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ABSTRACT

Glaucoma refers to a family of optic neuropathies with multi-factorial aetiology. The
pathogenesis of glaucoma remains unclear, but there is good evidence that the optic nerve
head is involved early in the pathogenesis of the disease. Inadequate blood supply to the optic
nerve head may play a role, at least in some types of glaucoma. Given that vasculopathy is a
hallmark of diabetes, one would expect that diabetes might exacerbate glaucoma; however, in
large epidemiological studies no clear association was found. The Ocular Hypertension
Treatment Study even suggested that diabetes protected against the conversion of ocular
hypertension to glaucoma. In this thesis, | attempted to investigate the effect of short-term
hyperglycaemia on retinal ganglion cell death and optic nerve damage in an experimental rat
model of chronic ocular hypertension, which consisted of laser photocoagulation of the
trabecular meshwork.

The thesis is made up of four papers. The first paper characterises the rat model for our
laboratory and validates the laser parameters used, which, in comparison to the original
publication describing the model, have been slightly modified to minimise the ocular
complications. A combination of histology, immunohistochemistry, Western blotting and real-
time polymerase chain reaction was used to portray the spatial and temporal nature of retinal
ganglion cell pathology. The data provides robust support for the hypothesis that the optic nerve
head is the pivotal site of retinal ganglion cell injury, with resulting anterograde degeneration of
axons and retrograde injury and death of perikarya. It was found that disruption of axonal
transport occurs very soon after ocular hypertension, prior to structural damage, substantiating
the hypothesis that axonal dysfunction may be an important cause of retinal ganglion cell
degeneration. Moreover, as a novel finding, restricted axonal regeneration were observed at the
optic nerve head.

The second and third papers address the issue of damage quantification in the optic nerve.
Axon counting on semi-thin optic nerve cross-sections represents the gold standard to evaluate
the extent of axonal injury. However, this method is very laborious and time consuming. In
search for alternatives, | investigated the accuracy of different sampling methods to estimate
optic nerve axon numbers on cross sections and the usefulness of immunohistochemical
markers on longitudinal optic nerve sections. Random sampling of pictures for automated axon
counting was sufficiently accurate and the microglial response proved very valuable and
effective for quantification of optic nerve damage.

The thesis culminates in the fourth paper, which presents a limited reproduction of the Ocular
Hypertension Treatment Study in a laboratory environment. Unilateral ocular hypertension was
induced in two groups (n=26 per group) of Sprague-Dawley rats. One group remained
normoglycaemic; the other was rendered hyperglycaemic by intraperitoneal injection of
streptozotocin. After two weeks of elevated intraocular pressure, axonal and retinal damage
were compared using the quantification methods introduced in the previous papers. There was
convincing evidence for delayed axonal degeneration and retinal ganglion cell death in the
hyperglycaemic rats. Axonal loss was reduced by about 50%. Survival of retinal ganglion cell
somata was increased to a similar extent in hyperglycaemic rats. Hence, energy substrate
availability may play a role in glaucomatous optic neuropathy. Targeted manipulation of
neuronal energy metabolism may delay optic nerve degeneration and may represent a novel
neuroprotective strategy for neurodegenerative diseases of the visual system such as
glaucoma.
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1. Contextual statement and review of literature

1.1. Glaucoma and its significance

Glaucoma is a progressive neuropathy of the retinal ganglion cells (RGC) and their axons,
resulting in a distinct appearance of the optic disc, characterised by cupping, and a specific
pattern of visual field loss.! Visual loss in glaucoma is usually slow and may take decades to
develop, but is irreversible. The pathophysiology and the site of the primary insult are not yet
known in full detail. Nevertheless, there is consensus that glaucoma is a neurodegenerative
disease? and RGC death occurs by apoptosis.? It is likely that the character of the primary insult
varies because there are morphologically different types of glaucomas.# Nevertheless, currently,
the only modifiable contributing factor is the intraocular pressure (IOP), and reduction of eye
pressures remains the mainstay of treatment. The risk of progression of glaucomatous optic
nerve damage increases with increasing IOP.5 8 However, the vulnerability to |OP-related
damage varies between individuals and and a large proportion of patients with ocular
hypertension never suffer loss of neuronal fibres.

1.1.1. Formal classification of glaucoma’

The glaucomas are classified as primary and secondary forms. Leaving aside the congenital
forms of glaucoma, which present with angle dysgenesis, the primary glaucomas are further
categorized as open-angle or angle-closure glaucomas, depending on the gonioscopic
appearance of the angle. By far the most common type is primary open-angle glaucoma (POAG).
By definition, the appearance of the angle is normal and any secondary form of glaucoma has
been ruled out. The resistance to aqueous humour drainage is found at the level of the trabecular
meshwork or beyond.8 Based on their IOP level, POAG can be further subdivided into high-
pressure or low-pressure. The second most common type is primary angle-closure glaucoma,
which can present as acute, intermittent or chronic. Here, the peripheral iris obstructs the
trabecular meshwork through apposition of the iris or peripheral anterior synechiae. The
secondary glaucomas can present in a wide variety of forms, are associated with specific
ophthalmological, extraocular or systemic conditions and can, based on the appearance of the
angle, again be sub-classified as open- or closed-angle.

1.1.2. Optic nerve head morphology

Characteristic optic disc changes in glaucoma are as follows: thinning of neuroretinal rim,
progressive cupping, asymmetric cupping, optic disc haemorrhage, retinal nerve fibre layer loss,
acquired pit of the optic disc or notching.’

As the disease progresses, the thickness of the neuroretinal rim diminishes and the diameter of
the cup increases. In many patients, thinning of the rim is most pronounced and progresses faster
in the superior and inferior parts of the optic nerve, producing vertical enlargement of the cup.?
Whereas pallor of the optic nerve head is seen in most optic neuropathies, this thinning of the
neuroretinal rim, cupping, is very characteristic of glaucoma and rarely occurs in other optic nerve
pathologies.



1.1.3. Field defects

Generally, glaucoma is a bilateral, but often asymmetrical, condition.! Only late in the disease the
visual acuity is affected by glaucomatous damage and nerve fibre loss first becomes manifest in
the peripheral field of vision. The regional glaucoma injury produces a specific pattern of visual
field loss. Characteristic visual field changes are as follows!?: nasal step, arcuate scotoma,
paracentral scotoma, generalised depression. Paracentral scotomas are more frequent in low-
tension glaucoma whereas nasal step and arcuate field defects are primarily encountered with
high-pressure glaucoma.

Standard automated perimetry is most commonly used for diagnosing glaucoma and for
monitoring progression;!! however, this method is insensitive at the initial stages of glaucoma.??
Selective perimetry, which tests specific RGC populations, identifies neuronal damage earlier.'?
A blue stimulus is presented on a yellow background in short-wavelength automated perimetry to
test RGCs that target the koniocellular layer.'* Frequency doubling perimetry is equally effective
in detecting early glaucoma and tests ganglion cells that target the magnocellular layer.!5

1.1.4. Significance of glaucoma

Glaucoma affects more than 66 million people worldwide and is the cause for bilateral blindness
in at least 6.8 million individuals,'8 which makes it the second leading cause of vision loss in the
world. Close to 80 million people worldwide will be affected by 2020."” The prevalence of
glaucoma correlates with age and is approximately 0.2% in whites between 40 and 60 years of
age,'8 and over 10% in Black people at 80 years of age.®> The diagnosis of glaucoma resides on
evidence of nerve fibre layer loss, which is not always easy to document and evident only
relatively late in the disease, after a significant amount of neural tissue has been irreversibly
damaged.'® Hence, the number of individuals suspected of having glaucoma is far higher than
the number of diagnosed cases.

1.1.5. Risk factors for POAG

The strongest recognised risk factors for the progression of POAG are 0P8 20.21 and age. 8. 22-24
To date, IOP is the only modifiable risk factor.20. 2527 Ethnicity is another, non-modifiable risk
factor.28 29 High myopia, thin corneas and a family history of glaucoma are significantly
associated with glaucomatous optic neuropathy as well.30-32 Another set of risk factors seems to
be linked to perfusion abnormalities: systemic hypertension, cardiovascular disease, peripheral
vasospasm and migraine headache.! However, the association of these vascular factors with
development or progression of glaucoma is weaker.

Genetically, POAG is mostly of multifactorial aetiology. However, it has been estimated that in 3-
4% of POAG patients the disease is associated with mutations at the GLC1A locus (myocilin
gene), for which more than 43 mutations have been described.33



1.2. Current treatment of glaucoma

1.2.1. General Principles

The goal of glaucoma care is to preserve visual function and quality of life without causing
unwanted side effects and morbidity.” At present, this means lowering I0OP, which is the only
modifiable risk factor. |OP reduction significantly improves the prognosis, but does not avoid
damage in all patients.3* Treatment modalities include topical and systemic drug therapy, laser,
and incisional surgery, in order of priority. In most cases of POAG the treatment goals can be
achieved with the available topical glaucoma drugs.

Management and interventions are guided by the target IOP. The target pressure is chosen
arbitrarily for each patient and should be modified according to the observed progression.
Following the general consensus, the initial aim is to reduce the IOP at which damage occurred
by 20-50%; but target IOP and treatment should be individualised based on age, stage of
glaucoma, estimated progression and life expectancy of the patient.” As mentioned, the target
IOP is not a fixed IOP reading but should be continuously modified, based on hints for
progression at the optic nerve head or in the visual fields.

The challenge for the clinician is to achieve the target IOP with the least number of substances
and minimal side-effects.” Clinically, progression is monitored based on optic disc photographs,
nerve fibre layer measurements and visual fields. Initial therapy is usually a monotherapy with a
first-choice agent, commonly a prostaglandin analogue. If IOP reduction is = 20% from baseline,
the treatment is considered effective. If the drug is not effective, the substance should be
switched within or outside the agent class. If the drug is effective but IOP reduction is not
sufficient to reach the target, another substance is added. Combinations of three drugs are
judged maximum medical therapy. Using a fourth topical agent has been shown not to lower IOP
further and is not warranted. Aside from the option of laser treatment, incisional surgery is in
general the only remaining treatment choice.3®

1.2.2. First-choice glaucoma drug classes

The equilibrium between secretion and drainage of aqueous humour determines IOP. Aqueous is
produced by the non-pigmented epithelium of the ciliary body. Interestingly, there is no such thing
as hypersecretion glaucoma and aqueous humour secretion is fairly constant.3¢ Without medical
topical or systemic influence, equilibrium pressure is determined by the global outflow resistance.
Aqueous outflow is composed of trabecular and uveoscleral outflow. Physiologically, 85-90% of
drainage is via the trabecular pathway and 10-15% via the uveoscleral pathway.3” The different
substance classes of drugs act to variable extents via one or several of these mechanisms.

Prostaglandin analogues, prostamides and decosanoids reduce IOP by increasing the
uveoscleral outflow. These agents supposedly activate matrix metalloproteinases which remodel
the extracellular matrix of the ciliary body and reduce outflow resistance.3 This class of drugs is
generally used as the first line treatment. Application is only once a day and the systemic side-
effects are minimal with great IOP lowering effect.3

Alpha2-adrenergic agonists diminish secretion of aqueous humour and enhance uveoscleral
outflow.40 Interestingly, brimonidine tartrate has been shown to have neuroprotective properties in
animal models#! and human clinical trials.#2 The main drawback of this drug class is an
association with allergic conjunctivitis.*3



Carbonic anhydrase inhibitors lower aqueous secretion and are the only drug class for which
systemic agents are available.*4 The use of these substances in eyes with a compromised
corneal endothelium can result in further deterioration of the corneal endothelium function.45

Beta-adrenoceptor antagonists were among the first topical agents available and are therefore
still widely used. They also reduce aqueous humour secretion.*¢ Their systemic absorption can
cause significant cardiovascular and respiratory side effects. However, this risk is lower for the
newer, more selective substances such as betaxolol. One fifth of first time beta-blockers users
are non-responders.® Also, after long-term use of beta-blockers, reduced efficacy
(tachyphylaxis)*” can occur. Topical beta-adrenoceptor antagonists are, understandably, less
effective in patients taking systemic beta-blockers.48

1.2.3. Second-choice drug classes

These drugs are not used as first-line agents, but may be of benefit under special circumstances.
This group includes parasympatheticomimetics, non-selective adrenoceptor agonists and
systemic carbonic anhydrase inhibitors.®

1.2.4. Laser procedures and surgical interventions

The most widely used laser treatment for glaucoma is laser trabeculoplasty.*® Trabeculoplasty
increases the aqueous humour outflow by remodelling of the trabecular meshwork resulting in
decreased outflow resistance.® Different wavelengths have been used with similar
effectiveness.?! Initially argon laser trabeculoplasty was the most commonly used modality. Here,
an argon laser beam with 50 um spot size is aimed at the trabecular meshwork. Use of this argon
laser trabeculoplasty is recommended only once because it results in significant scarring.
Selective laser trabeculoplasty specifically targets pigmented cells of the trabecular meshwork, is
less damaging and histologically does not result in scar formation. Selective laser trabeculoplasty
can therefore be repeated.52 Both argon laser trabeculoplasty and selective laser trabeculoplasty
have good initial response rates and the magnitude of the effect corresponds approximately to
that of a prostaglandin analogue.53 Unfortunately, the effect gradually decreases over time.

If drug treatment in combination with laser treatment fails to adequately control IOP in eyes with
useful visual function, surgical intervention is indicated. A filtering procedure is considered the
treatment of choice in most cases. The next step after failure of this approach is tube
implantation.54

Laser diode cyclophotocoagulation results in destruction of the ciliary body and reduction of
aqueous humour secretion. Because of the risk of phthisis, it represents a last resort of treatment
and is only used when medical and surgical treatment has failed.%



1.3. Injury hypothesis in glaucoma

There are two major hypotheses for the pathogenesis of glaucomatous optic neuropathy: a
mechanical and a vascular theory.2 However, this separation is most likely artificial and, in reality,
mechanical and vascular mechanisms are intimately interconnected.® |OP-related mechanics
determine the biomechanical situation which influences blood flow and cellular responses.
Reciprocally, biomechanics are determined by the anatomy and tissue properties, both of which
are in turn affected by remodelling and compositional changes.5” Despite many decades of
research, there remain many unanswered questions and the exact mechanisms have not yet
been elucidated. It is likely that a multitude of insults at the optic nerve head with the same
downstream effects can result in glaucomatous optic neuropathy, and the clinical picture of
glaucoma represents the morphological end result of a number of distinct, different optic nerve
head injuries. Hence, the mechanics behind the initial insult would differ between individuals, and
so would the contribution of the mechanical and vascular component in each individual case.
There might well exist other, as yet unknown, contributors to the injury.

1.3.1. Mechanical hypothesis

Glaucomatous excavation is a morphological hallmark of glaucomatous optic neuropathy. The
biomechanical paradigm proposes that the phenotype of glaucomatous axon damage is
determined by the configuration of IOP-related stress and strain, independent of the exact axonal
injury mechanism and level of IOP.5" From several forms of glaucomas, which are always
associated with raised IOP, such as angle-closure glaucoma or secondary glaucoma, we know
that increased |OP is sufficient to cause glaucomatous optic neuropathy. I0P-related forces are
significant in the connective tissue of the optic nerve head, even at low I0P% and, according to
the mechanical hypothesis, are thought to underly both optic nerve head aging and the
pathophysiology of glaucomatous damage. The mechanical paradigm postulates that the primary
site of IOP-related axonal damage is within the lamina cribrosa and peripapillary sclera.5® Of note,
the optic nerve head represents a discontinuity in the corneo-scleral shell58 and discontinuities
commonly cause stress concentrations in mechanical systems. IOP-induced stress, deformation
and strain in these tissues eventually lead to a multitude of cellular events, which result in
degeneration of RGC axons.

The stress in the corneo-scleral shell is determined by the |OP, which is slowly fluctuating
diurnally,®® and by the ocular pulse amplitude, a rapidly pulsatile component produced by the
ocular, mainly choroidal, blood flow.%! In particular the pulsating component of the wall stress
carries the potential to cause fatigue with direct failure of connective tissue fibres as well as
changes in connective tissue composition. Currently, data suggest that the optic nerve head of
glaucomatous eyes experiences more mechanical stress than the optic nerve head of non-
glaucomatous eyes.52 Both the ocular pulse amplitude® and the magnitude of diurnal 10P
variation are increased in glaucoma patients.t* Changes in the biomechanical properties of the
sclera will affect the forces at the optic nerve head and likely have an effect on development and
progression of glaucomatous optic neuropathy.

1.3.1.1. Structure of the optic nerve head

Connective tissues, and in particular the sclera, serve as the load-bearing structure of the eye.
The sclera is composed of multiple layered dense sheets of collagen.8® The scleral structure is
specially organised in a well-circumscribed area at the back of the globe, the lamina cribrosa, to
provide support for the axons as they pass through the connective tissues.® Importantly, the



extracellular matrix structures are covered by astrocytes, which provide axons with neurotrophic
factors.67

The principal constituents of the sclera are collagen, elastin, and glycosaminoglycans. Collagens
| and Ill provide tensile strength to the sclera.t® Elastin confers elastic properties as deformation
and recovery,% which seem to be crucial given the variable character of ocular wall stress. Both
human research and laboratory work in primates has found altered elastin in glaucomatous
eyes,’%75 which suggests that alterations of the surrounding connective tissues caused by elastin
degradation are of relevance in the pathogenesis of glaucoma. However, it is not clear whether
these changes are a result of glaucoma or actually a reason for the development of glaucoma. Of
note, exfoliation syndrome is associated with polymorphisms in the lysyl oxidase-like 1 gene and
the protein coded contributes to the properties of elastin.”® In the mouse, the density of the elastin
fibres has been shown to be highest in the peripapillary area where they surround the optic nerve
head like a ring. With increasing distance from the optic nerve head the content of elastin in the
sclera diminishes.® The distribution of elastin is similar in human eyes. Elastin has a very slow
turnover rate and lasts many decades, but shows degenerative changes.

1.3.1.2. Biomechanics at the optic nerve head

Given the assumed significance of the optic nerve head in glaucoma, study of the biomechanics
of this anatomical region, and the lamina cribrosa in particular, seems important and has attracted
a lot of attention in recent years. The biomechanical properties of the peripapillary sclera and the
microarchitecture of the laminar beams strongly determine the mechanical stress the cells in the
lamina cribrosa are exposed t0.52 Since this region of the eye is not easily accessible in vivo for
measurement of forces and deformations, modelling techniques’”. 7 have been used in
combination with data from in vivo studies in primates.57. 79. 80

Some studies have used the displacement of the vitreoretinal interface as a surrogate marker for
lamina cribrosa movement.8'.82 However, IOP-induced movement of the optic nerve head surface
may not be an appropriate parameter to measure actual lamina cribrosa deformation because of
the plasticity of the overlying neural tissues. Therefore, it is of interest to quantify deformations of
the connective tissues directly. However, this was hitherto not possible, because appropriate non-
invasive imaging technologies were not available and the lamina cribrosa inaccessible. Modelling
has therefore become an important tool for studying optic nerve head biomechanics. Analytical
and numerical modelling approaches can be distinguished. For analytical models, the stresses
and strains need to be represented as mathematical expressions, which requires substantial
simplification. Analytical models have been used to describe and investigate ocular rigidity.83. &
However, because of the complexity of the geometry and the variety of tissue-determined
mechanical constants, they are not suitable for the study of the optic nerve head. Numerical
models have proven to be more helpful. The most popular numerical methods for tissue
biomechanics are finite element analyses. They permit the computation of the response of
complex structures to mechanical loading if the material properties and the geometry of the
objects are established. The more complex eye-specific models were mostly determined using
three-dimensional reconstructions of human and monkey eyes. Material properties were derived
from human donor eyes and laboratory animals.’8. 80. 85. 86 The most important determinants of
optic nerve head biomechanics are as follows: compliance of the sclera, size of the eye, IOP,
compliance of the lamina cribrosa, and the thickness of the sclera.8”

Of relevance for lamina cribrosa deformation is the translaminar pressure gradient,88. 8 not IOP
per se. The translaminar pressure gradient is equal to the difference between retrolaminar
pressure and IOP. The cerebrospinal fluid pressure is supposed to be a good surrogate marker
for the retrolaminar pressure.%0



1.3.1.3. Configuration of the lamina and explanation for sectoral damage

Visual field loss in glaucoma usually manifests as a nasal step, which then progresses into an
arcuate scotoma and later a complete hemi field defect. This pattern of visual field loss, together
with corresponding defects of the neural rim, is pathognomonic for glaucoma.®! Glaucomatous is
the term to describe this unique pattern of optic nerve head damage involving characteristic
neural and connective tissue changes. Mechanical failure and backward bowing of the lamina
cribrosa is characteristic at later stages of glaucomatous optic neuropathy.® It is hypothesized
that the explanation of the highly predictable pattern of axonal loss outlined above is explained by
the structure of the lamina cribrosa and the resulting pattern of mechanical failure, independent of
the level of IOP.%3 The stress distribution in load-bearing structures can be predicted. Deformation
and progressive mechanical failure is ultimately dictated by the material properties. Once a
portion of the lamina cribrosa mechanically fails, the forces that this portion was resisting are
transferred to nearby trabeculae, which increases their load despite an unchanged level of IOP.
Hence, even at a steady IOP, neighbouring trabeculae may gradually fail if the local load
redistribution results in supra-threshold stress.>” As mechanical failure progresses, the same
overall I0P-induced mechanical load needs to be born by a permanently diminishing cross-
sectional area. Therefore, cup progression can take place at stable or even lower |OP levels.

The morphological study of human optic nerve head cross sections has disclosed regional
anatomical variations of the lamina cribrosa pores.? The size of the pores is larger in the superior
and inferior parts of the lamina cribrosa. It has been postulated that the larger pores and less
mechanical support by the connective tissue in these regions renders these areas of the lamina
cribrosa more susceptible to deformation and failure secondary to mechanical stress.%. % In fact,
as glaucoma progresses, the normally almost round pores become more elongated and
elongated pores have been related to visual field deterioration.%”. 9 Hence, the mechanical
properties and susceptibility to stress of the lamina cribrosa can explain the specific patterns of
visual field loss and neural rim changes in human glaucoma.®! This finding provides strong
evidence that the optic nerve head, and more specifically the lamina cribrosa, is the site of the
primary axonal insult and that mechanical factors are significant contributors.

1.3.1.4. Glia and extracellular matrix

A key point to consider in the understanding of how ocular biomechanics are transduced into
pathological changes are the biological pathways activated. Ultimately, several principal
mechanisms might cause axon damage:® (1) axonal ischemia (vascular hypothesis), (2) physical
compression of axons caused by the deformation of the lamina cribrosa (mechanical hypothesis),
and (3) spontaneous compression mediated by tissue pressure differences through the
uncompromised lamina cribrosa.'® Regardless of the mechanism of the insult, astrocytes and
glia may mediate the effects.%

Mechanical and other stress can influence cellular behaviour in many ways. Mechanosensitivity is
common in many cell types.'®" In primary human lamina cribrosa cells subjected to cyclic stretch,
a plethora of genes have been shown to be up- or downregulated,'02 including genes coding for
proteins that form or modify the extracellular matrix. The stiffness of the substrate on which the
cells reside has been shown to affect cell migration, proliferation and apoptosis.103. 104 Cells
continually probe the stiffness of the surrounding matrix and react to changes.!% The composition
of the extracellular matrix of the lamina cribrosa has been shown to change in glaucoma,’2. 74. 7.
106 which influences the stiffness and potentially affects the behaviour of resident lamina cribrosa
cells. Active remodelling of the lamina cribrosa and peripapillary sclera has been demonstrated in
experimental primate glaucoma models and illustrates that the connective tissue at the optic
nerve is mechanically important.107-109 Unconnected to these events, |IOP-related strain may



compromise capillary blood flow by compression. Axonal nutrition relies on diffusion of nutrients
through the basement membrane of endothelial calls and pericytes, extracellular matrix and
across the basement membranes of the astrocytes, which then supply the nutrients to the axons
via their processes. Age- or stress-related cellular changes and basement membrane alterations
may affect diffusion even independently of capillary flow.

In summary, mechanical changes at the optic nerve head potentially trigger substantial cascades
of cellular events which affect the local environment: blockage of pro-survival factors, glial
(astrocytes and microglia) reactivity®”. 1! with compositional changes in the extracellular matrix,
and death of oligodendrocytes. 12

1.3.2. Vascular hypothesis

Increased I0OP is clearly sufficient for the development of glaucoma. However, normal pressure
glaucoma represents more than 70% of cases with POAG in certain populations.22 Moreover,
ocular hypertension, that is chronically elevated IOP without evidence of optic nerve damage, is
more frequent than frank glaucoma.?® Therefore, other factors than IOP and mechanical failure
must be involved in the pathogenesis of glaucomatous optic neuropathy. The vascular theory
proposes that glaucomatous optic neuropathy results from insufficient perfusion secondary to
either increased IOP or other pathologic changes which compromise blood supply.2 Normal
pressure glaucoma is a clinical example of a glaucomatous optic neuropathy where perfusion
plays a major role in the pathogenesis. Nevertheless, lowering IOP can still be of benefit and
reduce the risk of progression and optic damage.25 These observations substantiate the concept
of glaucoma as a |OP-sensitive disease, potentially influenced by many other, mostly yet
unknown variables. 3

Multiple lines of evidence suggest that ischemia-reperfusion injury at the optic nerve head due to
compromised vascular circulation is a component of glaucomatous optic neuropathy.!4 To
characterise blood supply, the optic nerve head is best divided into 4 zones: (1) Superficial nerve
fibre layer, (2) Prelaminar portion, (3) Lamina cribrosa, and (4) Retrolaminar portion. The
superficial layer of the optic nerve head receives blood supply from small branches of the central
retinal artery. The prelaminar region, just anterior to the lamina cribrosa, is supplied by branches
from the choroidal arterioles and the short posterior ciliary arteries.!'> The retrolaminar portion
receives blood from pial vessels of the optic nerve. Venous drainage is through the central retinal
vein. Interestingly, the capillaries of the optic nerve head lack blood-brain barrier properties.!'6

Retinal blood flow is characterised by auto-regulated low-flow and high extraction. Autoregulation
occurs through local factors, since there is no autonomic innervation. The choroid, fed by the
posterior ciliary arteries, is a non-autoregulated high-flow system with low oxygen extraction.!!?
The extent of auto-regulation in the optic nerve head remains unclear. It seems to be less efficient
than in the retina but better than in the choroid. 8

Risk factors for arteriosclerosis are not closely associated with open-angle glaucoma, and
arteriosclerosis does not seem to be a major contributor to perfusion disturbances at the optic
nerve head. Rather, there is evidence that vascular dysregulation and insufficient autoregulation
is the main pathology."® Increased levels of circulating endothelin-1 go along with increased
sensitivity to IOP-mediated damage at the optic nerve head due to impaired autoregulation.120-126
Also, it has been shown that progression in patients with vasospastic syndrome is more closely
related to IOP than in non-vasospastic glaucoma patients. 12’



1.4. Animal models of glaucoma

Glaucoma is a difficult disease to research in humans because of the inaccessibility of the optic
nerve and the lack of sensitive clinical techniques to detect early glaucomatous changes. Hence,
animal models have always played an important role in glaucoma research, particularly with
regards to the pathophysiology. In an ideal animal model one would wish to see focal axonal
injury at the optic nerve head and corresponding regional RGC loss in the retina. A multitude of
animal models have been developed and used over the last few decades. Each of the models
has advantages and disadvantages. A single model, in general, cannot faithfully replicate all
aspects of a disease. Hence, a wise choice of the appropriate model for the question to be
answered is crucial, depending on the mechanism of the condition to be investigated.

Primate models have the advantage that these animals are genetically very close to humans,
possess a lamina cribrosa structurally similar to humans, and the disease kinetics are similar.
They have proven to be helpful for the development and testing of IOP-lowering treatments.
However, since much effort has and is being put into finding neuroprotective agents, rodent
models have gained greater importance. Such studies require large numbers of experimental
animals because, to date, determining RGC survival is terminal for the individual animal. Rodent
models are attractive because of their short life span, low cost and relatively low ethical cost.
Mouse models offer the opportunity of genetic engineering, but are less suitable for surgical
manipulations due to the small size of the animal and the eye. Rats are more suitable for surgical
interventions and even though there is no lamina cribrosa per se, they do have cellular structures
that resemble a lamina cribrosa.

A model can be characterised by the success rate of the manipulation to achieve satisfactory IOP
elevation, as well as the kinetics of onset and the sustainability of the IOP elevation. Furthermore,
models differ in their technical difficulty and their training requirements. Another issue that needs
to be considered when choosing a model is the availability of the equipment required.

Interventional models possess certain advantages over spontaneous models. Foremost,
unilateral intervention gives the opportunity to use the fellow eye as a control to correct for inter-
animal variability. Second, the predictable onset of the injury allows the study of sequential
events.

1.4.1. Acute models

Acute and subacute angle-closure is characterized by a fairly sudden, very substantial and
sometimes repeated rise in |OP. If the IOP surpasses the intraluminal pressure of the capillaries,
transient disruption of blood flow ensues. Hence, ischemia of the inner retinal layers is a
substantial part of the injury mechanism and RGC undergo ischemia stress-mediated apoptosis.
This type of injury is reproduced in the laboratory by experimental elevation of the IOP by
cannulating the anterior chamber and connecting the intraocular space to an infusion which can
be raised to a certain level above the eye.'?® Typically, the IOP is elevated above systolic blood
pressure for variable time periods.'?® This model has been used in mice and rats. Swelling of
RGC with disruption of mitochondria and neurotubular degeneration is observed on histological
examination.'30 Although there is some early necrosis, most cells die by apoptosis in delayed cell
death and protein p53'3! and caspase’32 133 |evels are elevated. The injury is also accompanied
by elevated glutamate levels and increased inducible nitric oxide synthase (iNOS) messenger
ribonucleic acid expression.134. 135



1.4.2. Chronic models

Since elevated IOP is the most prominent risk factor for glaucoma, and in some patients probably
the only cause for glaucomatous optic neuropathy, experimental models based on chronic
elevation of IOP have always been regarded as highly suitable to study the disease. Most animal
models employ experimental elevation of IOP. An ideal glaucoma model would exhibit the
following characteristics:'3¢ (1) Prompt, and chronically-maintained, increase in IOP; (2) Lack of
complications; (3) Selective death of RGC; (4) Ease and low cost of implementation.

Primates possess a solid lamina cribrosa that is structurally very similar to humans; unlike
rodents which sensu stricto do not have a lamina cribrosa. Primate models involving argon laser
photocoagulation of the trabecular meshwork are hence very representative of glaucomatous
optic neuropathy in humans and have been used for the development of many pressure-lowering
agents on the market today. However, as mentioned previously, they are expensive, both
financially and ethically. Therefore, various methods to raise the IOP in rat eyes have
subsequently been developed and used to study pathophysiological mechanisms in the retina
and optic nerve. All these techniques aim to elevate IOP by obstructing the aqueous outflow.
Manipulations that have been used comprise cauterization of the episcleral veins, injection of
hypertonic saline into the episcleral veins, laser photocoagulation of the trabecular meshwork,
and injection of particles into the anterior chamber. Mouse models based on chronic experimental
elevation of the IOP have only recently been introduced.

1.4.2.1. Laser photocoagulation of the trabecular meshwork

This technique is generally only used in nonpigmented animals. In pigmented eyes the energy
uptake is too high, producing significant inflammation, which influences the cellular response in
the retina and the optic nerve head. Argon laser photocoagulation models have been successfully
applied in mice and rats since the late 1990s. Laser techniques have been used to damage the
trabecular meshwork and elevate IOP in primates for a quarter of a century.'3"The first published
techniques in rodents utilized injections of India ink into the anterior chamber prior to the laser
application to enhance energy absorption and localize scar formation at the trabecular
meshwork.'38 Despite weekly laser treatment, IOP elevation was only moderate, although it could
be maintained for 12 weeks. The use of pigment has subsequently been abandoned and more
energy has been used for the laser burns. In general, the results from the laser photocoagulation
methods have been consistent and the models are considered to be reproducible, reliable and
efficient. The animals can be lasered by a single technician, no surgical instruments are needed
and the intervention does not need to be performed under sterile conditions. However, access to
a suitable continuous wave laser is necessary.

Essentially two techniques of laser application have been described in the literature. One
approach consists of lasering the limbal vessels. Alternatively, investigators aim the laser burns at
the trabecular meshwork itself in a tangential manner. None of the methods has been shown to
be noticeably superior, and as Morrison has argued, the two techniques quite possibly work via
the same principle, namely damage to the anterior chamber angle.'¥® Laser application directed
at the limbal vasculature certainly does cause ‘collateral damage’ at the level of the trabecular
meshwork due to the proximity of the two anatomical structures.

In the limbal vessels approach the laser beam is aimed perpendicularly at the limbal vessels.
130-150 laser burns (spot size 50-100 um, power 1W, exposure 0.2 sec) were applied to the
limbal episcleral veins within 0.5-0.8 mm from the limbus. The treatment was repeated after 1
week. This resulted in a mean IOP elevation of 10-17 mmHg for at least 2 months. The
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corresponding ganglion cell loss was progressive, 6.1% after 4 days, 19.4% after 10 days, 26.5%
after 15 days and 44.2% after 60 days.40

Levkovitch-Verbin'4! modified the laser application by increasing the intensity and aiming the
laser beam directly at the anterior chamber angle. Different settings were compared. It was found
that 360 degree lasering of the trabecular meshwork with 60-80 spots (spot size 50 um, power
0.6W, exposure 0.5 sec) combined with 4-7 laser burns (spot size 100 um, power 0.6W,
exposure 0.5 sec) to each of the three radial episcleral veins each yielded the best result and was
most suitable to mimic chronic ocular hypertension. IOP elevation was maintained for up to 3
weeks.

Complications of laser photocoagulation were corneal oedema due to corneal decompensation,
corneal ulcers, corneal opacity, and cataracts. Hyphaemas have been described as a common
event during the lasering, in up to 40% of animals, but most of them resolve spontaneously within
48 hours. 141

Similar models with application of laser to the limbal vessels have been successfully used in
several mouse strains. 112, 142144

1.4.2.2. Sclerosing of the trabecular meshwork

In the laboratory rat, the most significant portion of drainage of aqueous humour occurs through
the trabecular meshwork into Schlemm’s canal. Numerous collector channels then drain the fluid
into a venous plexus, which encircles the entire limbus and connects to multiple episcleral radial
veins.'¥5 Morrison et al. developed a model based on injection of a mild sclerosant into this
aqueous humour outflow pathway.6 A glass micro needle with a diameter between 30 and 50
um at the tip is inserted into one radial aqueous vein in the superior quadrant to inject 50 ul
micro-filtered 1.75 M hypertonic saline. This causes sclerosis of the trabecular meshwork and the
anterior chamber angle, which, after 7-10 days, produces persistent elevation of the |OP for a
duration between 1 and 5 weeks. However, in some rats, this was only achieved by repeated
injections. The drawbacks of this model are the considerable variability between individual rats,
the difficult surgical injection technique that requires skills and training, and the need for a lateral
canthotomy. In favour of this model is that IOP elevation tends to be longer than in the laser
model. Optic nerve degeneration and cellular response have been shown to correlate with mean
|IOP, peak IOP elevation and cumulative pressure exposure.'*’. 148 Gene expression patterns
alterations have been documented in the optic nerve head and in the retina.14% 150 To date, this
model has almost exclusively been used in rats. One group recently reported successful
application in mice. 5!

1.4.2.3. Cautery of episcleral vessels

While the previously described model increases outflow resistance at the level of the trabecular
meshwork, cautery models are supposed to block drainage at the level of the episcleral veins.!52
However, the mechanism of pressure rise with this method is controversial and the treatment
protocols in the literature vary considerable between different groups. Similarly variable are the
pressure rises reported. While some groups report normalization of IOP after two weeks, 53
others claim pressure elevation for several months, even without retreatment.. 155 Some
authors feel that the vessels that are cauterised are in fact vortex veins.'6These vessels collect
blood from the choroid, the anterior uvea and the base of the optic nerve in rats,!s". 158 and
closure would result in complex alterations in the ocular perfusion, affecting several
compartments of ocular tissues. The extent of optic nerve damage induced by this model ranges
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from nothing'®3. 16 to @ maximum of 40%.1%9. 160 This is in contrast to the laser models and the
model of episcleral saline injection, where up to twice this much damage can be observed. This
apparent neuroprotective effect can possibly be explained by the fact that choroidal veins are
connected to the veins surrounding the optic nerve, and congestion of the choroidal vasculature
might increase perfusion around the optic nerve head and protect the nerve fibres. The episcleral
vein cautery model has also been used in mice.8' Complications of cauterization of the episcleral
veins were damage to the sclera, intraocular inflammation and ocular surface damage.

1.4.2.4. Microbeads

In search of a less acute experimental glaucoma model with sustained, moderate pressure
elevation over several weeks, number of groups'3. 162164 have recently reported the use of
models based on injection of microparticles into the anterior chamber to occlude the trabecular
meshwork in mice and rats. However, succesful application of this technique seems variable
between different laboratories and the method is not yet considered very reliable for comparing
results between various research groups.

Microbead models have the advantage that they can be used in pigmented animals and access
to laser facilities is not necessary. Similar attempts have been made previously in rats'®> and
primates'® but in rodents the microbead approach has so far been neglected in favour of the
laser models. Injection of microspheres into the anterior chamber of rats produces a moderate
elevation of the IOP in the order of 30-40% above baseline for about 2 weeks. This time can be
extended to approximately 8 weeks when a second injection is given between day 14 and 17.164
Samsel et al. used paramagnetic microbeads and were able to direct the beads towards the
trabecular meshwork to reduce the risk of visual axis occlusion.'83 The microbead approach is
also applicable in mice to achieve sustained IOP elevation of about 30% for 3 weeks and up to 8
weeks with repeated injections.64. 167 |t has been shown that the susceptibility to experimental
glaucoma is both strain and age dependent.'67

1.4.2.5. S-antigen

Ocular hypertension is also observed after injection of S-antigen in rat eyes.'®8 However, this
model provokes an intense inflammatory reaction of the anterior and posterior segment. Hence, it
has been postulated as suitable to study uveitic glaucoma and is not widely used.

1.4.2.6. Genetic rodent models of glaucoma

Although some rat strains with elevated I0Ps have been described, their use in research is not
common. Genetic mouse models, on the other hand, are very popular. Mouse systems offer the
possibility to conduct complex genetic manipulations,'6® and are easy to breed. Such rodent lines
are highly suitable to investigate molecular mechanisms and biochemical pathways. Some
models involve mutations of glutamate receptors on RGC or other genes and are not associated
with increased I0P.170 Others present with anterior chamber abnormalities and are models of
congenital glaucoma.'”! However, the most popular mouse models exhibit glaucomatous optic
nerve atrophy that is associated with elevated I0P.

Several mouse strains (DBA/2J, DBA/2Nnia, AKXD-28/Ty) have been bred which spontaneously
develop raised IOP secondary to pigment dispersion.'”2-174 The DBA/2J mouse is the most
frequently used model and has been well characterized.'”> Pigment dispersion causes iris
atrophy, iris transillumination and anterior synechiae.'”® However, the mice develop elevation of
|OP only after 8-9 months of age. Measurable RGC loss and a decrease of the inner plexiform
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layer thickness is noticed at the age of 10-14 months."”” Despite the absence of extracellular
matrix plates'?8, a typical pattern of sectoral RGC death has been described. A robust network of
astrocytes is present in the region corresponding to the human lamina cribrosa and has been
called glial lamina'”. The sectoral nerve fibre damage supports the hypothesis that the primary
site of injury in this model is the optic nerve head'8. Moreover, axonal degeneration with
compromised retrograde axonal transport precedes RGC soma degeneration in the retina.'8! and
in BAX-deficient DBA/2J mice axon damage occurs without RGC cell death.75

Several mouse models have been generated by specific manipulation of distinct gene loci. One
such example would be transgenic mice with a mutated myocilin gene.'82 18 These animals
express the mutated myocilin protein in the trabecular meshwork and have moderately elevated
|OPs at older age. RGC death and optic nerve degeneration has been demonstrated. Collagen
accumulation after mutation in the collagen type-1gene produces chronic open-angle glaucoma in
another mouse line.'84 There exists also a mouse model for acute angle-closure glaucoma based
on overexpression of a adrenomedullin-receptor in the pupillary sphincter muscle.8

1.4.3. Models for certain aspects of glaucomatous optic neuropathy
1.4.3.1. Retrograde RGC death

Retrograde RGC degeneration is likely to play a substantial part in glaucoma pathogenesis, since
the primary insult is presumably situated at the optic nerve head. Optic nerve crush and axotomy
models represent classical representatives of retrograde axonal degeneration and are applicable
in mice and rats. Total axotomy of the optic nerve certainly leads to degeneration of the entire
optic nerve and apoptosis of almost all RGCs.'8 Crush models produce only a partial lesion. 18
This causes primary damage in a proportion of RGC cell bodies and axons, but, as opposed to
axotomy, also leads to secondary degeneration.’8” Secondary degeneration might be of
relevance in glaucomatous optic neuropathy and would explain progression despite adequate
treatment of IOP. The severity of the primary lesion in the crush model is very reproducible and
intraocular excitatory amino acid levels have been shown to be increased subsequently.'88 This
model has therefore been used widely to investigate the pathophysiology of RGC degeneration
and neuroprotective substances interfering with apoptotic pathways.

1.4.3.2. Anterograde RGC death

In humans and experimental glaucoma models, increased glutamate concentrations have been
measured in the vitreous.'® However, it is still controversial to what extent excitotoxicity is
involved in RGC death in glaucoma.'® Nevertheless, animal models of excitotoxicity have been
widely used in neuroprotection experiments. In these models, excitatory amino acids (e.g.
glutamate, aspartate) or their analogues (N-Methyl-D aspartate (NMDA), kainate, 2-amino-3-(5-
methyl-3-0x0-1,2- oxazol-4-yl)propanoic acid(AMPA)) are injected intravitreally in mouse or rat
eyes. At low dose, only the inner retinal layers are affected. After injection of glutamate,
degeneration of the ganglion cell and the inner nuclear layer occurs.'®" Massive cellular swelling
is followed by necrosis. NMDA injection produces classic apoptotic RGC degeneration involving
the caspase pathway.!92
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1.5. Epidemiological evidence and controversy

Epidemiologic research in glaucoma has a long tradition and several large population based
surveys have analysed the risk factors associated with glaucomatous optic neuropathy. While
diabetes mellitus is considered a risk factor for glaucoma in major textbooks of ophthalmology, it
has to date not been possible to confirm this dogma with evidence-based studies and the issue
remain controversial.1%3

The controversy started five decades ago when Armstrong et al. reported an increased incidence
of glaucoma in diabetic patients.'% Several clinic-based studies subsequently tried to confirm or
reject this claim.195200 Since the issue remained controversial, a series of population-based
studies in different populations were launched from 1980 onwards and published over the
following quarter of a century.

1.5.1. Cross-sectional population surveys

Framingham study — Massachusetts, USA201

The data for the Framingham Eye Study was collected between 1973 and 1975 in a standardized
ophthalmologic examination of the 2433 surviving members aged 52-85 from the Framingham
Heart Study cohort, which had started in 1948. The screening examination included history of
glaucoma, Goldmann applanation tonometry (IOP > 21) and disc examination by indirect
ophthalmoscopy. The definitive examination consisted of disc evaluation, repeated Goldmann
applanation tonometry, gonioscopy and Goldmann’s perimetry. The diagnosis of open-angle
glaucoma was confirmed if a field defect was documented in a suspect. The specific visual field
defects were: blind spot enlargement, arcuate scotoma, paracentral scotoma, nasal step or
advanced glaucomatous field loss. Diabetes mellitus was diagnosed if diabetic retinopathy was
present. Diabetes was associated with higher IOP, but not with glaucoma. The prevalence of
glaucoma in diabetics was 2.2% and did not differ from that in non-diabetics.

Beaver Dam Eye Study — Wisconsin, USA202

In The Beaver Dam Eye Study 4926 subjects aged 43-84 years were screened. Glaucoma was
defined as enlarged cupping, corresponding visual field defect on Henson static perimetry and
elevated IOP greater than 22 mmHg or a history of medical or surgical glaucoma treatment.
Older-onset diabetes mellitus was defined as either a history of diabetes treatment or a
glycosylated haemoglobin level greater than two standard deviations above the age-sex-matched
mean and a blood glucose level over 11.1 mmol/l. A significant association between high-tension
open-angle glaucoma and older-onset diabetes mellitus was found. The prevalence of glaucoma
in diabetics was 4.2% versus 2.0% in non-diabetics (p=0.004).

Baltimore Eye Survey — Maryland, USA203

5308 participants 40 years of age or older underwent a detailed ophthalmologic screening
examination. This included Goldmann applanation tonometry, stereo colour disc photography,
and Hymphrey automated or Goldmann perimetry. 48% of participants were black. The criteria for
glaucoma included an open angle and characteristic optic disc damage associated with a
consistent visual field defect. Hence, normal-tension glaucoma was included. 161 subjects were
diagnosed as having POAG. The definition of diabetes was based on a reported history of
diabetes. Diabetes, which was highly prevalent in the population, was associated with higher IOP,
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but not with POAG. However, subjects whose POAG had been diagnosed before the examination
showed a positive association with diabetes and the investigators concluded that selection bias
could explain the positive results of previous clinic-based investigations. However, the
investigators admitted that their definition of diabetes was very open and potentially biased the
odds ratio toward the null hypothesis. They further pointed out that the increased risk of mortality
associated with diabetes might lead to underestimating the frequency of subjects having both
diabetes and open-angle glaucoma. This is a potential limitation of the prevalence-based
approach compared to the incidence-based approach.

Barbados Eye Study — Barbados204. 205

The Barbados Eye Study included 4709 Barbados-born residents, 40 to 84 years of age.
Between 1987 to 1992, 4314 black participants were examined at the study site following a
standardized protocol including Goldmann applanation tonometry, Humphrey perimetry, fundus
photography and an interview. The prevalence of open-angel glaucoma, defined by the presence
of both characteristic visual field changes and optic disc appearance, was 7%. Although diabetes
was common in the study population, there was no association with open-angle glaucoma. A
subsequent study in the same population analysed risk factors for incident open-angle glaucoma
in 3222 persons at risk, who did not have definite open-angle glaucoma at baseline. After the
standardized study visits at baseline the participants had a follow-up examination after 4 and 9
years. The incidence was estimated at 4.4% with age, family history, higher IOP and low mean
perfusion pressure as significant risk factors. A history of diabetes mellitus, however, was not a
significant risk factor for the development of glaucoma.

Rotterdam Study — Netherlands208. 207

This study investigated the association between newly diagnosed diabetes mellitus and POAG
and IOP. Between 1990 and 1993, 4095 subjects aged over 55 years participating in the
Rotterdam Study were examined according to a standard protocol including medical history
interview, automated suprathreshold Humphrey visual field perimetry, Goldmann applanation
tonometry, and nonfasting glucose tolerance test. This prospective population-based study
investigated factors that determine the occurrence of cardiovascular, neurological,
ophthalmological, endocrinological and psychiatric disease in the elderly. High-tension open-
angle glaucoma was defined by the presence of a glaucomatous visual field defect in combination
with an IOP greater than 21 mmHg. Newly diagnosed diabetes mellitus was defined by a random
serum glucose level or a serum glucose level after a 75 gram glucose load above 11.0 mmol/l.
Subjects on antidiabetes medication were excluded from the analysis. The study found that
participants with newly diagnosed diabetes had higher mean IOP and a threefold increased
presence of high-tension open-angle glaucoma.

A follow-up study investigating the risk factors for incident open-angle glaucoma. 3837
participants without open-angle glaucoma at baseline were re-examined between 1997 and 1999.
87 persons developed glaucoma after a mean follow-up time of 6.5 years. Of note, IOP was no
longer included in the diagnosis of open-angel glaucoma. In this longitudinal study diabetes
mellitus was not a risk factor for open-angle glaucoma.

The Blue Mountains Eye Study — New South Wales, Australia20é

In the Blue Mountains eye study 3654 people 49-96 years of age underwent a detailed eye
examination, which included automated Humphrey perimetry, stereo optic disc photographs, and
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Goldmann applanation tonometry. Glaucoma was diagnosed if a visual field defect matching the
optic disc cupping was present. IOP was not included in the diagnosis. Ocular hypertension was
diagnosed as IOP higher than 21 mmHg without visual field changes. Fasting plasma glucose
levels were measured. Diabetes was diagnosed from history or elevated fasting plasma glucose
level over 7.8 mmol/l. The prevalence of glaucoma was 5.5% in diabetics versus 2.8% in subjects
without diabetes. However, in the participants with known glaucoma and diabetes mellitus, the
diagnosis of glaucoma had been made 15.7 years before the diagnosis of diabetes, on average.
Ocular hypertension was almost twice as common in diabetic participants. The IOP of the
persons with glaucoma did not differ between diabetics and non-diabetics and the authors
concluded that the association between diabetes and open-angle glaucoma was independent of
the effect of diabetes on IOP.

Proyecto VER - Arizona, USA209

4774 persons from the Pima and Santa Cruz counties of southern Arizona older than 40 years
completed an extensive interview and the ocular examination, which consisted of automated
Humphrey perimetry, Goldmann applanation tonometry, slit lamp dilated fundus examination,
stereophotography of the optic disc and nerve fibre layer imaging. Diabetes mellitus was
diagnosed when the HbA1c was at least 7% or when the participant had been told by a physician
that he was suffering from diabetes mellitus. The prevalence of open-angle glaucoma among
diabetic persons was 2.9% compared with 1.7% among nondiabetic persons. This difference was
not significant when adjusted for age. However, diabetic persons did have a significantly higher
|OP than nondiabetic persons.

Nurses’ Health Study — USA210

The Nurses’ Health Study started in 1976 in the US. 121700 female registered nurses aged
between 30 and 55 participated in this study looking at the links between lifestyle habits and
chronic disease. Data collection in regards to type 2 diabetes mellitus and open-angle glaucoma
occurred between 1980 and the year 2000. Participants were required to be 40 years or older at
baseline without any history of glaucoma and returned questionnaires on dietary and lifestyle
patterns every 2 years. Also, they were required to receive eye examinations to contribute person
time until a report of glaucoma, diagnosis of cancer, death, loss to follow-up or the end of the
study in May 2000. 76318 women contributed person time. Reported cases of incident open-
angle glaucoma were confirmed based on the medical records from the community
ophthalmologist, which needed to comprise slit-lamp biomicroscopy and consistent visual field
defects on subsequent examinations. Diabetes mellitus was confirmed using a questionnaire
asking about diagnosis and treatment. 429 cases of incident POAG were indentified in 998292
person-years. The age-adjusted relative risk of POAG of diabetic participants was 1.53 (CI 1.06-
2.22). The association was stronger for duration of diabetes less than 5 years than for longer
duration of diabetes. The authors concluded that type 2 diabetes mellitus was associated with an
increased risk of POAG.

Los Angeles Latino Eye Study — California, USA2!1

From 2000 to 2003, 5894 Latinos 40 years and older, living in the city of La Puente, answered an
interviewer-administered questionnaire and had a comprehensive ocular examination, which
included Humphrey automated visual field testing and stereo fundus photography. Glaucoma was
defined if there was evidence of a glaucomatous visual field defect and/or glaucomatous optic
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disc damage in at least one eye. The IOP was not considered in establishing the diagnosis of
open-angle glaucoma. HbA1c and random blood glucose were measured. Participant were
considered diabetic if they had a history of being treated for diabetes mellitus, glycosylated
haemoglobin was measured at 7.0% or higher, or random blood glucose was 200 mg/100ml or
greater. The type was defined as type 2 if the participant was 30 years or older at the time of first
diagnosis. The prevalence of open-angle glaucoma was found to be higher in diabetic patients
(odds ratio 1.4; Cl 1.03-1.8), and longer duration of type 2 diabetes mellitus was associated with
higher prevalence of open-angle glaucoma.

1.5.2. Longitudinal population surveys

DARTS/MEMO Collaboration - Scotland2'2

An incidence study conducted in Scotland evaluated the 2-year incidence of open-angle
glaucoma or ocular hypertension. The investigators followed 6631 subjects with diabetes and
166144 subjects without diabetes for 2 years using a registration database for diabetes, a
prescription database for anti-glaucoma medication, and a glaucoma surgical statutory record
database in the Tayside region of Scotland. The diagnosis of glaucoma or ocular hypertension
was confirmed in all diabetic patients and in a random sample of 10% of the nondiabetic cohort.
Open-angle glaucoma was defined by disc cupping with corresponding visual field defect
regardless of IOP. Ocular hypertension was defined as IOP greater 21 mmHg without field defect
or asymmetric cupping. The 2-year incidence of open-angle glaucoma glaucoma was 1.1%o in
diabetics vs. 0.7%o in nondiabetics. For ocular hypertension, the numbers were 1.8%o and 1.3%o
respectively. These associations were not statistically significant. Furthermore, the investigators
attributed 22% of newly diagnosed glaucoma in the diabetic cohort to detection bias due to
increased healthcare contact.

The Visual Impairment Project — Melbourne, Australia?!3

In a cohort of 2415 subjects, which was followed between 1997 and 1999, several risk factors for
the incidence of open-angle glaucoma were studied. The study subjects underwent an ophthalmic
examination and a comprehensive standardized interview at baseline and at 5-year follow-up.
Sociodemographic, anthropometric, dietary, familial, medical and ocular characteristics were
analysed. The ophthalmic exam consisted of Humphrey automated perimetry, handheld
tonometry (which was confirmed by Goldmann applanation tonometry if measured greater than
21 mmHg), biomicroscopic slit lamp examination and stereo disc photographs. Although the
investigators did not describe their definition of diabetes and the incidence rate observed, the
report mentioned that diabetes was not associated with open-angle glaucoma.

In summary, the findings of the population-based studies regarding an association between
diabetes mellitus and open-angle glaucoma are controversial and not conclusive. In part, this
might be due to different inclusion criteria and different criteria for the diagnosis of diabetes and
open-angle glaucoma in the multiple studies. Furthermore, the populations studied were all
different and had heterogeneous genetic backgrounds and environmental influences. It is
possible that there are fundamental differences in regards to the association of diabetes and
open-angle glaucoma in different populations. Longitudinal studies might be of particular interest,
although time-consuming and costly; none of these so far did show an association.
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1.6. Hyperglycaemia in brain and retinal ischemia

Diabetes mellitus is clearly a risk factor for the occurrence of stroke and is associated with a poor
prognosis.2'4 215 Of note, even hyperglycaemia without pre-existing diabetes mellitus significantly
increases mortality and morbidity in stroke patients.2'6 While longstanding diabetes clearly affects
both micro- and macrocirculation,2!” it is not entirely clear how acute hyperglycaemia, which is
commonly seen in acute stroke,2'8 leads to worse stroke outcomes, and whether hyperglycaemia
is genuinely linked to brain infarction or just an epiphenomenon of other pathophysiological
changes associated with ischemic stroke, such as stress-related catecholamine and
corticosteroid production.2'9. 220 However, insulin therapy resulting in lower blood glucose levels
has been shown to reduce ischemic brain damage in animal models??! and seems to improve
outcomes in stroke patients.222 223 The neuroprotective effect could be mediated by the lower
glucose levels and reversal of the damaging effects of glucose, or result from the beneficial action
of insulin itself.224

In animal experiments, several mechanisms have been proposed for hyperglycaemia-mediated
exacerbation of brain damage after ischemic stroke: Decreased blood flow to the ischemic
penumbra,2?5 increase in NMDA receptor-mediated calcium influx into neurons secondary to
glutamate accumulation,??8 increase in local oedema,??’ exacerbation of oxidative stress and
inflammation,228 and, finally, changes in metabolism229 characterized by lactic acid accumulation,
acidosis, hypometabolism and mitochondrial dysfunction.230

The retina is derived from an outpouching of the diencephalon and, as such, is considered to be a
specialized part of the central nervous system. Several of the above mentioned mechanisms can
be found in the retina.

The retinal circulation is autoregulated and characterised by a low level of flow and high oxygen
extraction. Since there is no autonomic innervation, local endothelium-dependent vasoactive
modulation, mediated by nitric oxide (NO),2%! plays a major role.232 In ocular tissues, NO has also
a multitude of other functions and is involved in the pathogenesis of glaucoma, retinal ischemia
and diabetic retinopathy.2%3 In diabetics, carbon dioxide-induced cerebral vasodilatation, mediated
through NO, is decreased.23 Furthermore, glucose-induced reactive oxidative species (ROS) can
neutralize NO23% and impair microcirculation. Owing to autoregulation, the oxygenation of the
inner retina seems to be little affected by increased IOP. However, choroidal perfusion and outer
retina oxygen partial pressure (pO2) decreases.?3 Similarly, the oxygenation of the prelaminar
optic nerve head does not seem to be impaired by increased |OP.237

The role of excitotoxicity, NMDA receptor-mediated neuronal apoptosis through excitatory amino
acids, is controversial in glaucoma,® but has been claimed to be relevant in RGC death23 and
axonal degeneration in glaucomatous optic neuropathy?®® by some authors. In the retina,
diabetes has been associated with glutamate transporter dysfunction in Muller cells.240 After
experimental forebrain ischemia, the extracellular glutamate concentrations were pronouncedly
more elevated in hyperglycaemic rats and correlated with the amount of cell damage.?26 Thus,
hyperglycaemia seems to increase glutamate availability and calcium-mediated cell death.

ROS are involved in the pathogenesis of a wide variety of ocular diseases ranging from
retinopathy of prematurity?4! to age-related-macular degeneration.42 In particular, ROS have
been attributed a significant role in the pathogenesis of both diabetic retinopathy2*® and
glaucoma.2# ROS trigger the release of proinflammatory cytokines, impair blood flow, worsen
breakdown of the blood-brain barrier and oedema, and are procoagulant by inhibition of
fibrinolysis.2!7 After an ischemic stroke, hyperglycaemia increases ROS production and is thought
to exacerbate the ROS-mediated injury.216
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In the aspects mentioned so far, brain and the neurosensory tissues of the eye exhibit similar
cellular processes and share common regulatory mechanisms. However, with regard to
metabolism, there are fundamental differences. The retinal metabolism of mammals is
characterised by its high glycolytic capacity and high glycolytic activity even during aerobic
conditions.245  Glycolysis increases further during anoxia?*6 and can compensate almost
completely for lack of oxygen under normoglycaemic conditions.?4’. 248 The normal glucose
concentration in retinas from control animals is about 5 mM. The vitreous glucose level is about
half the serum concentration.249. 250 Glycolytic production of adenosine triphosphate (ATP) is
sufficient to maintain retinal function in the presence of 20 mM glucose.?5' However, this capacity
is diminished during hypoglycaemia2?52 and acute hypoglycaemia causes retinal apoptosis.2%3

Glycolysis as a pathway for generation of ATP is thought to be particularly relevant for the outer
retina. The metabolic rate in the retina is highest in the photoreceptor cells. Oxygenation of the
outer retina occurs by diffusion from the choroid and is first diminished in hypoxic conditions.
Even under normoxic conditions, 80% of glucose supplied to the avascular outer retina by the
choroid is converted to lactate.2%4 25 In the inner retina only 20% of glucose is metabolised
through glycolysis.2%

It is controversial whether the Crabtree effect, that is inhibition of respiration by glycolysis in the
presence of elevated glucose levels, occurs in the retina. In the cat retina, acute hyperglycaemia
in the order of 6 hours did not affect oxygen consumption of the outer retina and the average
inner retinal pO, did not change.?” Oxygen profiles were similar to normoglycaemic control
animals, despite lowered choroidal pO.; hence a larger fraction of oxygen was delivered to the
photoreceptors by the retinal circulation and retinal blood flow was increased.?5¢ However, long-
term hyperglycaemia may change retinal metabolism.25¢

The high glycolytic capacity, together with the regulation of blood flow in the retinal circulation,
explains the resistance of the retina to hypoxia. The inner retina is particularly resistant to
hypoxia.20 However, in diabetic retinopathy, where tissue hypoxia plays a significant role and
particularly affects the inner retina,26! this resistance is impaired. At least in part because of
altered oxygen flux from retinal arteries.262 Even in the absence of capillary closure, a decrease in
retinal blood flow has been noted in type 1 diabetes.?83. 264 Hyperglycaemia also decreases
choroidal blood flow and pO: in diabetic cats.285 However, in streptozotocin(STZ)-diabetic rats
hypoxic changes seem to be relevant only in the long term, because the preretinal pO; is still
normal after 6 weeks of diabetes.262

Neural tissue is completely reliant on glucose for normal metabolic activity. Glucose transport is
facilitated by membrane proteins from the glucose transport protein (GLUT) family. Glucose
supply to the retina occurs by saturable, facilitated diffusion through GLUT1, which is found on
the endothelium of the retinal blood vessels and the retinal pigment epitelium.266. 267 GLUT1 is
saturated at normal blood glucose levels, but upregulation on retinal vascular endothelium has
been observed in STZ-treated rats268 and diabetic humans26® which is thought to be relevant in
diabetic retnopathy.2’0 Within the retina, GLUT1 is found on photoreceptors, Muller cells and
retinal ganglion cells.27!. 272 GLUT2 and GLUT3 are also found in retinal tissue. GLUT2 is found
on the apical ends of Miiller cells that form the external limiting membrane and potentially has a
role in intra-retinal glucose regulation.2’3 GLUT3 is found exclusively in the inner synaptic layer
and thought to be the major neuronal glucose transporter.2’4. 275 The factors regulating glucose
transport in the retina are not well understood.2’0 In cell cultures, endothelial GLUT1 is influenced
by hypoxia, growth factors and glucose.?8. 277 In retinal pigment epithelium cultures GLUT1
transcription is upregulated by serum, insulin-like growth factor-1, basic fibroblast growth factor,
platelet-derived growth factor and epidermal growth factor.278

19



1.7. Neuroprotection

Neuroprotection is a general term given to interventions aimed at halting disease progression.
Despite the fact that several neuroprotective agents have been very successful in animal studies,
the outcomes of clinical studies have been frustrating so far.2® Memantine is an uncompetitive
NMDA receptor antagonist. This compound has been shown to protect RGCs in several animal
models of glaucoma.280 However, two randomized phase Il clinical trials of memantine in
glaucoma failed to show a significant effect.28! Glatiramer acetate is a synthetic oligopeptide of
four naturally occurring amino acids, currently approved as treatment for multiple sclerosis. It has
been proposed as a T cell-based neuroprotective vaccination in glaucoma. In the rat model of
chronic ocular hypertension, vaccination with glatiramer acetate significantly reduced loss of
RGCs.282 Progression was limited by rendering the local extracellular environment less hostile to
neuronal survival and allowed the RGC to better withstand the stress induced by IOP.28 Clinical
trials have not yet been conducted. Current strategies under investigation involve neurotrophins,
antiapoptotic substances, stem cell therapies and bioenergetic strategies. 28!
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2. Aims of study

Currently, lowering the 0P is the only evidence-based treatment approach for glaucomatous
optic neuropathy. However, this does not stop progression in all patients.25. 31. 34,284 Factors other
than IOP and direct mechanic stress must therefore contribute significantly to optic nerve damage
and ganglion cell loss in these individuals and provide potential targets for alternative treatment
approaches.

The retina, although considered to be a part of the central nervous system due to its derivation
from the diencephalon, exhibits some fundamentally different metabolic characteristics in
comparison with the CNS. In particular, hyperglycaemia seems to be neuroprotective in the
context of acute or subacute retinal ischemia.249. 285

Although not yet understood in full detail, the primary insult in glaucomatous optic neuropathy
seems to involve mitochondrial dysfunction, resulting in shortage of ATP and oxidative stress, at
least in some forms of glaucoma.28¢ This aspect of the disease might be amenable to
bioenergetic neuroprotection and open new avenues of therapeutic approaches.287. 288
Furthermore, hyperglycaemia might influence pathophysiological processes in other ways and
hereby mitigate axonal loss and RGC death. The aim of this study was therefore to investigate
the influence of hyperglycaemia on experimental glaucomatous optic neuropathy. Prior to the final
experiment, a suitable model of glaucomatous optic neuropathy needed to be identified and
characterised. Furthermore, efficacious and reliable methods for optic nerve damage
quantification needed to be defined.
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3. Choice and validation of the appropriate animal model of experimental glaucoma

Hyperglycaemia induces many deleterious ocular changes in the long-term, including
microvascular pathology but, independently, also triggers neurodegeneration of RGC with
dendrite remodelling and ensuing receptive fields changes.28% 2% | was interested in the effects of
hyperglycaemia before establishment of these chronic changes, which is around 1-3 months after
induction of STZ-diabetes. Therefore, | relied on a glaucoma model, which produces significant
damage in a shorter time frame, which eliminated genetic models as a working tool. Furthermore,
a fairly acute model with a concisely defined onset of optic nerve pathology seemed favourable
over chronic mouse models relying on spontaneous elevation of IOP and unpredictable gradual
onset of pathology in the individual nerve fibres. For these reasons, the laser glaucoma model
appeared to be the most appropriate choice.

In humans, functional deficits occur early in the progression of glaucoma. There is increasing
evidence that the axons and dendrites are involved prior to loss of the perikarya (see Crish21).
First evidence for an axonal transport deficit in glaucoma has been found 4 decades ago. Since
then, the optic nerve head as the site of transport disruption has been a primary research focus. It
has been hypothesized that the blockade of axoplasmic flow was primarily mechanical in nature
and also impaired the retrograde transport of pro-survival factors, triggering apoptosis of RGCs.

The main structural support to the optic nerve bundles in humans is provided by the lamina
cribrosa, which consists of several sheets of connective tissue with pores. This structure seems
to play the key role in the pathogenesis of human glaucoma. But precisely this crucial structure is
far more rudimentary and less solid in rodents,2%2 and the absence of a collagenous component
might compromise the validity of rodent models in experimental glaucoma research.
Nevertheless, the cellular constituents and the composition of the extracellular matrix are similar
to that of the human or primate lamina cribrosa and it has been documented that the cellular
response to increased IOP in rats is very similar.67

The trabecular meshwork translimbal laser model has been used by several groups for almost 10
years. There clearly is a dose-effect relationship between IOP exposure and axonal damage. It
has been demonstrated that retrograde transport is compromised in the pathology, predominantly
and early at the optic nerve head.2%3 Moreover, retinal ganglion cell loss occurs in a sectorial
pattern suggestive of an optic nerve head insult.2% As a novelty, the present study characterises
changes of anterograde fast axonal transport relying on endogenous proteins of different size and
confirms the optic nerve head as the likely site of generalized anterograde transport failure,
verified by demonstrating accumulation of the neural tracer cholera toxin -subunit at the optic
nerve head. Furthermore, the paper shows that SMI-32 is a useful stain for immunohistochemical
analysis of optic nerve damage.
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Abstract The neurodegenerative disease glaucoma is
characterised by the progressive death of retinal ganglion
cells (RGCs) and structural damage to the optic nerve
(ON). New insights have been gained into the pathogenesis
of glaucoma through the use of rodent models; however, a
coherent picture of the early pathology remains elusive.
Here, we use a validated, experimentally induced rat
glaucoma model to address fundamental issues relating to
the spatio-temporal pattern of RGC injury. The earliest
indication of RGC damage was accumulation of proteins,
transported by orthograde fast axonal transport within
axons in the optic nerve head (ONH), which occurred as
soon as 8 h after induction of glaucoma and was maximal by
24 h. Axonal cytoskeletal abnormalities were first observed
in the ONH at 24 h. In contrast to the ONH, no axonal
cytoskeletal damage was detected in the entire myelinated
ON and tract until 3 days, with progressively greater
damage at later time points. Likewise, down-regulation of
RGC-specific mRNAs, which are sensitive indicators of
RGC viability, occurred subsequent to axonal changes at
the ONH and later than in retinas subjected to NMDA-
induced somatic excitotoxicity. After 1 week, surviving,
but injured, RGCs had initiated a regenerative-like
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response, as delineated by Gap43 immunolabelling, in a
response similar to that seen after ON crush. The data
presented here provide robust support for the hypothesis
that the ONH is the pivotal site of RGC injury following
moderate elevation of IOP, with the resulting anterograde
degeneration of axons and retrograde injury and death of
somas.

Keywords Glaucoma - Retinal ganglion cell -
Optic nerve head - Axonal transport - Axon degeneration -
Amyloid precursor protein

Introduction

Glaucoma refers to a family of ocular diseases with mul-
tifactorial aetiology united by a clinically characteristic
optic neuropathy. Pathologically, glaucoma is character-
ised by a loss of all retinal ganglion cell (RGC)
compartments: somata, axons and dendrites; clinically, loss
of axons at the optic nerve head (ONH) heralds the diag-
nosis of glaucoma. This observation, together with other
converging clinical evidence, has given rise to a long-
standing belief that the foremost site of injury is at the
ONH [39]. Yet, the pathogenesis of glaucoma remains
poorly understood. Evidence supporting the ONH as the
primary locus of injury is circumstantial, whilst not much
is known about the molecular pathways involved in the loss
of RGCs and their axons. To date, treatment options for
glaucoma remain limited to lowering intraocular pressure
(IOP), the highest profile risk factor for the disease [23].
To facilitate a greater understanding of glaucoma, a
number of rodent paradigms have been developed. These
can broadly be divided into rat models, in which elevated
IOP is induced experimentally [33], and mouse models,
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where IOP elevation occurs spontaneously [18]. Of
particular importance has been the discovery and charac-
terisation of the DBA/2J inbred mouse strain [19]. DBA/2]
mice exhibit a form of pigmentary glaucoma featuring an
age-related elevation of IOP and progressive optic neu-
ropathy. In recent years, a substantive body of work has
been conducted on DBA/2] mice, providing new insights
into the spatio-temporal pattern of RGC dysfunction and
degeneration. A consistent view on the chronology of
pathological events in this disease model is, however, still
to be reached. For example, Howell et al. [16] provided
robust evidence for an early insult at the lamina of the
ONH with Wallerian-like degeneration of axons distal to
the site of injury. In contrast, Crish et al. [12] ascertained
that axonal transport dysfunction and axon degeneration
appear first at the superior colliculus with a distal-proximal
progression, findings in broad agreement with earlier work
[44]. Furthermore, somatic alterations in RGCs, including
downregulation of mRNA synthesis and abnormal neuro-
filament labelling, have been described as occurring more
or less simultaneously [17], or subsequent to [5], retrograde
axon transport dysfunction.

Certain strengths of the DBA/2J mouse as a relevant
model for human glaucoma, including its gradual pro-
gression, unpredictable timing and inter-individual
variability, make unequivocal identification of the
sequence of events problematic. Here, we use a validated,
experimentally induced rat glaucoma model [26] to address
several fundamental issues. These include ascertaining the
spatio-temporal pattern of orthograde axonal transport
disruption and its correlation with IOP elevation, delin-
eating the site of initial axonal cytoskeletal damage and
determining any association with altered neurofilament
phosphorylation, documenting the timing of RGC somal
injury and whether RGCs attempt to regenerate their
injured axons, and finally, comparing the pattern of injury
observed in glaucoma with those seen after optic nerve
crush or NMDA-induced excitotoxicity, the classical
methods of eliciting axonal and somato-dendritic death of
RGCs, respectively.

Materials and methods
Animals and procedures

This study was approved by the Animal Ethics Committees
of the Institute of Medical and Veterinary Science and the
University of Adelaide and conforms to the Australian
Code of Practice for the Care and Use of Animals for
Scientific Purposes, 2004. All experiments conformed to
the ARVO Statement for the Use of Animals in Ophthal-
mic and Vision Research. Adult Sprague-Dawley rats
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(200-250 g) were housed in a temperature- and humidity-
controlled environment with a 12-h light, 12-h dark cycle
and were provided with food and water ad libitum.

For experimental glaucoma experiments, rats were
anaesthetised with 100 mg/kg ketamine and 10 mg/kg
xylazine. Ocular hypertension was then induced in the
right eye of each animal by laser photocoagulation of the
trabecular meshwork using a slightly modified protocol
[14] of the method described by Levkovitch—Verbin et al.
[26]. IOPs were measured in both eyes at baseline, 8 h,
days 1, 3, 7 and 14 using a rebound tonometer factory
calibrated for use in rats. No animals were excluded for
reasons relating to inadequate IOP elevation. Two animals
were excluded as a result of death under anaesthesia and
two due to hyphema. Two cohorts of rats were used in the
current study. The first cohort was used for immunohis-
tochemistry/histology of the retina, ONH, optic nerve
(ON) and optic tract (OT). The number of rats analysed at
each time point was as follows: 8 h (n =4), 1 day
(n=28), 3days (n=10), 7day (n=29), 14 days
(n = 10). In addition, three rats were killed at 2 days and
used for transverse sectioning of the ONH. For axonal
tracing, 4 rats were injected intravitreally with 5 pl of
0.1% AlexaFluor 594-conjugated cholera toxin B-subunit
(CTB) dissolved in sterile PBS. After 24 h, right eyes
were lasered as above. Rats were killed at 2 days and
taken for immunohistochemistry. The second cohort was
used for RT-PCR/Western blotting of the retina and ON.
The number of rats analysed at each time point was as
follows: 1 day (n =4), 3 days (n=17), 7 days (n=17),
14 days (n = 4). The chiasm from each rat was taken for
immunohistochemistry to verify that the procedure had
induced an injury response commensurate with the first
cohort.

For excitotoxicity experiments, an intravitreal injection
of 30 nmol of NMDA (5 pl in sterile saline) was per-
formed in one eye. The control eye was injected with
vehicle. The number of rats analysed at each time point
for RT-PCR of the retina was as follows: 6 h (n = 7),
1 day (n = 6), 3 days (n = 6), 7 days (n = 7). In addi-
tion, four rats were taken at each time point for
immunohistochemistry. For ON crush experiments, the
superior muscle complex was divided and the ON
exposed by blunt dissection. The ON was then crushed
3-mm posterior to the globe under direct visualisation
using number 5 forceps for 20 s. ON crush produces
complete disruption of the RGC axons, which can be seen
as a separation of the proximal and distal optic nerve ends
within the meningeal sheath. To avoid confusing retinal
ischaemic changes with the effects of crush, the fundus
was observed ophthalmologically immediately after nerve
crush. A total of six rats were subjected to ON crush, all
of which were killed at 14 days.
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Tissue processing and histology

All rats were killed by trans-cardial perfusion with physi-
ological saline under deep anaesthesia and, in those rats
where tissue was not taken for RT-PCR/Western blotting,
subsequently with 4% paraformaldehyde. Initially, the
brain was removed. Next, each eye with ON, optic chiasm
and the proximal part of the OT attached was carefully
dissected. From the dissected tissue, a short piece of ON
(2-mm long), 1.5-mm behind the globe, was removed for
resin embedding. The brain, globe, remaining ON, chiasm
and proximal segment of OT were fixed in 10% buffered
formalin for at least 24 h. Following fixation, the brain was
positioned in the Kopf rat brain blocker (Kopf Instruments
PAO0O01) and 2-mm coronal slices were taken in a dorsal-
caudal direction. Brain slices, along with the globe and
optic pathway, were processed for routine paraffin-
embedded sections. Globes were embedded sagitally; ONs
and chiasmata were embedded longitudinally. In all cases,
4-pm serial sections were cut. As detailed above, three rats
killed at 2 days were used for transverse sectioning of the
ONH. The short piece of proximal ON taken for resin
sectioning and toluidine blue staining was treated as pre-
viously reported [14].

Immunohistochemistry

Colorimetric immunohistochemistry was performed as
previously described [9]. In brief, tissue sections were
deparaffinized before treatment with 0.5% H,0, for 30 min
to block endogenous peroxidase activity. Antigen retrieval
was achieved by microwaving the sections in 10-mM citrate
buffer (pH 6.0). Tissue sections were then blocked in PBS
containing 3% normal horse serum, incubated overnight in
primary antibody, followed by consecutive incubations with
biotinylated secondary antibody and streptavidin-peroxi-
dase conjugate. Colour development was achieved with
3'-,3'-diaminobenzidine. Sections were counterstained with
haematoxylin, dehydrated and mounted. Specificity of
antibody staining was confirmed by incubating adjacent
sections with isotype controls (mouse IgGl and IgG2a
isotype controls) for monoclonal antibodies, or normal
rabbit/goat serum for polyclonal antibodies.

Double labelling fluorescent immunohistochemistry was
performed as previously described [9]. In brief, visualisa-
tion of one antigen was achieved using a three-step
procedure (primary antibody, biotinylated secondary anti-
body, streptavidin-conjugated AlexaFluor 594), whilst
the second antigen was labelled by a two-step procedure
(primary antibody, secondary antibody conjugated to
AlexaFluor 488). In summary, sections were prepared as
above, except for the omission of the endogenous peroxi-
dase block, then incubated overnight at room temperature
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in the appropriate combination of primary antibodies. On
the following day, sections were incubated with the
appropriate biotinylated secondary antibody (1:250) for the
three-step procedure plus the correct secondary antibody
conjugated to AlexaFluor 488 (1:250, Invitrogen) for the
two-step procedure for 30 min, followed by streptavidin-
conjugated AlexaFluor 594 (1:500) for 1 h. Sections were
then mounted using anti-fade mounting medium and
examined under a confocal fluorescence microscope. Pri-
mary antibody details are provided in Supplementary
Table 1.

Evaluation of histology and immunohistochemistry

All assessments of ON injury were performed in a ran-
domized, blinded manner. Loss of RGC axons in the ONs
of glaucomatous eyes was assessed using a semi-quanti-
tative ON grading scheme based on the toluidine blue-
stained cross-sections [8, 14], where grade 0 corresponds to
no damage, grade 5-50% axon loss, and grade 10-100%
axonal loss. Of note, if the calculated damage grade was
zero, but the nerve contained at least 20 damaged axons
within the whole cross-section, the grade was recorded as 1
as a nominal indication that the nerve was damaged.

B-Amyloid precursor protein (APP) accumulation in the
ONH as a result of disrupted axonal transport was assessed
semi-quantitatively using a 4-point grading system, ranging
from 0 = undetectable to 3 = numerous intensely stained
APP-positive axons covering a substantial area of the pre-
laminar to post-laminar ONH. The APP score of each rat
was then correlated with the peak IOP elevation of that rat
and with the IOP at the time of death. Statistical analysis of
correlations were performed by GraphPad Prism 5.0b
(GraphPad Software Inc., La Jolla, CA) using non-para-
metric tests.

Quantification of SMI-32 immunolabelling in longitu-
dinal sections of the medial ON and proximal OT was
performed as previously described [14]. In brief, immu-
nostained sections, each expressing a representative level
of immunoreactivity, were photographed at 200x. They
were then imported into NIH Image-] 1.42q software
(http://www.rsb.info.nih.gov/ij/), where they underwent
colour deconvolution to separate diaminobenzidine reac-
tion product from haematoxylin counterstain [41]. Images
were subsequently analysed with regard to the specifically
stained area in pixels using the in-built functions of the
Image-J software. Statistical analysis was carried out by
ANOVA followed by post hoc Tukey’s test.

Electrophoresis/Western blotting

The entire ON was taken for Western blotting except for
1.5 mm at the proximal and distal ends; thus, only the
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myelinated segment of the nerve was analysed. Retinas and
ONs from 3 to 7 days, and ONs from 14-day experimental
glaucoma rats were processed for Western blotting as
previously described [9]. In brief, after electrophoresis,
samples were transferred onto PVDF membranes. Fol-
lowing a block of non-specific binding, blots were probed
with primary antibodies (see Supplementary Table 1),
appropriate secondary antibodies conjugated to biotin, and
streptavidin-peroxidase conjugate. Blots were then devel-
oped and the images captured and analysed for
densitometry. Densitometry values were normalised for
actin. Statistical analysis was performed by Kruskall-
Wallis followed by Mann-Whitney for comparison of
SMI-32, SMI-37 and SMI-31 expression in 3, 7 and
14 days ON samples and by Student’s paired ¢ test for
Gap43 expression in treated versus control retinas.

Real-time RT-PCR

Reverse-transcription polymerisation chain reaction (RT-
PCR) studies were carried out as described previously [11].
In brief, retinas were dissected, total RNA was isolated and
first-strand cDNA was synthesised from 2-pg DNase-trea-
ted RNA. Real-time PCR reactions were carried out in
96-well optical reaction plates using the cDNA equivalent
of 20-ng total RNA for each sample in a total volume of
25 pl containing 1x SYBR Green PCR master mix (Bio-
Rad), forward and reverse primers at a final concentration
of 400 nM. The thermal cycling conditions were 95°C for
3 min and 40 cycles of amplification comprising 95°C for
12 s, 63°C for 30 s and 72°C for 30 s. Primer sets used
were as follows (sense primer, antisense primer, product
size, accession number): GAPDH (5-TGCACCACCAAC
TGCTTAGC-3, 5-GGCATGGACTGTGGTCATGAG-3,
87 bp, NM_017008), NFL (5'-ATGGCATTGGACATT
GAGATT-3/, 5-CTGAGAGTAGCCGCTGGTTAT-3',
105 bp, AF031880), Thyl.l (5'-CAAGCTCCAATAAAA
CTATCAATGTG-3, 5-GGAAGTGTTTTGAACCAGC
AG-3', 83 bp, X03150). After the final cycle of the PCR,
primer specificity was checked by the dissociation (melt-
ing) curve method. In addition, specific amplification was
confirmed by electrophoresis of PCR products on 3%
agarose gels. PCR assays were performed using the 1Q5

icycler (Bio-Rad) and all samples were run in duplicate.
The results obtained from the real-time PCR experiments
were quantified using the comparative threshold cycle (Cr)
method (AACy) for relative quantitation of gene expression
[27], corrected for amplification efficiency [36]. All values
were normalised using the endogenous housekeeping gene
GAPDH and expressed relative to controls. Statistical
analysis was carried out by ANOVA followed by post hoc
Tukey’s test. The null hypothesis tested was that Cr dif-
ferences between target and housekeeping genes would be
the same in control and experimental retinas.

Results

Axonal transport disruption at the ONH is an early
event during experimental glaucoma

The ONH has long been considered a site of early axonal
transport failure in glaucoma [1, 29, 37, 39, 40], but recent
data from rodents indicate that distal axons are affected
first [12]. To address this important issue, we performed
immunolabelling for APP, a protein synthesised by RGCs
[30] and conveyed along the ON by fast axonal transport.
We found accumulation of APP in axons in the pre- and
post-laminar ONH as early as 8 h following induction of
raised IOP (Fig. la, b). By 24 h, intense APP immunore-
activity was observed throughout the ONH, a result that
was typical of the majority of rats analysed within the first
7 d. By 14 d, however, not much APP accumulation was
detectable at the ONH in most animals (Fig. lc—f). To
ascertain whether axonal transport disruption correlated
with the peak increase in IOP or the terminal IOP, repre-
sentative sections from the central ONH of every rat were
graded for APP accumulation and related to the peak IOP
value recorded from that rat and to the IOP at the time of
death. A Spearman’s rank correlation was then performed.
The maximal APP score was documented at 24 h after
induction of experimental glaucoma, with similar, some-
what lower values obtained at 3 and 7 days, and a
substantially lower grade at 14 days (Table 1). There was
no correlation between peak IOP and APP grade (r = 0.27,
P =0.11). In contrast, the terminal IOP showed a

Table 1 Grading of APP accumulation at the ONH at various times after induction of experimental glaucoma

Time Cont eyes S8h(n=4) lday (n=17) 3 days (n = 8) 7 days (n=9) 14 days (n = 10)
Integral exposure IOP* - - 16.5 + 2.1 47.1 £ 11.1 97.7 £ 8.7 189.2 + 13.2
Peak increase in IOP* - 28.5 + 2.7 242+ 46 258+ 54 263+ 25 242 £22

IOP increase at time of death® - 28.0 £ 3.0 215 £ 40 150 £ 7.0 133 £ 26 50+ 1.3

APP grade 0.0 £ 0.0 1.5+ 03 3.8 £0.2 29403 27402 1.5 +£ 0.2

* Calculated as IOP of treated eye—IOP of untreated contralateral eye and expressed in mmHg
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significant correlation with the APP grade (r = 0.47,
P = 0.004). The results indicate, as expected, that elevated
IOP at the time of death is a risk factor for axonal transport
disruption. It is, however, noteworthy that the correlation
between APP grade and terminal IOP (r = 0.47) was not
high, indicating that considerable variation exists between
rats with regard to how raised IOP affects axonal viability.

We next sought to identify the spatial distribution of
axonal transport failure. To ascertain whether axonal
transport disruption is restricted to the ONH, we performed
double labelling immunohistochemistry of APP with
myelin basic protein (MBP) in both longitudinal (Fig. 2a—
¢) and transverse sections of the ONH and proximal ON
(Fig. 2d—i). The results clearly showed that APP immu-
noreactivity was not associated with the myelinated portion
of the ON. In addition, it was apparent that APP accumu-
lation in the lamina was not uniform, but regionalised and
asymmetric (Fig. 2h), a result that corresponds with pre-
vious findings of regionalised RGC and axonal loss in the
DBA/2J mouse [16, 44]. To identify whether any distal
parts of the optic pathway feature axonal transport dis-
ruption, medial and distal sections of the ON and OT were
immunostained for APP. Images of the ONH, medial ON
and proximal OT from a typical 3-day rat are shown
(Fig. 2j-1). No sites of APP accumulation were detected
beyond the ONH at any time point, indicating the crucial
significance of this structure in the pathology of experi-
mental glaucoma.

To further characterise the nature of axonal transport
disruption during experimental glaucoma, we performed
immunostaining for two additional molecules, synaptophysin

cont

a
e
Fig. 1 Accumulation of APP at the ONH at various times following
induction of experimental glaucoma. In normal rats, APP immuno-
reactivity is localised to RGC bodies, but only very low intensity
labelling is associated with RGC axons in the ONH and ON (a). By

& h after induction of chronic ocular hypertension, accumulation of
APP is evident within some axons in the pre- and post-laminar ONH
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and brain-derived neurotrophic factor (BDNF), that are
synthesised by RGCs and undergo anterograde, fast axonal
transport [6, 31]. Synaptophysin displayed broadly similar
patterns of accumulation at the ONH as APP, although
differences were evident. APP was observed in highest
amounts in the pre-laminar ONH and in axons at the
margins of the ONH; synaptophysin extended further into
the ONH and was distributed more evenly (Fig. 3b-i).
BDNF also accumulated at the ONH, but was in lower
abundance than APP and was largely pre-laminar.
BDNF and synaptophysin both colocalized with APP
(Fig. 3d—f, j). The results suggest that all molecules
undergoing anterograde fast axonal transport are disrupted
by chronic IOP elevation. To confirm that accumulations of
APP and synaptophysin represent disrupted fast axonal
transport, we performed double labelling in ocular hyper-
tensive rats that had been labelled with the neural tracer
cholera toxin B-subunit (CTB). After 2 days of experi-
mental glaucoma, CTB was associated with RGC somata,
dendrites and axons, and accumulated at the ONH in many
of the same axons as APP and synaptophysin (Fig. 3g—i).
Double labelling of APP with microglial and astocytic
markers (Fig. 3k, 1) failed to show any colocalisation
indicating APP immunoreactivity resided solely within
axons.

Characterisation of axonal cytoskeleton damage
during experimental glaucoma

Our next goal was to define the temporal relationship
between disrupted axonal transport and damage to the ON

(b arrows). At 24 h, intense APP immunoreactivity is typically
observed throughout the ONH (c¢). Analysis of rats at 3 d (d) and 7 d
(e) shows APP immunolabelling in the ONH remains high, although
not as widespread as | day. By 14 days after induction of experi-

mental glaucoma (f), not much APP immunoreactivity is observed in
the pre- or post-laminar ONH. Scale bar 100 pm
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Fig. 2 APP accumulation is
restricted to the ONH during
experimental glaucoma. a—

i Feature double labelling
immunohistochemistry of APP
(red) with MBP (green)
showing that axonal transport
disruption occurs only within
the initial, non-myelinated
portion of the nerve; a—

¢ highlight the ONH and
proximal ON of a rat killed

7 days after induction of
experimental glaucoma in
longitudinal orientation; d—

i show three levels of the
proximal ON of a typical 2 day
rat in cross-sectional plane,
where transverse sections were
taken through the ON at 400 pm
intervals in a distal to proximal
direction showing the mature
myelinated ON (d, e), the early
portion of the myelinated ON (f,
g) and the unmyelinated lower
neck region (h, i), which
features widespread APP
immunolabelling. A rat killed
after 3 days of ocular
hypertension: APP accretion is
clearly visible at the ONH (j),
but not more distally in the ON
(k) or OT (1). Scale bar a and d—
f 100 pm, b, ¢ and g-1 50 pm

axonal cytoskeleton. This provides information on whether
axonal transport deficiencies are functional or mechanical.
The standard methodology for evaluating ON injury is
quantitative evaluation of transverse sections of the prox-
imal nerve stained with toluidine blue [33]. Accordingly,
we analysed ONs for damage at increasing times after
induction of raised IOP (Fig. 4). At 1 day, when axonal
transport disruption is maximal, there was no evidence of
any axonal abnormalities. Between 3 and 14 days, axonal
disruption increased dramatically, which was manifest
initially as the enlargement of a few axons, then progressed
to the appearance of hyperdense axons, myelin disruption
and reduced axon density.

The toluidine blue methodology is well suited to iden-
tifying gross abnormalities and axonal loss; however, it
may lack the sensitivity to detect early or subtle axonal
injury. An alternative, complementary technique involves
analysis of longitudinal sections immunostained for spe-
cific markers of the axonal cytoskeleton. This approach is
routinely employed for delineation of axonal damage in
other white matter tracts. Initially, we evaluated the sen-
sitivity and efficacy of eight immunohistochemical markers
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for detection of early ON damage. SMI-32, an antibody
that recognises the heavy chain of non-phosphorylated
neurofilament (npNFH), was unequivocally the most sen-
sitive indicator. This was the case both at 3 and 7 days, in
rats with slight damage and in rats with numerous abnor-
malities. The pattern of SMI-32 immunolabelling changed
from one consisting of light, uniform staining of axons to
one featuring axonal beading, swellings and spheroids.
Representative images of the eight markers in sections
from the medial ON of a 3-day rat with only a small
number of injured fibres are shown (Supplementary
Fig. la).

Next, we utilised SMI-32 to quantify axonal damage.
Sections from the medial ON and proximal OT of 1, 3 and
7 days rats were immunolabelled for SMI-32 (see Sup-
plementary Fig. 1b for typical staining patterns), and the
extent of abnormalities calculated. The results, revealed no
evidence of axonal injury in either location at 1 day, but
significant damage by 3 days, and fourfold greater damage
by 7 days (Table 2). Comparison of the ON with the OT
showed the mean damage level in the OT was somewhat
higher than the ON at the 3-day time point, but there was
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APP

CTB-APP

APP-BDNF

Fig. 3 Comparison of APP with other markers of axonal transport
disruption after induction of experimental glaucoma. In normal rats,
synaptophysin immunoreactivity is localised to post-synaptic termi-
nals in the retina, but only very low intensity labelling is associated
with RGC axons in the ONH and ON (a). At 24 h after induction of
experimental glaucoma, accumulation of synaptophysin (b) is
observed throughout the ONH in a similar pattern to APP (c).
Synaptophysin colocalises with APP, as seen in this rat killed at
7 days (d-f). At 2 days after induction of experimental glaucoma,

no difference at 7 days. A number of conclusions can be
drawn: first, SMI-32 and toluidine blue provided comple-
mentary results; secondly, despite axonal transport
disruption at the ONH commencing by 8 h, no axonal
cytoskeletal abnormalities were evident in the myelinated
nerve at 24 h; thirdly, degeneration may have commenced,
or proceeded more rapidly, in the distal part of the axon.
The SMI-32 analyses described above relate to the
central portion of the visual pathway. To better understand
whether the primary locus of axonal degeneration is at the
distal or the proximal end of pathway, it is necessary to
analyse the entire tract, from the ONH to the lateral
geniculate nucleus and superior colliculus. Accordingly,
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synap

CTB-synap

CTB (g-i red) is associated with RGC somata, dendrites and axons in
the retina and accumulates throughout the ONH. CTB colocalises
with APP (g green) and with synaptophysin (h, i green). In every rat,
synaptophysin immunoreactivity extends further into the ONH than
APP (b, ¢, £, h arrows). BDNF (j green) also colocalises with APP
(j red), predominantly in the pre-laminar ONH (arrow). In contrast,
the astrocytic marker GFAP (k green) and the microglial marker ibal
(1 green) do not colocalise with APP (k, 1 red). CTB cholera toxin
B-subunit. Scale bar a-c, j, k 100 pm, d—f 50 pm, g-i 1, 25 pym

we performed a spatial assessment of SMI-32 immuno-
staining in rats subjected to experimental glaucoma. The
results were as follows: (1) no alterations to SMI-32
immunostaining were noted in the visual pathway at 8 h;
(2) at 1 d, SMI-32 abnormalities, visualised as beading and
swellings, were evident in the pre-laminar and laminar
ONH in some, but not all animals, however, no such
abnormalities were manifest distal to this location in the
entire myelinated ON and OT; (3) after 3 days, SMI-32
abnormalities were apparent throughout the length of the
white matter tract from the ONH via the optic chiasm to the
brachium of the superior colliculus. Figure 5 shows rep-
resentative images from the ONH, optic chiasm and distal
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Fig. 4 Transverse sections of ONs stained with toluidine blue at
various times subsequent to induction of experimental glaucoma. At
1 day after induction of chronic ocular hypertension (b), the axonal
structure is unchanged relative to control ONs (a). By 3 days, a few
enlarged axons (black arrowheads) are typically visible (c). After

Table 2 Quantification of SMI-32 abnormalities at various times
after induction of experimental glaucoma

Time Control 1 day 3 days 7 days

Medial ON 0.39 + 0.28 0.13 £ 0.13 247 £ 72 106.7 + 31.0"

Proximal 040 £ 0.17 0.38 & 0.30 37.0 £ 9.1" 110.5 + 26.7"
oT

Immunoreactivities were quantified (see “Materials and methods™)
and expressed as area in pixels (x10%)

All values are presented as mean £+ SEM, where n = 9 (control),
n = 8 (1 day), n = 10 (3 days), n = 9 (7 days)

Statistical analysis of immunoreactivities was performed by ANOVA
followed by a post-hoc Tukey's test for multiple comparisons

Significant differences versus controls are indicated by * P < 0.05
and T P < 0.001

OT. To confirm axonal cytoskeletal abnormalities at the
ONH at 1 day, sections were also immunostained for
neurofilament medium. The pattern of abnormalities pro-
duced was almost identical to SMI-32 (data not shown).
The overall results indicate that axonal cytoskeleton
changes occur first at the ONH.

There is debate as to whether increased or decreased
neurofilament phosphorylation signifies injury in neurode-
generative diseases in general [35] and glaucoma in
particular [22, 42, 45]. As described above, we observed
numerous npNFH (SMI-32) abnormalities in ON sections;
however, it is unclear whether this represents an overall
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14d

7 days of experimental glaucoma, reduced axon density and myelin
disruption (black arrows) are evident (d), features that are even more
prevalent after 14 days of raised pressure (e). Mean axonal injury at
increasing times after induction of experimental glaucoma is shown
(f). Scale bar 25 pm

dephosphorylation of NFH or merely breakdown of the
more labile non-phosphorylated subunit. Thus, we under-
took Western blotting in ON samples from control and
treated eyes using two antibodies, SMI-32 and SMI-37,
which exclusively recognise npNFH (Fig. 6). Each anti-
body detected a protein of 200 kDa signifying native
npNFH, but in treated ONs, a continuum of lower molec-
ular weight proteins reactive to SMI-32 and SMI-37 was
also observed. Densitometry showed no significant (SMI-
32, P = 0.42; SMI-37, P = 0.24) difference in the inten-
sity of the 200 kDa species between the 3, 7 and 14-day
time points. In contrast, there was a marked increase in
intensity of the lower molecular weight products over the
time period analysed (SMI-32, P = 0.036; SMI-37,
P = 0.011). The data indicate that there is no increase in
npNFH in the ON during ocular hypertension-induced
axonal degeneration, rather there is a progressive degra-
dation of npNFH. Western blots performed using the
antibody SMI-31, which exclusively recognises pNFH,
failed to reveal a continuum of lower molecular weight
protein bands.

The ONH is the site of putative axonal regeneration
failure during experimental glaucoma

In the ON, axonal injury is not followed by any beneficial
regeneration. Severed or crushed RGC axons display only
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SMI-32

Fig. 5 Axonal degenerative changes in the visual pathway at early
time points during experimental glaucoma. a Representative images
of APP and SMI-32 staining in three regions of the ONH at | day
after induction of chronic ocular hypertension. At 1 day, widespread
APP accumulation is evident in axons throughout the ONH. SMI-32-
labelled axon fibres show swellings and beading (arrows) and
vacuolization (arrowhead) in areas of axonal transport disruption.

transient, local sprouting proximal to the site of damage
[3]. Unlike ON crush or transection, RGCs are lost grad-
ually during experimental glaucoma; moreover, the locus
of injury to RGCs is unclear. Thus, evaluation of the spatio-
temporal pattern of any endogenous axonal regeneration that
occurs during glaucoma will be greatly informative to our
understanding of the pathology of the disease. To achieve
this objective, we analysed expression of growth-associated
protein 43 (Gap43), the classical marker of axonal regen-
eration in the ON [4, 13, 25].

In normal adult rats, negligible Gap43 immunoreactivity
was associated with RGC bodies or their axons (Fig. 7a).
The situation was unchanged at 24 h after induction of
raised IOP, even in rats with widespread axonal transport
disruption and neurofilament damage (Fig. 7b). By 3 days,
limited Gap43 immunohistochemistry was detectable in
RGC axons of some rats, particularly at the level of the pre-
laminar ONH (Fig. 7c), whilst Western blotting showed
that all rats analysed had a markedly upregulated level of
retinal Gap43 protein (Fig. 8a, b). The expression of Gap43
increased further at 7 and 14 days, as evidenced by
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b Representative images of SMI-32 staining at the level of the optic
chiasm and optic tract 1 and 3 days after induction of chronic ocular
hypertension. Unlike the ONH, the myelinated ON and optic tract
appear normal at 1 day. By 3 days, SMI-32 abnormalities are evident
throughout the length of the white matter tract (black arrows). The
boundaries of the optic tract are demarcated by white arrows. Scale
bar a ONH overview, 45 pm, magnified images, 16.7 pm, b 25 um

immunohistochemistry (Fig. 7d-i) and Western blotting
(Fig. 8a, b). The pattern of Gap43 immunoreactivity in
ocular hypertensive rats was broadly equivalent to that of
APP with accumulation throughout the ONH, but was
significantly delayed in onset. Although APP immuno-
staining was maximal at 1 day and then gradually declined,
the opposite occurred for Gap43. Unlike APP, a few
Gap43-positive axons extended beyond the ONH into the
initial myelinated portion of the ON (Fig. 6f). Neverthe-
less, Western blotting (Fig. 8b) showed no measureable
increase in the Gap43 content of the myelinated ON at
7 days. The overall results suggest that injured RGCs
attempt to regenerate their axons during experimental
glaucoma, but the process fails at the ONH. A caveat to this
conclusion is that Gap43 expression alone is not conclusive
of axonal regeneration. To verify that injured RGCs, rather
than healthy cells, are responsible for re-instigating Gap43
expression, we performed double labelling of Gap43 with
heat shock protein 27 (Hsp27) in retinas subjected to
14 days of experimental glaucoma. Hsp27, a molecular
chaperone induced by cellular stress, is not constitutively
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Fig. 6 Expression of npNFH and pNFH in the ON following
induction of experimental glaucoma, as evaluated by Western blotting
using two antibodies, SMI-32 and SMI-37, that recognise npNFH and
one antibody, SMI-31, that recognises pNFH. a Representative blots
from control and treated ONs from four animals Killed at 3, 7 and
14 days are shown. Both antibodies recognise a 200 kDa band that
represents native npNFH. A continuum of lower molecular weight

expressed by RGCs; however, within an ongoing patho-
logical setting, such as axotomy or glaucoma, is
persistently upregulated in severely injured RGCs [21, 24].
The results showed that many RGCs were immunopositive
for both Hsp27 and Gap43 (Fig. 8c) indicating their
increased stress status.

The pattern of injury during experimental glaucoma
displays pathological similarities to optic nerve crush, but
not to NMDA-induced excitotoxicity.

Hitherto, it is unclear whether degeneration of RGC
axons precedes degeneration of RGC somata during glau-
coma. Whilst a body of evidence supports this hypothesis,
other data endorse the view that atrophy of RGC perikarya
occurs first [45]. To elucidate the timing of RGC somatic
injury, we performed a temporal analysis of RGC gene
expression during experimental glaucoma. The rationale
for this approach is that down-regulations of RGC-specific
mRNAs, including Thyl and neurofilament light (NFL),
are sensitive early indicators of RGC viability [10, 43].
Following induction of raised IOP, negligible down-regu-
lation of Thyl and NFL had occurred by 24 h (Fig. 9a). By
3 days, the levels of both mRNAs had decreased, but the
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bands reactive to SMI-32 and SMI-37, but not SMI-31, are visible in
the treated ONs, as indicated by the vertical arrows. b Densitometry
measurements (normalised for actin and expressed relative to the
control ON) are provided in the graphs below, where n = 7 (3 days),
n =7 (7 days) and n = 4 (14 days). *P < 0.05, **P < 0.0 com-
pared with controls by Mann—Whitney U test

changes failed to reach statistical significance. After
7 days, highly significant (P < 0.001) decreases of Thyl
and NFL were measured. The time courses of these chan-
ges are delayed compared with the axonal responses
described above, indicating that altered gene transcription
occurs subsequent to axonal disruption.

To impart perspective on the results, we assessed RGC
gene expression, disruption of axonal transport and damage
to the axonal cytoskeleton in rats that underwent NMDA-
induced excitotoxicity. NMDA treatment is the classical
method of eliciting somato-dendritic death of RGCs, since
NMDA receptors are present on the soma but not the axon
of the RGC. Moreover, excitotoxicity is implicated in the
pathogenesis of glaucoma [7]. The results were in complete
contrast to those of the glaucoma model. Down-regulation
of Thyl and NFL mRNAs was in evidence as early as 6 h
after NMDA administration and by 24 h both mRNAs were
maximally down-regulated, signalling death of the RGC
soma (Fig. 9b). Despite the fatal injury to the RGC body,
no disruption to the axonal cytoskeleton, either at the ONH
or within the ON, was detectable at 24 h after NMDA
administration (Fig. 9c). By 2 days, however, axonal
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Fig. 7 Gap43 expression in RGC axons following induction of

experimental glaucoma. In control rats (a), minimal Gap43 immuno-
reactivity is associated with RGC bodies or their axons, but a lamina
of punctae is visible in the inner plexiform layer at the border with the
INL (arrowhead). No discernible alteration to the pattern of Gap43
staining is evident at | day (b) after induction of chronic ocular
hypertension. By 3 days (¢), occasional Gap43-immunopositive fibres
are apparent in the pre-laminar ONH of some rats (arrow). After
7 days (d), numerous axons in the pre- (arrow) and post-laminar ONH

swelling and beading was visible throughout the entire ON
and OT (Fig. 9d). Unlike experimental glaucoma, no
accumulation of APP occurred at the ONH following
NMDA treatment (Fig. 9e). The overall results show the
two paradigms of RGC death have quite distinct
pathologies.

Further evidence illustrating the different injury profiles
of experimental glaucoma and excitotoxicity was provided
by comparison of their Hsp27 and Gap43 responses (Sup-
plementary Fig. 2a, b), which, as discussed above, can be
viewed as indicative of ongoing somatic and axonal injury,
respectively. After 14 days of chronic ocular hypertension,
a proportion of surviving (Ps-tubulin-labelled) RGCs
expressed Hsp27 and synthesized Gap43. In contrast,
7 days after NMDA administration, surviving RGCs were
Hsp27- and Gap43-negative. Thus, excitotoxicity causes
acute, fatal injury to a proportion of RGCs, but surviving
RGCs are somatically and axonally healthy, whilst glau-
coma damages the axon, but spares the soma of a
proportion of RGCs, leading to ongoing perikaryal stress
and delayed death. To ascertain whether the response seen
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label for Gap43. Three representative rats are shown after 14 days of
experimental glaucoma: the first rat (e) displays intense Gap43
immunoreactivity in the nerve fibre layer and within the ONH; the
second rat (f) displays abundant Gap43-positive axons throughout the
ONH with a few axons extending into the initial myelinated portion of
the ON (Gap43, green, mbp red). The third rat (g—i) has substantial
axonal loss in the ONH (highlighted by asterisk) and features robust
Gap43 labelling of surviving axons in this region of the ON. Scale bar
a-e 100 pm, f-i 50 pm

during glaucoma is characteristic of ON crush, we also
analysed rats subjected to intraorbital ON crush 14 days
previously. Similar to glaucoma, RGCs from ON crush rats
expressed Hsp27 and synthesized Gap43 (Supplementary
Fig. 2a, b). When compared with glaucoma, substantially
more Gap43 immunoreactivity was observed, which
extended well beyond the ONH. This is to be expected;
however, as the entire population of RGCs is affected by
crush and the site of crush was 3 mm distal to the ONH.

Discussion

In the current study, we have employed a rat model of optic
neuropathy induced by chronic elevation of the IOP together
with a combination of histology, immunohistochemistry,
Western blotting and real-time RT-PCR to address the
spatial and temporal nature of RGC pathology. As identified
by Morrison et al. [33], the advantage of such a model
compared with spontaneous models of chronic ocular
hypertension is that the timing of the IOP increase following
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Fig. 8 Gap43 expression in the retina and ON following induction of
experimental glaucoma. a Expression of Gap43 in the retina as
evaluated by Western blotting. Representative blots from control and
treated retinas from four animals killed at 3 and 7 days after induction
of chronic ocular hypertension are shown. b Densitometry measure-
ments (normalised for actin and expressed relative to the control eye)
for retinas and ONs are shown in the accompanying graph, where

the surgical intervention is known. This engenders greater
confidence in conclusions drawn about the chronology of
pathological events. The data presented here provide robust
support for the hypothesis that the ONH is the pivotal, and
likely the primary, site of RGC injury following moderate
elevation of IOP, with resulting anterograde degeneration of
axons and retrograde injury and death of somas.
Anterograde fast axonal transport conveys newly syn-
thesized molecules away from the cell body. Obstruction of
this process rapidly compromises the integrity of the distal
axon. In glaucoma, the lamina cribrosa of the ONH has
long been considered a likely site of axonal transport
failure. This hypothesis was formed after pioneering work
performed in monkeys, which demonstrated that radioac-
tive leucine accumulated within axons at the ONH after
moderate elevation of IOP [1, 29, 37, 38, 40]. Similar
results have been found in pigs [2]. However, current
glaucoma research is mainly performed in rodents, and
rodents lack a true lamina cribrosa. Rats possess a rudi-
mentary structure, whilst mice have no connective tissue
[15, 32]. As such, it is important to ascertain whether the
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n =7 #*P<0.01 by paired Student’s t test (control vs. treated).
¢ Double labelling immunofluorescence of Gap43 with Hsp27 in a
representative rat killed 14 days after induction of experimental
glaucoma. Gap43-positive RGCs frequently express Hsp27. GCL
ganglion cell layer, INL inner nuclear layer, ONL outer nuclear layer.
Scale bar 25 pm

ONH is an important site of axonal transport failure in
rodents. We achieved this aim by immunolabelling for
proteins (APP, synpatophysin and BDNF) that are routinely
synthesised by RGCs and conveyed along the ON by fast
axonal transport [6, 31]. Because the molecules analysed
are of different molecular weights and have distinct phys-
iological roles, this approach provides biologically
meaningful information about transport viability during
chronic ocular hypertension. Our results showed accumu-
lation of all three proteins within axons at the ONH, but not
distal to this location in the myelinated ON or OT, results
confirmed by the use of the neural tracer CTB. The time
course correlated well with the early monkey studies, with
detectable accumulation by 8 h and widespread dysfunc-
tion from 24 h. By 14 days, however, the mean IOP had
decreased markedly and disruption was measurably lower.
The reduced accumulation of APP at this time point can be
accounted for in two ways: (1) in axons that were not
irreversibly damaged, the lower IOP allows normal trans-
port of APP to resume; (2) axons that were irreversibly
damaged by high IOP have now degenerated. Quigley and
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Fig. 9 Temporal characterisation of downregulation of the RGC-
specific mRNAs Thyl and NFL in the retina following induction of
experimental glaucoma (a, n = 4-9) and NMDA-induced excitotox-
icity (b, n = 6-7), as determined by quantitative real-time RT-PCR.
#P < 0.05, ##¥*P < 0.001 by one-way ANOVA followed by post hoc
Tukey's test. c—e Evaluation of axonal degeneration and axonal
transport disruption in the ONH after NMDA-induced excitotoxicity.

Addicks [38] noted that a return to normal IOP within
1 week restored transport in some axons in monkeys.

Previous studies in rats have found results compatible
with the hypothesis that chronically elevated IOP disrupts
active retrograde axonal transport to the retina at the level
of the ONH [28, 42], findings consistent with this study. In
contrast, Crish et al. [12] showed that axonal transport
dysfunction in both spontaneous and induced rodent
models of IOP elevation appeared first at the superior
colliculus and progressed distal proximal, with ONH defi-
cits occurring much later. The disparity between these
studies may relate to the models used. In the micro-bead
model used by Crish et al., the IOP elevations were max-
imally 10 mmHg and maintained for long periods, whilst
the laser model used here and by others produces typical
IOP rises of 25 mmHg for shorter periods. It is possible
that modest, prolonged increases in IOP gradually com-
promise axonal transport efficiency, which is first manifest
at the distal synapses, whilst greater increases in IOP
physically constrict axons at the ONH.

We found axonal cytoskeletal abnormalities, including
neurofilament beading and swellings, in the ONH at 24 h
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At 1 day after NMDA treatment, SMI-32 (npNFH) immunostaining
throughout the ONH and ON appears normal (c¢). By 2 days,
numerous axonal swellings and abnormalities are visible throughout
the white matter tract (d). No accumulation of APP is evident at the
ONH following administration of NMDA, as shown in this rat killed
at 2 days (e). Scale bar ¢, d 25 pm, e 100 pm

after induction of raised IOP. This suggests that axonal
transport disruption is mechanical, and not simply func-
tional, in a subset of axons at very early time points.
Nevertheless, in other axons, it is likely that active axonal
transport dysfunction significantly preceded physical
damage, an argument supported by the results of Salinas-
Navarro et al. [42], who counted fewer RGCs in retinas
back-labelled by a tracer that undergoes active transport
than in retinas back-labelled by a passively diffusing tracer.
In contrast to the ONH, no axonal cytoskeletal abnormal-
ities were present in the entire myelinated ON and OT until
3 days, with progressively greater damage at 7 and
14 days. The results support the findings of others that IOP
elevations of the magnitude recorded in this study elicit an
early insult at the lamina of the ONH with Wallerian-like
degeneration of axons distal to the site of injury [16, 20,
38]. Regarding axonal cytoskeletal degeneration, a previ-
ous study in monkeys showed accumulation of npNFH in
the ON following raised IOP [22]. Using immunohisto-
chemistry, we found a similar, robust increase in npNFH
labelling in degenerating axons; however, Western blotting
of ON samples revealed no increase in the npNFH 200-kDa
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band, rather the appearance of a continuum of low-
molecular weight bands. These bands almost certainly
represent breakdown products and may account for the
increased immunoreactivity in tissue sections. npNFH is
more labile and sixfold more susceptible than pNFH to
degradation by calpain [34] and our data indicate that it
degenerates more rapidly than pNFH.

The strikingly early nature of pathological changes at
the ONH prompted the question as to whether RGC somas
are irreversibly injured at this same time. Our data indicate
not. Down-regulation of RGC-specific mRNAs, which are
sensitive early indicators of RGC viability [10, 16, 43],
occurred subsequent to axonal changes at the ONH and
markedly later than in retinas subjected to NMDA-induced
somatic excitotoxicity. It can be argued that the elevated
1OP placed a considerable physiological stress on a pro-
portion of RGC somas as evidenced by their upregulation
of the molecular chaperone Hsp27; yet, this response also
occurred in rats with normal IOPs that underwent ON crush
and may simply have been caused by damage to the axonal
compartment.

The long-term objective of glaucomatous pharmaco-
therapy is not merely neuroprotection of surviving RGCs,
but regeneration of injured/disconnected axons. Within the
CNS, endogenous regenerative attempts are always
unsuccessful. In the visual system, RGC axons display only
transient, local sprouting, proximal to the lesion site after
ON crush [3], and interestingly, even this limited response
occurs only when the injury is within 3 mm of the eye, not
if it is administered to the distal ON [13]. Unlike the cat-
astrophic injury caused by traumatic axonopathies, such as
ON crush, RGCs are lost gradually during chronic ocular
hypertension and only a proportion of the population will
die. It follows that the inhibitory environment for regen-
eration may be less pronounced and regeneration strategies
more effective. Surprisingly, no data are available on the
endogenous regenerative response of RGCs during exper-
imental glaucoma. Delineating such information is of
utmost importance. We have shown in the current study
that RGC axonal injury is first evident at the ONH and that
the somas remain viable for a number of days; thus, we
hypothesised that endogenous RGC regeneration should
proceed at least to the ONH. To examine putative axonal
regeneration, we employed Gap43, the quintessential
marker of axon growth, but one which can be expressed in
non-regenerative situations [25], hence the caveat “puta-
tive”, Upregulation of Gap43 protein in the retina was first
detectable by 3d after IOP elevation. By 14 days, numer-
ous Gap43-positive axons were observed in the pre-laminar
ONH, some extending to the transition region of the ONH.
For comparative purposes, we analysed Gap43 in rats
subjected to NMDA-induced excitotoxicity and ON crush.
After NMDA treatment, no Gap43 expression was
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detected, a result consistent with early RGC somal death.
After ON crush, substantial Gap43 immunoreactivity was
observed, which extended to the crush site. The overall
results provide further evidence that the ONH is the prin-
cipal site of axonal injury in this rat glaucoma model and
that chronically raised IOP induces a crush-like insult at
this location.
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4. Influence of sampling patterns on estimated axon counts in experimental glaucoma

The primary outcome measure for experimental optic neuropathies are axon counts, and manual
counting on transmission electron microscopy is considered to be the gold standard.2% However,
processing and analysing tissue on electron microscopy is extremely time consuming and labour-
intensive, and hence not practical for the large number of samples that would need to be
analysed in this study. Counting axons on semi-thin resin embedded sections is an excellent
alternative and widely used in optic nerve de- and re-generation research. Estimates generated
by automated axon counting are generally preferred over manual counting of individual axons
because of the massive timesaving effect. The sampling methods used vary between different
research groups and various approaches have been validated against the gold standard. While
some researchers analyse entire cross-sections2% or a randomly selected percentage thereof,2%7
others extrapolate the number of axons based on estimated damage29-300 or approximate
counts®' in subjectively demarcated zones of equal damage. However, a direct comparison
between sampling approaches has not yet been conducted. This issue is addressed in the
following paper. It illustrates that random sampling is not significantly inferior to targeted
sampling.
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5. Glial markers as alternative parameters for quantification of optic nerve damage

The previous papers have shown that the laser glaucoma model is a valid choice, with the optic
nerve head likely as the site of the primary insult, and that estimated axon counts are a valuable
parameter to measure optic nerve damage. However, one single outcome generally does not
provide enough evidence to reliably substantiate experimental data and several convergent lines
of results would be preferable to confer more credibility to investigational findings.

Glial cells are clearly involved in a number of optic nerve pathologies, reflecting stress and
alterations in the environment of the RGC axons. In glaucoma, the most dramatic and earliest
change is observed in the astrocyte population.2®* Activation coincides or even heralds axonal
loss. The astrocyte cell number significantly increases; this phenomenon is called ‘gliosis’.302 In
contrast, the density of oligodendrocytes decreases. However, oligodendrocyte loss is only
observed when substantial numbers of axons have been lost and lags behind axon
degeneration.2% Although, its magnitude is probably underestimated since replacement occurs by
increased proliferation and differentiation of oligodendrocyte precursor cells.30% Microglial
activation, characterised by phagocytosis and proliferation, has been observed in retina in
glaucoma animal models.3 The following paper explores microglia activation in the visual
pathway in greater detail and illustrates ways of exploiting microglial changes to quantify axonal
damage in the optic nerve.
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Microglial Activation in the Visual Pathway in
Experimental Glaucoma: Spatiotemporal
Characterization and Correlation with Axonal Injury

Andreas Ebneter,"* Robert J. Casson,"? Jobn P. M. Wood,"* and Glyn Chidlow"*

Purpose. Glia are the main cellular CNS elements initiating
defense mechanisms against destructive influences and pro-
moting regenerative processes. The aim of the current work
was to characterize the microglial response within the visual
pathway in a rat model of experimental glaucoma and to
correlate the microglial response with the severity of axonal
degeneration.

MEernops. Experimental glaucoma was induced in each right
eye of adult Sprague-Dawley rats by translimbal laser photoco-
agulation of the trabecular meshwork. Rats were subsequently
killed at various times from 3 days to 6 weeks. Tissue sections
were obtained from globes, optic nerves, chiasmata, and optic
tracts for immunohistochemistry and toluidine blue staining.

Resurts. This model of experimental glaucoma led to a marked
activation of microglia in the retina, optic nerve, and tract.
Indeed, microglial activity remained elevated, even after in-
traocular pressure returned to basal levels. It is postulated that
this process accompanies ongoing axonal degeneration. The
degree of activation in the optic nerve correlated with axonal
damage. Activation was characterized by increased density and
morphologic changes. Both major histocompatibility complex
(MHC) class I and MHC class II surface proteins were persis-
tently upregulated in optic nerves and localized to microglial
cells; however, this did not correlate with any significant T-cell
infiltration. Interestingly, MHC class Il expression was not
detected in the retina.

Concrusions. The present data may have implications for the
study of the pathology associated with the visual pathway in
diseases such as glaucoma. (Invest Opbthalmol Vis Sci. 2010;
51:6448 - 6460) DOI:10.1167/iovs.10-5284

laucomatous optic neuropathy (glaucoma), the second

leading cause of blindness in the world," is a neurodegen-
erative disease characterized by structural damage to the optic
nerve and the slow, progressive death of retinal ganglion cells
(RGCs). RGCs represent the third-order neurons in the visual
pathway. In the retina, their unmyelinated axons converge at
the optic nerve head (ONH), where they exit the globe and
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become the myelinated optic nerve (ON). In the rat, most
fibers decussate at the optic chiasm, forming the contralateral
optic tract (OT) and synapsing in the lateral geniculate nucleus.
In recent years, several rodent models of experimental glau-
coma have been developed? that exhibit many of the charac-
teristics of the human condition. Shared pathophysiological
events between such models include axon transport disrup-
tion, selective loss of RGCs and their axons, oxidative stress,
and reactive gliosis.

One cell type whose involvement in the pathogenesis of
neurodegenerative diseases is increasingly being recognized is
the microglial cell. Microglia are the resident immunocompe-
tent cells of the CNS parenchyma and can be viewed as bridg-
ing elements between the neuronal and immune systems. They
are part of the mononuclear phagocyte system but, under
normal physiological conditions, assume a quiescent, ramified
form with highly motile processes that monitor the environ-
ment.> Microglia respond rapidly to the disruption of tissue
homeostasis: they proliferate, assume an ameboid morphology,
migrate to the site of injury, express a multitude of receptors,”
produce numerous types of cytokines,>”” participate in the
complement cascade,® phagocytose cellular debris, and can
function as antigen-presenting cells.” Recent debate has fo-
cused on whether microglial activation is harmful or beneficial
in CNS injury.'” One theory proposed is that in the early stages
of disease, moderate activation of microglia may be beneficial
and may contribute to the regeneration of damaged tissue,'"
but in an overactivated and chronically dysregulated state,
microglia probably exacerbate preexisting damage and contrib-
ute to secondary disease progression'*'?; however, the role of
microglia may depend on the type and severity of injury.

Microglia have been implicated in the pathogenesis of
various experimental retinal and ON neuropathies. In the
retina, these include autoimmune uveoretinitis,'*'* diabetic
retinopathy,'® ischemia,'”'® excitotoxicity,'? photorecep-
tor degeneration,?°~2* AMD,** and trauma,?*"*” whereas in
the ON, a robust microglial response has been demonstrated
in ischemia,*®~*” and experimental allergic encephalomyeli-
tis (EAE).*” With regard to glaucoma, there is some limited
information regarding microglial activation in the retina/ONH
region®** in both experimental models and human speci-
mens**; however, to date, no data are available concerning this
process in the optic pathway distal to the ONH. The ONH region
is considered by some to be the primary site of injury in glaucoma,*>
Some evidence, however, suggests that the distal portion of the
ON may be more severely affected by glaucoma.®® It is of
interest, therefore, to discover where the microglial response
occurs earliest and with greatest magnitude. Delineating the
spatiotemporal microglial response in the optic pathway
would assist in addressing this matter. Further subjects of
interest relate to the expression of immunologic cell surface
markers by microglia during glaucoma; the infiltration, if any,
of macrophages or T lymphocytes, such as occurs in ischemic,
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traumatic, and autoimmune models of ON injury; and whether
microglial activation correlates closely with the degree of ON
damage. Such a finding would provide the opportunity for
using the detection of microglial activation as a surrogate or
adjunct marker for ON injury in studies relating to neuropro-
tection. The aim of the present study, therefore, was to address
these issues using a well-characterized rat model of glaucoma.

MATERIALS AND METHODS

Animals and Procedures

This study was approved by the Animal Ethics Committees of the
Institute of Medical and Veterinary Science and the University of
Adelaide and conformed to the Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes, 2004, and the ARVO
Statement for the Use of Animals in Ophthalmic and Vision Research.
Adult Sprague-Dawley rats (weight range, 200-250 g) were housed in
a temperature- and humidity-controlled room with a 12-hour light/12-
hour dark cycle and were provided food and water ad libitum. Rats
were anesthetized with intraperitoneal injection of 100 mg/kg ket-
amine and 10 mg/kg xylazine, and local anesthetic drops were applied
to the eye. Ocular hypertension was then induced in the right eye of
each animal by laser photocoagulation of the trabecular meshwork
using a slightly modified protocol of the method described by Levko-
vitch-Verbin et al.*” In brief, 80 to 100 spots of 50-pm diameter, 550 to
600 mW power, and 0.5-second duration were applied to the trabec-
ular meshwork. An additional 10 to 20 spots, 100-um diameter, 450
mW, and 0.5-second duration were delivered to three of the four
episcleral veins, A second laser treatment was often given on day 4 or
7, depending on the 10P. If the difference in IOP between the two eyes
was less than 8 mm Hg on day 3, these rats were given a second laser
treatment on day 4. In the remaining rats, if the IOP difference was less
than 8 mm Hg on day 7, they, too, received a second laser treatment.
Some animals had persistently raised 10P and consequently received
only one laser treatment. IOPs were measured in both eyes at baseline,
day 1, day 3, day 7, and at least weekly thereafter using a rebound
tonometer (TonoLab; Icare, Espoo, Finland) factory calibrated for use
in rats. Rats were killed at various time points after treatment by
cardiac perfusion with physiological saline under terminal anesthesia.
The number of rats analyzed at each time point was as follows: 3 days
(n = 6), 7 days (n = 13), 2 weeks (n = 24), 6 weeks (n = 7). No
animals were excluded from the present study for reasons relating to
inadequate IOP elevation. Five animals were excluded as a result of
death caused by anesthesia and four from death caused by hyphema.

Tissue Processing and Histology

Initially, the brain was removed. Next, each eye with ON, optic
chiasm, and the proximal part of the OT attached was carefully dis-
sected. From the dissected tissue, a short piece of ON, 1.5 mm behind
the globe, was removed for toluidine blue staining. The brain, globe,
and attached short proximal segment of ON, distal ON, chiasm, and
proximal segment of OT were fixed in 10% buffered formalin for at
least 24 hours. After fixation, the brain was positioned in a rat brain
blocker (PA001; Kopf Instruments, Tujunga, CA), and 2-mm coronal
slices were taken starting from the rostral and proceeding to the caudal
portion of the brain. Brain slices, along with the globe and optic
pathway, were then processed for routine paraffin-embedded sections.
Globes were embedded sagittally, and ONs and chiasmata were em-
bedded longitudinally. In all cases, 5-um serial sections were cut. In
some animals, the retina and ON were removed for cryosectioning
rather than for paraffin sections. These tissues were fixed in 10%
formalin for 1 hour and cryopreserved in 30% sucrose overnight, and
7-pm sections were taken using a cryostat.

The short piece of proximal ON taken for histology was fixed by
immersion in 2.5% glutaraldehyde with 4% paraformaldehyde in 0.1 M
phosphate buffer, pH 7.4, for 24 hours at 4°C, It was then placed in 1%
osmium tetroxide in saline overnight and was washed with cacodylate
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buffer at room temperature. Subsequently, the tissue was dehydrated
in graded alcohols and embedded in epoxy resin (TAAB Laboratories,
Aldermaston Berks, UK) for transverse sectioning. Sections (0.75 pum)
were cut on an ultramicrotome, mounted on glass slides, and enhanced
with osmium tetroxide-induced myelin staining using 1% toluidine
blue.

Immunohistochemistry

Paraffin-Embedded Sections. Tissue sections were deparaf-
finized in xylene and rinsed in 100% ethanol before treatment with
0.5% H,0, for 30 minutes to block endogenous peroxidase activity.
Antigen retrieval was achieved by microwaving the sections in 10 mM
citrate buffer (pH 6.0). Tissue sections were then blocked in phos-
phate buffered saline (PBS) containing 3% normal horse serum and
incubated overnight at room temperature in primary antibody (con-
taining 3% normal horse serum) followed by consecutive incubations
with biotinylated secondary antibody (Vector, Burlingame, CA) and
streptavidin-peroxidase conjugate (Pierce, Rockford, IL). Color devel-
opment was achieved with 3'-3'diaminobenzidine. Sections were
counterstained with hematoxylin, dehydrated, and mounted.

For immunohistochemical double labeling of ibal and OX-6,
visualization of OX-6 was achieved using a three-step procedure
(primary antibody, biotinylated secondary antibody, streptavidin-
conjugated AlexaFluor 488), whereas ibal was labeled by a two-step
procedure (primary antibody, secondary antibody conjugated to
AlexaFluor 594). In summary, sections were treated as described
except for the omission of the endogenous peroxidase block and
then were incubated overnight at room temperature with anti-ibal
and anti-OX-6. On the following day, sections were incubated with
AlexaFluor donkey anti-rabbit IgG 488 (1:250) together with biotinylated

Ficure 1. (A) IOP profiles of treated (red) and control (gray) eyes
after the induction of experimental glaucoma by unilateral laser treat-
ment. Data are expressed as mean area = 5D, where n = 44 (days 0,
1 and 7), n = 31 (days 8 and 14), and n = 7 (days 21, 35, and 42). (B-F)
Transverse sections of representative ONs stained with toluidine blue
showing different severities of ON injury. Control ON (B), treated ON
showing moderate damage (grade 2; C), treated ON showing severe
damage (grade 6; D). High-magnification images of control (E) and
damaged ONs (F). Scale bars: 25 pm (A-D); 10 pm (E, F).
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2 weeks 6 weeks

Ficure 2. Microglial activation within the retina after the induction of experimental glaucoma. In the retinas of control rats, a relatively sparse
population of ramified ibal-positive microglia was present within the inner retina (A). No ED1-positive cells were found (B). In treated retinas, an
increased number of ibal-labeled cells was evident that was notable in the nerve fiber layer (C, E, G). Peak activity was noted at 2 weeks after
lasering (E). Subtle signs of activation were still present at 6 weeks (G). Microglia were also immunopositive for ED1 (D, F, H). Maximum activation
was noted at 2 weeks (F). ED1 was no longer present 6 weeks after the insult (H). NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner

plexiform layer; INL, inner nuclear layer. Scale bar, 50 pm (A-H).

anti-mouse IgG antibody (1:250; Vector) for 30 minutes, followed by
streptavidin-conjugated AlexaFluor 594 (1:500; Invitrogen, Carlsbad, CA)
for 1 hour before mounting (Fluorescence Mounting Medium; Dako,
Carpinteria, CA).

Cryosections. Tissue sections were initially rinsed in PBS. For
0X18, they were then postfixed for 5 minutes in acetone, which
improved the signal-to-noise ratio of staining. Sections were washed in

PBS before treatment with 0.5% H,O, for 30 minutes to block endog-
enous peroxidase activity. Antigen retrieval was not required. Subse-
quently, sections were treated as for paraffin sections. For immunohis-
tochemical double labeling of cryosections, sections were incubated
overnight at room temperature with anti-ibal and either anti-OX18 or
anti-OX42. On the following day, sections were treated as for double
labeling in paraffin sections.

con 3 days

FiGure 3. Microglial activation and axonal damage 3 days after the induction of experimental glaucoma. After 3 days of experimental
glaucoma, ibal-positive microglia in the ONH (B), ON (F) and OT (J) showed cell body hypertrophy and retraction of processes and were
more numerous than in the ONH (A), ON (E), and OT (I) of control rats. In addition, SMI-32 abnormalities were clearly visible in the ONH
region (D, showing loss of background staining and subtle neurofilament abnormalities), ON (H), and OT (L), compared with control rats
(C, G, K). Scale bars: 100 pm (A-D); 25 pm (E-L).

7"
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Antibodies. The following primary antibodies were used in the
study: anti-mouse cd11b (1:2000, OX-42; Serotec, Raleigh, NC), anti-
rabbit CD3 (1:3000, A0452; Dako), anti-rabbit ionized calcium-
binding adapter molecule-1 (ibal, 1:50,000, 019-19741; Wako),
anti-mouse ED1 (1:500, MCA341; Serotec), anti-mouse major his-
tocompatibility complex (MHC) class 11 (1:500, OX-6; Serotec),
anti-mouse MHC class 1 (1: 10,000, OX-18; Serotec), anti-mouse
SMI-32 (1:10,000; Sternberger, Baltimore, MD). For double labeling,
the antibodies were used at the concentrations listed with the
exception that ibal, when used in the two-step procedure, was
diluted to 1:5000.

Evaluation of Histology
and Immunohistochemistry

All assessments of ON injury were performed in a randomized, blinded
manner. Loss of RGC axons in the ONs of glaucomatous eyes was

iba1
A
controls
D
ONH
FIGURE 4. Microglial activation and
axonal damage within the ONH and
proximal ON 7 days after the induc- ONH

tion of experimental glaucoma. Sec-
tions taken from a control (A-C) and
an injured (D-M) animal are shown.
Microglial activation and increased
microglial density were apparent
throughout the ONH and proximal
ON, as evidenced by robust labeling
for ibal (D) and ED1 (E). In addition,
macrophages were present in the vit-
reous humor (D, E, red arrows).
Higher microglial activity and in-
creased axonal cytoskeletal abnor-
malities (F, black arrows) occurred
at the transitional zone between un-
myelinated and myelinated axons.
This region is shown at higher mag-
nification in (G-I): ibal (G), ED1 (H),
SMI32 (I). Double-labeling immuno-
fluorescence of ED1 (J, K, red) and
myelin basic protein (MBP; K, green)
and of SMI-32 (L, M, red) with MBP
(M, green) was performed to reveal
the precise site of myelination. This
confirmed that greater microglial ac-
tivity and increased axonal cytoskel-
etal abnormalities were present in
the myelinated portion of the ON.
Asterisk: note the gap in axonal fi-
bers, caused by a penetrating blood
vessel also visible in (D-F). Scale bars:
200 pm (A-F, J-M); 50 pm (G-I).
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assessed using a previously developed semiquantitative ON grading
scheme based on toluidine blue-stained cross-sections.”® In summary,
zones of equal damage were defined on pictures showing the entire
cross-section taken with the 10X microscope objective. The percent-
age of the nerve cross-section occupied by each zone was determined
using Image] software (developed by Wayne Rasband, National Insti-
tutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/
index.html). Representative photographs of each zone were then
taken using a 40X objective. The severity of damage (0%, 15%, 30%,
45%, 60%) was then estimated for each zone by two independent
graders using the templates shown by Chauhan et al.*® The overall
axonal damage was calculated by summing the products of the mean
percentage of damage within each zone and the area of the nerve
occupied by the zone. This number was then multiplied by 10 and
rounded to obtain
0 corresponds to no damage, grade 5 to 50% axon loss, and grade 10

an entire number between 0 and 10. Hence, grade
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FIGURE 5. Temporal characterization of microglial activation and axonal cytoskeletal damage in the ON during experimental glaucoma. Sections
taken from the distal ON in representative animals are shown. Control (A-C), 7 days (D-F), 2 weeks (G-I), and 6 weeks (J-L) after the induction
of elevated I0P. In control rats, ibal-labeled microglia showed a classical ramified morphology (A) and were ED1-negative (B). Axonal fibers are
homogenously labeled by SMI-32 (C). At 7 days, a greater number of ibal-positive microglia was noted (D), together with expression of ED1 (E),
whereas numerous axons showed SMI-32 abnormalities (F). There was an increased number of ibal- and ED1-positive microglia at 2 weeks (G, H)
and again at 6 weeks (J, K). Note the change in morphology of ED1-positive microglia at 6 weeks; they have a foamy appearance indicative of
phagocytic activity (K). In contrast, abnormal SMI-32 immunolabeling gradually decreased at later time points (I, L), leaving a reduced number of
lightly stained, surviving axons, Scale bar: 50 pm (A-L); 25 pm (inset).

to 100% axonal loss. Of note, if the calculated damage grade was zero
but the nerve contained at least 20 damaged axons within the whole
cross-section, the grade was recorded as 1 as a nominal indication that
the nerve was damaged. An example of optic nerve grading is shown
in Supplementary Figure S1, http://www.iovs.org/content/51/12/
6448/suppl/DC1.

To ascertain whether ON injury correlated with the microglial
response, for each animal, transverse sections of the proximal ON
were graded for severity of damage by conventional examination of
toluidine blue-stained transverse sections (as described), whereas lon-
gitudinal sections of the adjacent medial ON were immunolabeled for
nonphosphorylated neurofilament heavy (SMI-32) and for the microg-
lial markers ibal and ED1. Immunostained sections, each expressing a
representative level of immunoreactivity, were photographed at 200
magnification. They were then imported into NIH Image ] 1.42q
software, where they underwent color deconvolution to separate the
diaminobenzidine reaction product from hematoxylin counterstain.*”
SMI-32 and ED1 images were subsequently analyzed with regard to the
specifically stained area in pixels using the in-built functions of the
Image] software. For ibal, the number of nuclei with immunoreactive
perikarya and processes was counted. Statistical analysis of correlations
was performed (Prism 5.0b; GraphPad Software Inc., La Jolla, CA)
using nonparametric tests (see Fig. 9 for the results).

REsULTS

Validation of the Experimental Model
of Glaucoma
The present model gave rise to a consistent elevation of IOP

(Fig. 1A), with the peak pressure most commonly occurring at
day 1 after lasering (35.2 = 8.0 mm Hg [mean * SD]). Most
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eyes needed a second treatment at day 4 or 7 to maintain
elevated IOP levels for longer than 2 weeks. By 3 weeks, IOP
values had returned to basal levels (Fig. 1A). The amount of ON
damage, as assessed by semiquantitative grading of toluidine
blue-stained transverse sections,”® ranged from nominal dam-
age to an axonal injury grade of 6, equating to a loss of axons
of approximately 60% (see Figs. 1B-D for representative im-
ages). The mean axonal injury grade at 1 week was 1.6 = 1.3,
whereas at 2 weeks, the mean axonal injury grade was 1.8 *=
1.4. These figures equate to a loss of axons of approximately
16% and 18%, respectively, and are consistent with those
recorded in other studies™~*? with similar elevations of IOP.

[ ibat 3 edt
14.0 3.0
1.2 24

g 8.4 18 g

~ L

= 56 12 2
28 0.6
0.0 0.0

control  1week 2weeks 6 weeks
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FIGURE 6. Quantification of ibal and ED1 immunoreactivities in the
distal ON in control rats at 1, 2, and 6 weeks after the induction of
experimental glaucoma. There was a gradual increase in ibal immu-
noreactivity over time compared with controls. ED1 immunoreactivity
was minimal in control ONs, increased steadily during the first 2
weeks, and was dramatically higher by 6 weeks. Data are expressed as
mean area = SEM.
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Spatiotemporal Characterization

of Microglial Activation
‘When considering the microglial response during experimen-
tal glaucoma, some general points are worth making regarding
the disease model. First, the induction of elevated IOP results
in a chronic, relatively mild axonal injury. It is not thought to
cause a focal lesion as occurs in other well-characterized par-
adigms of ON damage, including ON crush or transection,
models of ON ischemia, or EAE. Second, unambiguous identi-
fication of the site of injury in human and rodent models of
glaucoma has proved difficult, but some evidence suggests the
ONH region is the primary site.*® Third, considerable variabil-
ity exists among animals with regard to the extent of axonal
loss and the microglial response. The photomicrographs
shown are from representative animals, but other rats killed at
the same time points displayed lesser or greater damage.
Retina. Previous studies have shown microglial activation
in the rat retina after elevation of the IOP induced by cauter-
ization of the episcleral veins.****** Similar results were ob-

1 week

FiGure 7. Temporal characteriza-
tion of microglial activation and ax-
onal cytoskeletal damage in the OT
during experimental glaucoma. Sec-
tions taken from representative an-
imals killed 1 week (A-C), 2 weeks
(D-F), and 6 weeks (G-I) after the
induction of elevated I10P are
shown. Arrows: boundaries of the
OT. In the 7 day animal (grade 1),
ibal-labeled microglia displayed re-
traction in processes indicative of
activation (A). There was no evi-
dence of EDI1-positive microglia
within axonal tissue (B); however,
perivascular staining was observed
(inset). Axonal damage, denoted by
intensely stained SMI-32 abnormali-
ties, was clearly evident (C). In the
2-week rat (grade 2), an increased
number of ibal-positive microglia
was noted (D), together with the
expression of ED1 (E) and numer-
ous SMI-32 abnormalities (F). In the
G6-week rat (grade 5), robust label-
ing for ibal (G) and ED1 (H) was
observed throughout the OT. There
were few SMI-32 abnormalities, but
the entire right side of the OT showed
axonal loss. Note that in the region of
heavy axonal loss, there was greater
microglial activity. Scale bar: 100 pm
(A-I); 10 um (inset).
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tained in the present study after the induction of raised IOP
caused by laser photocoagulation of the trabecular meshwork.
In control retinas, a relatively sparse population of ramified
ibal-positive microglia was present, predominantly within the
inner plexiform layer (Fig. 2A). ED1 immunoreactivity was not
observed (Fig. 2B). At 3 days after lasering, ibal-positive mi-
croglia were marginally more numerous and were labeled
more robustly (data not shown). By 7 days, ibal-labeled
microglia were abundant within the inner retina and were
observed in close proximity to RGC bodies and their axons
located in the nerve fiber layer (Fig. 2C). A proportion of these
microglia were now EDI1 positive (Fig. 2D). This coincided
with a decrease in the number of RGCs immunopositive for
Brn-3, a transcription factor downregulated before cell death
(data not shown). The pattern of ibal immunoreactivity was
similar at 2 weeks after lasering, whereas ED1 immunoreactiv-
ity was more prevalent (Figs. 2E, 2F). By 6 weeks, ED1-positive
cells were no longer evident, and the density of ibal-labeled
cells had decreased markedly (Figs. 2G, 2H). Indeed, in some

2 weeks 6 weeks
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animals, ibal immunolabeling was indistinguishable from con-
trol rats, although in other animals with severe degeneration an
enhanced microglial presence was retained. Unlike in the
white matter (see below), most ibal- and ED1-positive microg-
lia in the retina retained a ramified morphology at all time
points after the elevation of IOP.

Optic Nerve and Tract. Throughout the ON and OT of
control rats, numerous ibal-positive microglia with small
cell bodies and delicate processes were noted (Figs. 3-8).
These cells were commonly aligned parallel to the axon
bundles in the ON and OT, although in the laminar region of
the ONH they were sometimes aligned perpendicularly to
axons. As in the retina, minimal ED1 immunolabeling was
detectable (Figs. 4 -8).

By 3 days after the induction of experimental glaucoma,
ibal-positive microglia in the ONH (Figs. 3A, 3B), ON (Figs. 3E,
3F), and OT (Figs. 31, 3]) typically showed some retraction of
processes and hypertrophy of the cell body and were margin-
ally greater in number than in controls. There was no evidence
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Ficure 8. Microglial response at the level of the optic chiasm 2 weeks
after the induction of experimental glaucoma. In control rats, ibal
labeled ramified, quiescent microglia throughout the distal ON and OT
(A), whereas no ED1 immunoreactivity was detectable (C). In treated
rats, increased microglial density, morphologic changes, and expres-
sion of ED1 were observed within the injured ON and the contralat-
erally projecting OT (E, iba; G, ED1). Areas within the boxed regions
in (A), (C), (E), and (G) are shown at higher magnification in the
accompanying images to the right (B, D, F, H). Of interest, there was
minimal evidence of any injured, noncrossing fibers in the ipsilaterally
projecting OT. Scale bars: 400 pm (A-D); 200 pm (E-H).
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of a spatial gradient in microglial activity along the optic path-
way. The increased microglial activity was concurrent with
early indications of axonal cytoskeleton damage, as evidenced
by abnormalities in nonphosphorylated neurofilament heavy
(SMI-32), at the ONH (Figs. 3C, 3D), and along the extent of the
ON (Figs. 3G, 3H) and the OT (Figs. 3K, 3L).

At 7 days after lasering, ibal-positive microglia throughout
the proximal (Fig. 4) and distal (Fig. 5) ON and OT (Fig. 7)
were more numerous than at 3 days and displayed a partially
activated morphology, with a proportion of microglia express-
ing ED1-positive granules. In the proximal segment of the ON,
there was a regional disparity in the microglial response. More
ibal (Figs. 4D, 4G) and ED1 (Figs. 4E, 4H) activities were
typically observed in the retrobulbar ON than in the ONH. This
was also the case for SMI-32 immunolabeling, which featured
more abnormalities in the retrobulbar ON (Figs. 4F, 4). Dou-
ble-labeling immunofluorescence of myelin basic protein with
ED1 and SMI-32 demonstrated that the increases in microglial
activity and axonal cytoskeletal abnormalities occurred at the
transition zone, where the axons become myelinated (Figs.
4]-M).

From 7 days to 6 weeks, throughout the myelinated ON and
OT, there was a gradual increase both in the number of microg-
lia and in their activation state. This is illustrated in Figures 5
and 6. Figure 5 shows sections from the distal ON of represen-
tative animals killed at 1, 2, and 6 weeks each with moderate
ON damage (grade 2) according to toluidine blue grading,
whereas Figure 6 is a quantitative representation of the overall
results. At 1 week after injury, ongoing neurofilament dephos-
phorylation was prevalent (Fig. 5F), accompanied by a rise in
the number of ibal-microglia (Figs. 5D, 6) but relatively modest
ED1 accumulation (Fig. 5E, 6) compared with controls (Figs.
5A-C). At 2 weeks after lasering, neurofilament dephosphory-
lation was similar to that seen at 1 week (Fig. 5I), and there was
a moderate increase in the number of ibal- and ED1-positive
microglia (Figs. 5G, 5H, 6). By 6 weeks after lasering, ongoing
neurofilament dephosphorylation had decreased markedly
in most animals (Fig. 5L); however, the number of ibal-
positive cells was higher than at 2 weeks (Figs. 5], 6), and
the abundance of ED1 was dramatically greater (Figs. 5K, 6).
ED1-positive microglia displayed an activated morphology,
with some cells adopting a macrophage-like, foamy appear-
ance (Fig. 5K).

Findings similar to those found in the ON were noted in the
OT. Figure 7 shows sections through the OT (at bregma —3.10)
in representative rats killed at 1, 2, and 6 weeks. The number
of ibal-labeled microglia increased with time after lasering and
severity of injury (Figs. 7A, 7D, 7G). Very few EDI-positive
cells were noted in the 1-week-old rat (Fig. 7B), but increased
perivascular ED1 staining (Fig. 7B, inset) was seen. ED1 abun-
dance was greater in the 2-week-old animal (Fig. 7TE) and was
markedly higher in the 6-week-old rat (Fig. 7H), which, like
many animals, featured asymmetric damage (Figs. 7G-D).

At the optic chiasm, most ON axons from each eye meet,
cross the midline, and project to the contralateral OT. In the
adult rat, 5% to 10% of RGC axons do not cross the midline of
the optic chiasm, projecting instead to the ipsilateral half of the
brain. Figure 8 shows ibal and ED1 immunoreactivities at the
level of the optic chiasm in a control rat (Figs. 8A-D) and in a
rat that underwent induction of experimental glaucoma 2
weeks previously (Figs. 8E-H). A robust microglial response
was seen in the ipsilateral ON and contralateral OT in the
treated animal; however, there was negligible evidence for any
microglial activation in noncrossing fibers in the ipsilaterally
projecting OT or indeed of any axonal cytoskeleton break-
down in the ipsilateral OT (data not shown). This was the case
at all time points.
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Correlation between Microglial Activation
and Optic Nerve Injury

We were interested in whether ON injury correlated with the
microglial response, particularly at early time points featuring
mild or moderate pathologic changes. To achieve this aim, rats
were killed at 1 and 2 weeks after the induction of experimen-
tal glaucoma. Transverse sections of the proximal ON were
graded for severity of damage by conventional examination of
toluidine blue-stained transverse sections, whereas longitudi-
nal sections of the adjacent medial ON were immunolabeled
for SMI-32 and for the microglial markers ibal and ED1. Ibal
labels both quiescent and activated microglia, thus providing
an index of microglial density, whereas abundance of the
Iysosomal antigen ED1 offers a measure of microglial phago-
cytic activity. Subsequently, both measures of axonal injury
were correlated with each microglial marker. The overall re-
sults showed a highly statistically significant correlation be-
tween axonal injury and the microglial response (Fig. 9; Sup-
plementary Table S1, htp://www.iovs.org/content/51/12/
6448/suppl/DC1). In summary, the greater the degree of ON
injury (whether assessed by grading of toluidine blue-stained
sections or by immunostaining for SMI-32), the greater the
number of microglia and the greater the abundance of ED1
granules expressed by microglia. A number of specific obser-
vations can also be made: first, ON damage as assessed by
grading of toluidine blue-stained transverse sections showed a
greater correlation with both microglial markers at the 2-week
than at the l-week time point; second, the correlation was
stronger for ED1 than for ibal; third, ON damage as assessed by
extent of abnormal SMI-32 immunostaining correlated better
with ibal than with ED1.

Microglial Activation in Experimental Glaucoma 6455

Expression of Immunologic Cell Surface Markers

The morphology and distribution of complement receptor
type 3 (cd11b, OX42) immunoreactive microglia in control and
injured tissues closely matched those of ibal. In control ani-
mals, OX42 was expressed in ramified microglia with small cell
bodies and delicate processes, which, in the ON, were typi-
cally aligned parallel to the nerve bundles (Fig. 10A). At 1 week
(data not shown) and 2 weeks (Fig. 10B) after the induction of
experimental glaucoma, OX42-positive microglia throughout
the optic pathway were more numerous and tended to have
larger cell bodies and shorter, thicker processes. Double-label-
ing studies showed that OX42 was exclusively localized to
ibal-positive microglia; however, a small percentage of ibal-
positive microglia were not immunolabeled by OX42 (Figs.
10C, 10D).

In control animals, MHC class 1 (OX18) lightly stained a
population of cells that had the morphology of OX42- and
ibal-positive microglia, featuring small cell bodies and fine
processes (Fig. 10E). OX18 also faintly labeled a few cells with
lateral processes that bore greater resemblance to astrocytes.
After 1 week (data not shown) and 2 weeks (Fig. 10F) of
experimental glaucoma, there was a marked upregulation in
the number of OX18-labeled cells that showed an altered mor-
phology analogous to that observed for OX42. Double-labeling
studies revealed that most OX18-positive cells colocalized with
ibal-positive microglia (Figs. 10G, 10H).

MHC class II (OX6) was absent from the optic pathway in
control animals (Fig. 10I) except for the presence of occasional
perivascular microglia, which constitutively express MHC class
II. After the induction of experimental glaucoma, numerous
OX6-positive cells with the morphology of OX42- and ibal-
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Microglial expression of complement type 3 receptor (0X-42, A-D), MHC class 1 (OX18, E-H), and MHC class Il (OX-6, I-L) during

experimental glaucoma. (A, E, I) Control ONs. The remaining images are of sections from moderately damaged ONs 2 weeks after the induction
of elevated IOP. OX-42 is constitutively expressed by quiescent microglia in the normal ON (A) and is persistently upregulated on activation (B-D).
Interestingly, a few ibal-positive microglia did not express cd11b (D). OX-18 is not exclusively, although it is predominantly, expressed by
microglia in control ONs (E). Marked upregulation occurs in activated microglial cells (F-H). OX-6 is absent from control ONs (I) but is robustly
and exclusively expressed by activated microglia (J-L). Scale bars: colorimetric images, 50 wm; immunofluorescence images, 25 um.

positive cells were found throughout the ON. Cells were typ-
ically lightly stained at 1 week but were strongly labeled by 2
weeks (Fig. 10]). Double labeling demonstrated that the induc-
tion of OX6 expression occurred exclusively in ibal-positive
microglia (Figs. 10K, 10L). Interestingly, and unlike OX42 or
OX18, there was a spatial difference in the expression of OX6
within the optic pathway. No expression of OX6 was found in
the retina at any time point after the induction of experimental
glaucoma, even in animals that featured numerous ED1-posi-
tive retinal microglia, indicating ongoing neuronal damage and
phagocytic activity. This finding is illustrated in Figure 11,
which shows adjacent sections from the retina (Figs. 11A,
11B), ONH (Figs. 11C, 11D), and proximal ON (Figs. 11E, 11F)
from one representative animal killed after 2 weeks and stained
for ED1 and OX6. ED1 immunoreactivity was seen in all three
locations. In contrast, robust labeling of OX6 was apparent in
the ON, but only very limited expression of OX6 was evident
in the ONH, and no staining was detectable in the retina. Of
note, OX6 labeling in the neck of the ONH varied markedly
between animals, with most rats showing few OXG6-positive
cells while others featured several OX6-labeled microglia. The
presence or absence of OX6 immunoreactivity seemed unre-
lated to the severity of ON injury or grade of microglial activa-
tion within the ON.

Infiltration of Leukocytes

Very limited T-cell infiltration was found in the damaged ON
(Figs. 12A, 12B) or retinas (data not shown) using an antibody
that recognizes the pan T-cell marker CD3. The number of
infiltrating cells tended to increase both with the severity of
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injury and with the passage of time after insult (Fig. 12C). The
increased density of T cells observed in perivascular areas (Fig.
12D) was consistent with invasion from blood vessels. No
infiltration of neutrophils, as defined by immunoreactivity to
myeloperoxidase, was found in injured ONs during experimen-
tal glaucoma (data not shown).

Rat models of traumatic, ischemic, and autoimmune optic
neuropathies all share a common pathologic feature: the pres-
ence of a focal lesion in the proximal ON with accompanying
infiltration of hematogenous macrophages. We addressed the
question of whether laser-induced experimental glaucoma also
results in the presence of a focal lesion within the ON with
accompanying infiltration of macrophages. After 1 and 2
weeks, there was an absence of ED1- and ibal-positive cells
with the physical characteristics of macrophages in any part of
the optic pathway, suggesting that the blood brain barrier
remains intact in this disease paradigm. At 6 weeks, there was
evidence of some cells with a macrophage-like morphology
within the degenerating ON (Figs. 12E-H), particularly in rats
with more severe damage, which corresponded with the dis-
appearance of myelin basic protein. These cells could be resi-
dent microglia that had fully transformed into phagocytic mac-
rophages or infiltrating macrophages.

Di1scuUssSION

There is increasing evidence that microglia play a central role
in chronic degenerative conditions of the CNS, including Alz-

heimer’s and Parkinson’s diseases, multiple sclerosis, amyotro-
phic lateral sclerosis, and many others.'” In the present study
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Ficure 11.  Spatial pattern of OX6 expression during experimental
glaucoma. Adjacent sections from one representative animal killed 1
week after the induction of elevated IOP and stained for ED1 (A, C, E)
and OX6 (B, D, F) are shown. Three locations are shown: midperiph-
eral retina (A, B), ONH (C, D), and proximal ON (E, F). Numerous
ED1-positive ramified microglia were present within the retina (A).
ED1-labeled cells were somewhat reduced in density in the prelaminar
and laminar portions of the ONH (C, arrows) but were numerous
within the myelinated portion of the proximal ON (E). Interestingly,
the pattern for OX6 was strikingly different from that for ED1. OX6 was
absent from the retina (B). Note, however, the presence of many
OX6-positive cells in the choroid (B, arrows). Expression of OX6-
positive microglia in the ONH varied between animals, but typically
only sparse labeling was observed, as in this rat (D, arrow). In the
proximal ON, OX6 was robustly expressed on cells with the distinct
features of activated microglia (F). Scale bar, 50 pm (A-F).

we have, for the first time, described the microglial response in
the optic pathway of rats with experimental glaucoma. Microg-
lial activation occurred along the entire optic pathway and
correlated closely with axonal damage. It was, however, not
accompanied by any overt infiltration of neutrophils. Microglia
upregulated the expression of immunologic cell surface mark-
ers, including complement receptor type 3, MHC class I, and
MHC class II, but the expression of MHC class II was limited to
cells within the white matter. Despite the increased expression
of molecules associated with antigen presentation, only nom-
inal T lymphocyte infiltration was observed. Further studies are
warranted to elucidate the role of microglial activation in
glaucoma.

The primary site of injury in glaucoma is yet to be unequiv-
ocally identified, but some research points toward the ONH,
the site at which RGC axons pass through the connective
tissue of the lamina cribrosa.***> Previous studies in rats*'!
and humans®” have described increased microglial activation in
the ONH during glaucoma, but neither study examined other
regions of the optic pathway. In the present study, we ob-
served marked axon transport failure at the ONH as early as 3
days after the induction of raised pressure. This was accompa-
nied in the ONH by an alteration in the morphology of ibal-

78

Microglial Activation in Experimental Glaucoma 6457

positive microglia from a quiescent to an activated phenotype;
yet, there was no indication of a specific or preferential microg-
lial activation at this location at this time point. Throughout the
retina, ON, and OT, ibal-positive microglia also showed some
retraction of processes and cell body hypertrophy. Similarly, at
7 and 14 days, microglia in the ONH were more numerous and
upregulated expression of the lysosomal antigen ED1. Again,
these events were ostensibly concurrent in the other regions of
the optic pathway. Indeed, somewhat contrary to expectation,
there was a clear trend of greater microglial activity beyond the
point of myelination in the retrobulbar ON that occurs imme-
diately distal to the ONH. This corresponded with the finding
of more numerous SMI-32 abnormalities in the myelinated
region of the ON. The combined results are consistent with the
results of a study by Schlamp et al.,*® who analvzed axonal
degeneration in the DBA/2] mouse model of glaucoma and
documented greater structural preservation in the ONH com-
pared with more distal segments of the pathway.

Five percent to 10% of RGC axons in the adult rat do not
cross the midline of the optic chiasm, projecting instead to the
ipsilateral half of the brain. These fibers originate from the
inferior-temporal crescent of the retina."®*° In the present
study, analysis of the optic chiasm revealed minimal evidence
of any microglial activation in noncrossing fibers in the ipsilat-
erally projecting OT at any of the time points analyzed. The
obvious conclusion to draw is that there is negligible death of
RGCs in the region of the inferior-temporal retina from which
these fibers originate. The results confirm and extend earlier
observations of preferential damage in the superior segment of
the retina and ON in the hypertonic saline and laser models of
glaucoma.?%!

One important goal of the present study was to shed light
on the temporal relationship between microglial activation and
axonal loss in the ON. Two related aspects were of interest:
first, to ascertain whether alterations in microglial markers
preceded, were concomitant with, developed soon after, or
were significantly delayed after axonal cytoskeletal damage;
second, to evaluate whether microglial activation can be used
in neuroprotection studies as a surrogate or an adjunct marker
for ON injury, particularly at early time points featuring mild or
moderate pathologic changes (1 and 2 weeks) when axon
counting is less reliable. Microglia are known to be very sen-
sitive to disturbances in milieu homeostasis, neuronal function,
and disruption,® which would seem to put them in an ideal
position to quantify the severity of early axonal damage.

With regard to the onset of microglial activation in the ON,
at 3 days after the induction of glaucoma, the earliest time
point analyzed, axonal loss as determined by conventional
analysis of toluidine blue-stained ONs was marginal, but
SMI-32 immunolabeling revealed subtle abnormalities in some
axons. Expression of EDI1, the rodent equivalent of CDG8
whose presence is considered indicative of phagocytosis, was
negligible. Conversely, ibal immunostaining showed clear ev-
idence of microglial activation, as discussed. Ibal is increas-
ingly used as a marker of microglial activation. It has been
shown to be upregulated in a time-dependent manner after
injuries such as axotomy>? and focal cerebral ischemia®® and is
thought to contribute to microglial cell migration.> The
present results show ibal to be a highly sensitive marker of
damage in the ON, which allows identification of early patho-
logic axonal changes soon after injury, before any overt axonal
loss and phagocytosis have occurred.

To ascertain whether ibal or ED1 might prove useful in
neuroprotection studies as quantitative markers for ON injury,
we correlated each antigen with two complementary measures
of axonal injury, grading of toluidine blue-stained transverse
sections, which is the most frequently used method for esti-
mating axonal loss® and abundance of SMI-32 abnormalities in
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FiGure 12. (A-D) Infiltration of T cells in the distal ON during experimental glaucoma. Occasional T cells, as identified by the pan T-cell marker CD3,
are present in control ONs (A). Very limited infiltration occurred in moderately damaged ONs after 2 weeks (B). Severely damaged (grade 5) nerves at
6 weeks show greater T-cell infiltration (C). This is particularly evident around large blood vessels (D). (E-H) Presence of macrophages during
experimental glaucoma. Immunolabeling for ibal (E, G) and ED1 (F, H) in a moderately (grade 2; E, F) and a severely (grade 5; G, H) injured ON 6 weeks
after the induction of elevated 10P showed occasional cells with the morphologic features of macrophages (large, round cells with foamy cytoplasm but
no processes; E-H, arrows). However, most cells resembled phagocytic resident microglia, even in the severely damage ON. Of note: clear distinction
between the two populations is not possible based on ibal and ED1 immunolabeling. Scale bars: 100 pm (A-C); 25 pum (D-H).

longitudinal sections of the ON. SMI-32, which labels nonphos-
phorylated NF-H, has been shown by others to be an excellent
marker of axonal injury®®*® and, in our hands, was more
sensitive than other axonal cytoskeletal proteins for early de-
tection of pathologic changes in the ON (unpublished obser-
vations). The overall results showed a highly statistically signif-
icant correlation among all four combinations; nevertheless,
minor differences were evident. The first disparity was that ON
damage as assessed by toluidine blue staining correlated better
with both microglial markers at the 2-week than at the 1-week
time point. This may simply be due to the higher number ()
at the later time point. Alternatively, it may relate to the greater
reliability of both the grading system and the microglial re-
sponse in situations of increased injury. Two further observa-
tions were that the correlation with ON grading was stronger
for ED1 than for ibal, whereas injury as assessed by SMI-32
immunostaining correlated better with ibal than with EDI1.
These findings are understandable when viewed from a phys-
iological perspective. Early axonal injury, comprising axonal
transport disruption and dephosphorylation of neurofilaments
but little measurable axonal loss, would result in increases in
SMI-32 abnormalities and ibal expression, but negligible ED1
expression since the phagocytosis of axonal debris is yet to
commence. Later time points would comprise morphologically
visible axonal breakdown, myelin disruption, and activation of
the phagocytic system. Thus, it makes sense that ED1 and ON
grading are closely matched.

The overall results advocate microglial activation as a useful
adjunct quantitative tool for assessment of the status of ON
damage in neuroprotection studies, although a cautionary note
must be added that we do not yet have enough information to
discern the precise relationship between microglial activation
and neurodegeneration. Nevertheless, previous studies, both
in the ON and the brain, have reached a similar conclusion that
the extent of microglial activation reflects the severity of in-
jury; for example, Zhang et al.>” showed that the time course
of microglial morphologic change after transient middle cere-
bral artery occlusion paralleled neuronal damage, whereas
Kato et al.*® highlighted that microglia were activated in a
graded fashion in response to the severity of neuronal injury
after temporal forebrain ischemia. The usefulness of microglia
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as a means of quantifying damage and neuroprotection has also
been exploited in chronic models of injury, such as chronic
cerebral hypoperfusion, which features slow, progressive dam-
age to CNS white matter tracts.*® ¢!

Rat models of traumatic (ON transection,®* ON crush®®),
ischemic (anterior ischemic optic neuropathy, permanent oc-
clusion of the common carotid arteries),”” and autoimmune
(EAE)*” optic neuropathies all share a common pathologic
feature: the presence of a focal lesion in the retrobulbar ON
with accompanying infiltration of hematogenous macro-
phages.

It is known that blood vessels in the retrobulbar ON are
permeable to intravascular tracers such as horseradish perox-
idase, prompting the question whether there is a true blood-
brain barrier at the optic nerve head.®* This inherent weakness
of the blood-brain barrier has been suggested to be responsible
for the susceptibility of this region to lesion formation in both
EAE and multiple sclerosis.”® We examined whether there is a
similar focal lesion with an accompanying presence of macro-
phages during experimental glaucomatous optic neuropathy.
We found no evidence of a focal lesion or macrophage pres-
ence in the ON after the elevation of IOP, suggesting that the
blood-brain barrier remains intact in this disease paradigm.

During glaucoma, the appearance of ED1-positive microglia
with an ameboid, foamy, phagocytic appearance in the ON and
OT was delayed, occurring between 2 and 6 weeks. This
paralleled an increase in myelin basic protein disorganization.
It is well known that the clearance of myelin debris after
axonal cytoskeletal degeneration is a lengthy process in CNS
neurodegenerative conditions because of the failure of microg-
lia to develop into fully functional phagocytic cells,”® coupled
with the minimal role played by oligodendrocytes.°® Phago-
cytic removal of tissue debris helps create a pro-regenerative
environment. The inefficiency of white matter phagocytosis in
the CNS compared with peripheral nerves is thought to ac-
count for the lack of neuronal regeneration under physiologi-
cal conditions. This is clearly the case in glaucoma.

Microglia are the major cell population in the CNS with the
potential to act as antigen-presenting cells. Under normal phys-
iological conditions, the expression of MHC molecules, which
are critical for T-cell interactions, is at low or undetectable
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levels. After injury, microglia increase the expression of MHC
class II. In some, but not all, models of acute and chronic
injury, this is associated with a limited T-cell response. After
the induction of experimental glaucoma, there was an upregu-
lation in MHC class I and Il in the ON and OT, which was most
clearly evident at 1 week and which slowly declined thereafter.
This did not correlate with any significant T-cell infiltration,
suggesting either an insufficient presence of costimulatory mol-
ecules or that MHC antigens perform functions unrelated to the
induction of an immune response. However, in more severely
injured animals, we could observe limited infiltration, which is
in accordance with the infiltration of only small numbers in
nearly all neurodegenerative diseases.'® Interestingly, there
was a fundamental difference between the gray matter of the
retina and the white matter of the ON and the OT: MHC class
II was markedly upregulated on white matter microglia, but no
expression was observed in retinal microglia. The same obser-
vation was made by Rao et al.°” and Zhang and Tso®® using
intracranial and intraorbital models of ON transection, namely
that MHC class Il-positive cells were localized to degenerating
myelinated fibers but not to the retina. The explanation for the
regional difference is not simply attributed to the presence of
injured myelin in the white, but not gray, matter, because
ischemia-reperfusion'® and kainic acid-induced excitotoxic-
ity'? both induced OX6 expression by resident retinal microg-
lia. The explanation may be related to the fact that these latter
models cause injury to more than one neuronal class in the
retina, which is not the case with ON transection and glau-
coma, or that they cause a more pronounced glial reactivity in
general. The degree of retinal stress caused by the present
model may simply not be sufficient to provoke the expression
of MHC class I molecules on resident microglia or to cause
invasion by bone marrow-derived macrophages, which in mice
have been shown to be more prone to express MHC class 11
molecules.*
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6. The influence of hyperglycaemia in experimental glaucoma

The previous papers have characterized and validated an experimental model of glaucoma, and
established appropriate methods to quantify optic nerve damage. With these tools in hand, it is
now possible to embark on the central query, the effect of hyperglycaemia in ocular hypertension.

Hyperglycaemia has been shown to exacerbate ischemic brain injury.2'5> Compromised optic
nerve blood flow and oxygen supply is a possible contributor to glaucomatous optic neuropathy.
Nevertheless, evidence regarding an epidemiological association between diabetes mellitus and
glaucoma is controversial, despite large-scale clinical trials. In the Ocular Hypertension Treatment
Study, diabetes even seemed to protect against the conversion to glaucoma.3' Glucose has been
shown to protect retinal neurons during both acute and prolonged periods of ischemia.?49. 285 The
following paper aims to further elucidate the role of hyperglycaemia in experimental glaucoma.

| chose to use STZ-diabetic rats because this model produces consistent elevation of systemic
glucose levels and is well established in diabetes research. It has been used for more than 20
years. This paradigm, to some extent, mimics human type 1 diabetes. However, it is important to
bear in mind that it does not necessarily reproduce all the changes seen in humans and the
complete lack of insulin is in striking contrast to the more common type 2 diabetes. Hence, the
study set-up reproduces the conditions found in epidemiologic research incompletely, and the
results of this experimental work most likely do not reflect the situation of humans with diabetes
mellitus and POAG to the full extent and complexity.
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7. Conclusions and future directions

7.1. Overall significance and contribution to the current knowledge

The current body of work provides further evidence pointing towards the optic nerve head as the
site of the primary insult in experimental models of ocular hypertension. Importantly, it has
confirmed disruption of the anterograde transport at the optic nerve head by means of
endogenous markers. Previous studies were mainly based on the use of exogenous agents that
were injected into the vitreous cavity. The utilization of endogenous markers provides the
advantage of reducing the occurrence of artefactual changes.

The concurrent spatio-temporal study of the antrograde transport of endogenous amyloid
precursor protein and sensitive markers of cytoskeleton breakdown, namely SMI-32, suggests
that functional failure precedes structural breakdown. This emphasizes the significance of axonal
transport for neuronal homeostasis and could make a case for energy failure as a pivotal facet of
glaucoma pathology. This study also found evidence of neuron driven presumptive
neuroregeneration at the optic nerve head.

Microglial markers hitherto have been used to quantify brain injury. In their role as surveillance
elements this population of cells monitors the environment, reacts quickly to disturbances and
sensitively indicates noxious influences and homeostasis disruption. This work investigated
microglial involvement in glaucomatous optic neuropathy and foreshadows the usefulness of
microglial markers in optic nerve and retinal research.

Finally, this work added an element of evidence to findings from epidemiological studies and
found attenuated neurodegeneration of RGCs and their axons in the presence of systemic
hyperglycaemia. This result may help to explain the absent or weak association between POAG
and diabetes mellitus, and encourages further research towards bioenergetic neuroprotection.

7.2. Limitations of the study
7.2.1. Quantification of RGC

Sectoral retinal nerve fibre loss is a hallmark of glaucomatous optic neuropathy in humans, and
provides strong evidence for the optic nerve head being the site of the primary insult. Therefore,
as highlighted earlier, an ideal animal model of glaucomatous axon degeneration should produce
sectoral damage. Sectoral loss has repeatedly been demonstrated in the DBA/J2 mouse as well
as in rat models of ocular hypertension.'46. 180. 305 These models have subsequently been widely
used as surrogate models for human glaucoma. Since ganglion cell loss is not uniform across the
entire retina and the severity of damage variable, depending on the location, the most accurate
analysis of ganglion cell numbers would include the whole retina. On a practical note, flat mounts
of the retina are most commonly used.

In the present study, | chose to count ganglion cells on sagittal sections instead. This comes with
the advantage of being able to stain sections with a multitude of antibodies, representing different
aspects of cellular function from diverse cell populations. However, the estimates for individual
animals might vary depending on the location of the section with respect to the areas of different
severity of damage. Nevertheless, provided that the number of animals and sections analysed is
large enough, the variability should be acceptable. Moreover, estimated axon counts on optic
nerve cross sections are likely to be related to RGC loss, unless there is a significant element of
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compartmentalization in the neurodegenerative process,® and similar findings in the two
compartments substantiated the validity of the retinal findings.

7.2.2. Estimation of axonal loss

Full axon count techniques represent the most accurate way of determining structural axonal
damage. Manual counting on transmission electron microscopy is considered the gold standard.
Nevertheless, only about 50% of the optic nerve cross section is amenable for analysis with
transmission electron microscopy3?! because the mesh grid used occupies about half of the
tissue area, and therefore total nerve counts must be extrapolated. Light microscopy techniques
underestimate the number of axons by up to 40% because small axons under 0.5 um diameter
are not detected due to the limited resolution of light microscopy.2% However, manual counting is
extremely time consuming and not practical for larger numbers of samples. Methods for semi-
automated counting have therefore been developed and are often used to evaluate light
microscopy photographs of semi-thin resin sections. Different approaches are used: (1) Full semi-
automated counting on montaged pictures,'®* (2) semi-automated counting on a certain number
of pictures taken randomly (commonly about 10 pictures, representing approximately 10% of the
whole optic nerve cross section),®” and (3) semi-automated counting of images taken after
targeted sampling.308 All of these methods produce satisfactory counts, however, semi-automated
targeted sampling methods have been claimed to be most practical and accurate.®0! In this
approach, the optic nerve cross section is first divided into zones of approximately equal damage.
A defined number of pictures is then taken from each zone of damage and quantified by semi-
automated counting. The total axon count is then extrapolated by a weighted average calculation.
For all methods based on partial sampling, axonal loss should ideally be estimated by comparing
the estimated count of a particular nerve to the estimated count of the contralateral nerve, which
serves as internal control, where the pictures have been taken from identical locations. The axon
density varies within the optic nerve, damage is not uniform3%® and inter-animal variability of axon
numbers between individual animals can be substantial, even within the same strain.310

Finally, each method has its advantages and disadvantages. In general, greater accuracy comes
at the cost of more time consumption. In this present study, | used two methods for axon
quantification to improve accuracy: the Chauhan method®'! and semi-automated counting after
targeted sampling. Quantification of the former relies on qualitative visual grading, while the latter
uses automated axon counting by software. Full semi-automated counting on montaged pictures
might have been better, but not practical due to limitations in manpower and accessibility of
technology. To overcome possible limitations, results were corroborated by evaluation of
longitudinal optic nerve sections after immuno-staining for microglia, macroglia and neurofilament
markers.

7.2.3. Time frame of the study

In the present study, axonal and ganglion cell degeneration was quantified two weeks after
induction of ocular hypertension. It would, without any doubt, be of interest to consider later time
points as well to determine whether the neuroprotective effect observed is sustained or
neurodegeneration merely delayed. However, STZ-induced hyperglycaemia itself is associated
with vascular damage and neurodegeneration in the longer term, possibly in part because of the
complete insulin withdrawal. Neuronal cells begin to die soon after the onset of STZ-diabetes.
The molecular pathways involved have not yet been elucidated completely, but oxidative stress,
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excitotoxicity and inflammation seem to be implicated.312 The rate of apoptosis in the retina after
only 1 month of STZ-diabetes is 10 times higher than in controls and after 7.5 months of diabetes
the thickness of the inner plexiform layer is reduced by 22%, the inner nuclear layer by 10%. The
RGC density was reduced by 10%.3'3. 314 The vascular changes in the STZ-diabetes model
include blood vessel dilation, capillary degeneration with loss of endothelial cells and pericytes,
and microaneurysma formation.3'5 Blood-retina-barrier breakdown with increased vascular
permeability starts 2 weeks after onset of diabetes and is accompanied by increased leukostasis,
which leads to vascular occlusion and tissue ischemia.314. 316. 317 Elevated concentrations of
extracellular glutamate have been measured in the vitreous and the retina of rats with STZ-
induced diabetes.318 319 Early functional changes have been documented by electroretinography,
which showed altered retinal electrophysiological activity.320. 321 Of note, the positive scotopic
threshold response, reflecting ganglion cell activity, was most sensitive to STZ-diabetes and
changes were found as early as 4 weeks after induction,322. 323 before morphological changes
became obvious. Qin et al. detected ganglion cell dendritic field abnormalities 12 weeks after
induction of STZ-diabetes.2%0 Another group found retrograde axonal transport impairment of
large and medium type RGC as early as one month after induction of STZ-diabetes, which was
prevented by aldose reductase inhibitor,324. 325

7.3. Speculations about mechanisms of neuroprotection

In the present study | have not addressed the issue of possible mechanisms by which
hyperglycaemia protects RGCs. However, mitochondria potentially are important in this
context.286 Mitochondrial dysfunction has been repeatedly implicated in the pathogenesis of
glaucoma.24

Mitochondria play a cardinal role in neuron homeostasis. They are central not only in energy
production, but play a crucial role in the regulation of cellular processes. In particular, they are
pivotal in regulating cell death,326. 327 marking the point of no return in apoptosis and necrosis.
Mitochondria can induce apoptotic cell death both through caspase-dependent and caspase-
independent pathways.328 Furthermore, transport disruption and lack of mitochondria in synaptic
terminals can induce synaptic degeneration. If the disruption is significant, Wallerian degeneration
occurs. In less severe injuries ‘dying-back’ results.30

Mitochondria are involved in the pathogenesis of many neurodegenerative diseases, which all
show the following features: selective brain areas and/or neuronal populations undergo
neurodegeneration (involving mitochondrial ~ dysfunction), loss of intracellular calcium
homeostasis, and excitotoxicity.32° The energy requirements to maintain membrane gradients in
neural tissue are high, and, in general, neurons are highly dependent on glucose for ATP
generation through oxidative phosphorylation and therefore have high mitochondrial content.
Oxidative phosphorylation always results in ROS as by-products.33 ROS are a group of small
oxygen-containing free radicals that are extremely reactive due to their unpaired valence
electrons. Under normal conditions, these ROS are neutralised by several cellular anti-oxidant
mechanisms, like superoxide dismutases, glutathione peroxidase and catalase. If there is an
imbalance between ROS generation and antioxidants, oxidative stress occurs. Neural tissue is
particularly susceptible to ROS-induced damage because it has a high consumption of oxygen
and is relatively deficient in oxidative defences. In particular, oxygen-glucose deprivation results
in reduced ATP generation, mitochondrial dysfunction, impaired calcium buffering and increased
ROS production.33' Oxygen-glucose deprivation also initiates activation of microglia.332
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There are many alternative generators of cellular ROS, including nicotinamide adenine
dinucleotide phosphate-oxidase,3% xanthine oxidase3%* and endothelial nitric oxide synthase.3%
However, in the majority of cell types, the mitochondrion is the major source of ROS.
Physiological concentrations of ROS regulate many intracellular processes and are vital for
survival.33 ROS induce hypoxia-inducible factors (HIF), which are the master transcription factors
responsible for the adaptation to low oxygen. HIFs maintain oxygen and energy homeostasis by
regulating genes involved in metabolism, proliferation and cell survival.33” HIF plays a protective
role in neurodegenerative diseases.33® ROS also activate NF-xB, another pro-survival
transcription factor.3% Furthermore, ROS activates p53 tumour suppressor, which, depending on
the stress level, inhibits the cell cycle and upregulates several antioxidants, or induces apoptosis
at high stress levels.340 P53 also induces the pentose phosphate shunt via TP53-induced
glycolysis and apoptosis regulator and inhibits glycolysis. The pentose phosphate shunt produces
nicotinamide adenine dinucleotide phosphate, an important reducing agent for control of
intracellular ROS levels.34" However, excessively high levels of ROS cause oxidative stress,
mitochondrial dysfunction, as well as intra- and extracellular damage or even cell death.34

The optic nerve has one of the highest energy demands and oxygen consumption rate in the
body.343 Several lines of evidence suggest that mitochondria and mitochondrial dysfunction play a
central role in glaucoma.286. 287, 344 Mitochondrial dysfunction could be primary,34® but might as
well be secondary to chronic hypoperfusion, excitotoxicity, immune dysregulation and glial
changes. Of particular interest, however, is the fact that both in primary mitochondrial optic
neuropathies and glaucoma, the optic nerve head appears to be central in the pathogenesis and
represents an early site of clinical manifestation. This zone where the nerve fibres pass through
the lamina cribrosa and become myelinated seems to be a locus of minor resistance to a variety
of stressors. The density of mitochondria is very high anterior to the lamina cribrosa in the
unmyelinated part of the axons, but abruptly diminishes as the myelin sheath begins.346

Mitochondrial biogenesis occurs in the somata of RGC, from where they are transported in the
axons to the locations where they are needed, particularly in the unmyelinated portions of the
nerve, including the nodes of Ranvier, and the synaptic terminals.34” Mitochondria make up the
largest cargo transported via axonal transport. Adequate mitochondrial distribution is essential for
maintenance of function and cellular health and involves structural cytoskeleton proteins as well
as mitochondrial fission and fusion.348

IOP and age?2%* are the most important risk factors for glaucoma progression and potentially affect
mitochondria and energy production of ganglion cells in several ways. The likelihood of
developing glaucoma increases nearly 7-fold after 55 years,!” suggesting that age-related
changes render the optic nerve more vulnerable. This observation is not limited to glaucoma, but
is equally true for other age-related neurodegenerative central nervous system disorders such as
Alzheimer’'s and Parkinson’s. Experimental data has shown a reduced metabolic reserve and
increased metabolic vulnerability of aged RGCs in glaucomatous degeneration. The metabolic
reserve, ATP, decreased IOP-dependent and age-dependent in mouse optic nerves.34? Oxidative
stress is a prominent feature of aging as deoxyribonucleic acid, proteins and lipids become
increasingly susceptible to oxidative damage because of decreased efficiency of antioxidant
mechanisms and cellular repair.350. 351

Mechanical stress could impair mitochondrial and other axonal transport. Band et al. using a
mathematical modelling has hypothesized that IOP related passive intracellular fluid shifts could
result in ATP depletion and disruption of axonal transport in the periphery of the optic nerve
head.?52 Furthermore, hydrostatic pressure has been shown to trigger mitochondrial fission and
decreases cellular ATP.353 |OP elevation also activates astrocytes, which produce anti-oxidants,
provide trophic support and are metabolically coupled to RGC. Perturbation of astrocytes in the
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optic nerve head might impact on lactate supply and mitochondrial energy generation. Glia has
been shown to produce TNF-a,3% that modulates the redox status and induces oxidative stress.

Evidence that hypoxia is significantly involved in glaucoma pathogenesis is controversial.
Nevertheless, tissue hypoxia could theoretically modulate the susceptibility of the optic nerve to
|OP-induced stress. HIF-10, a master regulator of oxygen homeostasis has been shown to be
upregulated in the nerve head of glaucomatous human eyes.3% HIF-1a interacts with a broad
variety of metabolic pathways, which increase oxygen delivery or facilitate the metabolic adaption
to hypoxia. In particular, HIF decreases mitochondrial oxidative phosphorylation and activates the
conversion of pyruvate to lactate through glycolysis. This should reduces ROS production, but
ATP production is less efficient. Nevertheless, additional tissue glucose availability to increase
oxygen-independent ATP generation via glycolysis might be beneficial under circumstances of
oxygen shortage, compensate to some extent for mitochondrial dysfunction, and facilitate
compromised axonal transport.

In summary, additional energy supply is a possible, and probably the most likely mechanism of
protection in this study. It could, by opening up alternative, mitochondria-independent pathways to
produce ATP increase the metabolic reserve and delay disruption of axonal transport at the optic
nerve head. Reduction of oxidative stress through bypassing mitochondrial metabolism and
increased production of reducing molecules might be another explanation.

7.4. Future directions

Therapies aimed at improving mitochondrial function seem to slow down neuronal cell loss in
glaucoma and other age-related neurodegenerative disease, and hence represent a promising
neuroprotective strategy. Energy supply to starving tissues and buffering intracellular energy is a
possible way to reduce mitochondrial dysfunction.

Systemic glucose delivery certainly is not practical because of the disastrous long-term
complications of hyperglycaemia. Nevertheless, to study the potentially beneficial effect of topical
glucose administration, our group is planning to conduct a prospective, randomized pilot study
testing the hypothesis that topical glucose acts as a neurorecoverant and improves contrast
sensitivity in glaucoma patients. Measuring contrast sensitivity is appealing because it represents
a functional parameter, which would rapidly reflect improved cellular function. Bose et al.3%
reported non-IOP related improvement in contrast sensitivity after administration of a calcium
antagonist (Nimodipine) in patients suffering from normal-tension glaucoma. Contrast sensitivity
is an inexpensive clinical screening tool to assess potential neuroprotectants before embarking
on large, time-consuming randomised controlled trials focussing on progression of visual field
defects.

Creatine, a nitrogenous guanidine compound involved in supplying energy to muscles and neural
tissue, acts as an energy buffer and is another potentially neuroprotective agent. Oral
administration of creatine produces dose-dependent effects and is well tolerated, safe, and
bioavailable to the brain. It is taken up into neural cells by a sodium-dependent creatine
transporter and becomes physiologically active when it is transformed into phosphocreatinine.
This transformation is regulated by the mitochondrial creatine kinase. Oral creatine
supplementation to rats was neuroprotective against intracerebral injection of NMDA.3%7
Subcutaneous creatine has been shown to protect neonatal rats against ischemic brain injury
after unilateral common carotid artery occlusion.®%8 In mice, oral creatine increased the healthy
life span and decreased serum markers for oxidative stress and cerebral lipofuscin deposits.359
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