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Abstract

This thesis focuses on the computation of optical flow, i.e., the motion perceived from
a sequence of gradually changing images, as an estimate for the 2D velocity of the
scene. Due to the large variety and high complexity of the motion types existing in
practice, motion recovery requires the estimation process to be highly adaptive. This
thesis investigates how to select and combine the reasoning rules, namely the optical
flow constraints, according to the type of motion information detected. Moreover, the
thesis extends optical flow computation to fast rotation, an important, frequent and

challenging motion type, which has not been addressed much in the literature.

The thesis starts by proposing various measures, based on theory as well as heuris-
tics, for motion inconsistency detection. This facilitates selecting only the optical flow
constraints that are valid for each pixel. While this selection benefits pixels affected
by inconsistent motion, the combination of different constraints also enhances flow

recovery for pixels that have consistent motion.

Two frameworks are designed for the combination of flow constraints. One utilizes
motion segmentation; and the other is close in spirit to Expectation-Maximization.
Within these frameworks, new constraints are formulated and tested. Furthermore, the
adaptive reasoning is generalized from translational motion to motion that includes
fast rotation. The key concept that enables this generalization is the use of intrinsic

directions in differential geometry.

Experimental results on a variety of benchmark sequences have demonstrated the abil-
ity of the proposed methods to improve the performance of existing techniques in sev-

eral situations, including strong motion discontinuities and fast rotational motion.
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Notations

Image Intensity and Geometry

X,)Y,Z the world coordinate of a 3D point

X,y spatial coordinates in the image plane

t temporal coordinate in an image sequence

E(x,y,t) image intensity function

d a general direction or the isophote (edge) direction, depending on the context
i the edge normal direction

() the set of neighbours of a pixel

k the kth pixel in a local patch, unless otherwise specified
a®) the “a” of the kth pixel in the local patch
al®) the “a” of the patch center
u the horizontal component of the flow vector
v the vertical component of the flow vector
T
U the flow vector, i.e, 7 = [ u v }
., . T
\% the homogeneous flow vector, i.e, V = [ u v 1 ]
Derivatives

E, first order partial derivatives of E(x, y, t) with respect to variable x
Exx second order partial derivatives of E(x, y, t) with respect to variable x
E total temporal derivative when compact notation is needed, E = ‘fi—f
V spatial gradient vector
V3 spatial-temporal gradient vector
Vi gradient vector in an oriented coordinate system

. 2 2
A Laplacian, A = aa? + aa—yQ

divergence div( [ o ] ) = 2 (a1) + %(az)
as

a
directional divergence div( [ !

a

directional derivative in direction d, i.e.,
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Notations

E E
Hpp the spatial Hessian matrix[ o xy]
Ex]/ Eyy
Exx Exy Ext
H3p the spatio-temporal Hessian matrix Exy EW Eyt
Ext Eyt En
E2 E.E
Sop  the spatial Structure tensor[ LE: LE 21/]
YExE, YE,

YEY YEE, LE:E
S3p  the spatio-temporal Structure tensor | Y EvE, ) E§ Y. EyE:

Y ExEr Y EyEr Y} EiE:

Vector and Matrix Operation

0 a matrix whose elements are all zeros
a “a” is a vector

X the motion parameter vector in the local system AX = b
14 the /; norm of a vector

Il> the I, norm of a vector

I8 the transpose of a vector or a matrix
<Zz’, E> inner product of vector @ and b

AxB the convolution of A and B

At the pseudo-inverse of matrix A

N (A) the null space of matrix A

col() the column space

span(dy,--- ,d,) the space spanned by basis vectors 4y, - - - , @y

1 orthogonal
Go Gaussian smoothing kernel of standard deviation ¢
Ka directional differencing filter
ad
A~B matrix A can be transformed to B by elementary matrix operations
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Miscellaneous

4 A >0
< .

R+

the error functional

affine motion model parameters

a small positive number to prevent the denominator from being 0
Lagrange multiplier

the ith eigenvalue or singular value of a matrix
weight

index of the iteration stage, unless otherwise specified
the axes of the locally oriented coordinate frame
threshold, unless otherwise specified

the refinement or increase of a4 in an iteration process
the set of real numbers

the set of positive real numbers
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