloud
determined.

Cloud height measurements are available from the LIDARs at each
FD site and the CLF, however these measurements are only performed upon
the sky directly above each instrument. There is no guarantee that cloud
will be above any of these instruments - or even if there is, that it will
be at the same height as another bank of cloud seen by the cloud camera.
Approximately 60% of events have a cloud height measurement immediately
available. It is suggested here that the fraction of events with a cloud height
measurement may be increased by using cloud height measurements taken at
other times i.e. with measurements taken hours before or after a particular
event is observed. Using measurements taken within an hour of an event
would increase the events with an associated cloud height to 74%, and within
six hours to 88%. More work is required to determine how stable, and thus
how accurate these cloud heights would be however.

Cloud camera data combined with cloud height information was used
to study the effectiveness of current quality cuts at removing cloud affected
events. The fraction of events obscured by cloud (according to the cloud
cameras) was calculated as a function of different quality cuts. It was found
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that while, generally speaking, more cloudy events are removed than clear
ones, there are diminishing returns with stricter quality cuts.

Also examined was the shift in mean Xmax value due to overcast
cloud conditions. As the higher altitude portions of air showers are often
obscured on overcast nights, there is a tendency to miss the shallower air
showers on such occasions. This results in a slight increase in the recon-
structed mean Xmax parameter on overcast nights. LIDAR data indicates an
average increase of 13 g.cm−2 on overcast nights, while the cloud cameras
show a similar result with an average increase of 9 g.cm−2.

Examined in this chapter was a proposed application of cloud cam-
era data to the removal of cloud-obscured FD pixels from the reconstruction
of extensive air showers. It was found that while such a ’pixel veto’ some-
times greatly improves the reconstruction of an event (removing apparently
anomalous parts of a measured longitudinal profile) it also often vetoes ap-
parently good measurements - resulting in a poorer reconstruction of that
event. This is likely due to the conservative nature of the cloud height esti-
mate. Because of this, the ’pixel veto’ is not recommended to be a part of
the standard reconstruction procedure.

If the pixel veto were to be applied to FD data, then it is recom-
mended that some sanity check be in place to minimise any adverse effects.
Those events that benefited most from the pixel veto also showed the greatest
improvement in their fitted χ2/nDoF error. Therefore it is advised that the
pixel veto only be applied to those events that show such a marked improve-
ment in some quality dependent parameter - such as (for example) at least
a shift of -2 in χ2/nDoF or -30 in Xmax error (from figure 6.14). Such an
addition to the reconstruction procedure is estimated to result in an increase
of less than 1% of usable events however.

The cloud camera data is likely to be most useful as an aid in other
studies where clouds may play a role. For example, in the past cloud cam-
era data has been used to help determine a limit to the UHE photon flux
measured by Auger. Cloud information is also important in the search for
more exotic physics. ‘Double-bang’ showers with two depth of maximums
are expected to result from tau neutrino interactions or miniature black hole
production in the atmosphere. As cloud affected events may mimic such in-
teractions the cloud cameras may provide a useful aid in the search for such
exotic events.



204 CHAPTER 6. APPLYING CLOUD CAMERA DATA TO EVENTS



Chapter 7

Conclusion

Successful and reliable identification of clouds within images recorded by
the Pierre Auger cloud cameras, require that some estimate of the clear
sky background be available. Without an expected clear sky background
signal to contrast an image against any cloud detection algorithm will be
relying upon any contrasts within the image to identify cloud of interest.
This is less important during clear night sky conditions, as the landscape
often provides a similar signal intensity to that of cloud. During overcast
cloud conditions however, there exists no contrast within the image, making
detection of that cloud extremely unreliable without an estimated clear sky
signal. One potential way around this is to develop a detection algorithm
based upon the texture of cloud within the image, though this approach is
not examined within this dissertion.

Parameterizations giving some estimate of the clear sky temperature
are available, and have been studied extensively in the past. The cloud
cameras are non-radiometric however, which makes direct application of these
parameterizations problematic. It was found, however, that it is possible
to create an expression that approximates the signal expected for a clear
night sky as a function of ambient temperature and effective blackbody sky
temperature. This allowed the development of (with the help of one of the
aforementioned clear sky temperature parameterizations) a parameterization
for the estimated clear sky signal as a function of ambient temperature and
ground level water vapor pressure.

The use of this clear sky signal parameterization allowed the creation
of two cloud detection algorithms, both of which had superior performance
when compared with the more conventional edge detection and thresholding
approaches examined here. Neither algorithm had the reliability to provide
unsupervised detection of cloud within the images. To ensure high standards,
the decision was made to manually check each of the approximately five hun-
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dred thousand images, making sure that each image had its cloud detected
correctly.

In order to faciliate processing of the large number of cloud camera
images a graphical user interface (GUI) was created. This GUI stores images
and the location of any cloud located within them. It has integrated into it
multiple cloud detection algorithms that allow a user to easily test different
strategies for detection of cloud within a particular set of images.

The infrared cloud cameras are the only instrument currently in
operation at the Pierre Auger Observatory that provides information about
the cloud conditions above the whole array. LIDARs installed at each of the
fluorescence detectors and a CLF (Central Laser Facility) are only able to
provide information on localized cloud conditions. The limited LIDAR and
CLF data may be used as a rough cross-check for the cloud camera data
however, and this is examined in chapter 5. A comparison between the cloud
cameras and LIDAR/CLF showed strong agreement during very overcast,
and very clear sky conditions. Such a comparison is very rough however,
and the lack of other comparisons makes it impossible to more accurately
quantify how successful the cloud cameras and analysis were at detecting
cloud.

Previous studies with the LIDAR have shown a bias towards the de-
tection of deeper penetrating showers during overcast cloud conditions, and
cloud camera data supports this result. The statistics of the cloud camera
study however, are poorer than that of the LIDAR due to the lower frequency
of very clear and very overcast cloud fractions being reported. The tendency
towards deeper showers during overcast conditions is due to the shallower
showers being obscured by cloud, and thus not observed by Auger’s fluores-
cence detectors.

Using cloud camera data to directly determine whether a measured
extensive air shower has been affected by cloud is inadvisable, as the cloud
camera only provides cloud directional data. Combining cloud camera data
with cloud height information allows the position of cloud relative to a par-
ticular extensive air shower to be much more accurately determined.

Approximately 23% of events are reported as being obscured by
cloud, but without independent measurements it cannot be known what the
fraction actually is. Analysis of those timebins thought to be obscured by
cloud, and those not, indicates no significant difference in the ‘goodness-of-
fit’ of timebins with the fitted Gaisser-Hillas function for either distribution.
This indicates that any cuts made using this information will be very con-
servative.

The conservative nature of the cloud obscuration information is due
to the lack of availability of a direct measurement for the height of each
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bank of cloud (in the cloud camera’s field of view). Cloud heights must be
extrapolated from measurements of the cloud directly above each FD facility
by LIDARs or the CLF. In order to be conservative, only the lowest measured
cloud height is used. This sometimes results in the cloud being thought
closer to the FD than it actually is, and thus the erroneously reported cloud
obscuration of an extensive air shower measurement.

The cloudy pixel veto is a quality cut aimed at removing, or im-
proving, those measurements that are influenced by cloud. This quality cut
can both improve and degrade (due to perfectly good measurements being
ignored) the fit of a Gaisser-Hillas profile to a particular longitudinal mea-
surement. This indicates that it is unwise to blindly apply this quality cut
to all extensive air showers, due to the significant reduction in the number of
good measurements. As the cut greatly improves the quality of the Gaisser-
Hillas fit to some events it is suggested that this quality cut only be applied
to those events that show a great deal of improvement with its application.
The increase, however, in available events for analysis is small (less than 1%).
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Chapter 8

Appendices

A. Geometry quality cuts

SD/FD time offset ∈ (0,200) ns Time fit: χ2

nDoF
< 7.0

Station axis distance ∈ (0,2000) m χ0 ∈ (0,180) degrees
Rp > 0 m θ < 60◦

Min. viewing angle > 20◦

Table 8.1: Geometry cuts.

B. Profile quality cuts

Xmax error < 50 g.cm−2 Xmax is bracketted

Tracklength > 320 g.cm−2 Gaisser-Hillas: χ2

nDoF
< 2.5

Table 8.2: Quality cuts.
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