DEBONDING MECHANISMS OF FIBRE REINFORCED POLYMER STRENGTHENED STEEL MEMBERS

IBRISAM AKBAR

SCHOOL OF CIVIL, ENVIRONMENTAL AND MINING ENGINEERING THE UNIVERSITY OF ADELAIDE DECEMBER 2010

DEBONDING MECHANISMS OF FIBRE REINFORCED POLYMER STRENGTHENED STEEL MEMBER

By Ibrisam Akbar

A DISSERTATION SUBMITTED TO THE SCHOOL OF CIVIL, ENVIRONMENTAL AND MINING ENGINEERING, THE UNIVERSITY OF ADELAIDE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

TABLE OF CONTENTS

TABI	LE OF CONTENTS1
LIST	OF TABLES
LIST	OF FIGURES9
ABB	REVIATIONS AND NOMENCLATURES17
ABS	TRACT19
STAT	TEMENT OF ORIGINALITY20
ACK	NOWLEDGEMENT21
LIST	OF PUBLICATIONS 22
СНА	PTER 1: INTRODUCTION23
1.1	BACKGROUND
1.2	BOND-SLIP (τ - δ) RELATIONSHIP
1.3	INTERMEDIATE CRACK (IC) DEBONDING
1.4	FULL AND PARTIAL INTERACTION THEORY26
1.5	SCOPE AND OBJECTIVES
1.6	THESIS OUTLINE27

CHAP	TER 2	: LITERATUR	E REVIEW	
2.1	INTRO	DUCTION		28
2.2	RESE	ARCH RELAT	TED TO DEBONDING OF FRP	28
2.3	<i>τ-δ</i> RE	ELATIONSHIP		30
2.4	DEBC	NDING LOAD	D, P _{IC}	31
2.5	CRITI	CAL BOND LI	ENGTH	
2.6	BONE	TESTING MI	ETHODS IN FRP-STEEL	37
	2.6.1	LOAD INDIR	ECTLY APPLIED TO THE FRP AND THE STEE	EL
		PLATE IN BE	EAM - NOZAKA, SHIELD AND HAJJAR (2005).	
	2.6.2	LOAD DIREC	CTLY APPLIED TO THE FRP	
		2.6.2.1	DAMATTY AND ABUSHAGUR (2003)	
		2.6.2.2	XIA AND TENG (2005)	40
	2.6.3	LOAD DIREC	CTLY APPLIED TO THE STEEL ELEMENT WIT	HOUT
		A GAP		
		2.6.3.1	MILLER, CHAJES, MERTZ AND HASTINGS (2	2001) 42
		2.6.3.2	COLOMBI AND POGGI (2005)	
		2.6.3.3	AL-EMRANI AND KLIGER (2006)	
	2.6.4	LOAD DIREC	CTLY APPLIED TO THE STEEL ELEMENT WIT	ΉA
		GAP - COLO	MBI AND POGGI (2005)	
2.7	EXTR	ACTING THE	τ_{max} - δ_{max} RELATIONSHIP	51
2.8	PART	IAL-INTERAC	TION NUMERICAL METHOD OF BOND-SLIP	
	RELA	TIONSHIP		52
2.9	CONC	LUSIONS		54
CHAP	TER 3	: PUSH PULL	. TESTS	57
3.1	INTRO	DUCTION		57
3.2	SPEC	IMENS		57
3.3	TEST	SETUP		60
3.4	INST	RUMENTATIO	N	63
3.5	MATE	RIAL PROPE	RTIES	64

3.6	TEST	RESULTS O	F SIKA SPECIMEN	64
	3.6.1	SPECIMEN	SIKA 1	65
	3.6.2	SPECIMEN	SIKA 2	67
	3.6.3	SPECIMEN	SIKA 3	69
	3.6.4	SPECIMEN	SIKA 4	71
	3.6.5	SPECIMEN	SIKA 5	73
	3.6.6	SUMMARY	ON SIKA SERIES TESTS	75
3.7	TEST	RESULTS O	F CIBA SPECIMEN	77
	3.7.1	SPECIMEN	CIBA 6	77
	3.7.2	SPECIMEN	CIBA 7	79
	3.7.3	SPECIMEN	CIBA 8	81
	3.7.4	SPECIMEN	CIBA 9	83
	3.7.5	SPECIMEN	CIBA 10	85
	3.7.6	SUMMARY	ON CIBA SERIES TESTS	87
3.8	ADDI	TIONAL TES	TS WITH CIBA ADHESIVE	
	3.8.1	ADDITIONA	L NOT FULLY ANCHORED SPECIMENS	90
		3.8.1.1	SPECIMEN CIBA 11	90
		3.8.1.2	SPECIMEN CIBA 13	91
		3.8.1.3	SPECIMEN CIBA 14	92
	3.8.2	ADDITIONA	L FULLY ANCHORED SPECIMEN TESTS.	92
		3.8.2.1	SPECIMEN CIBA 12	94
		3.8.2.2	SPECIMEN CIBA 15	
		3.8.2.3	SPECIMEN CIBA 16	101
		3.8.2.4	SPECIMEN CIBA 17	106
	3.8.3	SUMMARY	ON ADDITIONAL TESTS WITH CIBA SPEC	CIMENS.109
3.9	CON	CLUSIONS		112

CHAPTER 4: ANALYSIS ON THE DERIVATION OF τ - δ RELATIONSHIP....... 113

4.2	PARTIAL-INTERACTION NUMERICAL MODELLING OF LOCAL AND			
	GLOBAL BOND CHARACTERISTICS OF FRP PLATED STEEL	JOINTS		
	113			
	4.2.1 DISCUSSION ON THE CRITICAL BOND LENGTH	116		
4.3	τ_{max} FROM NOT FULLY ANCHORED CIBA SPECIMENS	118		
4.4	P_{IC} FROM FULLY ANCHORED SPECIMENS AND δ_{max} FROM T	HE		
	GENERIC EQUATIONS	119		
4.5	δ_1 FROM PARTIAL-INTERACTION NUMERICAL MODELLING	120		
4.6	COMPARISON BETWEEN EXPERIMENTAL RESULT WITH NU	MERICAL		
	ANALYSIS	120		
	4.6.1 SPECIMEN SIKA 1	120		
	4.6.2 SPECIMEN SIKA 2	121		
	4.6.3 SPECIMEN SIKA 3	122		
	4.6.4 SPECIMEN SIKA 4	123		
	4.6.5 SPECIMEN SIKA 5	124		
	4.6.6 SPECIMEN CIBA 6	125		
	4.6.7 SPECIMEN CIBA 7	126		
	4.6.8 SPECIMEN CIBA 7	127		
	4.6.9 SPECIMEN CIBA 10	128		
	4.6.10 SPECIMEN CIBA 11	129		
	4.6.11 SPECIMEN CIBA 13	130		
	4.6.12 SPECIMEN CIBA 14	131		
	4.6.13 SPECIMEN CIBA 16	132		
	4.6.14 SPECIMEN CIBA 17	133		
4.7	ANALYSIS OF PUBLISHED RESULTS (XIA AND TENG 2005)	134		
	4.7.1 τ_{max} - δ_{max} FROM EXPERIMENT RESULTS	135		
4.8	COMPARISON OF XIA AND TENG (2005) EXPERIMENTAL RE	SULT		
	WITH CURRENT RESEARCH			
	4.8.1 SPECIMEN A-1	137		
	4.8.2 SPECIMEN A-2A			
	4.8.3 SPECIMEN B-1			

	4.8.4	SPECIMEN I	3-2A140
4.9	SUMN	ARY ON THE	E NUMERICAL ANALYSIS BEST FIT CURVE 142
4.10	CONC	LUSIONS	
CHAP	TER 5	: STEEL COU	JPON TESTS144
5.1	INTRO	DUCTION	
5.2	SPEC	IMENS	
5.3	TEST	SETUP	
5.4	INSTE	RUMENTATIC	N
5.5	MATE	RIAL PROPE	RTIES149
5.6	TEST	RESULTS OI	F CW SPECIMENS 150
	5.6.1	SPECIMEN	CW1150
	5.6.2	SPECIMEN	CW2152
	5.6.3	COMPARISO	ONS BETWEEN SPECIMENS CW1 AND CW2 154
5.7	TEST	RESULTS OI	F VW SPECIMENS155
	5.7.1	SPECIMEN	/W1155
		5.7.1.1	MIDDLE SECTION (0 mm) 157
		5.7.1.2	10 mm FROM THE MIDDLE159
		5.7.1.3	80 mm AND 110 mm FROM THE MIDDLE 161
		5.7.1.4	STRAINS ACROSS THE BOND LENGTH 163
	5.7.2	SPECIMEN	/W2165
		5.7.2.1	MIDDLE SECTION (0 mm) 167
		5.7.2.2	10 mm FROM THE MIDDLE168
		5.7.2.3	80 mm AND 110 mm FROM THE MIDDLE 171
		5.7.2.4	STRAINS ACROSS THE BOND LENGTH 173
5.8	CONC	CLUSIONS	

CHAPTER 6: ANALYSIS OF THE DEBONDING MECHANISM IN FRP PLATED

STEEL MEMBERS		
6.1		176

6.2	PART	IAL-INTERACTION NUMERICAL METHODS FOR STEEL DUE TO
	AXIAL	FORCE ONLY
	6.2.1	MATERIAL PROPERTIES
	6.2.2	THE FORCES IN THE STEEL PLATE AND FRP 177
	6.2.3	BOUNDARY CONDITION $\sigma_p=0$ AT THE END OF THE FRP PLATE
		178
	6.2.4	BOUNDARY CONDITION ds/dx=s=0 ALONG THE FRP PLATE . 179
	6.2.5	PARTIAL-INTERACTION NUMERICAL METHOD FOR
		DEBONDING MECHANISM
6.3	DEBC	NDING MECHANISM
	6.3.1	PLATE END DEBONDING
	6.3.2	DEBONDING BETWEEN PLATE ENDS DUE TO STEEL YIELDING
		188
	6.3.3	COMBINATION OF PLATE END DEBONDING AND DEBONDING
		DUE TO YIELDING OF STEEL 191
6.4	ANAL	YSIS OT TEST RESULTS193
	6.4.1	SPECIMENS CW1 AND CW2193
	6.4.2	SPECIMEN VW1196
	6.4.3	SPECIMEN VW2
6.5	COM	PARISON WITH PUBLISHED RESULTS
6.6	CON	CLUSIONS

CHAPTER 7: DEVELOPMENT OF MOMENT-ROTATION CAPACITY

NUM	ERICAL METHOD FOR FRP PLATED STEEL BEAM	209
7.1	INTRODUCTION	209
7.2	DEFINITION OF ROTATION CAPACITY	
7.3	PLASTIC MOMENT OF CONTINUOUS BEAMS	212
7.4	ROTATION CAPACITY OF BEAMS	217
7.5	PARTIAL-INTERACTION NUMERICAL METHOD FOR FRP PLA	TED I-
	SECTION STEEL BEAM	

7.6	NUMERICAL METHOD PROCEDURE	221
7.7	DEBONDING MECHANISM	223
	7.7.1 PLATE END DEBONDING	224
	7.7.2 DEBONDING AT CENTRE DUE TO STEEL YIELDING	227
7.8	CONCLUSIONS	227
CUAT		220
СПА	TER 8: SUMMARY AND CONCLUSIONS	228
8.1	INTRODUCTION	228
8.2	CONCLUSIONS ON THE PUSH PULL TESTS AND NUMERICAL	
	METHOD	229
8.3	CONCLUSIONS ON THE STEEL COUPON TESTS AND NUMERI	CAL
	METHOD	230
8.4	SUGGESTION FOR FUTURE WORK	231
REFE	RENCES	232
APPE	ENDIX A	237
APPE	ENDIX A	237
		220
AFFL		230
APPE	ENDIX C	239
APPE	ENDIX D	240
		241

LIST OF TABLES

Table 3.1	Material and geometric properties of the FRP plate	59
Table 3.2	Material properties of adhesive	64
Table 3.3	Material properties of FRP for the additional CIBA tests	89
Table 3.4	Loading and unloading procedure for the additional CIBA tests	94
Table 3.5	Failure load and shear stress for not fully bonded specimens 1	10
Table 4.1	Critical bond length comparison1	18
Table 5.1	Geometrical properties of test specimens1	46
Table 5.2	Material properties of the steel plate1	50

LIST OF FIGURES

Figure 1.1 Bilin	ear bond-slip relationship	24
Figure 1.2 Inter	rmediate crack debonding mechanism	25
Figure 1.3 Deg	ree of interaction	26
Figure 2.4	Local bond-slip model	30
Figure 2.5	Interfacial stress distribution and propagation of debonding for a	
	large bond length	32
Figure 2.6	Typical theoretical load-displacement curve	33
Figure 2.7	Definition of IC debonding failure plane (cross sectional view of	
	plate)	36
Figure 2.8	Experimental test setup and dimensions (Nozaka et al. 2005)	38
Figure 2.9	Comparison of analytical and experimental test results (Nozaka et	
	al. 2005)	39
Figure 2.10	Schematic of the conducted shear lap tests (Damatty and	
	Abushagur 2003)	40
Figure 2.11	Pull test specimen setup from Xia and Teng	41
Figure 2.12	Shear stress distribution	42
Figure 2.13	Schematic of bond test specimen (Miller et al. 2001)	43
Figure 2.14	Comparison of measured and computed strain along FRP (Miller	
	et al. 2001)	44
Figure 2.15	Schematic of bond test specimen (Colombi and Poggi 2006)	45
Figure 2.16	Comparison of measured and computed strain along FRP	
	(specimen without a gap) (Colombi and Poggi 2006)	46
Figure 2.17	Schematic illustration of the principal load effects in a steel beam	
	glued with FRP (AI-Emrani and Kliger 2006)	47
Figure 2.18	Test specimen for pull test incorporating steel yielding (AI-Emrani	
	and Kliger 2006)	48
Figure 2.19	Predicted stress variations along the bonded length of Specimen	
	A12 (AI-Emrani and Kliger 2006)	49
Figure 2.20	Double lap joint specimen (Colombi and Poggi 2006)	50

Figure 2.21	Comparison of measured and computes strain along FRP		
	(specimen with a gap) (Colombi and Poggi 2006)	50	
Figure 2.22	Graphical representation of numerical analysis (Haskett et al.		
	2007)	53	
Figure 2.23	Typical pull test setup	55	
Figure 2.24	Typical pull test with steel yielding setup	56	
Figure 3.1	Typical pull test setup	58	
Figure 3.2	Ball bearings set on the steel surface	59	
Figure 3.3	Force applied on FRP-to-steel	60	
Figure 3.4	Test rig with the specimen	61	
Figure 3.5	Location of steel plate for restraining and aluminium plate for		
	LVDT's restraint	62	
Figure 3.6	Aluminium plate as a grip	62	
Figure 3.7	Detail instrumentations of the specimen	63	
Figure 3.8	Failure mode of specimen SIKA 1	66	
Figure 3.9	Global P- Δ for specimen SIKA 1	67	
Figure 3.10	Failure mode of specimen SIKA 2	68	
Figure 3.11	Global P- Δ for specimen SIKA 2	69	
Figure 3.12	Failure mode of specimen SIKA 3	70	
Figure 3.13	Global P- Δ for specimen SIKA 3	71	
Figure 3.14	Failure mode of specimen SIKA 4	72	
Figure 3.15	Global P- Δ for specimen SIKA 4	73	
Figure 3.16	Failure mode of specimen SIKA 5	74	
Figure 3.17	Global P- Δ for specimen SIKA 5	75	
Figure 3.18	Global P- Δ for specimen SIKA series	76	
Figure 3.19	Failure mode of specimen CIBA 6	78	
Figure 3.20	Global P- Δ for specimen CIBA 6	79	
Figure 3.21	Failure mode of CIBA 7 specimen	80	
Figure 3.22	Global P- Δ for specimen CIBA 7	81	
Figure 3.23	Failure mode of specimen CIBA 8	82	

Figure 3.24	Global P- Δ for specimen CIBA 8	83
Figure 3.25	Failure mode of specimen CIBA 9	84
Figure 3.26	Global P- Δ for specimen CIBA 9	85
Figure 3.27	Failure mode of specimen CIBA 10	86
Figure 3.28	Global P- Δ for specimen CIBA 10	87
Figure 3.29	Global P- Δ for specimen CIBA series	88
Figure 3.30	Global P- Δ for specimen CIBA 11	90
Figure 3.31	Global P- Δ for specimen CIBA 13	91
Figure 3.32	Global P- Δ for specimen CIBA 14	92
Figure 3.33	Detail instrumentations of the additional specimen	93
Figure 3.34	Failure mode of specimen CIBA 12	96
Figure 3.35	Global P- Δ for specimen CIBA 12	97
Figure 3.36	Local τ - δ for specimen CIBA 12	97
Figure 3.37	Failure mode of specimen CIBA 15	99
Figure 3.38	Global P- Δ for specimen CIBA 15	100
Figure 3.39	Local τ - δ for specimen CIBA 15	101
Figure 3.40	Failure mode of specimen CIBA 16	103
Figure 3.41	Global P- Δ for specimen CIBA 16	104
Figure 3.42	Local τ - δ for specimen CIBA 16	104
Figure 3.43	Local τ - δ for specimen CIBA 16 (strain gauge 25 mm)	105
Figure 3.44	Failure mode of specimen CIBA 17	107
Figure 3.45	Global <i>P-</i> ⊿ for specimen CIBA 17	108
Figure 3.46	Local τ - δ for specimen CIBA 17	109
Figure 3.47	Global <i>P-</i> ^{<i>A</i>} curve for the not fully bonded specimens	110
Figure 3.48	Local τ - δ for specimen CIBA 16 and CIBA 17 calculated f	rom
	strain gauge 25 mm	111
Figure 4.1	Graphical representation of the numerical analysis for FRI	P plated
	steel joints	115
Figure 4.2	Influence of δ_1 to the global load–slip (τ - Δ) response	116

Figure 4.3	Critical bond length analysis of specimen CIBA117
Figure 4.4	Bond stress distribution for a not fully anchored embedment119
Figure 4.5	Comparison between experimental and numerical P- Δ curves of
	specimen SIKA 1121
Figure 4.6	Comparison between experimental and numerical P- Δ curves of
	specimen SIKA 2122
Figure 4.7	Comparison between experimental and numerical P- Δ curves of
	specimen SIKA 3123
Figure 4.8	Comparison between experimental and numerical P- Δ curves of
	specimen SIKA 4124
Figure 4.9	Comparison between experimental and numerical P- Δ curves of
	specimen SIKA 5125
Figure 4.10	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 6126
Figure 4.11	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 7127
Figure 4.12	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 9128
Figure 4.13	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 10129
Figure 4.14	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 11130
Figure 4.15	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 13131
Figure 4.16	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 14132
Figure 4.17	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 16133
Figure 4.18	Comparison between experimental and numerical P- Δ curves of
	specimen CIBA 17134

Figure 4.19	Shear stress distributions from Xia and Teng (2005) experiments 136
Figure 4.20	Comparison between experimental and numerical P- Δ curves of
	specimen A-1138
Figure 4.21	Comparison between experimental and numerical P- Δ curves of
	specimen A-2A139
Figure 4.22	Comparison between experimental and numerical P- Δ curves of
	specimen B-1140
Figure 4.23	Comparison between experimental and numerical P- Δ curves of
	specimen B-2A141
Figure 5.1	Shape and dimension of test specimen with a constant width (CW)
	steel plate144
Figure 5.2	Shape and dimension of test specimen with a varying width (VW)
	steel plate145
Figure 5.3	Test setup147
Figure 5.4	Strain gauges location of test specimen with a constant width
	(CW) steel plate
Figure 5.5	Strain gauges location of test specimen with a varying width (VW)
	steel plate148
Figure 5.6	Stress-strain relationship of the steel149
Figure 5.7	Failure mode of CW1151
Figure 5.8	Experimental result for CW1152
Figure 5.9	Failure mode of CW2153
Figure 5.10	Experimental result for CW2154
Figure 5.11	Comparison of strains between CW1 and CW2155
Figure 5.12	Failure mode of VW1156
Figure 5.13	Experimental result for VW1 at 0mm158
Figure 5.14	Experimental result for VW1 at 0mm at debonding158
Figure 5.15	Experimental result for VW1 at 10mm from the middle160
Figure 5.16	Experimental result for VW1 at 10mm from the middle at
	debonding (right)160

Figure 5.17	Experimental result for VW1 at 10mm from the middle at	
	debonding (left)161	
Figure 5.18	Experimental result for VW1 at 80mm from the middle at	
	debonding162	
Figure 5.19	Experimental result for VW1 at 110mm from the middle at	
	debonding162	
Figure 5.20	Strains across the bonded length at different stages (VW1)164	
Figure 5.21	Failure mode of VW2166	
Figure 5.22	Experimental result for VW2 at 0mm.	
Figure 5.23	Experimental result for VW2 at 0mm at debonding168	
Figure 5.24	Experimental result for VW2 at 10mm	
Figure 5.25	Experimental result for VW2 at 10mm at debonding (right)	
Figure 5.26	Experimental result for VW2 at 10mm at debonding (left)	
Figure 5.27	Experimental result for VW2 at 80mm at debonding172	
Figure 5.28	Experimental result for VW2 at 110mm at debonding172	
Figure 5.29	Strains across the bonded length at different stages (VW2) 174	
Figure 6.1	Stress-strain relationship of steel and FRP177	
Figure 6.2	Forces in steel and FRP178	
Figure 6.3	Strain distribution of steel and FRP178	
Figure 6.4	Strain, slipstrain and slip distributions of FRP plated steel member180	
Figure 6.5 Graphical representation of the numerical analysis for FRP		
	steel members	
Figure 6.6	Strain distribution of steel and FRP for plate end debonding185	
Figure 6.7	Slipstrain distribution of steel and FRP for plate end debonding186	
Figure 6.8	Slip distribution of steel and FRP for plate end debonding	
Figure 6.9	Strain distribution of steel and FRP when $\varepsilon_x < \varepsilon_p$ at the middle187	
Figure 6.10	Steel strain distribution after steel yielding189	
Figure 6.11	FRP strain distribution after steel yielding189	
Figure 6.12	Slipstrain distribution after steel yielding190	
Figure 6.13	Slip distribution after steel yielding190	

Figure 6.14	Bond stress distribution after steel yielding197	1
Figure 6.15	Full and partial interaction regions of FRP plated steel member 192	2
Figure 6.16	Numerical load-strain for CW1 and CW2193	3
Figure 6.17	Numerical load-strain for CW1195	5
Figure 6.18	Numerical bond stress for CW1 at steel yielding	5
Figure 6.19	Steel load-strain comparison for VW1196	3
Figure 6.20	FRP load-strain comparison for VW1197	7
Figure 6.21	Numerical slip at different stages of loading (VW1)	3
Figure 6.22	Numerical bond stress at different stages of loading (VW1)	3
Figure 6.23	Peak numerical bond stress at debonding (VW1)	9
Figure 6.24	Steel load-strain comparison for VW2200)
Figure 6.25	FRP load-strain comparison for VW2207	1
Figure 6.26	Numerical and experimental load-axial stress comparison for	
	specimen A12204	1
Figure 6.27	Numerical and experimental load-axial stress comparison for	
	specimen B12204	4
Figure 6.28	Numerical and experimental load-axial stress comparison for	
	specimen B17205	5
Figure 6.29	Numerical and FEM shear stress comparison across the bonded	
	length206	3
Figure 6.30	Numerical and experimental shear stress comparison at plate end.2	07
Figure 7.1	Rotation capacity definition by ASCE212	1
Figure 7.2	Definition of rotation capacity based on normalized moment-	
	rotation relationship212	1
Figure 7.3	Standard beams for a continuous beam213	3
Figure 7.4	Characteristic points in a beam214	4
Figure 7.5	Locations of inflection and maximum moment points in standard	
	beams216	3
Figure 7.6	Moment rotation curve for SB1219	9
Figure 7.7	Moment rotation curve for SB2)

Figure 7.8	Graphical representation of the numerical analysis for FRP plated	
	steel section	223
Figure 7.9	Specimen for the numerical procedure	224
Figure 7.10	Strain distribution of steel and FRP at bottom flange	225
Figure 7.11	Slipstrain distribution of steel and FRP at bottom flange	225
Figure 7.12	Slip distribution of steel and FRP at bottom flange	226
Figure 7.13	Plate end debonding at 150 mm bond length	226

ABBREVIATIONS AND NOMENCLATURES

- τ bond stress
- χ curvature
- \varDelta global slip
- Δ_s change of slip
- δ slip
- ε strain
- δ_1 slip at maximum bond stress
- θ_1 theoretical rotation when full plastic capacity is achieved
- θ_2 rotation when moment capacity drops below M_p
- (AE)_p axial rigidity of FRP
- $(AE)_s$ axial rigidity of steel
- (EA)_c axial rigidity of the concrete
- (EA)_p axial rigidity of the FRP plate
- θ_h plastic rotation
- θ_{hm} plastic rotation at maximum moment
- τ_{max} maximum bond stress
- δ_{max} maximum slip
- $\delta_{max,cal}$ calculated maximum slip
- $\tau_{max,exp}$ experimental bond stress
- $\delta_{max,exp}$ experimental maximum slip
- θ_p elastic rotation
- ε_p FRP strain
- $\hat{\varepsilon}_s$ steel strain
- ε_u steel strain at ultimate rotation
- ε_{sh} strain hardening
- θ_u ultimate rotation
- $\varepsilon_{\rm Y}$ yield strain,
- A_p area of FRP
- \vec{B} bond force
- b width
- b_{ρ} FRP width
- CDC critical diagonal crack
- d depth
- d_x segment length
- *E_p* Young's Modulus of FRP
- *E*_s Young's Modulus of steel
- F force
- FRP Fibre Reinforced Polymer
- *f*_{sh} Strain hardening stress
- *f_y* Yield stress
- *G*_f fracture energy

- h height
- IC interfacial crack
- J geometry of the interface debonding failure plane
- *L_{crit}* critical bond length
- *L_p* length of embedment
- I_p length of full plastic zone
- *L_{per}* perimeter length
- *I*_{pf} length of flange plastic zone
- *M* moment
- M_{p} plastic moment
- *M_{pf}* plastic moment at flange
- *M_u* ultimate moment
- P load
- PE plate end
- P_{IC} debonding load
- P_{IC,exp} experimental interfacial crack load
- P_L load increment
- *P*_{UL} load decrement
- P_{y.} yield load
- *q* uniform distributed load
- *R* rotation capacity
- t_p thickness of FRP
- $\dot{t}_{\rm s}$ Steel thickness
- *x_i* distance to inflection point
- *x_m* distance to plastic moment

ABSTRACT

Applying Fibre Reinforce Polymer (FRP) to steel structures has been proved to be an effective method of strengthening. Experimentally, ageing steel structures such as bridge decks and composite beams which have been strengthened with FRP have shown lifetime extension and enhanced strength. Numerically, different approaches have been carried out to quantify the relationship between FRP and steel members in regard to the observance of the experimental works.

This thesis contributes in term of quantifying the debonding mechanism of FRP strengthened steel members. First, a procedure in the derivation of the bond-slip $(\tau - \sigma)$ relationship is presented by combining the results of the experimental work with a numerical method developed specifically for this purpose. Secondly, the debonding mechanisms of FRP strengthened steel plates due to the yielding of steel is established by experimental and numerical works. Finally, a numerical method was developed to quantify the plate end debonding of a simply supported steel beam.

A total of seventeen pull tests with different types of FRP lengths and adhesives were tested to quantify the (τ - σ) relationship. Another four steel plate tests were carried out to study the debonding mechanism of FRP allowing for the steel to yield. Three different numerical methods were developed to analyse the results obtained experimentally.

STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Ibrisam Akbar, and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permissions for the digital version of my thesis to be made available on the web, via the University's digital search repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature	:	
Name	:	Ibrisam Akbar
Date	:	<u>3/12/2010</u>

ACKNOWLEDGEMENT

In the name of God, Most Gracious, Most Merciful.

The work of research in this thesis was carried out at the University of Adelaide in the Deparment of Civil, Environmental and Mining Engineering under the supervision of Professor Dr. Deric Oehlers, Dr. Ali Mohamed Sadakkathulla and Associate Professor Dr. Abdul Hamid Sheikh.

I am forever thankful to Professor Dr. Deric Oehlers, Dr. Ali Mohamed Sadakkathulla and Associate Professor Dr. Abdul Hamid Sheikh for their excellent guidance, careful supervision and patience throughout this research. They provided me their dedication and contribution which helped me for the completion of this research and publication of the papers. Their commitment in organising the weekly meeting and dedicated supervisions has been cherished with valuable discussions and ideas.

My thank you also goes to the laboratory technicians; especially to Steven Huskinson, David Hale and Ian Cates for their professional advices and dedications throughout the experimental program.

My love to the family; parents Akbar Pura and Isah Parman; wife, Suzilawati Amir Hamzah and children, Iman Ibrisam, Ismail Ibrisam, Sumaiyyah Ibrisam and Isa Ibrisam for their love, encouragement and support throughout the completion of this research. May we all be gathered together in *Jannatul Firdaus*.

Finally, my gratitude to my sponsor and employer, Universiti Teknologi Petronas which provided me their care while completing this work of knowledge.

LIST OF PUBLICATIONS

The following papers were written based on the work presented in this thesis.

- Ibrisam Akbar, Deric John Oehlers, M.S. Mohamed Ali (2010). "Derivation of the bond-slip characteristics for FRP plated steel members." Journal of Constructional Steel Research, 66(8-9), 1047-1056.
- Ibrisam Akbar, Deric John Oehlers, M.S. Mohamed Ali (2010). "Partial and Full Interaction Behaviour of FRP Plated Steel Member." International Conference on Sustainable Building and Infrastucture. Kuala Lumpur.
- Ibrisam Akbar, Deric John Oehlers, M.S. Mohamed Ali (2010). "Plate end debonding of FRP plated steel member using partial interaction theory." Journal of the Institution of Engineers Malaysia. Kuala Lumpur. *submitted*