

Table of contents

Thesis Declaration	vi
Acknowledgements	vii
Thesis Abstract	viii
Common Abbreviations	Х

Literature Review

Introduction	2
Oxidative balance	6
Free radical production and oxidation	6
Reactive oxygen species	7
Reactive nitrogen species	11
Maintaining the balance: Antioxidants	13
Redox state	13
Endogenous antioxidants	14
Exogenous antioxidants	15
Oxidation as a cellular signal	16
Role of ROS in cellular signaling	17
Role of RNS in cellular signaling	18
Pathological roles and sources of free radicals	20
Inflammation and neutrophil activation	21
Muscle dysfunction following sepsis	21
Ischemia reperfusion injury	23
Muscle dysfunction during ischemia reperfusion injury	24

Fundamental mechanisms of regulating striated muscle contraction and relaxation	
Cross-bridge cycling	25
The role of ion channels and Ca ²⁺	28
Contractile Apparatus	33
Variations in muscle types	33
The myofilament	34
Myosin	36
Actin	44
Tropomyosin	46
The troponin complex	49
Troponin I	50
Troponin T	51
Troponin C	52

General Methods

Single muscle myography	58
Premise	58
Muscle dissection and mounting	58
Apparatus	62
Ca ²⁺ activation and contractile function	64
Experimental treatments	65
Sr^{2+} mediated indentification of fast- vs slow-twitch fibers	65
Nitric oxide donor treatment	65
Hydrogen peroxide treatment	66
Troponin C extraction and replacement	66
Data analysis	67

Proteomic techniques and analysis	68
Separation of proteins using SDS-PAGE	68
Premise	68
Polyacrylamide gel composition and preparation	68
SDS-PAGE loading and running	72
Isoelectric focusing	73
Premise	73
IEF sample preparation	75
Isoelectric focusing protocol	76
Western blot analysis	77
Premise	77
Transfer of proteins to nitrocellulose	77
Incubation with primary and secondary antibody	78
Chemilumensence detection of specific proteins	79
Data analysis	79
Recombinant mutant TnC expression	81
Premise	81
Mutagenesis	83
Transformation and expression	84
Purification	84
Acknowledgements	87

Sequential effects of GSNO and H_2O_2 on the Ca²⁺-sensitivity of the contratile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat

Statement of contribution	89
Abstract	90
Introduction	91
Methods	95
Muscle preparation	95

Skinned fiber solutions	95
Ca ²⁺ activation of contractile apparatus	97
Spectrophotometric analysis of SH content in skinned muscle bundles	99
Analysis	100
Results	101
Separate effects of NO and H ₂ O ₂ on Ca ²⁺ -sensitiivity	101
Evidence of glutathionylation of the contractile apparatus by GSH and GSSG	106
Sequential treatment with NO and H_2O_2 on Ca^{2+} -sensitivity	108
Discussion	120
Individual and sequential effects of GSNO and $\rm H_2O_2$ on $\rm Ca^{2+}\text{-}sensitivity$ of fast-twitch muscle	120
Effects of GSNO and H_2O_2 on slow-twitch skeletal and relevance to fatigue	123
Conclusions	124

Myofibril basis for oxidative dysfunction in skeletal muscle

Abstract	127
Introduction	129
Methods	133
Muscle preparation	133
Functional analysis	134
<i>Ca</i> ²⁺ activation of contractile apparatus	134
TnC extraction and reconstitution with recombinant TnC	135
Data Analysis	136
Proteomic Analysis	137
Isoelectric focusing	137
Second-Dimensional SDS-PAGE	138
Western blot analysis of TnC and LC_{20}	139
Recombinant protein expression	139
Results	141
Ca ²⁺ -Sensitivity of fast-twitch skeletal muscle	141

GSNO mediated modification of muscle fiber proteins	143
Substitution of native TnC with recombinant TnC	145
The role of C84 TnC in muscle fiber Ca ²⁺ sensitivity	149
Discussion	152
Future directions and implications	156

General Discussion

Discussion	159
Limitations and future directions	163
Physiological sources of NO	165
Significance	166
References	168

THESIS DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Timothy Spencer and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed,

Timothy Spencer

Spencer, T. and G. Posterino (2009). "Sequential effects of GSNO and H_2O_2 on the Ca^{2+} ." <u>American Journal of Physiology- Cell Physiology</u> **296**: C1015-C1023.

Spencer TN, Cooke J, Brown L and Wilson DP (2010). "Evidence for C84 Troponin C as the target for GSNO-mediated myofilament Ca²⁺ desensitization" <u>ISHR</u> <u>Australian National Conference</u>

ACKNOWLEDGEMENTS

I wish to thank my primary supervisor, Dr David Wilson. His mentorship and guidance during this time has been immeasurable and I will benefit from for the rest of my life.

I wish to thank Dr Giuseppe Posterino (La Trobe University, Victoria) for his supervision of Chapter 3 "Sequential effects of GSNO and H_2O_2 on the Ca²⁺-sensitivity of the contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat".

I wish to thank Dr Louise Brown and James Cooke at the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia. Recombinant proteins used in the current study were a gift from Louise Brown''s laboratory.

Finally I would like to thank my laboratory colleagues; Dr. Scott Copley, Kanchani Rajopadhyaya, Jessica Dunn, Ksenya Wojewidka, Yann Chan, Amenah Jaghoori and Joanne Eng, for creating such a friendly and productive laboratory environment.

THESIS ABSTRACT

It is becoming increasingly evident that redox state leading to post-translational modifications of structural proteins, enzymes and ion channels can cause activation or inhibition of cellular function (Andrade et al., 1998a, Jackson, 2008, Kelly et al., 1996). While low levels of nitric oxide (NO) synthesised by endothelial and neuronal nitric oxide synthase have been shown to provide a beneficial effect to tissues, the elevated release of NO accompanying inflammation has a detrimental effect, resulting in dysfunction (Khanna et al., 2005). We investigated the functional consequence and molecular substrate of NO and another potentially harmful reactive oxygen species, H_2O_2 , on the skeletal muscle myofilament.

In a rat model we used functional myography of demembranated single fast- and slow-twitch skeletal muscle fibers to examined the consequence of the addition of the free radical NO and reactive oxygen species H_2O_2 on the Ca^{2+} sensitivity of the myofilament. The reversibility of oxidative modifications following NO or H_2O_2 treatment was examined using the general anti-oxidant dithiothreitol. Isoelectric focusing combined with SDS-PAGE separation of proteins investigated the post-translational modification of free-radical exposed myofilament proteins. Molecular substitution of endogenous troponin C (TnC) with WT cardiac/slow TnC or C84S TnC, incapable of being oxidized at Cys84, investigated the molecular and functional consequence of oxidation of TnC at Cys84.

Exposure of fast-twitch muscle fibers to NO resulted in a decrease in Ca^{2+} sensitivity, while H₂O₂ had the opposite effect, increasing Ca²⁺ sensitivity. In contrast, slowtwitch fibers were insensitive to both NO and H₂O₂. Following myofilament exposure to NO (~2 μ M) proteomic analysis revealed that many proteins underwent posttranslational modification, including myosin light chain (LC₂₀) and TnC. Molecular substitution of endogenous fast-twitch TnC with WT-cardiac/slow TnC demonstrated a similar sensitivity to NO as WT skeletal muscle. In contrast TnC, non-oxidizable at Cys84, rendered fast-twitch skeletal muscle insensitive to NO.

Many myofilament proteins, including myosin light chains were identified as being post-translationally modified by NO exposure, however, molecular substitution experiments clearly identify TnC, specifically residue Cys84 as the functional substrate responsible for fast-twitch skeletal muscle sensitivity to NO. Although slow-twitch muscle contains the same isoform of TnC, it was insensitive to NO. This suggests that slow-twitch muscle may have a greater capacity for anti-oxidant defense than fast-twitch muscle. The contrasting increase in Ca^{2+} sensitivity following H_2O_2 to the decline caused by NO demonstrates that not all oxidative molecules act alike, possibly targeting differing substrates and causing differing post-translational modifications.

COMMON ABBREVIATIONS

BH4	tetrahydrabiopterin
[Ca ²⁺] _{cyt}	cytoplasmic calcium concentration
CICR	calcium-induced-calcium-release
DHPR	dihydropyridine receptor
DTT	dithiothreitol
GSNO	S-nitroso-glutathione
H_2O_2	hydrogen peroxide
IEF	isoelectric focusing
IRI	ischemia-reperfusion injury
MHC	myosin heavy chain
MI	myocardial infarct
NOS	nitric oxide synthase
O_2 .	super oxide
OH-	hydroxyl radical
ONOO	peroxynitrite
pCa	$-\log [Ca^{2+}]$
RNS	reactive nitrogen species
ROS	reactive oxygen species
RyR	ryanodine receptors
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SNAP	sodium nitroprusside
SOD	super oxide dismutase
SR	sarcoplasmic reticulum
TnC	troponin C
TnI	troponin I
TnT	troponin T