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Abstract

Chiral effective field theory complements numerical simolad of quantum
chromodynamics on a spacetime lattice. It provides a modigpendent formal-
ism for connecting lattice simulation results at finite vok, and at a variety of
guark masses, to the physical region. Knowledge of the poaenting regime of
chiral effective field theory, where higher-order termslod expansion may be re-
garded as negligible, is as important as knowledge of tharmesipn. Through the
consideration of a variety of renormalization schemeg$)negies are established to
identify the power-counting regime. Within the power-cting regime, the results
of extrapolation are independent of the renormalizatidreste.

The nucleon mass is considered as a benchmark for illusgrétis approach.
Because the power-counting regime is small, the numerioallation results are
also examined to search for the possible presence of anaptgularization scale,
which may be used to describe lattice simulation resultsideof the power-counting
regime. Such an optimal regularization scale is found ferribcleon mass. The
identification of an optimal scale, with its associated eysitic uncertainty, mea-
sures the degree to which the lattice QCD simulation resuitisne beyond the
power-counting regime, thus quantifying the scheme-deégece of an extrapola-
tion.

The techniques developed for the nucleon mass renormahzate applied to
the quenched meson mass, which offers a unique test case for extrapoksdizemes.
In the absence of a known experimental value, it serves t@dstrate the ability of
the extrapolation scheme to make predictions without ifnomenological bias.
The robustness of the procedure for obtaining an optimallaegation scale and
performing a reliable chiral extrapolation is confirmed.

The procedure developed is then applied to the magnetic mtoamel the elec-
tric charge radius of the isovector nucleon, to obtain a isterst optimal regulariza-
tion scale. The consistency of the results for the value @oiptimal regularization
scale provides strong evidence for the existence of amsitrienergy scale for the

nucleon-pion interaction.
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Chapter 1

Introduction

“One measure of the depth of a physical theory is the extentich it poses seri-
ous challenges to aspects of our worldview that had prewosestmed immutable.”
(Greene, B. 1999The Elegant Universp.386) [Gre99]

1.1 Prologue

The theoretical physicist challenges previous theoryaieriginal research that en-
ables alternative coherence to emerge, as outlined by BohimOBdp.223). The
underlying theory behind the strong force of particle iat#ions, which is the force
responsible for the binding of protons and neutrons togathatomic nuclei, had
been a persistent mystery throughout the first half of thenfieth Century. This
hitherto unknown force acts in opposition to the electric IBmb force that repels
positively charge protons from each other, but is at leastdwlers of magnitude
stronger at the distance scale of an atomic nucleus. Thegsinteraction between
protons and neutrons, or nucleons, is currently most safulgsdescribed by the
theory of quantum chromodynamics (QCD). The advent of thekgoedel, and
the theory of the colour force by which the quarks interapered a new field of
research into the internal structure of matter.

In 1964, Gell-Mann and Zweig independently proposed thsterce of a new

constituent particle, the quark, in order to classify theiloering array of subatomic
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particles called hadrons [GM64]. It was discovered thatikdrons can be arranged
into families that correspond to representations of theigr®U3), and that three
quark types, or flavours, were required to form the fundaaleepresentation of
this group. It was not until 1968 that the results of deepasit scattering experi-
ments provided the first evidence of the existence of thesestementary particles.
As more hadrons were discovered, additional quark flavown® wroposed. It is
currently accepted that six flavours of quark are requirepgrdaluce the full range
of hadrons observed in particle accelerator experimeritsirhames, in ascending
order of mass, are: up, down, strange, charm, bottom an@iope six flavours, the
most recent to be discovered experimentally was the togkguat 995 at Fermilab,
with a mass of 172 GeV [Pro96].

Each quark has a unit of charge equaht@/3 or —1/3 times the charge of a
proton (units of+e). An an example, the proton consists of two up quarks and a
down quark for a total charge efle, whereas a neutron consists of two down quark
and an up quark for a total charge of zero. However, becauakksgjtnave a cer-
tain spatial distribution inside the nucleon, or indeed hasgiron, the internal, high
energy dynamics as described by the behaviour of quarks gise to properties
such as non-zero magnetic moments for the neutron and espgnmomentum dis-
tributions. It is clear that in order to describe the intédoehaviour of a hadron,
one cannot assume that a quark behaves as a static soutead|rtke dynamics of
guarks must be described by a theory, the most successfiliohuws QCD.

QCD connects the quark model of nuclear physics to quanturgegheld the-
ories by introducing the quarks as the relevant degreesetlrm inside a hadron.
The hadrons are formed by confined colour singlets of threekgucalled baryons,
or quark-antiquark pairs, known as mesons. Quarks arelsfdiriermions, which
also have the properties of colour and approximate flavaunsgtry. Since fermions,
by definition, must satisfy Fermi-Dirac statistics, thetfdmat each baryon contains
three bound quarks in the same state violates the Pauli &waliPrinciple. There-
fore, it was necessary to suppose an the existence of anaaddiquantum number,

known as colour charge, so that each quark may be assigned thmee, orthogonal
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basis states, labelled red, green and blue. Colour is medwgtéhe related gauge
particles of the strong force; the gluons, and the quarksfalsn a representation of
the colour gauge group §8)¢, with eight group generators.

Mathematically, QCD is a non-Abelian theory. That is, thegg@eonnection
of the gluons is non-commutative. The fact that isolatedhoumd quarks are never
found in experiment is one of the striking consequences dafraAbelian theory.
Confinement of the quarks within a hadron is a result of the rylfields exert-
ing a linear potential that increases with distance betwepearks [Wil74]. That
is, for a large distance scale, the strong coupling paranogtalso becomes large.
This behaviour contrasts with electromagnetism, whereetbetric Coulomb force
diminishes as two charged particles are separated. Howequarks experience
only a small force from the gluon fields as becomes small at short distances
[GW73Db, Pol73, GW73a, GW74]. This asymptotic freedom is obesdwhen prob-
ing the internal structure of hadron at high energies, whieeesmall de Broglie
wavelength of the probe is able to resolve the short diseanain the composite
particle. Near this asymptotically free regime, the methofdperturbative quantum
field theory are suitable for constructing amplitudes, sfesctions and scattering
matrices. However, it leads to a difficulty in finding an agprate method for per-
forming a calculation with QCD in the low-energy region. Twbtle most suc-
cessful methods that will be discussed in this thesis amalogifective field theory
(XEFT) and lattice QCD.

Using XEFT, one is able to encapsulate the dynamics of a quanturarsyisy
writing down an ‘effective’ action of low-energy degreesfededom. By imposing
symmetries satisfied by QCD, one can expand out the formularfasbservable
property into a series of quantum amplitudes that can bexgechin order of the
importance of their contribution by a choice of power-cangtscheme: usually in
increasing powers of mass/energy. These amplitudes cam attrenormalize the
calculation of an observable from itsima value, and landmark success has been
made in confirming these real and measurable effects by iexget. For example,

the value of the anomalous magnetic dipole moment of thereleagrees with ex-
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periment to better than twelve significant figures. The Casafiiect (1948), which
describes the forces arising from the quantum vacuum fltionsg were success-
fully predicted by the gauge field theory of quantum elegtra@imics (QED). In the
low-energy, non-perturbative region of QCD, many phenonmearabe explained
by the emergent properties of quark confinement and the bmiveef their bound
states as hadrons. For example, the proton and neutronals@aharge anomalous
component of their magnetic moment. This is due to the cldudteracting fields,
which renormalize the core of the observable. This ‘hadroac is one of the
unique properties of a quantum field theory. Of the availddleenergy effective
theories of QCD, chiral perturbation theomRT) is the most notable, in its careful
incorporation of the fundamental symmetries of QCD. Howgtlex robustness of
XPT is confined only to a restrictive region called the powausting regime. Within
the power-counting regime, the perturbative expansioasdbcur inxPT are con-
vergent; the terms of the expansion series are ordered bBathigher-order terms
are sufficiently smaller than lower-order terms. The dstaflthe power-counting
regime are discussed in more detail in Chapter 3.

Lattice QCD is a discretized version of QCD, where the dynamesevaluated
on a finite-sized box with only certain allowed values of fiosi (or momentum)
separated by a fixed spacing. Thus, lattice QCD is equivate@GD in the limit
of infinite box size and vanishing lattice spacing. UsingidatQCD, one is able to
access the non-perturbative, low-energy regime of QCD amvge reliable predic-
tions of hadronic behaviour. In addition, lattice QCD sintialas do not suffer from
the common problems of quantum field theory associated witbnrmalization. The
discrete lattice spacing and the finite box size of the katéict as an ultraviolet and
infrared regulator, respectively. Thus, observable gtiastevaluated on the lattice
are finite and calculable. Nevertheless, it can be comomiaily expensive to evalu-
ate observables at large box sizes, small lattice spacmdjplaysical quark masses.
To be able to obtain a result using quark masses as smalliapliysical values, an
extrapolation is a practical alternative to a brute-fongpraach. In addition, the cor-

rections to finite-volume effects ought also to be calcual#&be a realistic comparison
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with experiments.

1.2 Overview and Aims

The framework of QCD provides a rich selection of possilatitior inquiry. Among
these, the low-energy, chiral dynamics of hadrons providesith a uniquely suc-
cessful understanding of many of their imporant properties

This thesis explores the properties of the aforementiooeapcounting regime
by considering how low-energy constants, which occur in lauwtation using the
methods of(PT, are renormalized, or altered, at different energy scdlkis knowl-
edge of the power-counting regime, in turn, yields insigio ithe repercussions of
chiral symmetry breaking in QCD.

The results of lattice QCD simulations provide an importgyl&ation for the
investigation intgxPT and the power-counting regime. Lattice QCD results are typ
ically produced at a variety of quark masses larger thanlgsipal quark mass. As
such, a chiral extrapolation to the physical point is reegiibefore the result can be
compared to experiment. In addition, experimental resuitnot constrained by the
boundaries of a small box only a few fermi in length. It is imaat to be able to
guantify how the finite-volume nature of lattice QCD affecédcalations. Analysis
shows that the finite-volume behaviour of QCD on the lattice atiect the result
of a calculation in non-trivial ways. Being able to perform extrapolation that
takes into account finite-volume effects is also an imparsap in understanding
the effects of a finite-volume box on the dynamics of QCD.

The investigation of the power-counting regime has add#iamportance. Few
lattice QCD results in the literature are evaluated at quaaks®es that lie within
the power-counting regime. As such, the powerful tools @ssed withxPT may
not be used legitimately, since the chiral power-countixgaasion of an observable
would not be convergent. If higher-order terms in the seziggmnsion are not small
with respect to some power-counting scheme, the result ekamapolation will be

scheme-dependent. This thesis describes the construdtemm extended effective
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field theory that can be applied outside the power-countggme by extracting a
guantative estimate of the extent of the energy scale-dipee, associated with the
process of regularization ixPT calculations. It is discovered that lattice simulation
results themselves can provide guidance on an optimal elobiegularization scale.
This optimal scale indicates a possible connection witHithige-size of the hadron
cloud in the form of an intrinsic scale.

Thus, by analyzing the results from the supercomputer sitims of lattice
QCD, an intrinsic scale will be discovered that charactsritre finite size of the

interaction between the hadron cloud and the core of theohadr
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Lattice QCD

“While the classical vision of the world is intrinsically lited, nothing restricts the
scientific representation. During the conception stage ntethod is free to consider
all hypotheses, even the most far-fetched, in order to mieiglity” (Omnres, R.
2002.Quantum Philosophy: Understanding and Interpreting Conerary Science
p.268) [OMmn02]

The inception of a discrete, lattice approach to quanturarabdynamics (QCD)
in 1974 by Wilson marked the beginning of a robust, invesitigaechnique into the
previously inaccessible low-energy region of strong farteractions [Wil74]. By
simulating the behaviour of quarks on a lattice, bound statdnadrons are formed,
exhibiting confinement, and the behaviour of particle iattions is correctly pre-
dicted: a testament to the achievement of QCD as a theory stiiteg force.

Lattice QCD provides non-perturbative techniques for otatg results from the
low-energy, chiral dynamics of hadrons. It involves the staction of a finite-
volume box of discrete momenta, with calculations perfairitem first principles.
The finite box size of the lattice removes any infrared dieages that would occur
in infinite-volume QCD, and the lattice spacing acts to reguthe ultraviolet be-
haviour of observable quantities by limiting the latticemmenta to discrete values.

In lattice QCD, a Euclidean hypercube is constructed withdil@ngth and dis-
crete lattice spacing. The quantum field theory can thenfresented by the func-

tional integrals defined on such a box. The momenta can okdytkee discrete values
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in the four-box:
211
ky = a_Nn“’ (2.1)

wherea is the lattice spacingy, is an integer array representing the lattice sites,
andN is the number of lattice sites in each direction, such tidy2 < n, <N/2.
Thus, the maximum valulg, can take igt/a. This means that the ultraviolet physics
included in our lattice is entirely determined by the latspacing, which thus acts to
regulate arbitrarily hard momentum contributions to quanfield theoretical quan-
tities. The real-world dynamics of QCD are recovered in thmtlof vanishing lattice
spacing (the continuum limit) and the infinite-volume limit

The dynamics of QCD are encoded in the QCD Lagrangian: a quamijuan-
tum field theory that extends the classical notion of theed#fhce between the ki-
netic and potential energy terms to a density in spacetinhe. géneralized kinetic
and potential terms are constructed from the relevant ésgyéfreedom: quantum
fields [Wei95]. The QCD Lagrangian includes a sum of FermiabDiLagrangians
for all quark flavours, an interaction term and a Yang-Mis. In tensor form (and

summing over repeated indices), the Lagrangian reads:

Lqcp = Lpiract Lint + Lym (2.2)
) — . . . . 1
= 5 { T 0p —mo)wl — asBy Alw) | - SGRGE.  (23)
q

The fieldsyq and gq are Dirac spinors representing different quark flavours and
colours, with massy. (Dirac spinor algebra was introduced in References [Diy28b
Dir28a], and some of the basic properties of a Dirac spinnhbesfound in Appendix
A.3.) The fieldsGj, are the non-Abelian field strength tensors correspondirtigeto

gluon field 43, via the equation:

Gﬁv = auﬂ\? - avﬂﬁl— iasfabcﬂgﬁl\?» (2.4)

where the structure constarftg are defined in Appendix A.2. The Yang-Mills term

describes the self-interaction of the gluon fields, suchtti@result is invariant with
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respect to a special type of symmetry known as the gauge symnie QCD, the
gauge symmetry is realized in the Lagrangian by forminges@ntions of a mathe-
matical group, in this case, $8). (wherec stands for ‘colour’). Each term in the
Lagrangian must be invariant under transformations inmglthis group. The quark
spinors form a basis for the fundamental representatiomefgroup. The gluon
fields, however, are defined in the eight-dimensional remtagion of SUY3), and
the indexa runs from 1 through 8. The matricég are the generators of the gauge
group SU3). A detailed review of the symmetries of QCD is included in Cleapt
3. Suffice to say, the Lagrangian in Equation (2.3) will beuassd in defining the
QCD Action in the following Section.

2.1 Functional Methods

Lattice QCD relies on a variety of techniques to obtain infation about the dy-
namics of QCD. In particular, the path integral method of dization serves as
a starting point, where complex valued Grassmann fields sed to represent the
quark spinorgp and their adjointsp. (For a short summary on the properties of
Grassmann algebra and Berezin integrals, refer to Appendy Before introduc-
ing the procedure for calculating the expectation valuesbskrvables using lattice
QCD, it is helpful to review the functional methods required defining the gener-
ating functionals and the-point Green’s Functions. In the following Section, use is
made of the functional derivativgj%, the properties of which follow analogously
from the standard derivative of a function [RS80].

Consider the generating functional technique, choosingat fields® = {leﬁ‘, W, g},
defined by a set of gauge field& and Dirac spinorg) & Y, and integrating over
all possible paths. In general, for a Lagrangiai, o0"®), the corresponding action

can be written as follows:

S| = / % £(D(x),0MD(x)) . (2.5)
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The generating functional with source termhs ) takes the form:
1 . 2
2] = 5 [ 0o exp{usm -/ d“xy(xi)@m)} . [po= M [doi, 28)
i=
with normalization:

N — / Do exp{iS[®]} . @2.7)

The calculation of the-point Green’s Functions is performed by taking functional
derivatives of the generating functional with respect tarses?(x; ), and then setting

each source to zero:
T(ﬂ) (Xl, . 7Xn) = %/Q)CD ®q--- Py exp{iS[CD]} . (2.8)

In order to obtain only the connected diagrams for the geimgréunctional, one can

define the connected generating functiotel
W[J| = —ilogZz[]]. (2.9)

The connected (or irreducibl@}point Green’s Functions can then be calculated as
the time-ordered vacuum expectation values of the fieldd keispect to the inter-
acting vacuumQ):

(m)
GV (xq,-+ , %) = (Q| T[D(xq) - - D(%n)] ,Q>:%$T% .
1= =

=0

(2.10)

The generating functional of Equation (2.6) is useful fonstoucting an expan-
sion of amplitudes. This expansion is obtained from the Soper-Dyson equa-
tions, the set of differential equations satisfied by theegating functional:

o 106

WS{T M} Z306)]+ 9 (%) 219] = 0. (2.11)

The Schwinger-Dyson Equations are simply the Euler-Laggagquations of mo-

tion for the n-point Green’s Functions of the gauge field theory. They plea
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continuum persective to the challenging problems of natdpleative QCD, as sum-
marized by Roberts and Williams [RW94]. The investigationtdd tinalytic prop-
erties of these equations form a crucial component of thaystdi quark confine-
ment: where the strong coupling parameter becomes large.Sthwinger-Dyson
Equations also shed light onto the process of dynamicaakcsymmetry breaking,
discussed in detail in Chapter 3.

Physical observables of a system can be obtained convgniesimg Equation
(2.10). To evaluate expectation valu@3) numerically, it is common practice to
remove the difficulties of Minkowski spacetime by an analgtbntinuation to imag-
inary Euclidean time, or a Wick rotatioh;— —it, andS=iSg. Thus the expectation
values become numerically soluble, since the highly csoity behaviour of the

n-point Green’s Functions have been exponentially dampbkdsT

_ JDPOexp{—S[P]}
- [DPexp{-S[®]}

(0) (2.12)

which is of the same form as the correlation function in stettal mechanics. Using
the Euclidean Action, the fermionic part of the partitiométion can be calculated

explicitly, leaving an expression in terms of a fermion etation matrix\/:
Z:/’Dﬂﬁ‘ det(M[47]) exp{ —[4]]} . (2.13)

2.1.1 Wilson Fermions

In constructing an action on the lattice, such as that of Egug2.5), there is a
difficulty in implementing the fermion field. This difficultig known as the fermion
doubling problem. The problem occurs when solving the kingart of the Dirac
Equation of motion(id — m)y = 0, on the lattice. The derivati@is taken as an av-
erage (or a forward-backward average so that the resultrimitian), and the prop-
agator derived is of the form: sip+ m)~L. The correct behaviour of the Green’s
Function is exhibited ap — 0, but asp — 1tthe propagator also vanishes at the edge

of the Brillouin Zone: the fundamental cell of a lattice thgwiith a periodic bound-
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ary. Thus for sip) = 0 there are 9m degenerate quarks for each flavour, which
corresponds to sixteen degenerate quarks in four-spaocedén to amend this, Wil-
son introduced a five-dimensional operator, which incredise mass of the doubler
species proportional to lattice spaciadWil74]. Note that asa — 0 in the con-
tinuum limit, the Wilson term disappears and does not alterdynamics of QCD.
However, the Wilson Action violates chiral symmetry. Thigaortant symmetry en-
sures the consistent renormalization of the low-energytamts of the Lagrangian
via the chiral Ward Identities, which describe the consgomeof a symmetry as ap-
plied to quantum amplitudes. Chiral symmetry is describedane depth in Chapter
3. Additionally, a so-called Clover term is often added to lthgrangian, which is
proportional topJ*Gy, . This term is also a five-dimensional object, and, like the
Wilson Action, is suppressed in the continuum limit. In &, errors ofO(a)
can be removed, and higher-order errors)gé?) can be suppressed by using non-
perturbatively improved actions [NN95, LSSW96' @]. Lattice QCD simulation
results relying on a variety of actions are presented in @Gnagtthrough 7, and the

benefits and shortcomings of each one will be addressedyaatiise.

2.1.2 Correlation Functions and the Effective Mass

Consider the following example regarding the constructiba oorrelation matrix
element, and the extraction of the effective mass. In apgliattice QCD to the
extraction of the mass of the nucleon, one defines inteiipglieldsy andy, which
incorporate the structure of a nucleon in terms of its ctunestit quarks. For ex-
ample, in the case of a protog,= £2°%(ul Cysdy)uc is a suitable choice, since the
maximally anti-symmetric Levi-Civita symbal ensures a colour-singlet state, and
the Dirac spin matriys (defined in Appendix A.1) preserves the spinor properties
of the interpolating field. The fields, d are Dirac spinors representing the up and
down quarks, respectively, and the charge conjugationixate iypy»> ensures that
the product of a spinor and its transpose satisfies Lorenéziance.

The two-point Green’s Function for a proton, or more gergrtéde nucleon, can

be expanded by inserting both a complete set of momentumspinddependent
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eigenstate$A(q,s)), and a translation operator on tRdield:

G (1) = (QIX(X1)X(0)|Q), (2.14)
G (pt) = W%se_iﬁ'x<ﬂle_iq'xx(0) €9%(A(a,5)) (A(4,9)[X(0)|Q) (2.15)
= 3 e Ve SBax0las) AaIROR) (@216
- Aésg(rﬁ— de P I(QIx(0)|A(g,9)I7 (2.17)
= ;:Sﬁwa,p,s\Ze—EA“’)tw(ﬁ, S)B(P.), (2.18)

for complex-valued scalar coefficientg p s, Ax

A p.s @nd spinor fieldsp, g defined by

the matrix elements:

Mps¥ = (QIX(0)|A(P,9));  Apps¥ = (A(P,5)[X(0)|Q). (2.19)

The mass of the nucleon can then be extracted from the twad-@oeen’s Function
at zero 3-momentum, that iEa(P = 0) = Ma. To obtain a measure of this quantity
from the exponential, one defines the effective mdgsby comparing the behaviour

of the Green'’s Function at timésindt + 1:

_ Gz(o,t)

Note thatMef is a dimensionless quantity, and the calculation of the nohske
nucleon must involve the conversion to physical units frattide units by dividing

by the lattice spacing. Since the Green’s Function incorporates the full quantum
mechanical spectrum of modes, the behaviouvigf is strongly influenced by the
excited states of the nucleon at sntalln the limit of larget, however, the ground-
state nucleon mass can be recovered:

My = lim eft (2.21)

t—oo a
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2.1.3 Quenching and Computational Alternatives

Computing the quantity ded/[47]) is the most time-consuming operation in the
calculation of the partition function in Equation (2.13prRhis reason, calculations
are performed at fermion masses larger than their physalaky thus decreasing
the Compton wavelength of a fermion and significantly redgi¢ive computational
resource requirement of the summation over all paths antrtfeerequired to ex-
ecute all the necessary fermion matrix inversion algorghrdsually, results from
lattice QCD are obtained at multiple fermion masses, so aragadation can be
used to obtain the result at the physical value, or at zersifths chiral limit). A
complementary computational simplification known as qhéng exists, whereby
det([43]) is set equal to a constant. This has the effect of removing fitee
theory all vacuum polarization diagrams, changing the dyina of the quantum
field theory in a non-trivial way. For this reason, quenche&dDQQQCD) should
be considered, in essence, a different theory from QCD. Téatsefrom QQCD
calculations can nonetheless be interesting points ofstigegtion, as they offer a
unique testing ground for extrapolation schemes. This cabge results from the
unphysical QQCD calculation cannot be known in advance frepeement.
Several other alternatives to quenching have been usee ilit¢hature to date.
Sometimes, the vacuum polarizations, normally omitted @GD, are calculated
for a different (usually larger) quark mass than the valeqearks, which couple to
external sources. The quarks that appear in the discorthiectes are known as sea
qguarks. This distinction between sea quark mass and vatprask mass provides
some of the dynamics of QCD, albeit altered, whilst still aorating the computa-
tional intensity of the calculation of dg¥[43]). An alternative, particularly used
in electromagnetic contributions to QCD, is to omit diagréires include indirect
couplings, that is, external fields coupling to sea quatigaark pairs, as shown in
Figure 2.1. The computation of the indirect couplings tadimected quark loops
is by far the most time-consuming portion of the calculatda diagram. Valence
QCD (VQCD) therefore only includes diagrams where any extgradicles, such

as incoming photons, couple directly to valence quarks eénréhevant hadron. Al-
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Figure 2.1:An external photon coupling to a sea quark-antiquark paiagEams including this
kind of coupling are omitted in Valence QCD.

though the resulting theory differs from full QCD, often pesfles of particles are
calculated using an isovector combination. In the case e@rector, a linear com-
bination of isospin partners is formed so that the resultantbination transforms
as a vector in isospin space. For example, in the case of ttleary the combi-
nation of the fermion fieldsp — n (proton minus neutron) is isovectorial with total
isospin of 1, and all diagrams containing indirect cougiegncel. This is because
diagrams that contain indirect couplings to disconneateg@$ are exactly the same
for the proton and neutron, and thus disappear in the cortidmap — n. It is only
the valence quark composition that differs between theopr@iud) and the neu-
tron (ddu. Thus the distinction between full QCD and VQCD disappearsHis

observable, and the calculations of its properties areclesputationally intensive.

2.2 Lattice QCD Applicability and Issues

It is important to identify clearly the constraints of latti gauge theory. Lattice
QCD is well defined over all box sizes, lattice spacings andlquaasses, and it
is also infinitely scalable. However, the computationat @dthe calculation of an
observable is generally proportional to the square of ttie¢avolume and inversely
proportional to the sixth power of the lattice spacing. Toidwmajor finite-volume
effects, the literature suggests that the lattice box lealgbuld be about 2 to 30 fm
[SW85, LTTWO00, FKOU95, DLL96, LS96]. This is the typical sizEroost current

lattice QCD calculations. Nevertheless, finite-volume @#ecan still be significant
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at these box sizes, and ought not to be neglected. In fachday observables, a box
length of 30 fm is insufficient to avoid large finite-volume correcticaitsphysical
quark masses. This will be demonstrated in Chapters 4 thr@ugh a variety of
observables.

While continued supercomputing advances in numerical sitiarls of lattice
QCD are important, one ought to recognize its limitationsrovling a thorough
understanding of the internal structure of hadrons, whigh be aided, in part,
by complementary techniques such as chiral perturbatieoryh(xPT). For exam-
ple, consider the effects of the mesons known as kaons, feitalinderstanding
strangeness in the nucleon, which appear in the meson setetr{ Appendix A.4).
One must either usgPT calculated to significantly high order in the relevantper
turbative expansion, or develop new non-perturbative @ggres which utilize the
non-perturbative information expressed in the latticeusation results. Since the
former is likely to be compromised by the asymptotic naturidne expansion, atten-
tion is given to the latter approach in Chapter 4.

The computation of observables in lattice QCD provides gireagjht into the
non-perturbative region of QCD. As long as one can accourfirfge-volume and
momentum discretization effects, lattice QCD provides Benepredictions of the
behaviour of quarks at low-energy. In simulating the intéoms of hadrons, and
demonstrating confinement, lattice QCD is a landmark achieve in the realm of
chiral dynamics.

The complementary methods obtained from effective fieldtheffer guidance
in the calculation of observables on the lattice. They mlewestimates of finite-
volume effects and extrapolations to physical quark massebsproviding a deeper
understanding of the applicable regions of lattice QCD. Thisserve to ameliorate
the otherwise unseen difficulties encountered in a bruteefapproach to calculation
by considering symmetries, renormalization, power-cimgptand other techniques
built into the formalism of chiral effective field theory. &amethod presents its
own challenges, but also brings enlightenment through idpeifeantly different

approaches to a given problem.



Chapter 3

Chiral Effective Field Theory

“Everything can be tried, a bold abstraction of somethingtthas succeeded else-
where, the exploration of the faintest clue, or a leap throegipty spaces.

Thus, the method exists, boundless, its ultimate foundatmg the freedom of
the mind.” (Omres, R. 2002Quantum Philosophy: Understanding and Interpreting
Contemporary Scienge268) [Omn02]

In an effective field theory, one identifies the relevant degrof freedom at a
particular energy, and encodes the behaviour of these eégfdreedom in a suit-
able Lagrangian. For a low-energy effective field theoryegponding to quantum
chromodynamics (QCD), such as chiral effective field theg&HT), effective La-
grangians may take on different forms to the QCD Lagrangiahthe physics of
the strong interaction must remain the same in each casd. isfhasults for cal-
culating elements of the S-matrix must agree among efedtald theories, up to
some order. In order to construct such a theory, terms inffeetee Lagrangian are
chosen so that they satisfy the fundamental symmetries of. Q@® coefficients of
the terms in the effective Lagrangian are new coupling @ntst the values of which
are determined from experiments.

The method of effective Lagrangians provides alternatiaemmery to lattice
QCD for understanding the low-energy behaviour of QCD, andiglay theories in
general at a specific energy level. The dynamics of the logrggndegrees of free-

dom, such as mesons and baryons in the cag®®f are incorporated directly into

17
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the Lagrangian, whereas very massive particles are traatst@tic sources [DGH96,
Bor07]. Examples of important effective field theories im#uthe Sigma Model
and its various instructive representations, the MIT Bag 84¢dJJ" 74, Joh78] and
Cloudy Bag Model [MTT80], as well as quantum electrodynam@ED) and QCD
themselves [Wei95].

Recall that the QCD Lagrangian comprises a Yang-Mills ternoliimg vector
potentials4g, their field strength tensoiS], = a[uﬂ\% — iasfabcﬂﬁﬂl{j and a Dirac
term of quark spinorg) corresponding to a mass matriM. The spinors and the
mass matrix are extended to contain the six flavour and thok®iccomponents
of QCD. Using the slash-notatiohD,, = I3, the QCD Lagrangian may written out

conveniently in matrix forrk

<~

Laco =T B )9~ STr[Ga G, (3.1)

where the trace acts over colour indices for the matrixe@iersions of the gluon

field strength tensdrfw, defined by summing over the generatdtof SU(3):
G =GR, = 0, Ay +ias[ A, A). (3.2)

The generatord? in the eight-dimensional representation ofSVare related to the
Gell-Mann matrice3?, defined in Appendix A.2, by a factor of a half:
)\a

r=5. (3.3)

The quark-gluon interaction vertex is incorporated int® tlovariant derivative, de-
fined as:
)\a
Dp=0u+ iasiﬂlﬁ, (3.4)
which acts as a parallel transport in gauge-space, so tea@@D Lagrangian of

Equation (3.1) is gauge-invariant. By substituting into &iipn (3.2), it can be seen

1The double-headed arrow indicates the difference betweeddrivative acting to the right and
-

R
totheleft.i.e.D = D-D.
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that the anti-symmetrization of the covariant derivatisehie field strength tensor.

This is a consequence of the gauge connecﬁg)racking torsion:
— [
Gpv = _[DLh Dv] . (3.5)
Os

The fundamental symmetries of QCD are built into the QCD Lagjim of
Equation (3.1). In particular, chiral symmetry will be inremt in the subsequent
analyses of observables usiggFT. The consequences of chiral symmetry break-
ing ultimately have a profound effect on the behaviour ofadalmic particles, their
masses, magnetic moments and other properties. Therdfai#,be beneficial to

describe some of the subtleties of chiral symmetry with gatee discussion below.

3.1 Chiral Symmetry

In general, a symmetry, or an invariance of a dynamical diyanhder a transfor-
mation of one of its parameters, leads to important physnsadhts into a system.
Noether’'s Theorem demonstrates that a conserved curneatways be constructed
from a (non-anomalous) symmetry of a field theory.

Chirality is defined as the handedness of the representatibtise Poincag
group (which encodes the isometries of Minkowski spacetiomeer which the
quark spinors transform. It is related to the helicity of atigée: the projection
of its spin on its direction of linear momentum, which is aglént to chirality if the
guarks are massless. Helicity is not in general a Loreniriant quantity. Its value
in one frame may be flipped with respect to its value in a babstane.

The QCD Lagrangian in Equation (3.1) can be split into sepdedt- and right-
handed chiral states under the projectibngk = %(1iy5). The left- and right-

handed spinors are written as:

PLr=TLRY. (3.6)

Note that the resultant chirality of the quark fields is desed only for zero mass
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[DGH96]:

Locp = LL + LR+ Lym + Lmass
L L 1 - = — —
ZIUJLwllJL-i-lllJRwllJR—ETr[GvaW]—(LULMlIJR-l-LIJRMLIJL)- (3.7)

The quark fields transform under the chiral rotatibrendR, which are elements of
the left- and right-handed Lie Algebra, respectively, dedifor the group generators

# g and arbitrary, continuous, real parame@fs:

L = exp(io?Q?) € SU(3)., (3.8)
R = exp(iadQ2) € SU(3)r. (3.9)

The transformation laws for each of the spinor fields can beugritten:

WL — Ly =W+, (3.10)
Pr — RYR = YPr+ OYR. (3.11)

Noether’s Theorem allows one to construct the left and sghtmetry currents, with
the corresponding time-independent charges forming e einique invariants of
the group. These invariants are the generators, and are fopimtegrating over
a spacelike surface. Note that in the case of §8)_r the generators are related
to the previously mentioned Gell-Mann matricg% after chiral projection by the

group elements (up to a minus sign and a factor of a half, byeraion):

0Locps—~ 1 A2

LR= 23 =5 >y 12

IR FEXTA I 2lIJL,RYu > YLR, (3.12)
a

Q= [doudth= [dx = —Tiry . (313)

An equivalent convention to that of left/right chiralitytise construction of vec-
tor and axial vector transformations. The group action Gawhbtten out explicitly
for either convention, using the definition of a Lie groupwabntinuous group pa-

rametersnd ,. The charge€? andQ3 simply count the sum and the difference of
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left- and right-handed fermions, respectively:

V =exp(ioyQf) € SUQ3)v, (3.14)

A=exp(ioiQ3a) € SU(3)a, (3.15)
a A a )\a

Q=Q+k=-7, (3.16)
)\a

Q= -Qk= —5 Vs (3.17)

These sets of rotations are the most convenient for asgeheinvocation of an
important theorem known as Goldstone’s Theorem. Gold&dieorem, described
below, is crucial in understanding the connection betweeal aharge€Qa and the

origin of mesons in QCD.

3.1.1 Spontaneous Symmetry Breaking

In QCD, particles are believed to utilize the Nambu-Goldstorode of spontaneous
breaking of a continuous global gauge symmetry. This symni@eaking occurs
in flavour space, and only the lightest three quark flavoulsbei considered: up,
down, strange. Since the up and down quarks have relativelyriass iy, g ~ 2-6
MeV, ms ~ 100 MeV) compared to the other quarks;(~ 1.3 GeV), they contribute
the most strongly to symmetry breaking effects.

Goldstone’s Theorem states that the symmetry group3gU» SU(3)a is not
respected by the (no-particle) vacuum sf@teeven though this group is a symmetry
of the massless QCD Lagrangian. One mighteky expect that the vacuum state is

invariant under the group transformations:

V|0) = A|0) =|0). (3.18)
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Noether’s Theorem entails that the symmetry charges areitisiependent:

%Q\a/,A = 0= [Hocp, QY al- (3.19)

This means that the charges should annihilate the vacuum|8tasince the QCD
HamiltonianHocp annihilates the vacuum state. In 1984, Witten and Vafa mrove
this result for vector charges even without assuming cheyraimetry [VW84]. How-
ever, were this the case for axial charges, a spectrum of-deggmerate partners
with opposite parity would be expected to exist for all hawdro This is because
the axial charges are odd under parity transformations,asuydstate acted on by
the axial charges will also retain the same energy eigeavéut with a flipped
parity eigenvalue), because of the commutation relatioBdoation (3.19). There
is a stark lack of experimental evidence for such partic¥sde6]. Thus, physical
hadrons merely observe the symmetry groug 3.

Instead of annihilating the vacuum state, the axial chatggessform it to an

element of a new Hilbert space:

Qf10) =0, (3.20)
QAI0) = ga|T®(p)) # 0. (3.21)

This new state (with axial eigenvalgg) has the same energy as the vacuum state as
long as the symmetry is not also explicitly broken by termthaLagrangian. Gold-
stone’s Theorem states that new particles are created,uthbar of which corre-
sponds to the number of generators for the relevant repiagamof SU3)a. These
new particles must be massless and spinless pseudoscalansnealled Goldstone
bosons.

If the physical manifestation of a symmetry of a Lagrangiaroives the spon-
taneous breaking of one or several local continuous tramsftoons, the theory pre-
dicts a massive spin zero boson called a Higgs field, and thgsHnode is said to
be realized. Although the Higgs mode is not expected to oicctlire strong nuclear

force sector of the Standard Model, its actualization inadleetroweak sector would
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result in a mass term for th@v=, Z} weak gauge bosons. Such a mass is observed
in experiments, and also explains how the charged fermi@dsfgain mass, through
the following argument. By considering the Lagrangian foS&#{2) complex dou-
blet of bosons, which can be expanded about its minimum patesnergy in the
same manner as the Goldstone bosons, one must arbitradtseha direction in
isospin space in which to expand. Three of the Higgs degregearlom combine
to become the longitudinal spin modes of the three weak gaogens, and the mass
of the fermions is produced by the vacuum expectation vdltieearemaining Higgs
boson, which remains in the theory [GHKG64]. It should be dateat the Higgs
mechanism contributes only a small amount to the mass obhadn QCD, and
that the dominant process for their mass acquisition is whyee chiral symmetry
breaking [GN74, RCR10]. A more detailed analysis of the conseges of dynam-
ical chiral symmetry breaking for the mass of the nucleorisgsuksed in Chapter 4,

in the context of varying quark masses in lattice QCD results.

3.1.2 Partial Conservation of the Axial Current

Before discussing the powerful technigques associated Wibtee Lagrangians, a
brief overview is now presented for the current algebra wekttor obtaining the
low-energy matrix elements of pion decay. It is known that &t 3) axial currents
Jxa are non-zero. But in order to know exactly how these matrimelets vary and
how they depend on the octet meson masses, one requireseatcalgebra tech-
nique known as Partial Conservation of the Axial Current (PCAQg statement of

Goldstone’s Theorem in Equation (3.21) can be re-expreasedmatrix element:
(OIRTE(P)) = i frp™®, (3.22)
from which follows the divergence:

(0]0pIAY TP (P)) = FumBS?P. (3.23)



Chapter 3. Chiral Effective Field Theory Hall 24

Equation (3.22) serves as a suitable definition of the pi@ayeonstant;. Taking
the value from experiment;; ~ 92.4 MeV.

Equation (3.23), together with the Haag Theorem, forms threecipal statement
of PCAC, that either? or d,J4 ° can be used equivalently, and that if the pion mass
becomes zero then the axial current is totally conserveds Tiie following relation
may be written:

na_ m% oIk °. (3.24)

This situation is a special case of the Soft-Pion Theorenaforatrix element in-

volving a general local operatar :

lim (Bl 0 ) = —-(B/ 38, 0] ). (3.25)

While they are useful in obtaining specific information abit low-energy matrix
elements of pion decay, the methods of PCAC can be subtle énrditing possible
momentum dependence in an amplitude of a low-energy prod@sge must also
make the assumption that matrix elements vary continuanghking the soft pion
limit, p* — 0. The method of effective Lagrangians is less awkward iaiabtg the
appropriate momentum dependence and any quantum congdtia low-energy
amplitude. This is because the effective Lagrangians alered by a systematic ex-
pansion in momentum or mass, which encodes the relativertarpze of corrections

to an amplitude in question.

3.1.3 The Sigma Model

The Linear Sigma Model [GML60] is a useful pedagogical tb@cause with it im-
portant theoretical techniques such as the constructieyrafnetry currents, spon-
taneous symmetry breaking and changes in parameterizzdione demonstrated
easily [DGH96]. First, consider an $P) Sigma Model Lagrangian consisting of a
massless spinor fieldl, a so-called pion fieldt spanning the triplet representation of
SU(2) and a massive scalar fietd The consideration of isospin symmetry in &)

provides a simple and instructive example for investigasgmmetries [DGH96].
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The Lagrangian takes the following form:

Lc,:qjizlp%auﬁ-a“m%auoa“o—gq?( —it- les)lJJ+ (0 2 7P) - ( 2+ﬁ2)2,

(3.26)

(for constant coupling parametegsp andA, and SU2) Pauli Spin matrice$ de-
fined in Appendix A.1).

Spontaneous symmetry breaking occurs in the Lagrangiaquiditton (3.26) for

§? > 0. In minimizing the potential:
o Ilz 2 o A 5 o2
V(o,1) =~ (o —l—T[z)—i—Z(O' +70)°, (3.27)

a ground state is found that is non-trivial (unlike the case 0, for which the only

ground state solution ist = Tt= 0). This ground state is defined by:
12
02+ = 3 (3.28)

By redefining theo field and expanding the Lagrangian about the new ground state
(0)p =V, the Linear Sigma Model exhibits spontaneous symmetrykimgaevident

in the acquisition of mass for thefield:

=0V, (3.29)
La:w(z—gv)qht aun oML+ = (apoa“o 2°6%) — gp(& — it -Tys) Y

—\VG(52+T2) — [( 2 1 72)° VA (3.30)

Nevertheless, S(2) isospin symmetry is preserved in this Lagrangian.

The active degrees of freedom in an effective field theoryatoecessarily cor-
respond to elementary particles of nature, and so it is eggebat changes in the
representation do not alter the outcome of physical preseSshis notion is formal-
ized in the Haag Theorem [Haa58], which states that for twd fiariables derived
from (unitarily) equivalent representations, if one is eefifield, then the other is

also free, regardless of how they are related and whetheagbeciated diagrams
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and Lagrangian vertices change [Gue66]. As a corollaryngracting quantum
field theory ‘does not exist’, in the sense that its fields dbtremsform covariantly
under the interacting Poin@agroup. Weinberg suggested that only free fields are
required to construct the S-matrix from the relativisticntonians in QED, but in
QCD one must simply resort to writing down the most generaraagian [Wei95].

An alternative approach demonstrates that an interactaiarp can be constructed
consistently if time evolution is taken to be only locallyitamily implementable
[Gue66].

By redefining the scalar field in either linear or non-lineambtanations of the
other involved fields, different sets of interaction vezccan be assembled. For
example, using the Linear Sigma Model, two particularlynnstive representations
are considered for later adaptation to low-energy QCD. By itengrthe heavyo
field and pion triplet as a matrix quanti®yy= o + it - T, the resultant new field
transforms as an object in the adjoint representation, lwfaoms left cosets of the
group SU2). ® SU(2)g, as described by Scherer [SS05]:

>~ LZR" (3.31)
In this representation, the Lagrangian becomes:
. . 1 1 A
L5 = QLidwL + Ori Wr+ il [0,z ") + ZlpzTr =15 - = Tr[zt5)?

16
-9 (U_JLZUJR+ lljRZTllJL) : (3.32)

This form is useful because it allows one to identify eadilg terms involved in
spontaneous chiral symmetry breaking Tr[Z'Z]). Terms responsible for explicit
chiral symmetry breaking (eg ~ Tr[Z + Z']) do not occur in this case, but will be
considered in the context @PT, in Section 3.2.

The exponential representation is most commonly emplogeitsfapplication to
low-energy QCD. By defining a matrix-valued figld= exp(iT - Ti/v) that transforms

the same way as the previokidield, and a massive scalar fieRl the Lagrangian
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becomes:

2
VES g uamu

Ly = ‘H-FLiZqJL + @RiZUJRWL % ((0uS? —2°S") +

—AvS— %S“—g<v+ S (q_JLU YR+ u‘JRUTqJL) , (3.33)

for an arbitrary coupling constamt This representation combines the matrix form
with a heavy scalar degree of freedom, which can be integjateof the theory eas-
ily using the prescription provided by Donoghue, Golowici élolstein [DGH96].

This is exactly the form needed to construct a low-energgotiffe field theory.

3.2 Chiral Perturbation Theory

The formalism of chiral perturbation theorxHT) will take advantage of Gold-
stone’s Theorem and the study of symmetries discussed ipréwious section. In
this case, however, the global gauge group considered isufleé®3). In order
for the effective field theory to emulate physical resultse enust write down the
mechanics of a Lagrangian field theory incorporating theesgary symmetries and
degrees of freedom at the observed scale. To represertlgsisuch as pions and
kaons obeying Bose-Einstein statistics, one can write tedsird massless scalar
Lagrangian:

Leff = %aur@a“n%r o(rt), (3.34)

and interpref® as the octet of Goldstone bosons (whose explicit form cambed
in Appendix A.4). By defining a matrix-valued functidh, and its transformation
law, one can collect together the interaction terms in thppagntial representation

in a similar way to the Sigma Model:

U= exp<i?na)\a) , (3.35)

U — LUR, (3.36)
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with constantf. Now the effective Lagrangian can be written down as an expan
sion of successive orders of momenta. The two derivativéisarscalar Lagrangian
mean that only even chiral powers are admitted for partisteh as mesons. For
the lowest-order free mesonic Lagrangian, there is onlyloweenergy coupling
constant,f:

2 f? u ot
£ =4 TrauaT). (3.37)

(Higher-order mesonic Lagrangians can be found in Refesgi&%®05, Bor07, Ber08].)
The coefficientf from the definition of the fieldJ appears here as a low-energy
constant (LEC), since it is expected that the expanded eféecagrangian for the
pseudo-Goldstone fields will have the standard normatinator bosons,Le =
%aunaaurr%r O(1?). This LEC can further be identified with the pion decay con-
stantfy by first considering the Fermi weak interaction Lagrangisa éeft-handed
source field and computing the decay rate from the resultaatiant S-matrix ele-
ment [DGH96, SS05].

The second-order Lagrangian of Equation (3.37) will be thgiag place for the

consideration of the low-energy meson sector of QCD.

3.2.1 Meson Sector

In the theory of mesons, one considers a set of Goldstonenlfiedds and interprets
them as the meson sector of QCD. One can use the knowledgelimitsymmetry
breaking from Section 3.1.1 to provide the fields with a ($ymahss. Using the ex-
ponential representatiod,(x) can be systematically expanded in powers of its small
momentum and mass with respect to some energy #gall 1984, Manohaet al.
identified this scale of chiral symmetry breaking/gs~ 4mf ~ 1 GeV [MG84]. In
renormalization, this is the scale at which the next-ordeplcontribution retains
the same effective coupling strength (see Section 3.3).

The total mesonic Lagrangian can be written out in the expdridrm of even
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chiral powers [Bor07]:
£n(U(X), M) :iszf”(u (), 91). (3.38)

In order to quantify the extent of the chiral symmetry bregkcaused by the mass
terms in the expansion, initially lek/ transform as a field% — LMR"), so that
the Lagrangian will remain invariant under global @) ® SU(3)r. At lowest non-

trivial order:

2

L1€[) — quf[in_l_LTrpass
i ., fiBo t t
= -ITrjgUotu ]+TTr[,‘MU +UM'], (3.39)

4
whereBy is a constant (with dimensions of mass) included for gentgraChiral
symmetry breaking then results from imposing the Hermitiamdition for the quark
mass matrixM = M. Thus the constari directly corresponds to the extent of
chiral symmetry breaking [SS05, BorQ7].

Some terms in the Lagrangians of either QCDx®T explicitly break chiral
symmetry. For example,nassinvolving the quark mass in Equation (3.7) is invari-
ant under an axial group actigh= exp(—lzaﬁ)\ay5). The associated axial Noether
currentsJ,‘ja encountered in PCAC will not be conserved, but diverge adogrib
the equation: \a

AN 2il]_JfMy5EL|J. (3.40)

To relate the meson masses to the quark masses, considar SHiB). It is
expected that the vacuum expectation values of the scatak glensities are the
same in each theory: QCD andPT. That is, the quark condensdtg), whereq
stands fow, d or s quarks, should be an observable independent of representat
Consider the explicit chiral symmetry breaking terms of ebagrangian, namely,
Lmassdefined in Equation (3.7) for QCD, and the mass terfii*of Equation (3.39)
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for xPT. By expanding out the exponential fiéldin L7255 one obtains:

L3S By 27T (9] — %BoTr [MTC] + O(1t") . (3.41)

For approximate isospin symmeiny, ~ my ~ %(mu +my) = M+ mg, expanding the

first of these terms yields the relations:

alql’_PaSS

0 Limixed 2

(@) = —(0]20) = —(0

Thus there is a profound connection between quark condensatd the process of
dynamical chiral symmetry breaking. The second term yigld<$ell-Mann-Oakes-Renner

Relations [GMORG68] relating meson masses to quark masses:

m2 = 2Boi, (3.43)
Mg = Bo(My+ M), (3.44)
mg = gBo(r?H— 2m) . (3.45)

Just like PCAC, Equation (3.43) shows that if the light quarlsses are zero, then
the pion mass must also be zero, and thus chiral symmetrg hohis leads to the

Gell-Mann-Okubo Mass Relation:

3mf = 4mg — . (3.46)

By additionally enforcing local chiral symmetry, the set tbichiral Ward Identi-
ties become an invariant of the generating functional entsred in Section (2.1), as
long as no anomalies are present [SS05]. The chiral Wardit@snsimply encode
the statement of symmetry preservation and the existencenserved quantities as
a consequence, much like Noether’'s Theorem; but appliediantgm amplitudes.
Consider QED, a () gauge theory, as an example. The Ward Identity amounts
to a statement of charge conservation, and the existenceafserved electric cur-

rent. In QCD, to be able to generate all the Green’s Functionshie theory, the
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Lagrangian must include pseudo-scalgy énd vector I, ry) source fields, which
vanish to recover the standard QCD Lagrangian in Equatidr),(@nd a scalar field
(s) that assumes the role of the quark masgés This is known as the method of
external sources. This generalization of the QCD Lagrangiaital for calculating
the divergence of Green’s Functions. These fields obey tleiiog transformation
laws for the local chiral rotationis(x), R(x) € SU(3)Lr:

= L) LT (x) i (0L (x))LT(x), (3.47)
ry— RX) ryRT(x) +i(0,R(X)RT(x), (3.48)
(s+ip) = L(X)(s+ip)R'(x). (3.49)

The QCD Lagrangian, invariant under local @) ® SU(3)gr, becomes:

L 1 - = — ) — )
L3 = 'UJZHJ =35I (GG — WL(s+ip)Wr— WR(S+ip)WL

— gyl My — LFVerr“LlJ. (3.50)

In the case of the low-energy effective Lagrangian, one rde$ine a covariant

derivative with transformation law:

O — LO)OURT(x) . (3.52)

Therefore, the lowest-order non-trivial Lagrangian forsmes obeying local chiral
symmetry can now be written with mass source defined usingaheentiony =

2Bo(s+ip), functioning as a field, as before:

2
@ = %"Tr[muu DUt xut+uxT. (3.53)
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3.2.2 Baryon Sector

Since the Lagrangian of a low-energy theory can be expandeth@ convergent
series of small momenta//\y, the mass of the baryons themselves cannot be treated
as an expansion parameter, since their mass and momenththeesame order of
magnitude as the scalg; thus the perturbation theory diverges. That is, the mass
of a baryonMg ~ Ay, so the expansion parameteig//\y cannot be small. To
overcome this difficulty in ordering the chiral series in th&ryon sector okPT,
consider the heavy-baryon approximation.

Define some alternative field (x) to the SU3) octet baryon$(x) = B3(x)A?,
with velocity v, largely unchanged by pion interactions [Geo90, JM91a, J{191

These field8y(x) are only just off-shell by a small amouktv:
pk = MgvH + kH. (3.54)

A perturbation theory about this small momentlgncan now be constructed. In
addition, the difficult spin structure of the new fielBg can be handled by using
the particle projection operat®;, = %(1-1—)/), thus absorbing the effects of virtual

baryon loops into higher chiral orders of the theory:
By(x) = P, eMeYVXB(x) . (3.55)

This procedure can be repeated in exact analogy for théytstahmetric Rarita-
Schwinger tensaF}/*%(x), which represents the spin:3decuplet fields, as long as

all spin-1/2 components are removeg [,2° = 0). It is defined by:
Tu(x) = R, &MetMOWT () (3.56)

The sum of the octet and decuplet masses is used, by conveintitie exponential
in order to avoid extra factors of mixed octet-decuplet fetdthe final Lagrangian.
This results in a positive term proportional to the massttapdi A = (M1 — Mg|

[JM91a]. (The explicit representation of these fields in($Ucan be found in
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Appendix A.4). Treating the mass splittifly< Ay as a small perturbation, the
new velocity-dependent field®, andT, (indices suppressed) obey a massless Dirac

Equation, and a Dirac Equation with small mass splittingpestively:

igBy(x) =0, (3.57)
(id — A)Ty(x) = 0. (3.58)

To write out a completely velocity-dependent Lagrangiandfaryons and their
interactions with mesons, it now remains to rewrite all Dikalinears in terms of
a covariant spin operatd; = — gys[y*,y’]vy, which has the useful property that
its commutation and anti-commutation rules depend onlyhenfour-velocity ..
The meson interactions are incorporated into the theorylbpling baryon fields to
the axial current encountered in PCAC (Section (3.1.1))ctvii equivalent to the
Goldstone bosons as per the Haag Theorem. The conventmdedihe exponential

fields&? = U, which follow the transformation rule [JM91b]:
ELEHT(X) =H(X)ER'. (3.59)

The transformation matrikl = H(X) is a spacetime dependent combination of the
chiral transformation matrices and the Goldstone bosoasskelves. This means
that the octet and decuplet fields’ transformation rulee aigolve H, and in fact,
the axial curren\, and the octet baryon fieB, are exactly analogous to tieield

in their transformations. The additional subtlety with thexuplet field is that each

of its three indices transforms separately:

B— HBHT, (3.60)

Because the transformation mattikis a spacetime-dependent object, a vectorial
connection needs to be included to preserve the gaugeanearof the Lagrangian.

Similarly, an axial vector combination of exponential felcan be defined. Under
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the Haag Theorem, these axial vectors are equivalent tcsthedp-Goldstone boson
fields:

Vo= 560,87+ €3,8), (362
Vi — HVHT = (9,H)HT, (3.63)
Au= H(E0ET - E10,8), (364
A —HAHT. (3.65)

Thus the covariant derivative can now be included for botktsnd decuplet fields.

As before, the decuplet requires a separate connection tmaach index:

Q)va = aqu + [VIJ7 Bv] ) (3-66)
Q)LITVG abc _ auTva abc ""V;?aTva dbc + VSbTvq adc + VSCTVG abd . (3.67)

The most general lowest-order Lagrangian for the baryoetamtd decuplet
fields, including transition vertices, can be now writtenitdgntifying the relevant
SU(3) invariants [JM91a, JM91b, Jen92, LS96, WLO5, WLTYO7]:

£ adec= 1 TrBu(v- D)By] + 2D Tr [BUSH{ A, By )] + 2F Tr By H[A B ]
STH(V- D) T+ C(TFABY +BATS)
F2H TS ATy + AT Ty, (3.68)

The so-called-style and--style couplings for the octet occur simply as linear com-
binations of the most general first-order invariants of flav®U(3) symmetry. The
reversed sign of the kinetic term of the decuplet simply eélesdhe spacelike nature
of its positive energy spinorg{? < 0), and the Rarita-Schwinger field propagators

contain a polarization projector that sums over these spild®191a]:

4

?V:irui“&iv = (W —g") - oSS (3.69)
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When considering the mass renormalization of the nucleon Ep@is 4 and
5, contributions from the second-order octet Lagrangtéﬁ are required, which
correspond to amNNrot vertex. This gives rise to a tadpole contribution. In full
SU(3) form, the vertices required fromég% are [WLO5]:
£ = 200 Tr[M, | Tr BB+ 2Dy Tr [B{M, ,B}| + 2FuTr[B[4,,B]],  (3.70)

whereM, = %(ET.‘MET +EME) is the Hermitian mass source constructed from the
quark mass [GSS88, WL05].

Consider now the lowest-order Lagrangian for the nucleamfteraction by
simplifying Equation (3.68) to involve only the nucleon ddet fieldW¥ = (p, n)T
and the SWJ2) pion triplet (see Appendix A.4). This is a useful approachewh
kaon loop contributions are neglected. The axial couplimgstant below is simply
defined agla= D + F [SS05]:

o

Jasv Ty (a— Mn +29$ y“y5f-apﬁ) W, (3.71)
I

The tadpole Lagrangian now takes the form:

L2124 Ty [ W, (3.72)
where the coeffcient is a combination of the LEGs, Dy and Ry, labelledc, in
anticipation of the analysis presented in Chapter 4.

A local, chirally symmetric form of Equation (3.71) can bewogered simply

with the replacement:

0 D= B+ Ty 5 (1), (3.73)
Mp= %(ET(GU_iru)EJrE(au—ilu)ET), (3.74)

and also by replacing the produttd, 7t with a more general object: the Hermitian

axial combinatioru, = i{€ (8, — ir )& — (8, — il )ET}. The values oy, 9a and
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o

f, are taken to be the nucleon mass, the axial coupling stremgttihe pion decay
constant, respectively, in the chiral limit. The Goldbefgeeiman Relation relates
the nucleon-pion interaction strength to the axial couptia [GT58], and can be
obtained by comparing the matrix elemefgr(x)|n) and(p|d A*(x)|n) using the
relation between the pion field and the axial current in EqQua3.23) as per PCAC
[Col85]:
Mn
NN~ gA—— - (3.75)

Tt

This equation becomes exact in the chiral ligitm2 — 0) = aA.

3.2.3 Electromagnetic Contributions

The baryon form factors comprise a parameterization fornilagrix element ob-
tained from the isovector quark currelt= pQyuW, whereQ is the SU3) quark
charge matrixQ = diag(2/3,—1/3,—1/3). To evaluate this matrix element, one
must calculate the fully-amputated vertex for a baryontphonteraction, wedged
between the usual in- and out-going fermion spiné(®) andu"sl(p/):

B()I3BR) = (0) { W@ + el @) fp), (376)

for the tensor quantitgyy = 5 {yu.Ww}. Q?is a positive momentum transf&? =
—(p — p)?, andF; andF; are called the Dirac and Pauli form factors, respectively.

The Sachs electromagnetic form fact@isu are the linear combinations:

2

Ge(Q?) = Fi(Q?) - %B(QZ), (3.77)
B

Gm(Q?) = Fi(QP) + R2(Q%). (3.78)

Thus, in the non-relativistic, heavy-baryon formulation:

i€poVP SE g’

(B(P)I3(B(p)) = T (F) {VUGE(QZ) + M—BGM<Q2>} W(p). (379)
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By considering the behaviour of the Sachs form factors at zenmentum transfer,
one can construct moments and charge radii. Two such inmgogteamples that
will be considered are the magnetic moment, and the eledtacge radius of the
isovector nucleon. Recall from Section 2.1.3 that the ismregucleon is simply
the combinatiorp — n, which transforms as a vector in isospin space, chosen so tha
diagrams containing indirect couplings will cancel, anel tomputation will be less

intensive. The magnetic momeut} is simply the value ofs), atQ? = 0:

by =G} (Q®=0) (3.80)
=14k}, (3.81)

The first term is simply the value of the Dirac form factor of throton aiQ? = 0,
and the second term, is the anomalous magnetic moment originating from the
finite-size behaviour of the hadron interactions of theatife quantum field theory:
the hadron cloud, which surrounds the nucleon.

The electric charge radius is obtained by taking a derigatiith respect taQ?

in the limit thatQ? equals zero:
(r3)L = lim _g%CEQ) (3.82)

For octet baryons, the magnetic moments obey the Colemash@iaSy3)
relations, related to the following Lagrangian of two indadent terms [JLMS93,
WLTYO07, WLTY09a, WLTYO09b]:

rem— ﬁ(uDTrE?VoW{FtBV}+pFTr§VcW[F“t,BV]). (3.83)

For an electromagnetic gauge fieig, with field strength tensofyy = 0,4, the
guantity Fut has been chosen such that it is invariant under local chyrahsetry
transformations:

i = 5(E'RwQE + EFQE?). (3.84)

In the case of decuplet baryons, there is only a single iaaatierm that can be



Chapter 3. Chiral Effective Field Theory Hall 38

obtained from the group produtﬁ)@ 10® 8 that is proportional to their electric
charge tensou;jx [JLMS93]:

_ . e
Lec' = i1 M ik o TV jia Py - (3.85)

The transition Lagrangian can be written out likewise:
_ . e . " e
rans = 'mUTFw(Sijk Q Bl T MM+ Q T S BYY) - (3.86)

These electromagnetic Lagrangians are obtained simplyobgcting the photon-

baryon terms from the electromagnetic covariant derieatiMhis new covariant
derivative can be expressed by updating Equation (3.68)adle electromagnetic
field is included in both the vector connectignfrom Equation (3.62) and the axial
combinationA, from Equation (3.64):

V> Vi e (€' Q8 +EQE, (3.87)

Au— A e (EQET—E1QE). (389

The covariant derivative for the pseudo-Goldstone Lageangan be updated in a
similar fashion:
OuU — OuU +ie,[Q,,U]. (3.89)

3.3 Regularization and Renormalization

3.3.1 Historical Overview

The calculation and interpretation of amplitudes from amuin field theory proved
more subtle than other theories due to their divergent bhebiavDespite success
in predicting hitherto unexplained phenomena, many qtiasttalculated using the
relevant quantum field theory become infinite, though thesknexperimental value

is finite. Consideration of the Lamb Shift in the electron gydevels in hydrogen
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atoms (1947) prompted the first real insight into this problé was conceived that
if a quantity were altered infinitely by quantum correctienghat the final result was
finite, the initial ‘bare’ quantity should never have beepested to be finite. Thatis,
the bare quantity becomes renormalized. For example, tteedose of an electron
has certain properties, such as electric charge, whichnbeadtered by an infinite
amount due to vacuum polarizations. This polarization @lsurrounding the un-
physical, bare electron core contains all possible diagrainelectron-positron pair-
production from virtual (off-shell) photons, which sergescreen the electron core’s
infinite charge, so that the observed, long-range chargeli§ x 10~1° Coulomb,
or —e (in units of the charge of the proton). This ‘running’ of tHearon’s charge
to large values under deep probing from hard momenta in Bhabitering was
confirmed in 1997 by the TOPAZ Collaboration at TRISTAN'[@5]. The virtual
particles of a quantum field theory are simply consequenfdge @&reen’s Functions
of the equations of motion. The Fourier transform of a plficopagator integrates
the whole momentum spectrum, with a pole on the mass khellm? (up to factors
of c andh). Heisenberg’s Uncertainty Principle for energy and tifde ) (At) > &,
allows the extra energy of pair-production, and other pgees, for sufficiently small

time. As a corollary, the virtual interactions take placemoa spacelike time interval.

3.3.2 The Power-Counting Regime

The Lagrangians ofPT are constructed with the intention that they can be exgrnd
in a series of some expansion scale, such as small momentassem Although,
ideally, the series is convergent for a sufficiently smapansion scale, it need not
necessarily be convergent, and instead will often takedha bf an asymptotic (or
Poincag) series. Nevertheless, in a realistic calculation, witighlves calculating
the expansion series only up to some finite order, it is delgir® be able to ensure
that the uncertainty in the truncation is small. Thus, a Kedge of the applicable
region of the expansion is as crucial as knowledge of thedefrthe expansion
series themselves. The range of values of the expansioa faralvhich a chiral

expansion is convergent is known as the power-countingmegPCR), and the ex-
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pansion series is generally known as the chiral expansion.

The PCR is the region where the quark masses are small, arettagker terms
in the chiral expansion are negligible beyond the orderutated. Within the PCR,
the truncation of the chiral expansion is reliable to sonesgribed precision. A
chief focus of this thesis is to establish a formal approaatetermining the PCR of
a truncated chiral expansion quantitatively. The chirgagsion will be examined,
and the individual low-energy coefficients of the chiral ampion will be analyzed.
The approach involves the examination of these low-eneogfficients as they un-
dergo the process of renormalization. This approach pesvéddetermination of the
PCR for a truncated expansiony&FT.

First, it is essential to discuss methods of regularizaitiotihe chiral loop inte-
grals, so that the renormalization can take place. In o@egriormalize a quantity,
one must find a way to make the divergent amplitudes tractaisieg a process
called regularization. This involves solving an integrako propagators in such
a way as to isolate the divergent piece, ready for handlirth @isuitable renor-
malization scheme. There is a wide variety of regularizasochemes available.
Pauli-Villars regularization (1949) involves the intradion of fictitious, ‘auxiliary’
particles, associated with some mass scale, into a Lagnangth a quadratic in-
teraction. The extra formal terms in the Lagragian vanistihasnass scale is taken
to infinity, and then a subtraction can take place. Howewerabse Pauli-Villars is
not a gauge-covariant scheme, it is not applicable dirgotlyang-Mills theory. In
Slavnov’s regularization scheme (1971) of higher covarigmivatives, once again,
additional terms are added to the Lagrangian, but these d@nder all amplitudes
finite, thereby requiring a Pauli-Villars or other schemeb® used for divergent
fermion-loop Feynman diagrams. In this thesis, a finitegearegularization scheme
is used, which has powerful benefits in establishing the PCRijlBlsecome appar-
ent in Chapter 4.
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3.3.3 Dimensional Regularization

Dimensional regularization (DR) (1972) is an important gaware whereby loop in-
tegrals are analytically continued to generalized fraiaimensions and shown to
converge [tHV72]. The infinitesimal four-volume bosldis replaced with ¢k,

and the limit as — O™ is then taken. For example, the integral over a single (Eu-
clidean) pion propagator is easy solved in spherical paardinates, evaluating the

angular part explicitly:

dk 1 im [©_OK k3¢ 2Pt/
/(2n)4 k2+m?[_>s—>o+/o (2m4tke+mir(2—¢/2)°

(3.90)

Thus the minimal subtraction scheme result is recoverectcty.

Since there is no explicit scale-dependence in the interaahis minimal sub-
traction scheme makes DR suitable for use with elementddgfierhere the absence
of new degrees of freedom at higher energies is assumed.isThipowerful tech-
nique by which the divergent term(s) of a loop integral carobtined, and then
handled using a renormalization scheme.

Nevertheless, in the case of effective field theories, tbgigts an energy scale
beyond which the effective fields are no longer the relevagtekes of freedom, and
so DR is not ideally suited. Selecting a hard energy scal@enrénormalization
group equation, changes the relevant degrees of freeddme ineigrangian. At high
energy scales, the high de Broglie frequency would resoleeiriternal structure
of the hadrons, which would be the quarks (and beyond, if sugher degrees of
freedom exist). However, quarks are integrated out of tinedoergyxEFT La-
grangian by construction. When one calculates quantum ardpk over this high
energy domain, there is no guarantee that one can efficisabjract the model-
dependent, ultraviolet physics with a finite number of cewtérms, as is required
for successful renormalization, unless the perturbatiesion is convergent. In-
deed this problem of beginning with rapidly varying loop trdsutions, which must

then be removed with a finite number of counter-terms, caitydssovercome. The

2The Gamma function of is defined a$ (z) = [; dseSs* L.
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hard momentum contributions to the chiral loop integrals lsa suppressed via the

introduction of a finite-range regulator.

3.3.4 Finite-Range Regularization

One alternative to DR is finite-range regularization (FRR)yvimch one introduces
a functional formu(k; ), known as a finite-range regulator, which controls the di-
vergent integral at high momentum values. In this case,ritegiial over a single

pion propagator would be modified as follows:

/d“k 1 dk (kA

4k2+m%[ emAke+m’ (3.91)

FRR involves the choice of a finite-valued momentum cuteff Allowing hard,
internal momenta to flow through a loop integral yields urgitgl results, in the
form of a divergence. The high de Broglie frequency would kesthe internal
structure of the hadrons, which would be the quarks (and rmbyd such higher
degrees of freedom exist). Therefore, a finite valué @ suitable for an effective
field theory, where quarks are integrated out of the Lageangy construction. The
choice of parameteh determines how fast the integral will now converge, and the
regulator function should satisfyjx—o = 1 andu|x_,. = 0. The exact functional
form chosen for the regulator should be independent of theltref calculation, as
long as the perturbative expansion is convergent, thaheswworks within the PCR.

FRR has already been shown to be a powerful technique in gotim chiral
extrapolation problem and identifying the PCR. The infiniteeseis resummed so
that leading-order terms are large and the series convefgeariety of choices of
functional forms for the regulator have been demonstraiedjtee with each other,
and with DR, in extrapolating lattice QCD results for the makshe nucleon to
physical quark masses [LTYO05]. Thus, the results of cataada using FRR are
consistent with DR within the PCR.

Consider the example of a one-pion loop contribution for dewt, denotedy,

with constant coefficiengy. (This type of calculation is considered in more detail
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in Chapter 4.) The chiral expansion for the mass of the nudledms simple case,

with one pion loop only, takes the form:

M = {ag + apm? + agmft + O(mB)} + 2y, (3.92)

working to chiral orderOo(mt). The chiral expansion comprises a polynomial ex-
pansion inm2 and the contribution from the one-pion loop. Each of the ficiehts

ap, a anday is renormalized by the contributions from the loop integadleach or-
der. The result of the integral using DR is equivalent to asiess renormalization

scheme, with no explicit momentum cutoff:

5\ = 2N / wdksz m% (3.93)
_ ZXTN </0 dkkz—mﬁ/o dk) —cy (3.95)

In a massless renormalization scheme, there is no explaemtum cutoff, so each

of the coefficients; undergoes an infinite renormalization or none at all:

Co= ao-l——/ ki, (3.96)
Cz—az——/ dk, (3.97)
cs=a4+0, etc. (3.98)

By contrast, in a FRR scheme, a momentum cutof$ introduced, and the chiral

expansion is resummed. Using a sharp momentum citoff

2 k4

Sn(A) = RN / dkk2+ 2 (3.99)
_ 2N I\
= ( 3 — A2+ mnarctan{mnD (3.100)
2XN/\__ZXN 3_2XN1 9 5
== g~ T AR XN — = =S+ (). (3.101)
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The result obtained from DR can be recovered in an FRR schemakinyg the

regularization scale parametgito infinity:

2

Co=ao+ %/\3, (3.102)
2

Co=ay— %/\, (3.103)
oxn 1

c4=a4—%x, etc. (3.104)

Thus, DR applied outside the PCR could be considered equiv@al@ model with an
arguably injudicious choice of cutoff scheme. The polynalinexpansion of hadron
mass is not expected to converge, and indeed it does nog D&xPT, as men-
tioned by Youngget al. [YLTO3]. Outside PCR, the expansion breaks down since
the chiral expansion is truncated without an attempt tavedt the higher-order
contributions [LTYO05, LTYO06].

In addition, because FRR involves the resummation of theenighder terms
of the chiral expansion, it affords an opportunity to pemfoa calculation beyond
the PCR. Using FRR, one must select a value for the ultraviolefaggation scale
A. The choice in the value ok is irrelevant within the PCR, where the results of
extrapolations are scheme-independent (so lodgiasot chosen to be too small, as
explained in Section 4.2.1). Nevertheless, the principat@se of this thesis will be
to handle any scheme-dependence occuringgBRT calculation outside the PCR.
By quantifying the scheme-dependence one arrives at a uggnmcedure for using
FRR beyond the PCR.

In Chapter 4, a variety of finite-range regulators are usedcamdpared. For
example, the Heaviside Step Functigitk;A) = 8(A — k) is an acceptable choice;
however, it is unfavorable for finite-volume consideratidsecause discrete lattice
momenta are either fully included in the integral or notimted at all. This results
in inconvenient finite-volume artefacts. In the investigatof the nucleon mass, the

family of smoothly attenuating dipole regulators will bensadered. The general
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Figure 3.1:Behaviour of three dipole-like regulators as a function aimenturnk, for a regulator
paramete/\ = 1.0 GeV.

multiple-dipole function of orden takes the following form, for a cutoff scale 6

k2n -2
un(k;/\):(1+m> . (3.105)

The standard dipole is recovered foe= 1. The cases = 2,3 are the ‘double-’
and ‘triple-dipole’ regulators, respectively. The belwari of each of these three
attenuators is shown in Figure 3.1. These functional forthasvaone to interpolate
between the dipole regulator and the step function (whiaghesponds ta — ).
Thesen—tuple-dipole regulators generate extra non-analytic $erm

It has been suggested in the literature that the only FRR sehmmsistent
with chiral symmetry uses the step function regulator [BHYODjukanovic et
al. [DSGSO05] have demonstrated that more general functiomaid@can be gen-
erated by proposing a scheme in which the regulator fundanterpreted as a
modification to the propagators of the theory, obtained feomew chiral symmetry-
preserving Lagrangian. Higher derivative coupling ternedaaiilt into the Lagrangian
to produce a regulator from the Feynman Rules in a symme&gegoving manner.

Alternatively, one can choose the regulator judiciouslghsthat any extra scheme-
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dependent non-analytic terms are removed to any chosen ditteeregulators used

in the present investigation follow the latter approachr &mample, then—tuple
dipole regulators generate extra non-analytic terms irchinal expansion of Equa-
tion (4.2) in Chapter 4 at higher chiral orders. An expliciae¥le of this is shown
for the quencheg@ meson mass in Section 6.1.2, once the renormalization schem

has been introduced.



Chapter 4

The Intrinsic Scale of the Nucleon

“There lies the originality of our approachto deduce common sense from the quan-
tum premises, including its limits that is, to demonstrate also under which condi-
tions common sense is valid, and what is its margin for error

[W]e no longer explain reality from our mental representattiof it, taken for
granted without question: but it is this representationthat we want texplairf.]”
(Omres, R. 2002 Quantum Philosophy: Understanding and Interpreting Contem
porary Science.165) [Omn02]

4.1 Renormalization Issues for the Nucleon Mass

In chiral effective field theoryEFT), the nucleon mass may be written as an or-
dered, chiral expansion in the quark mass. The Gell-Mabakes-Renner Rela-
tion from Equation (3.43) entails the proportionality; [ m2. By considering the
renormalization of the nucleon ma§/ﬁ\1—> Mn from the Lagrangian in Equation
(3.71), the chiral expansion will generally include a paiymial in m2 and non-
analytic terms obtained from the chiral loop integrals. tdi&ion, to establish a
model-independent framework ¥PT, the expansion must display the properties of
a convergent series for the terms considered. Recall thainilie power-counting
regime (PCR) the higher-order terms of the expansion may lerded as sulffi-

ciently small for the truncation of the chiral expansion torbliable to a prescribed

47
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precision. However, truncated expansions are typicalpliag to a wide range of
guark (or pion) masses, with little regard to a rigorous aeieation of the PCR. In
the case of the nucleon mass, evidence suggests that the B@GHRills limited to
m < 200 MeV at 1% accuracy at the chiral ordefmtlogmy;) [Bea0O4a] [LTY05].
This estimate of the PCR ofPT was identified by comparing the results of infrared
regularization, dimensional regularization (DR) and aetgrof finite-range regula-
tors in analyzing lattice quantum chromodynamics (lat@¢&D) simulation results.
The different regularization schemes constitute differeays of summing higher-
order terms in the chiral expansion. Thus, the PCR is manifash the pion mass
dependence of the nucleon mass is independent of the relatiom scheme. In
addition, the asymptotic nature of the chiral expansiomcgdahe focus on the first
few terms of the expansion.

A survey of the literature for the baryon sector xFT illustrates the rarity
of calculations beyond one-loop [MB99, MB06, SDGSO07], anddlrere currently
no two-loop calculations that incorporate the effects aicpig a baryon in a finite
volume. With only a few terms of the expansion known for dertenowledge of the
PCR ofxEFT is as important as knowledge of the expansion itself ughascheme-
dependent, it is worthwhile to note that, using a dipole laigu with A = 0.8 GeV,
the coefficient of the induceat, term compares favorably with the infinite-volume
two-loop calculation [MB99, LTY04, LTY05, MB06, SDGSO07].

4.1.1 Chiral Expansion of the Nucleon Mass

The nucleon mass expansion formula can be expressed in atliatneollects the

non-analytic behaviour into the loop integral contribngo

M = {80 + a5 M+ & M+ (M)} + Zn (MR, A) + Za (MR, A)
+ Ztad(M, A) (4.1)

3
:co+cznﬁ+me§[+c4mﬁ+<— HXA"‘Xt) mﬁlog%”+o(nﬁ). (4.2)
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Figure 4.1: The pion loop contribution to the self-energy of the nucleproviding the leading
non-analytic contribution to the nucleon mass. All chargeserving transitions are implicit.
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Figure 4.2:The pion loop contribution to the self-energy of the nuclealfowing a transition to a
nearby and strongly-coupled decuplet baryon.

Figure 4.3:The O(my) tadpole contribution to the nucleon self energy.

The superscrip denotes the scale-dependence ofaheoefficients. The analytic
terms inm can be written as a polynomial with renormalized coeffiGgent The
non-analytic contributions arise from the self energygnéés ¢), which correspond
to the diagrams in Figures 4.1 through 4.3.

It is essential to note that the degrees of freedom presetiteinesidual se-
ries coefficientsa{\ are sufficient to eliminate any dependence on the regulariza
tion scale parameteX, to the order of the chiral expansion calculated: in thisecas
O(mitlogmy). Any differences observed in results obtained at the sarinal cinder,
but with different regularization schemes, are a direatltesf considering data that
lie outside the PCR (provided that the scAles not chosen so small that it introduces

an unphysical low-energy scale).
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4.1.2 Chiral Loop Integrals

Each of the loop integral contributions to the nucleon masslme simplified to a
convenient form by taking the non-relativistic heavy-tmaryimit, and performing
the pole integration foky. The integrals may be expanded out to a particular chiral
order, in this case orded(milogmy), to obtain an analytic polynomial with coef-
ficientsb, and the leading-order non-analytic term. Using a finitegearegulator
u(k;A\):

N(TRIA) = an/dSk k2+mzn (4.3)
= b+ MR xnmE+ by N o), (4.4)
k2 2(k; A
W 3
= by 4 by m$,+b4 mﬁ—m mnlogF-I-O(m?[), (4.6)
2/ -
Stad(MaA) = czrr%(}—; /&%) (4.7)

— comf (5" B xurlog " O ) (48)

where is an implicit mass scale from the logarithea(k) = /kZ+ 2 andA is
the nucleon-delta baryon mass-splitting, treated as anation in the approximate
flavour symmetry. The mass of tiiebaryon is chosen to be the centre of its Breit-
Wigner resonance.

Theb! coefficients renormalize the residual coefficients of theatlexpansion
of Equation (4.1), to obtain the scale-independent coefiisic;. Though both the
a coefficients and thé coefficients are scale-dependent, adding them together

at each order results in a scale-independent coefficierds& bre the renormalized
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coefficientsc;. Explicitly:

co=ad +by™N+b)"2, (4.9)
Co = ap +byN 1) A )t (4.10)
Ca=al + )N+ A b)Y etc. (4.11)

This is simply a slight generalization from the worked exdémp Section 3.3.4.
Dimensional analysis reveals that the coefficiéitare proportional ta\®-1). Thus

it can be realized that as the cutoff scAléends to infinity, the result from DR, as
described in Section 3.3.3, is recovered. At any filitea partial resummation of
higher-order terms is introduced. Previous studies inditaat extrapolation results
show very little sensitivity to the precise functional foohthe regulator [LTYO04].

A modification is now made to the integrals of Equations (4t8pugh (4.8),
by subtractingd” terms from their Taylor expansion, thus absorbing them théo
corresponding low-energy coefficients This achieves the renormalization to a
chosen chiral order. In this case, only the low-energy cdefitsco andc, will be

analyzed. The amplitudes for each process are thus altered:

N k2 2 k-
Sn(MBiA) — % /d%%ré\)_bg“_ M2 (4.12)

= xnme+ by mb - o(my) (4.13)

< o k2u?(k;A\)
2a(Mih) = 21'[2/ w(k) (A+w(K))
Bl /Z\Amg (4.14)

NA
b 4

_ 7 3 4 T 5
= Dy My 4TrAXAmn|09 Ii +0(mp), (4.15)
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2(L -
Stad(MisA) = Cconmiy (4)1(_;1 / d%% - bQ’t) (4.16)
= Com (bﬁ"mﬁ+ Xt MR Iog”—;” + O(mi>) (4.17)
= CoMABtad(Mii /). (4.18)

Note that the coefficient of the tadpole amplitude contawesénormalized low-
energy coefficient,. This is because the same coefficienfrom the chiral expan-
sion occurs in the tadpole Lagrangian in Equation (3.72k filde (") denotes that
the integrals are written out in renormalized form to choeder O(m2). As theb!!
coefficients are regulator and scale-dependent, the stibtraeshuffles this depen-
dence into higher-order terms. The coefficieafsanda} of the analytic terms in
the chiral expansion in Equation (4.2) automatically beedhe scale-independent
renormalized coefficients andc,.

With the renormalized integrals specified, the finite-rareglarization (FRR)

modified version of the chiral expansion in Equation (4.Retathe form:

Mn = Co+ anﬁ[(l—}- 6tad<n1$[7/\)) + afl\m?'["f_ iN(”ﬁUA) + iA(nﬁ[v/\) : (4-19)

Theaﬁl\ term is left in unrenormalized form for simplicity. Indedtle coefficienbﬁ
can be evaluated by expanding out corresponding loop megsuch as in Refer-

ence [YLTO3]. However, the focus here is on the behaviowgya@ndc,.

4.1.3 The Sigma Term

In addition to the mass of the nucleon in the chiral lit the low-energy con-
stant (LEC)c, corresponding to the tadpole vertex is of interest phenahogically

because, by inspection of Equation (3.72), it is a measutieeoéxplicit chiral sym-
metry breaking of the relevant flavour symmetry group. Thatisigma term can
be defined for the light quarks up and down, and the expligaking of the group
SU(2)y ® SU(2)a may be investigated. In order to obtain a value for the siggna t

relating to the heavier strange quayEFT has been used to study the explicit break-
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ing of the baryon octet representation of SY[Gas81, NK87, BM97, YT10b].

It can be seen that the tercamy, and higher-order terms in the nucleon mass
expansion formula of Equation (4.2), will disappear if tingral symmetry breaking
guark mass is zero. To investigate this, one can considerthe\@CD Hamilto-
nian behaves under commutation with the three-componégiteharge operator of
flavour SU2). If the symmetry were unbroken, all quantiti®|0) would vanish,
so the commutato[tQiA,%CD] would also vanish. In the more general case, con-
sider two applications of the commutator, which yield thenayetry breaking mass
term Hgp, from the total Hamiltonian. This defines the pion-nucleogns term
[CD71, LTWO00, WLT00, HMRWO06, YT10b]:

o = 5 (NI[Qh, [Qh, HacolIN) (4.20)
= (N

| (mulu+madd)|N) = (N|Hap|N) . (4.21)

Under the simplification of mass degeneracy between quddsffehich is approx-
imately true under flavour S(2)), one can apply the Feynmaiiellmann Theorem

[Fey39] and recover the important result for snmagt

O = mq amq N = com2+ o(mi/?). (4.22)

That is, the value of the sigma term is dominated by the lepdnder term with
coefficientc,. The violation of this axial symmetry is therefore impottéor un-
derstanding the behaviour of hadrons, because a non-zgraderm affects the
structure of the interaction between hadrons and the mdsad ehich surrounds
them, and provides a small, but not statistically insigaificcontribution to the total
mass of the hadron.

The standard result for the sigma term using(8UPT, incorporating meson
loop corrections, isZy = 35+ 5 MeV [Gas81]. By analyzing data fromp and
Tt scattering experiments ph83], an early analysis by Gasser suggests a value of
> = 45+ 8 MeV [GLS91]. The currently accepted value of the sigma tedoe
to the work of Koch, is larger than the theoretical valiigy = 64+ 8 MeV [KP80,
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Koc82]. A more recent analysis of the experimental data bsaRaincorporating
a partial wave and dispersion relation analysis, sugges®&van higher value of
> = 79+7 MeV [PSWAO02]. In contrast, calculations from two-flavoymamical
quark lattice QCD comparatively underestimate the valuhefsdigma term. In a
study by Qisken, it was found thain = 184+ 5 MeV, by direct calculation of the
scalar matrix element in Equation (4.21)@9]. This apparently low value for the
sigma term was found to be a consequence of its sensitivithital extrapolation,
and large pion masses (above 500 MeV) were used in the ekdtago[LTWOO,
YT10b].

4.1.4 Scheme-Independent Coefficients

The chiral coefficientyn, Xa andy; for each integral are defined in terms of the
pion decay constant, which is taken to ie= 92.4 MeV, and the axial coupling
parameterd, F and C which couple the baryons to the pion field, as shown in
the Lagrangiaméi%&dec of Equation (3.68). The coeffciewp, which occurs in the
tadpole loop integral of Equations (4.16) through (4.18)aicombination of the
LECsom, Dm andFRy, which occur in the tadpole Lagrangian of Equation (3.70).
Thoughc; is treated as a fit parameter, the phenomenological valuésgd, F and

C couplings are used, applying the @) flavour-symmetry relations [Jen92, Leb95]

to yield ¢ = —2D, F = D and the valud® = 0.76:

3
XN = —W(D-i— F)2, (4.23)
TT
3 8,
3

These coefficients are constant and remain unaffected lmymetization scale or
finite-volume effects. Ultimately, one may try to determihese directly from lattice
simulation results. Nevertheless, because of the limitedlrer of lattice simulation

results currently available, this analysis will focus oa tfetermination o€g, ¢, and
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the nucleon massly.

4.1.5 Finite-Volume Effects

In lattice QCD, the introduction of finite-volume effects bete significant for small
box sizes. The expansion paramet@r tontributing to finite-volume effects should
be of the same order of magnitude as the momenta for the patiom scheme
to remain valid. IfL is small, the exponential fact@ ™ no longer suppresses
the finite-volume corrections [BNS10]. As a general rule, tdharacteristic di-
mensionless quantityn;L specifies thee-regime through the conditiomyL < 1
[Han90, HL91, HL90]. This is a breakdown region x#T, since divergences in
the leading-order pion contributions cannot be approxathdty standard perturba-
tive techniques [BNS10].

Since the results of lattice simulations reflect the presefdiscrete momentum
values associated with the finite volume of the latticesfonmalism ofxEFT must
also take into account these finite-volume effegiSFT is ideally suited for exam-
ining finite-volume effects, because of its accurate cliaraation of the dominant
infrared physics. In order to accommodate the effect of thigefivolume, the con-
tinuous loop integrals occurring in the meson loop cal¢oietin an infinite volume
are transformed into a sum over discrete momentum valuesdifierence between
a loop sum and its corresponding loop integral is defined th&&nite-volume cor-
rection, which should vanish for all integralsragl. becomes large [GL88, Bea04b].
While Equation (4.19) is useful in describing the pion masswion of the nucleon
mass, for the consideration of lattice QCD results, one atsds to incorporate
corrections to allow for the finite-volume nature of the nuiced simulations. As
the pion is the lightest degree of freedom in the system,tliedeading-order pion
loop effects that are most sensitive to the periodic boyndanditions. The correc-
tions can be determined by considering the transformatiaach loop integral in
Equations (4.12), (4.14) and (4.16) into a discrete sum f@iven lattice size. The
three-dimensional integrals can be replaced by summatwes all possible mo-

mentum values [AAL 06]. It is useful to define the finite-volume correction to the
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loop integral, by convention, by subtracting the integrahi the sum quantity. This
technique will be used to correct for finite-volume effeats@untered in Chapters 4
through 7.

The finite-volume correctiod™ ' can be written as the difference between the

finite sum and the integral:

SFVC (2. A) = Zﬁz[&tik} i (K, M2, A) /d3kl kM2, A)]. (4.26)

)

wherei = N, A, and the integrands are denotg, m2, A). The finite-volume cor-
rections to the tadpole contribution are not consideretiminvestigation because
of subtleties in their behaviour at larga;,. Details regarding the finite-volume be-
haviour of the tadpole amplitude are discussed in Appendx&d a more general
discussion of its convergence properties occurs in Se@&i@n By adding the rel-
evant finite-volume correction to each loop contributidre finite-volume nucleon

mass can be parameterized:
MY, = Co+ CoMR(1+ Grad) + &M+ (N +30"C) + (2a+337C). (427

It is also shown that the finite-volume corrections are irhejent of the regular-
ization scale\ in this domain. In Figures 4.4 and 4.6, the scale-dependeitte
finite-volume corrections is shown for a dipole regulatooiifi Equation (3.105) in
Chapter 3) and a.2 fm box (the same box size used for the PACS-CS dat®p)).

It is of note that choosing\ too small suppresses the very infrared physics that one
is trying to describe. Thus, caution should be exercisedhaosing a suitable value

of A. Figures 4.5 and 4.7 show the behaviour of the finite-voluoreection for a

4.0 fm box, and the corrections are much smaller, as expected.

For large/, the finite-volume corrections, displayed in Figures 4rétigh 4.7,
saturate to a fixed value. Provided that 0.8 GeV, the estimated finite-volume cor-
rections are stable for light pion masses. In order to pvestie scale-independence
of the finite-volume corrections, their asymptotic result ise used. This approach

has been demonstrated to be successful in previous stualieSO§]. Numeri-



Chapter 4. The Intrinsic Scale of the Nucleon Hall 57

0.020 T T T T T

—— m/? = 0,024 GeV?

0015 - ——— mpf = 0272 Gev?

6,77 (GeV)
o
o
e
o
T

0.005 -

0.000 = L L
00 04 08 12 16 20 24
A(GeV)

Figure 4.4. Behaviour of the finite-
volume correction{"© vs. A on a

2.9 fm box using a dipole regulator.

Results for two different values ofé
are shown.
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Figure 4.7: Behaviour of finite-
volume correctionsSi¥C vs. A on a
4.0 fm box using a dipole regulator.
Results for two different values ofé
are shown.

cally, this is achieved by evaluating the finite-volume ections with a parameter,
N =2.0 GeV,3FVC = &FVC(A). It should be noted that this is equivalent to the more

algebraic approach outlined by Beane [Bea0O4b].

4.2 The Intrinsic Scale: An Example by Construction

This XEFT extrapolation scheme to ordeXmlogmy) will be used in conjunc-
tion with lattice QCD data from JLQCD [©08], PACS-CS [A'09] and CP-PACS
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[AK +02] to predict the nucleon mass for any valuewf The full set of data from
each of these collaborations is listed in Appendix C, Tabldst@rough C.3. The
JLQCD data were generated using overlap fermions in twofl@@D, but the lat-
tice box size for each data point4s1.9 fm, smaller than the other two data sets.
The PACS-CS data were generated using non-perturbatigly-improved Wilson
guark action at a lattice box size 6f2.9 fm, but the data set only contains five data
points and a large statistical error in the smalte$tpoint. The CP-PACS data were
generated using a mean field improved clover quark actioratticé box sizes for
each data point varying from 2.2 fm to ~ 2.8 fm.

The lattice data used in this analysis will be used to extedp®y to the phys-
ical point by taking into account the relevant curvaturarirthe loop integrals in
Equations (4.13), (4.15) and (4.17). As an example, a regal#son scale o\ = 1.0
GeV was chosen for Figures 4.8 through 4.10, where the fuoikeme corrected
effective field theory appears concordant with previous QEDEQCD results
[AK T04]. An extrapolation or interpolation is achieved by sabting the finite-
volume loop integral contributions from each data point trash fitting the result to
obtain the coefficientsg, ¢, and aﬁl\ using Equation (4.19). The finite- or infinite-
volume loop integrals are then added back at any desiree o,

If the regularization scale is altered from the chofce- 1.0 GeV, the extrapo-
lation curve also changes. This signifies a scheme-depeaderihe result due to
using lattice QCD data beyond the PCR. To demonstrate thisid=ortbe infinite-
volume extrapolation of the CP-PACS data, as shown in Figuré. 4Figure 4.11
also shows that the curves overlap exactly whéris large, where the lattice data

reside, and they diverge as the chiral regime is approached.

Consider an insightful scenario, whereby a set of ideal ‘dedata’ with known
low-energy coefficients is produced, using the formula frlequation (4.27). A
particular regularization scale is selected and a dens@u@uise pseudodata set is
generated, which smoothly connects with the lattice sitrariaesults. In this case,
the pseudodata are converted to infinite-volume resultsderao ensure that the

following analysis is not simply a consequence of finiteewoé effects. If all the
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Figure 4.8: Example dipole extrapolation based on JLQCD dataq8), box size: 19 fm.
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Figure 4.9: Example dipole extrapolation based on PACS-CS dat0Bj, box size: 2 fm.

Figure 4.10: Example dipole extrapolation based on CP-PACS data'{®&, lattice sizes: 3 —

2.8 fm.
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Figure 4.11: Close zoom of the regulator-dependence for dipole extedionl based on CP-PACS
data. Only the data point corresponding to the smatféstalue is shown at this scale.

data considered lie within the PCR then the choice of regidtian scale is irrele-
vant, and the finite-range regularized chiral expansionathematically equivalent
to scale-invariant renormalization schemes, including DRs scenario will form

the basis of the investigation of the PCR, and ultimately, dl to determining the
existence of an intrinsic scale hidden within the lattice Q&Mulation results.

The pseudodata are produced by performing an extrapolstiom as shown in
Figures 4.8 through 4.10. The difference is that 100 infiadkime extrapolation
points are produced close to the chiral regime. The exeisigetreat these pseu-
dodata as if they were lattice QCD data. Clearly, a regulacmacheme must be
chosen in generating the pseudodata. In this case, a dgmpléator was chosen and
pseudodata were createdat= 1.0 GeV.

The regularization-dependence of the extrapolation isaditarized by the scale-
dependence of the coefficients These coefficients are obtained from fitting the
pseudodata. Consider hay andc, behave when analyzed with a variety of regu-
larization scales in Figures 4.12 and 4.13. By using infimdkime pseudodata, one
eliminates the concern that the variationcjnwith respect to\ is merely a finite-
volume artefact.

Three pseudodata sets are compared, each with differeet lpgpinds on the
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Figure 4.12: Behaviour ofcy vs. regularization scalé, based on infinite-volume pseudodata
created with a dipole regulator At = 1.0 GeV (based on lightest four data points from PACS-CS).
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Figure 4.13: Behaviour ofc, vs. A, based on infinite-volume pseudodata created with a dipole
regulator at\ = 1.0 GeV (based on lightest four data points from PACS-CS).
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range ofm? considered in the fit. An increasing regulator-dependenag iand

Co is seen as the data extend outside the PCR. In Figures 4.12 HadtHe be-
haviour of the fit parameters andc,, respectively, are shown as functions of the
regularization scal@ for different values ohﬁymax. A steep line indicates a strong
scheme-dependence in the result, and this occurs for dagesiextending far out-
side the PCR. Scheme-independence will appear as a horitioetads is apparent
for mﬁmax < 0.04 Ge\?, in Figures 4.12 and 4.13. This indicates that the pseudodat
lie within the PCR.

Note that in both figures all three curves (correspondingifferént values of
mﬁ’max) arrive at stable values fap andc; on the right-hand side of the plot, corre-
sponding to largé\. To read off the values afy andc; for largeA\ is tempting, but
this does not yield the correct valuesagfandc,, which are known by construction.
The correct values afy andc, are recovered at = 1.0 GeV.

The analysis of the pseudodata in Figures 4.12 and 4.13 sthaveven as the
value ofm?;rnax Is changed, the correct value @f is recovered at exacthx = A,
where the curves intersect. The same valug fafr the intersection point is obtained
by analyzingc,. This suggests that when considering lattice QCD resulenexg
outside the PCR, there may be an optimal finite-range cutoffysieally, such a
cutoff would be associated with an intrinsic scale reflegtine finite size of the
source of the pion dressings. Mathematically, this optioudbff is reflected by an
independence of the fit parametersrcﬁ@max.

By analyzing the pseudodata with a different regulator, faneple, a triple-
dipole regulator, Figures 4.14 and 4.15 show that the sdaleedntersection is no
longer a clear point, but a cluster centred abo&tt® 0.6 GeV. The triple-dipole will
of course predict a different optimal scale, since the slodfe regulator is different
from that of the dipole used to create the pseudodata. Thengasispoint of this
exercise is that clustering of curve intersections idexgiéi preferred renormalization
scale that allows one to recover the correct low-energyficoeits. In this case, the
crossing of the dash and dot-dash curves (from fitting) lylédentifies/\tsr?g'e: 0.6
GeV as a preferred regularization scale, which reflects itrnsic scale used to
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param. input /\tsr?g'e: 0.6 /\tsgg'e: 0.6  Ayip=24 Nirip = 2.4
mgr,max: 0.25 m%r,max: 0.5 m%r,max: 0.25 m%r,max: 0.5

Co 0.902 Q901 Q902 Q899 Q896

Co 300 307 307 317 323

Table 4.1:A comparison of the parametets (GeV) andc, (GeV 1) at their input value (pseu-
dodata created with a dipole At = 1.0 GeV) with the values when analysed with a triple-dipole
regulator. Different values dfyip (GeV) andm?Lmax (GeV?) are chosen to demonstrate the scheme-
dependence ofy and c, for data extending outside the PCR. Note: the valuesyadnd c, are
calculated from an ideal model and thus they are exact; #rerao statistical uncertainties.

create the data. Table 4.1 compares the valuesyfandc, recovered in this analysis
for two different regularization scales: the preferredma’kfr?g'e: 0.6 GeV, and a
large value/\yip = 2.4 GeV reflecting the asymptotic result recovered from DR. The

input values oty andc, used to create the pseudodata are also indicated.

4.2.1 Lower Bounds for the Regularization Scale

Figures 4.13 and 4.15 clearly indicate that the finite-ramg@rmalization scheme
breaks down if the FRR scale is too small. This is bec@uswist be large enough to
include the chiral physics being studied. The exact value sé#nsible lower bound
in the FRR scale will depend on the functional form chosen asdbulator.

Figure 4.13 shows that the renormalization é¢gibreaks down for small values
of A. FRR breaks down for a value 6§;j, much below 06 GeV, simply because the
coefficientsb! of the loop integral expansion in Equations (4.13), (4.1%) 4.17)
are proportional ta\(3=)). For higher-order terms with largethe coefficients will
become large when is small. In theory, these very large terms add up to zero,
and so the limitA — 0 amounts to neglecting the infrared physics of the hadron.
In practice, the finite curvature and higher-order termshefresidual series are not
large enough to cancel the smAllbehaviour of theb{\ coefficients, which dominate.
This adversely affects the convergence properties of tiralakxpansion. On the
other hand, one obtains a residual series expansion withgmwergence properties

whenA reflects the intrinsic scale of the source of the pion drgssof the hadron
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Figure 4.14: Behaviour ofcy vs. A, based on infinite-volume pseudodata created with a dipole
regulator at\. = 1.0 GeV but subsequently analyzed using a triple-dipole egqgul
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in question.

The pseudodata analysis provides a good indication of arlbawnd forA using
a dipole regulatorAgip 2 0.6 GeV. Similarly, Figure 4.15 suggests a lower bound
for the triple-dipole regulator\yip 2 0.3 GeV. The same analysis can be repeated
for the double-dipole regulator to obtaftyoyp = 0.4 GeV.

One can also estimate the lowest reasonable valhégfconsidering arguments
from phenomenology. Based on the physical values of the smpmanutator and
the nucleon mass, a pion massngf ~ 0.5 GeV is a suitable upper bound for the
radius of convergence [BHLOO02, YHLQ9, YT10a]. This followsin the estimate
of the two-flavour pion-nucleon sigma term due to Gasser [@ElSUsing the Gell-

Mann-Oakes-Renner Relatiomg 0 m2:
_ 2OMn 3 4 5
SN = P CoM& + XN+ Camiy -+ O(1m) ~ 45 MeV. (4.28)

For good convergence, it is expected that the sigma terrmmsrdied by the leading-
ordercy term. The second and third terms in the expansion are asdatipe leading-
ordercy term formy =~ 0.5 GeV. Therefore, in order to maintain good convergence
of the chiral expansion whilst ensuring the inclusion of artant contributions to
the chiral physics, one should choose a sé&jgp~ 0.5 GeV for a sharp cutoff
(step function) regulator. To compare this estimate forgharp cutoff to that of
dipole-like regulators, one can calculate the regulapnmascale required such that
u2(k; A) = 1/2 when the momentum takes the energy scalspfr, This results in
a rough estimate for a sensible value for the dipole, dodigete and triple-dipole
regulators. These values afgjp ~ 1.1 GeV, Agoup ~ 0.76 GeV andAyip ~ 0.66
GeV, respectively.

In the forthcoming chapter, a range of regularization scal#l be considered,
and the intersections of the curves for the low-energy aoeffts will be used to
construct fits that include data sets that extend outside@te. This is done in order
to identify the presence of an intrinsic scale for the pioarse and an associated

preferred regularization scale.
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Chapter 5

Results for the Mass of the Nucleon

“The datum is a classical property concerning only the instent; it is the expres-
sion of a fact. The result concerns a property of the quantunidw®he datum is an
essential intermediary for reaching a resul{fOmres, R. 2002 Quantum Philoso-
phy: Understanding and Interpreting Contemporary Scigm@®9) [Omn02]

This quotation, and those introduced in Chapters 6 to 8, aoataargument that
links data, results, theory and experience.

The aim of this chapter is to apply an analysis that allowsiabie extrapolation
of the nucleon mass to the physical point by obtaining annagdtiregularization
scale, using lattice quantum chromodynamics (lattice Q@DYkation results. The
identification of an optimal regularization scale, alonghwis associated systematic
uncertainty, indicates the degree to which the lattice Q@Rukation results extend
beyond the power-counting regime (PCR). This quantifies afettafely handles
the scheme-dependence of chiral extrapolations. Ultipatee agreement among
optimal regularization scales obtained from differentidation results indicates the
existence of an intrinsic scale that characterizes theaot®en between the pion
cloud and the core of the nucleon. Such an agreement will m@dstrated through
the results in this chapter, and Chapter 7. In Chapter 6, theedtove developed
in this thesis for analyzing the renormalization flow of tbeienergy coefficients,
obtaining a possible intrinsic scale (or a range of accéptagularization scales),

and performing a robust chiral extrapolation will be tested

67
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In the previous Chapter, extrapolation of the lattice reswts discussed in the
context of finite-range regularized chiral effective fidig¢ory (EFT). The scheme-
dependence of the various extrapolations was analyzed.thou&vas developed for
extracting an optimal finite-range regularization scaterfrideal pseudodata. Since
the pseudodata were generated at a known geakbey contain an intrinsic scale by
construction, and so it was demonstrated that an optim#&tfrainge regularization
scale could be extracted from the pseudodata by analyzengdéle-dependence of
the low-energy coefficients. This optimal scale was the seahge as the intrinsic
scale built into the pseudodata.

The pseudodata example leads the researcher to considtrewhetual lattice
QCD simulation results have an intrinsic cut-off scale endeedwithin them. That
is, by analyzing lattice QCD data in the same way as the pseatidodan a similar
intersection point be obtained from the renormalizatioals flow of the low-energy
coefficients? If so, it would indicate that the lattice dadatain information regard-
ing an optimal finite-range regularization scale, and thwwide evidence for the

existence of an underlying intrinsic scale in the nuclemminteraction.

5.1 Evidence for an Intrinsic Scale in the Nucleon Mass

5.1.1 Renormalization Flow Analysis

Consider the mass of the nucleon as extrapolated from thésedguattice QCD
simulations. The results fap andc; as a function of the regularization sc#ieare
now presented for lattice QCD data from the collaboratiohQQD, PACS-CS and
CP-PACS. Initially, the chiral expansion, calculated to aharder O(m3), should

be used for fitting:

MN = Co + CoM&(1+ Grad(Mf, A)) + Zn (MG, A) + Za (MR, A (5.1)

Thus, the relevant fit parameters used in the extrapolat®cyandc, only. Results

for the higher chiral order ocf)(m‘r‘[logmn) will be discussed in Section 5.1.3. The
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resultant renormalization flows, using a dipole regulaaoe, shown in Figures 5.1
through 5.6; the results for the double-dipole case are showigures 5.7 through
5.12; and the results for the triple-dipole are shown in Feglb.13 through 5.18. On
each plot of the renormalization flow in Figures 5.1 througtB3here are multiple
curves, each corresponding to different values of the uppend of the fit window,
mﬁymax. A few example points are selected in Figures 5.1 througB @lndicate
the general size of the statistical error bars.

It should be noted that none of the curves in Figures 5.1 tivdu18 is flat
to within 1% accuracy. All of the fits have lattice data inahddbeyond the PCR.
Clearly, there is a well-defined intersection point in eaait.phlso, the value of\
at which the intersection point occurs is the same, evenifierent data sets, and for
differentc;. The tight groupings of the curve crossings lend credentkeamotion
of an intrinsic scale that can be interpreted as a finite dizbeosource of the pion
dressings of the nucleon. This is a central result of theyarsl

Using the method described in Chapter 4, the intersectiont wdithe renor-
malization flow curves for different values nﬁmax is estimated from Figures 5.1
through 5.18. As an initial estimate, by inspection, a mealnes for the optimal
regularization scale oﬂgfg'ez 1.3 GeV was obtained for the dipole, a value of
N8~ 1.0 GeV was obtained for the double dipole, and a valué\m"ez 0.9
GeV was obtained for the triple-dipole. These values diffiecause the regulators
have different shapes, as evident in Figure 3.1, and thfeselift values of\S¢@€are
required to create a similar suppression of large loop maéaném order to determine
an estimate of the systematic uncertainty in an extrajpoiatue to the choice of reg-
ularization scalé\5¢@€ one should use a robust method for estimating the systemati
uncertainty ofASc@€jtself. In the following section, a chi-square-style arsigywill

be introduced to fulfill this requirement.

5.1.2 Analysis of Systematic Uncertainties

The optimal regularization scal&s¢@€ can be obtained from the renormalization

flow curves using a chi-square-style analysis. In additioaanalysis will allow the



Chapter 5. Results for the Mass of the Nucleon

Hall 70

1.2 T T T T T

0.27 GeV?
0.39 GeV?®
0.57 GeV?

1.1 |

|
|
|
B 3B
(T

1.0

0 0.9

0.8

0.7

06 1 1 1 1 1
00 04 08 12 16 20 24
A (GeV)

Figure 5.1: Behaviour ofcy vs. A, based on
JLQCD data. The chiral expansion is taken to or-
der O(m3) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.2: Behaviour ofcy vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.3: Behaviour ofcy vs. A, based on
CP-PACS data. The chiral expansion is taken to
orderO(mg) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.4: Behaviour ofc, vs. A, based on
JLQCD data. The chiral expansion is taken to or-
der O(m3) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.5: Behaviour ofc, vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.6: Behaviour ofc, vs. A, based on
CP-PACS data. The chiral expansion is taken to
orderO(mg) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.7: Behaviour ofcy vs. A, based on
JLQCD data. The chiral expansion is taken to or-
der O(m3) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.8: Behaviour ofcy vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(m2) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.9: Behaviour ofcy vs. A, based on CP-
PACS data. The chiral expansion is taken to order
O(m) and a double-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.
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Figure 5.10: Behaviour ofc, vs. A, based on
JLQCD data. The chiral expansion is taken to or-
der O(m3) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.11: Behaviour ofc, vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(m2) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.12: Behaviour ofc, vs. A, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.



Chapter 5. Results for the Mass of the Nucleon

Hall 72

1.2 T T T T T

0.27 GeV?
0.39 GeV?®
0.57 GeV?

1.1 |

|
|
|
B 3B
(T

1.0

0 0.9

0.8

0.7

0.6
00 04 08 12 16 20 24
A (GeV)

Figure 5.13: Behaviour ofcy vs. A, based on
JLQCD data. The chiral expansion is taken to or-
der O(m2) and a triple-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.
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Figure 5.14: Behaviour ofcy vs. A, based on
PACS-CS data. The chiral expansion is taken to
order O(mg) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

1.2 T T T T T

= 0.54 GeV?®
1.1 = 0.69 GeV®

= 0.70 GeV?

= 0.91 GeV?
1.0 = 0.94 Gev® 7

v 0.9

0.8

0.7

1

00 04 08 12 16 20 24
A (GeV)

0.6

Figure 5.15: Behaviour ofcy vs. A, based on
CP-PACS data. The chiral expansion is taken to
order O(m) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.16: Behaviour ofc, vs. A\, based on
JLQCD data. The chiral expansion is taken to or-
der O(m2) and a triple-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.
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Figure 5.17: Behaviour ofc, vs. A, based on
PACS-CS data. The chiral expansion is taken to
order O(mg) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.18: Behaviour ofc, vs. A, based on
CP-PACS data. The chiral expansion is taken to
order O(m) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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extraction of an estimate of the variance A/6¢2¢ The functiony3, defined below
allows easy identification of the intersection points int&eormalization flow plots,
and a range associated with this central regularizatiole sddis function simply
measures the degree to which the renormalization flow cumagsh.

The first step is to ploxﬁof against a variety of regularization scales. The value
of cis given by the weighted mean formula, evaluated separfieBach renormal-

ized coefficient (with errordc) and regularization scal:

— SPc(i;N)/(Bc(i;A))?
N) = . 5.2
o >i11/(8c(] A))? &2

The following x3,; treats relevant degrees of freedom as the extracted choieffi-c

cients with differing values orfnﬁmax:

Xdot = - 12 ﬂ/\)7 (5.3)

that is,i corresponds to fits with differing values mﬁmax.

Thex3, ¢ can be calculated as a function of the regularization stdte each of
the renormalization plots of Figures 5.1 through 5.18. Whikindicate the spread of
the extrapolated values at each valuédofn the case of the PACS-CS data, the min-
imum of thex3,; curve will be at the intersection point of the two curves.He tase
of the JLQCD and CP-PACS data, with more than two curves, theneiisteraction
region on each plot, over a narrow window Af The minima ofx3,; will indi-
cate the value of\ that obtains the best agreement among the renormalizatin fl
curves. This central value @t will be taken to be the optimal regularization scale.
The upper and lower bounds Afobey the conditiox, < Xgofmin+1/(dof). For
each of the low-energy coefficients andc,, the)(éOf curves for a dipole regulator
are shown in Figures 5.19 through 5.24, }fg; curves for the double-dipole case
are shown in Figures 5.25 through 5.30 and)(ﬁu(()af curves for the triple-dipole are
shown in Figures 5.31 through 5.36. These plots indicatettiggie exists a statisti-
cally significant optimal regularization scale at this ehwrder, for these data sets.
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Figure 5.19: Behaviour ofx3, for co vs. A,
based on JLQCD data. The chiral expansion is
taken to ordero(md) and a dipole regulator is
used.
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Figure 5.20: Behaviour ofx3, for co vs. A,
based on PACS-CS data. The chiral expansion
is taken to ordeiO(mg) and a dipole regulator is
used.
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Figure 5.21: Behaviour ofx3; for co vs. A,
based on CP-PACS data. The chiral expansion
is taken to ordeilO(mg) and a dipole regulator is
used.
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Figure 5.22: Behaviour ofx3; for c; vs. A,
based on JLQCD data. The chiral expansion is
taken to ordero(md) and a dipole regulator is
used.
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Figure 5.23: Behaviour ofx for c; vs. A,
based on PACS-CS data. The chiral expansion
is taken to ordeiO(mg) and a dipole regulator is
used.
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Figure 5.24: Behaviour ofx3; for c; vs. A,
based on CP-PACS data. The chiral expansion
is taken to ordelO(mg) and a dipole regulator is
used.
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Figure 5.25: Behaviour ofx3 for co vs. A,
based on JLQCD data. The chiral expansion is
taken to ordeiO(mg) and a double-dipole regula-
tor is used.
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Figure 5.26: Behaviour ofx3, for co vs. A,
based on PACS-CS data. The chiral expansion is
taken to ordeO(m2) and a double-dipole regula-
tor is used.
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Figure 5.27: Behaviour ofx3,; for co vs. A,
based on CP-PACS data. The chiral expansion is
taken to ordelO(m3) and a double-dipole regula-
tor is used.
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Figure 5.28: Behaviour ofx3 for c; vs. A,
based on JLQCD data. The chiral expansion is
taken to ordeiO(mg) and a double-dipole regula-
tor is used.
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Figure 5.29: Behaviour ofx3 for c; vs. A,
based on PACS-CS data. The chiral expansion is
taken to ordelO(m2) and a double-dipole regula-
tor is used.
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Figure 5.30: Behaviour ofx3; for c; vs. A,
based on CP-PACS data. The chiral expansion is
taken to ordelO(m3) and a double-dipole regula-
tor is used.
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Figure 5.31: Behaviour ofx3 for co vs. A,
based on JLQCD data. The chiral expansion is
taken to ordeiO(m2) and a triple-dipole regulator
is used.
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Figure 5.32: Behaviour ofx3, for co vs. A,
based on PACS-CS data. The chiral expansion is
taken to ordeO(m3) and a triple-dipole regulator

is used.
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Figure 5.33: Behaviour ofx3,; for co vs. A,
based on CP-PACS data. The chiral expansion is
taken to orde0(m3) and a triple-dipole regulator

is used.
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Figure 5.34: Behaviour ofx3; for c; vs. A,
based on JLQCD data. The chiral expansion is
taken to ordeiO(m2) and a triple-dipole regulator
is used.
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Figure 5.35: Behaviour ofx3 for c; vs. A,
based on PACS-CS data. The chiral expansion is
taken to ordeiO(m3) and a triple-dipole regulator

is used.
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Figure 5.36: Behaviour ofx3; for c; vs. A,
based on CP-PACS data. The chiral expansion is
taken to ordeO(m3) and a triple-dipole regulator

is used.
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Furthermore, for each data set and regulator functionah féhere is an agreement
between they andc, analyses as to the value of this optimal scale. This provides

evidence of the existence of an intrinsic scale embeddduhirdttice data.

5.1.3 Effects at Higher Chiral Order

Consider the determination o andc, as a function of the regularization scale

for a higher chiral ordeO(mflogmy). As an example, the results for PACS-CS
and CP-PACS data are shown in Figures 5.37 through 5.40. Ircédisis, no clear
intersection points in the renormalization curves can lbedo and so one is unable
to specify an optimal regularization scale. This certasitpuld be the case when
working with data entirely within the PCR, because all rendizaion procedures
would be equivalent (to a prescribed level of accuracy) anthere could be no
optimal scale. It has been demonstrated, however, thattiaeséts used in this study
extend beyond the PCR. This is further verified by consideimggevident scale-
dependence af andc; in Figures 5.37 through 5.40. The fact tisgtandc, change
over the range of\ values indicates that the data are not inside the PCR where the
renormalization must be scale-independent. Furthernsoreg no preferred scale is
revealed, any choice df appears equivalent at this order. While it is encouraging
that the scheme-dependence has been weakened by workiiginéo arder, it must

be recognized that there is a systematic error associatbdive choice of\. In the
case of the CP-PACS results shown in Figures 5.38 and 5.40) heeaeen that the
statistical errors are substantially smaller than theesgyatic error associated with a
characteristic rangé\jower < /A < 0, whereAgwer is the lowest reasonable value of
A, taken to be ®, 0.4 and 03 GeV for the dipole, double-dipole and triple-dipole
regulator, respectively, as discussed in Section 4.2.1.

Since it is difficult to identify the optimal regularizaticstale at this chiral or-
der, the results for chiral orde?(m2) will be chosen to demonstrate the process of
handling the existence of an optimal regularization scalattice QCD data. Values
of ASC@efor different data sets and regulators, using chiral od@ns), are given

in Table 5.1. This table simply summarizes the central \&alwvem Figures 5.19
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Figure 5.37: Behaviour ofcy vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(mf) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.38: Behaviour ofcy vs. A, based on
CP-PACS data. The chiral expansion is taken to
orderO(mf) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.39: Behaviour ofc, vs. A, based on
PACS-CS data. The chiral expansion is taken to
orderO(mf) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.40: Behaviour ofc, vs. A, based on
CP-PACS data. The chiral expansion is taken to
orderO(mf) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Table 5.1:Central values oA in GeV, taken from thg3 . ; analysis forco andc,, based on JLQCD,
PACS-CS and CP-PACS data.

regulator form

optimal scale dipole double triple
| 0.18 0.11 0.09
N&atacD 1447575 1.087577 0.96 50
| 0.02 0.02 0.01
Aﬁ;ﬁEQCD 1407505 1.057507 0.94755;

scale +0.66 0.41 0.35
ACQPACS—CS 1'21—0.82 O'93‘f0.58 0'83j—L0.50
scale +0.18 0.11 0.10
/\CZ,PAC&CS 1‘21—0.18 0.93t0.12 0'83t0.10
scale +0.10 0.06 0.06
/\co,CPfPACS 1‘20—0.10 o'98t0.07 0'88t0.06

scale +0.02 0.01 0.01
/\cz,CP—PACS 1'19—0.01 0'97-—F0.01 0'87t0.01

through 5.36. Such excellent agreement betweertglamdc, analyses is remark-
able, and indicative of the existence of an intrinsic scalthe data. There is also
consistency among independent data sets. It is importargali@e that the value
of ASc@ejs always the order of- 1 GeV, not 10 GeV, nor 100 GeV: nor is it in-
finity. However, in calculating the systematic uncertaimyhe observablesy, c;,
and the nucleon mass at the physical point due to the optegalarization scale at
order O(mflogmy), two methods are provided. Firstly, the upper and lower dsun
from thex3,; analysis at ordeO(m?) are used to constraifi, and taken to be an
accurate estimate of the systematic uncertainty in theribomtibns of higher-order
terms. Secondly, variation of the observables across tirementioned character-
istic range of scale valuedjower < /A < o are used. The results from both of these
methods are displayed in Table 5.2.

The final results for the calculation of the renormalizedfficients cg, ¢, and
the nucleon maskly extrapolated to the physical poinhgynys= 140 MeV) are
summarized in Table 5.3. In this table, the nucleon masdésilkeded at the optimal
scaleASe@e which is the average gk and At for each data set. The extrap-

olations are performed at lattice sizes relevant to each skt Lg)L(t?anD = 1.9 fm,

Losiap °° = 2.9 fm andL§4y “°= 2.8 fm. The estimate of the statistical error is

guoted in the first pair of parentheses, and the systematc, @btained from the



Chapter 5. Results for the Mass of the Nucleon Hall 80

Table 5.2:Results aD(nmlogmy,) for the systematic error due to the optimal regularizaticales
calculated using two methods, for the valuescgi(GeV), ¢, (GeV 1) and the nucleon maddy
(GeV) extrapolated to the physical poimi{ynys = 140 MeV). The first number in each column is
the systematic error due to the optimal regularizationesaaing the upper and lower bound from the
X3o¢ analysis at ordeO(ms). The second number is the systematic error due to the iitritsle
across the whole range 6fvalues from the lowest reasonable valde= Ajower) Obtained from the
pseudodata analysis, to the asymptotic value-(x).

regulator form
Sys. err. dipole double triple

&c-°“P 0,001 Q009 | 0001 Q013 | 0001 Q016
§\cHACSCS 0.005 Q006 | 0.005 Q010 | 0.006 Q012
§\cSP-PACS 0,002 0024 | 0.002 Q037 | 0.002 Q045
P 002 031 | 003 038 | 001 048
S\HACSCS 018 025 | 016 033 014 043
§\SP-PACS 002 040 | 002 058 002 073
FMYOSY  0.0004 00051 0.0003 00073 0.0003 00090

N,phys
M s> 0.0022 00030 0.0025 00046 | 0.0025 00058
MR e > 00012 00175/ 0.0013 00270 | 0.0014 00326

number ofm? values used, is quoted in the second pair of parentheses.difwo
ferent weighted means are calculated. One incorporatesytematic error in the
optimal regularization scale using the upper and lower dduom the)(ﬁof analy-
sis at orderO(m3). The other incorporates the systematic error due to thenapti
regularization scale across the whole rangé& efilues, from the lowest reasonable
value (A = Ajpower) Obtained from the pseudodata analysis, to the asymptatiev
(A = o). The weighted means also include an estimate of the sysitesreor in
the choice of regularization scale. All errors are addeduadyature. The lightest
four data points from each of JLQCD, PACS-CS and CP-PACS lattice Qei®are
used, and the nucleon mass is calculated at the scale de¢eriy the data.
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Table 5.3:Results ato(nmélogmy) for the values oty (GeV), ¢, (GeV 1) and the nucleon mass
Mn (GeV) extrapolated to the physical point{pnys= 140 MeV). WM is the weighted mean of each
row. The nucleon mass is calculated at the optimal s6&f&¢ which is the average o‘f\iga'e and

Asca'efor each data set. The extrapolations are performed atdagizes relevant to each data set:

Lé)L(t?ach = 1.9 fm, LEean ©° = 2.9 fm andL§f 7“5 = 2.8 fm. The estimate of the statistical error

is quoted in the first pair of parentheses, and the systereatic, obtained from the number of
values used, is quoted in the second pair of parenthesess@pearate weighted means are calculated
for each row. WM(1) incorporates the systematic error in ttterisic scale using the upper and lower
bound from th@(fjof analysis at ordeO(m2). The WM(2) incorporates the systematic error due to
the intrinsic scale across the whole rangé\ofalues, from the lowest reasonable valde={ Ajgwer)
obtained from the pseudodata analysis, to the asymptdiie (A = «). The weighted means also
include an estimate of the systematic error in the choic@@ftegulator functional form. All errors
are added in quadrature. Note that any or@éa) errors have not been incorporated into the total
error analysis.

regulator form
parameter dipole double triple WM(1) WM(2)

QP 0.87318)(16) 0.87517)(16) 0.891(17)(16) 0.880(29) 0.87932)
cfACSCS  0.900(51)(15) 0.89951)(14) 0.89851)(14) 0.89953) 0.899(55)
cSPPACS 0.924(3)(8)  0.914(3)(7)  0.9183)(7)  0.91813) 0.920(37)

QP 3099)(11) 3189)(12)  3209)(11)  3.16(18) 3.14(43)
CHACSCS  306(32)(15) 3.15(31)(14) 3.17(31)(14) 3.13(39) 3.12(49)

cSPPACS 2 54(5)(4) 2.70(5)(2) 2.71(5)(3) 2.66(18)  2.61(60)
Miohs  1.02(2)(9) 1.02(2)(9) 1.02(2)(9) 1.02(9)  1.02(9)
M piys > 0.967(45)(43) 0.966(45)(43) 0.966(45)(43) 0.966(62) 0.966(62)

)
MNbne > 0.9822)(40) 09752)(43) 0.9782)(42) 0.97943) 0.97950)

5.2 Summary and Specific Issues for the Nucleon Mass

Since the chiral expansion is only convergent within the PCReremrmalization
scheme such as finite-range regularization should be usexlifent lattice QCD
results, which typically extend beyond the PCR. It was fourad tenormalization
scheme-dependence occurs when lattice QCD data extendisigethe PCR are
used in the extrapolation. This has provided a new quagtétst for determining
whether lattice QCD data lie within the PCR.

The optimal regularization scalkSc@€was selected as the scale at which the
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renormalized coefficients are independent of the upper dairthe fit domain,
nﬁmax. This also means that the renormalized coefficients musbeatentified
with their asymptotic values at large It is also apparent that extremely low val-
ues of A cause a breakdown of the finite-range renormalization. Tit®f scale
associated with an ultraviolet regulator must be large ghdor the loop integral
contributions to be finite, so that the chiral physics is ngmessed.

The mean value of the optimal regularization scale for bbétg andc, anal-
yses across each data seﬁﬁpa'% 1.3 GeV for the dipole formASSae~ 1.0 GeV
for the double-dipole form andtsr‘fg'ez 0.9 GeV for the triple-dipole form. Each
functional form naturally leads to a different value of opal regularization scale

due to its different shape of attenuation, as shown in Figute The value of\gf;'e

is of particular interest in this investigation. In Chapteth® magnetic moment and
the electric charge radius of the nucleon are analyzed Wwitsame procedure, and
using a dipole regulator. If an optimal regularization sazdn be obtained for these
electromagnetic properties of the nucleon, a comparisnrbeanade with the opti-
mal regularization scale from the analysis of the nucleossyi® determine whether
there exists an intrinsic scale in the nucleon. If the opttiregulators in each case
are consistent with each other, this suggests the exist#reavell-defined intrin-
sic energy scale in the nucleon-pion interaction. Nevégtse a robust method for
accomplishing a chiral extrapolation with a reliable andtegnatic estimate in the
uncertainty has been provided.

In the next chapter, the procedure developed for obtainmingpamal regulariza-
tion scale and performing a reliable chiral extrapolatioteisted, by analyzing the
guencheg meson mass: an observable for which there does not exispanieren-
tal value. This serves to demonstrate the ability of theagadiation scheme to make

predictions without prior bias.



Chapter 6

Results for the Mass of the Quenched

p Meson

“A rigorous theory must begin by specifying the attributieattmake a given exper-
imental device into a measuring instrumentOmres, R. 2002 Quantum Philoso-
phy: Understanding and Interpreting Contemporary Scigm@&®9) [Omn02]

The quencheg meson mass offers a unique test case for the identificatian of
intrinsic scale, and subsequent extrapolation schemeerntes to demonstrate the
ability of the procedure to make predictions with reducedmdmenological bias,
and also to highlight the difference between quenched alhdjdiantum chromo-
dynamics (QCD) in making extrapolations of an observable. §iggithe method
developed in Chapter 4, an extrapolation is performed usisgched lattice QCD
data that extend outside the power-counting regime (PCR).

In chiral effective field theory(EFT), the diagrammatic formulation can be used
to identify the major contributions to timeson mass in quenched QCD (QQCD)
[CR98, AAL106]. The leading-order diagrams are the double and siqghairpin
diagrams as shown in Figures 6.1 and 6.4, respectively. ®hstant coefficients
of these loop integrals are endowed with an uncertainty toepass the possible
effects of smaller contributions to ordeXm#). Interactions with the flavour-singlet
n’ are the most important contributions to theneson mass in QQCD. This is an

artefact of the quenched approximation, where fhelso behaves as a pseudo-

83
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Figure 6.1:Double hairpinm’ diagram. Figure 6.4:Single hairpim’ diagram.
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Figure 6.2:Double hairpin quark flow diagram. Figure 6.5:Single hairpin quark flow diagram.
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Figure 6.3: Alternative double hairpin quark
flow diagram.

Goldstone boson, having a mass that is degenerate with dine phe dressing of
thep meson by the' field is illustrated in Figures 6.2 through 6.5. Since thejtiai
vertex must be a flavour-singlet, the mesons that can codrdre tha’ meson, and
thew meson. The contributions from themeson are insignificant due to OZI sup-
pression and the smaltw mass splitting. However, in QQCD, timg loop behaves
much as a pion loop, yet with a slightly modified propagator.

In full QCD however, this would not be the case. Tiflenasses are large com-
pared to the pion, and the propagators of ftheneson are suppressed due to their
large denominators. If thg’ propagator in full QCD is expanded out, the terms
can be summed as a geometric series and expressed in closgc$oa function of

some massive coupling consténg between the disconnected quark loops and pion
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momentunk, as argued in Allton [AAL 05]:

1 M3
@R (R
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[1_k2+m%+(k2+m%) o ey
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el ) e

1 1
S KRmE+ME T e

(6.3)

However in QQCD, the first two terms of Equation (6.1) form theolen’ prop-
agator, since they alone correspond to the absence of disctad loops, as shown

in Figure 6.6.

=
O (C=
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Figure 6.6:Diagrammatic representation gf propagator terms.
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6.1 Renormalization of the Quencheg Meson Mass

6.1.1 Chiral Expansion of the Quencheg® Meson Mass

Thep meson mass extrapolation formula in QQCD can be expressefbimathat

contains an analytic polynomial im? plus the chiral loop integral€®):

Mp.Q = 8 + 8 M+ ay M+ 3 (M, A) + 2 (MG, A) + O(mf) (6.4)

The coefficientg!* are the ‘residual series’ coefficients, which correspondirect
guark-mass insertions in the underlying Lagrangian ofathperturbation theory
(xPT). However, the non-analytic behaviour of the expansimsea from the chi-
ral loop integrals. Upon renormalization of the divergesdg integrals, these will
correspond with low-energy constants of the quenched teféetield theory. The
extraction of these parameters from lattice QCD resultsfolibw the same course
as provided in Chapter 4.

By convention, the non-analytic terms from the double andlsihairpin inte-
grals areqymy andysn, respectively. The coefficiengg andys of each integral are
scheme-independent constants that can be estimated fremoipienology. That is,
they can be expressed purely in terms of known constantsdsqrariment, such as
the pion decay constarlif; = 92.4 MeV, and a variety of parameters obtained from
the underlying effective Lagrangian, as described in $ad.1.3. The low-order

expansion of the loop contributions takes the followingrior

Zoy =P8+ Xameot B3 G X3 M b i O, (6.5)
53 = +b] Mm%+ x3 m+ by mf+ O(mf). (6.6)

The coefficientys is obtained by adding the contributions from both integnads=
xgh/ +xg/. As before, each integral has a solution in the form of a pafyial
expansion analytic im? plus non-analytic terms, of which the leading-order term is
of greatest interest. In order to achieve an extrapolataset on an optimal finite-

range regularization (FRR) scale, once again the scale-depee of the low-energy
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expansion must be removed through renormalization. Therneaization program
of FRR combines the scheme-dependgntoefficients from the chiral loops with
the scheme-dependemtcoefficients from the residual series at each chiral order

The result is a scheme-independent coefficognt

co=ah+b0" +b], (6.7)
co=ah+ )" +b] (6.8)
ca=ah+0]" +b], etc. (6.9)

Thatis, the underlying/ coefficients undergo a renormalization from the chiral loop
integrals. The renormalized coefficierfsare an important part of the extrapolation
technique. In this chapter, a stable and robust deterromafithe parameters, ¢,
andcy forms the core of the method for determining an optimal sf&f@'€ of the

mass of thep meson.

6.1.2 Chiral Loop Integrals

The loop integrals can again be expressed convenientlhykioygtghe non-relativistic
limit and performing the pole integration fég. Renormalization is achieved by
subtracting the relevant terms in the Taylor expansion efldop integrals, and ab-

sorbing them into the corresponding low-energy coefficignt

Ay X (M3K? + 3 Aok ) U (k; )
i) = e /dsk k2+m%)2
’”'—b”'”’m%[ b "' mé, (6.10)
59 (2 /d3k k2+m% by — b
— bQ . (6.11)

The tilde (") denotes that the integrals are written out morenalized form to chiral

order O(mft). The coefficientsg,ry andx, are related to the coefficients of the
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leading-order non-analytic terms by the following:

X1 = MG Xnn » (6.12)
X3=X3" +X3 =A0Xnn + X - (6.13)

In choosing the form of regulator, one must be cautious tddaaoy extra
scheme-dependent, non-analytic terms that might occuoimg chiral order. For
example, consider pseudodata created from the lattice Q@DIations from the
Kentucky Group, using a dipole regulator created using tades/\; = 0.8 GeV.
The renormalization flow curves are shown in Figures 6.7utino6.9. The dipole
regulator induces non-analytic terms proportionalrig and m in the loop inte-
gral expansion formulae. By writing out the regulator-degece explicitly in the

coefficientsh;, the following equations are obtained:

QJdipy, . Fnn’ Bg/n’ Bg’n’ 3 B?Lh/ 4 Bg’n’ 6
Ty (KiA) = ABGT + Xamye+ —2—mmft 4 =2 =t =2+ Oy
(6.14)
. ., ., B B’
53 MP(k; A) = A% +AD] M+ xami+ T‘lmf'ﬁ— /\—52m§[+ o(md). (6.15)

Clearly, the renormalization flow is compromised by the exiwa-analytic terms
appearing at such a close chiral order to the fit parametérsudh it is possible to
provide additional fit parametee$ andal to contain the contribution from these
terms, there are often not enough available lattice sinulagesults to constrain all
coefficients. Instead, a more effective approach is to ah@osegulator functional
form such that the extra non-analytic terms do not appedechiral expansion. By
selecting an multiple-dipole regulator corresponding¢be@ice ofn > 2 in Equation
(3.105) in Chapter 3, the suppression of additional nonygicailerms below the
working chiral orderO(mf) is assured. If one also decides to remove ertfa
terms, a triple-dipole is sufficient to remove additionahramalytic terms below
chiral orderO(m%). The renormalization flow curves for pseudodata created wit

a double-dipole are shown in Figures 6.10 through 6.12. €hermalization flow



Chapter 6. Results for the Mass of the Quenchédieson Hall 89

1.45 T T T T T T | |
1.40 - .
1.35 .

1.30 N

125 T

1.20
o 115
1.10
1.05
1.00

095 [ . ot = 05 GevE
0.90 | =
085 | | | | | | | |
00 02 04 06 08 10 12 14 16 18
A (GeV)
Figure 6.7: Behaviour ofcy vs. A based on infinite-volume pseudodata created with a dipole
regulator at\; = 0.8 GeV (based on Kentucky Group data). Each curve uses psatadwoith a
different upper value of pion mass .
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Figure 6.10: Behaviour ofcg vs. A based on infinite-volume pseudodata created with a double-
dipole regulator af\; = 0.8 GeV (based on Kentucky Group data). Each curve uses psatadeith
a different upper value of pion mas¥; ..
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curves for pseudodata created with a triple-dipole regulate shown in Figures
6.13 through 6.15. In both cases, the pseudodata are cresatgrthe scalef\; = 0.8
GeV.

With the loop integrals specified, Equation (6.4) can be itésvr in terms of the

renormalized coefficients:

M o = Go+ ComM+- Cammfe+ £ (ME A) + E3(M& A) + O(m) (6.16)
= o+ X1My+ CoM& -+ X3Me + Camif+ O(ml) . (6.17)

Equation (6.16) is the extrapolation formula fnﬁ,Q at infinite lattice volume. The
fit coefficients arego, ¢ andcs; andmy, g is obtained by taking the square root of
either Equation (6.16) or (6.17).

6.1.3 Scheme-Independent Coefficients

The convention used for defining the valuexefxs and the various coupling con-
stants that occur in each, follows Booth [BCF97]. For the pdegliiiferent values
that coupling constants can take, the definitions from Chow & [R&98], Armour
et.al. [AAL 706] and Sharpe [Sha97] are used. The types of vertices biabae
displayed in Figure 6.16, where the couplirgpsandg,s occur explicitly in the two
diagrams considered here. Booth suggests naturalnegsot, and thats ~ 1/N¢
[BCF97]. These quenched coupling constants can be connectied éxperimental

value ofgypr as per Lublinsky [Lub97] by the relation:

1
Q2= égmpnfn, (6.18)

wheregupn = 14+ 2 GeV1 and the pion decay constant is again taken td;pe
92.4 MeV. Thusg; is chosen to be.65+0.09 GeV andy, is chosen to bgy/3. The
coupling between the separate legs of the double hairpgrala are approximated
by the massive constaht3 [ mﬁ,. The next-order correction fdg in momentunk

defines the coupling to beM(2)+Aok2. These constants can be connected to the full
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dipole regulator af\; = 0.8 GeV (based on Kentucky Group data). Each curve uses psatadeith

a different upper value of pion mas¥; ..
20
19
18
17
16
15
14

|
B
I

= 0.04 GeV?
= 0.25 GeV®
= 0.5 GeV? n

00 02 04 06 08 10 12 14 16 18
A (GeV)
Figure 6.14: Behaviour ofc, vs. A based on infinite-volume pseudodata created with a triple-
dipole regulator af\; = 0.8 GeV (based on Kentucky Group data).
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NOTE:
This figure is included on page 93 of the print copy of
the thesis held in the University of Adelaide Library.

Figure 6.16: Coupling types following convention introduced by Booth [BCF97].

QCD n' meson mass m,y by considering the geometric series of terms as illustrated
earlier, in Figure 6.6. As a result, M(Z) is taken to be 0.6 +0.2 GeV? and Ay is taken
to be 0+ 0.2. The central values of each quantity are used in the final analysis.
The coefficients )yq and )y can be specified in terms of the relevant coupling
constants:
o &3
m=—2m —,
Xnm Ty
o 8284
P =—=2my === 6.19
where the couplings are defined relative to l’(;?p, representing the p meson mass in the
chiral limit, which is taken to be 770 MeV.
The finite-volume version of Equation (6.16) can thus be expressed:
2. FVC/, 2.
(mn’A) + 611’1]’ (mn’A/))

méQ =co+ czmi + C4m;t + (i%’n’

+(E9(mz; A) + 85 (mas A)) + O(mf) (6.20)
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6.2 Extrapolating the Quenchedp Meson Mass

6.2.1 Renormalization Flow Analysis

The data displayed in Figure 6.17 are split into two partd.tihd data points to the
left of the solid vertical line are unused in the extrapaatnd kept in reserve. This
is so that the extrapolation can be checked against thesenkahata points. The data
points to the right of the solid vertical line are used forragblation. The full set
of data is also listed in Appendix C, Table C.4. Note that in QQ@I2,simulation
results are correlated. The correlations have been takkeragtount in all fits and
extrapolations.

In order to produce an extrapolation to each test valueépfan FRR scale\
must be selected. As an example, one can choose a tripleedggulator ai\ = 1.0
GeV. By using Equation (6.20), finite- and infinite-volumeragilations are shown
in Figure 6.18. The values af? selected for the finite-volume extrapolations exactly
correspond with the missing low-energy data points seeasatlier. The physical
pointmé = 0.0196 Ge\f is included as well.

Now the regularization scale-dependence of low-energffic@ntscy, c; andcy
is investigated for various upper limits of range of pion sess The renormalization
of these low-energy coefficients is considered across aeranhd\ values. Each
renormalization flow curve corresponds to a different valimaximum pion mass,
mﬁ,max. Thus the behaviour of the renormalization of the low-epargefficients
can be examined as the lattice data set is extended furtbgdeuhe PCR. Figures
6.19 through 6.21 show the renormalization flow curves faheat cy, c; andcs.
Each data point plotted has an associated error bar, butdmake of clarity only a
few points are selected to indicate the general size of #iesstal error bars. Using
the procedure described in Chapter 4, the optimal regutaizacale is identified
by the value of the regularization scale that minimizes tiserdpancies among the
renormalization flow curves. This indicates the scale atWikie renormalization of
eachg; is least sensitive to truncation of the data. Physicallg ¥hlue of/A can be

associated with an intrinsic scale related to the size o$thece of the pion cloud.
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Figure 6.17: Quenched lattice QCD data for tpemeson mass provided by the Kentucky Group.
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Figure 6.18: A test extrapolation based on the four original data points\. Both the finite- and
infinite-volume results are shown for a triple-dipole regal atA = 1.0 GeV. The dashed vertical
line indicates the physical pion mass.
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By examining Figures 6.19 through 6.21, increas'rnﬁmax leads to greater
scale-dependence in the renormalization, since the datalsdies further from
the PCR. Since the effective field theory is calculated to aeficitiral order, com-
plete scale-independence across all posgibkalues will not occur in practice. An
asymptotic value is usually observed in the renormalireitmwv as/\ becomes large,
indicating that the higher-order terms of the chiral expamare effectively zero.
However, these asymptotic values of the coefficients are @stimates of their cor-
rect values, as previously demonstrated in the pseudodalsses in Chapter 4.
Instead, the best estimates of the low-energy coefficiemis ithe identification of
the intersection point of the renormalization flow of thesefticients. It is also of
note that, for small values d@f, the FRR scheme breaks down, as observed for the
nucleon mass in Section 4.2.1. The regularization scal¢ beust least large enough

to include the chiral physics being studied.

6.2.2 Intrinsic Scale and Systematic Uncertainties

The optimal regularization scal&s®@€ can be obtained from the renormalization
flow curves using a chi-square-style analysis. In addittbe,analysis will allow
the extraction of a variance faxS¢@€ Knowing how the data are correlated, the
systematic errors from the coupling constants Affd'®will be combined to obtain
an error estimate for each extrapolation point. Of paréicuterest are the values
of my o at those values af that are explored in the lattice simulations, but are
excluded in the chiral extrapolation. The functigfy,; is constructed in the same
way as Equations (5.2) and (5.3).

The)(éOf plots using a triple-dipole regulator are shown in Figur&2@hrough
6.24. The optimal regularization scalé®@€ijs taken to be the central valye&ental
of each plot. The upper and lower bounds\afbey the conditiorx3, ; < xgofjmin-l-
1/(dof). The results for the optimal regularization scales obthiinem analyzing
each low-energy coefficient, and their associated uppeloavet bounds, are shown
in Table 6.1. It is remarkable that each low-energy coeflicleads to the same

optimal value ofA\, i.e. Acentrai= 0.67 GeV. By averaging the results amanyg Cy,



Chapter 6. Results for the Mass of the Quenchédieson Hall 98

0.28 T
0.26 -
024 T
0.22 -
0.20 -
mj 0.18
0.16 -
0.14 -
0.12 |
0.10 |

008 | | | | |
0.0 0.4 0.8 1.2 1.6 2.0 2.4
A (GeV)
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Table 6.1:Values of the central, upper and lower regularization sgaleGeV, obtained from the
xﬁof analysis ofcy, ¢ andcy, displayed in Figures 6.22 through 6.24.

scale (GeV) ¢ (Fig.6.22) ¢ (Fig.6.23) ¢4 (Fig.6.24)

Acentra| 0.67 067 0.67
Aupper 0.78 075 075

andcy, the optimal regularization scafecgefor the quenche@ meson mass can be
calculated for this data sefscale= 0.67 0 03 GeV.

The result of the final extrapolation, using the estimatehefaptimal regular-
ization scaleAscale= 0.677553 GeV, and using the initial data set to predict the
low-energy data points, is shown in Figure 6.25. The extietjfmm to the physical
point obtained for this quenched data setng’S(m2 o = 0.92570028 GeV, an
uncertainty of less than 6%.

Each extrapolation point displays two error bars. The irmeasr bar corresponds
to the systematic uncertainty in the parameters only, aedtler error bar corre-
sponds to the systematic and statistical uncertaintieadf point added in quadra-
ture. Also, the infinite-volume extrapolation curve is désfed in order to illustrate
the effect of finite-volume corrections to the loop integral

In Figure 6.26, the extrapolation predictions are compagainst the actual sim-
ulation results, which were not included in the fit. Both thérgpolations and the
simulation results display the same non-analytic cureatear the physical point.
Figure 6.27 shows the data plotted with error bars corrélegiative to the lightest
data point in the original sety? = 0.143 Ge\?. To highlight the importance of
this application of an extendedEFT, a simple linear fit is included in Figure 6.27.
By ignoring low-energy chiral physics, the linear fit is sséitally incorrect at the
physical point. All of the missing original data points amnsistent with the ex-
trapolations’ systematic uncertainties. After stataticorrelations are subtracted,
the extrapolated points correspond to an error bar almdisthigasize of that of the

lattice data points. In order to match this precision at loergies, the time required
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Figure 6.25: Extrapolation af\scale= 0.67"5.53 GeV based on Kentucky Group data, and using

the optimal number of data points, correspondingrfgngxz 0.35 Ge\2. The inner error bar on
the extrapolation points represents purely the systereatiz from parameters. The outer error bar
represents the systematic and statistical error estinagtdsd in quadrature.
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Figure 6.26: Comparison of chiral extrapolation predictions (blue diea) with Kentucky Group
data (red cross). Extrapolation is performed\atae= 0.67" 308 GeV, and using the optimal number
of data points, corresponding mﬁr}]axz 0.35 Ge\2. The inner error bar on the extrapolation points
represents purely the systematic error from parameteesoliter error bar represents the systematic
and statistical error estimates added in quadrature.
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Figure 6.27: Comparison of chiral extrapolation predictions (blue disa) with Kentucky Group

data (red cross), with errors correlated relative to thepai m? = 0.143 Ge\?. Extrapolation is
performed af\gcgie= o.eﬁg;gg GeV, and using the optimal number of data points, corresipgrto

ﬁﬁﬁmaxz 0.35 Ge\2. The error bar on the extrapolation points represents thesatic error only.
A simple linear fit, on the optimal pion mass region, is inéddor comparison.

in lattice simulations would increase by approximatelyrfoones.

In order to check if scheme-independence is recovered wdate within the
PCR, the low-energy data that were initially excluded fromlgsia can now be
treated in the same way. That is, renormalization flow cucasbe constructed as
a function ofA for sequentially increasing%max. The results are shown in Figures
6.28 through 6.30. Clearly, the renormalization flow curwesfich plot correspond-
ing to cp, Cp andc, are flatter than those of the initial analysis, indicating@duction
in the regularization scale-dependence due to the use attiser to the PCR. One
is not able to extract an optimal regularization scale frbese plots, as shown in
the behaviour oﬁ(gof, displayed in Figures 6.31 through 6.33. However, eéq)lq
curve provides a lower bound for the regularization scaleene FRR breaks down
[HLY10], as discussed in Section 6.2.1. These lower bourats\§S, .. = 0.39 GeV,
N2,y =0.52 GeV and\[%, ., = 0.59 GeV.

The statistical error bars of the low-energy coefficientsesponding to a small
number of data points in Figures 6.28 through 6.30 are |lange a statistical differ-

ence among the curves does not appear uﬁgmaxz 0.11 Ge\2. Thus the identi-
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fication of an optimal regularization scale will be aided bgarporating data corre-
sponding to even larger valuesroﬁmax. By consideringll of the available data, the
behaviour oij(gof, as displayed in Figures 6.34 through 6.36, resolve pregsmal

regularization scalesA2,, = 0.72 GeV,AZ .= 0.71 GeV and\% .= 0.71

GeV. The systematic errors obtained from eagp, curve seem arbitrarily con-
strained as a consequence of including more data pointshveixiiend well outside
the chiral regime, and possibly outside the applicableoregif FRR techniques.

This issue is addressed in the ensuing section.

6.2.3 Optimal Pion Mass Region and Systematic Uncertainties

In this section, a robust method for determining an optinaalge of pion masses
is presented. This range corresponds to an optimal numtemaiation results to
be used for fitting. First, consider the extrapolation of gaencheg meson mass,
which can now be completed. The statistical uncertainhethé values oty, co,
c4 are dependent omﬁmax. As a consequence, the uncertainty in the extrapolated
p meson mass;ngxt must also be dependent mﬁmax. Since the estimate of the
statistical uncertainty in an extrapolated point will téndlecrease as more data are
included in the fit, one might figely choose to use the Iargenimax value possible
in the data set. However, at some large valum?%ax, FRRXEFT will not provide
a valid model for obtaining a suitable fit. At this upper bowfdapplicability for
FRRXEFT, the uncertainty in an extrapolated point is dominatethle systematic
error in the underlying parameters. This is due to a greatezrae-dependence in
extrapolations using data extending outside the PCR, me#mnthe extrapolations
are more sensitive to changes in the parameters of the loegrats. Thus there is
a balance poinmﬁmaxz ﬁﬁmax, where the statistical and systematic uncertainties
(added in quadrature) in an extrapolation are minimized.

In order to obtain this valuaflﬁjmax, consider the behaviour of the extrapolation
of the p meson mass to the physical pomf’ (g .0, as a function o ..
Treating the parametemy, a4, MS, Ag andAS¢@€ a5 independent, their systematic

uncertainties from these sources are added in quadratuaeldition, the systematic
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uncertainty due to the choice of the regulator functionaifds roughly estimated
by comparing the results using the double-dipole and thefatection. These func-
tional forms are the two most different forms of the varioagulators considered,
since the dipole was excluded due to the extra non-analgttributions it intro-
duces. The results for the initial and complete data setstayen in Figures 6.37
and 6.38, respectively. Figure 6.37 indicates an optimlallemﬁmaxz 0.35 Ge\?,
which will be used in the final extrapolations, in order to ché¢he results of this
method with the low-energy data. By using only the data coethin the optimal
pion mass region, constrained bﬁgaw an estimate of the optimal regularization
scale may be calculated with a more generous correspongitgnsatic uncertainty.
The valueAS®@e= 0.64 GeV is the average g%3® ASCa® and A using this
method. The(gof analysis does not provide an upper or lower bound at thisevalu
of mﬁmax. These two estimates of the optimal regularization scaecansistent
with each other. Both shall be used and compared in the finisisaFigure 6.38
indicates an optimal valueﬁfmaxz 0.20 Ge\? for the complete data set. A higher
density of data in the low-energy region serves to decrdasstatistical error esti-
mate of extrapolations to the low-energy region. The cpwasding value of\sca€

is unconstrained in this case, since the data lie close tB@.

The values oty, ¢, andc4 for both the original data set and the complete data
set are shown in Table 6.2, with statistical error estimateeg first, and systematic
uncertainty due to the parametegs ga, M2, A, AS%@and the regulator functional
form quoted second. In the case of the original data set,ah&\ofc, is not well
determined, due to the small number of data points usedelodbke of the complete
data set, the results are dominated by statistical unogytand this also results in
an almost unconstrained value @f The coefficients of the complete set are less
well-determined due to the fact thaﬁr;axz 0.20 Ge\?, leaving only low-energy
results with large statistical uncertainties for fitting.

The result using the estimate of the optimal regularizaicale/AS¢3'e = 0.64
GeV, with the systematic uncertainty calculated by varygcross all suitable

values, and using the initial data set, is shown in Figur®.6IThe extrapolation to
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Figure 6.37: Behaviour of the extrapolation of the quenchetheson mass to the physical point
nﬁ‘é(nﬁphys) VS.IM4 nax Using the initial data set, which excludes the lowest matsptzints. In each

case,Co is obtained using the scalg.ena (for a triple-dipole regulator) as obtained from tk@%f
analysis. The error bars include the statistical and syeierancertainties iy added in quadrature.
The optimal valuer? .., = 0.35 Ge\2.
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Figure 6.38: Behaviour of the extrapolation of the quenctetheson mass to the physical point
nﬁfé(nﬁphys) VS. mﬁ_’max using the complete data set, which includes the lowest maisspbints.
In each caseg is obtained using the scal&.nira (for a triple-dipole regulator) as obtained from

the x3,; analysis. The error bars include the statistical and syatierancertainties ity added in
quadrature. The optimal value? ., = 0.20 Ge\~.
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Table 6.2:The values oty, ¢; andc, as obtained from both the original data set and the complete
set, which includes the low-energy data. In each case, thfficdents are evaluated using the scale
Ncentral (for a triple-dipole regulator) as obtained from &ﬁ%f analysis. The value ofﬁymax used is
that which yields the smallest error bar in adding staétnd systematic uncertainties in quadrature.
For the initial data setn? .., = 0.35 Ge\2. For the complete data sety; 1., = 0.20 Ge\2. The
statistical uncertainty is quoted in the first pair of paheses, and the systematic uncertainty is
guoted in the second pair of parentheses. For the origirialski,c, is not well determined, with
only a small number of data. For the complete data set, |aegestical uncertainties result in an
almost unconstrained value of. The coefficients of the complete set are less well-detexthdue

to the fact thatr?, .., = 0.20 Ge\?, leaving only low-energy results with large statisticatertainties

for fitting.

co(GeV?) C2 c4(GeVv?)
original set  131(5)(17) 7.9(4)(26) —16.2(8)(382
complete set B5(4)(241) 6.8(5)(31) —3.3(17)(361)

the physical point obtained for this quenched data set§%;(m2 . ) = 0.922"3:0¢5
GeV, an uncertainty of approximately 7%. Figure 6.40 shdvesdata plotted with
error bars correlated relative to the lightest data poitténoriginal setm? = 0.143
GeV?, using/Ascale= 0.64 GeV, and varying\ across its full range of values. This
naturally increases the estimate of the systematic unogyrtaf the extrapolations,
but also serves to demonstrate how closely the results fattnd QCD andkEFT

match.

6.3 Summary and Specific Issues for the Quencheaul

Meson

A technique for isolating an optimal regularization scakswnvestigated in QQCD
through an examination of the quenchgdheson mass. The result is a successful
extrapolation based on an extendddFT procedure. By using quenched lattice
QCD results that extended beyond the PCR, an optimal reguianzscale was
obtained from the renormalization flow of the low-energy foents co, ¢ and

cs. The optimal scale is found to b&@€= 0.67552 GeV. An optimal value of

the maximum pion mass used for fitting was also calculated,veas found to be
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Figure 6.39: Comparison of chiral extrapolation predictions (blue disah) with Kentucky Group
data (red cross). Extrapolation is performed\adaie= 0.64 GeV, varied across the whole range of
A values, and using the optimal number of data points, cooretipg tonﬁmaxz 0.35 Ge\2. The
inner error bar on the extrapolation points representslytine systematic error from parameters.
The outer error bar represents the systematic and statistior estimates added in quadrature.
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Figure 6.40: Comparison of chiral extrapolation predictions (blue disa) with Kentucky Group
data (red cross), with errors correlated relative to thepai m? = 0.143 Ge\?. Extrapolation is
performed at\scae= 0.64 GeV, varied across the whole range/ofalues, and using the optimal
number of data points, correspondingng ., = 0.35 Ge\2. The error bar on the extrapolation
points represents the systematic error only. A simple fifiaon the optimal pion mass region, is
included for comparison.
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ﬁlﬁjmax: 0.35 Ge\2. By using only the data contained in the optimal pion mass
region, constrained by ., a valueNS°3e= 0.64 GeV is estimated for the optimal
regularization scale, with a wider systematic uncertagatyesponding to the entire
range of values of\. These two estimates of the optimal regularization scade ar
consistent with each other.

The mass of thgg meson was calculated in the low-energy region. At the
physical point, the result of the extrapolation, usingfa®= 0.67795 GeV, is:
MG (M2 hye) = 0.9257 5028 GeV. The result of the extrapolation, using’@*=0.64
GeV, with the systematic uncertainty calculated by varykagcross all suitable val-
ues, is:mPG(m2 ) = 0.922°3523 GeV. The extrapolation also correctly predicts
the low-energy curvature that was observed when the lowggriattice simulation
results were revealed.

Since there exists no experimental value for the mass ot&lesn the quenched
approximation, this analysis demonstrates the abilityheftechnique to make pre-
dictions without phenomenologically motivated bias. Thasults clearly indicate a
successful procedure for using lattice QCD data outside @R ® extrapolate an

observable to the chiral regime.
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Chapter 7

Electromagnetic Properties of the

Nucleon

“[W]e can establish the key to our conclusiothe datum and the result are log-
ically equivalent. (Omres, R. 2002.Quantum Philosophy: Understanding and
Interpreting Contemporary Scienpe209) [Omn02]

In this chapter, the focus is turned to the magnetic momeshtlanelectric charge
radius of the nucleon. The magnetic moment is often studiedhe physical sig-
nificance of its anomalous component, obtained from thei Rawh factor F, (de-
fined in Equation (3.76)). Since electrically charged piarnth non-zero angular
momentum dress the nucleon, they contribute non-trivialliys magnetic moment,
altering the value from its semi-classical Dirac value. dvikse, the electric charge
radius, or more precisely, the gradient of the Sachs eteftirm factorGg in the
soft-photon limit, provides a phenomenological test of guen chromodynamics
(QCD) theory. The leading-order low-energy contributioraf virtual processes
provide non-analytic behaviour in the chiral expansion.r@llextrapolations for an
infinite-volume box agree with experiment at the physicahpas will be evident
later in this chapter. It is of interest in this investigatim determine if an optimal
regularization scale may also be extracted from lattice Q€fults for these two
observables. If so, it would provide compelling evidencetfee existence of an

intrinsic scale for the source of the pion cloud of the nucleo

111
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In lattice QCD, the isovector combination of the nucleon itewfcalculated,
as described in Section 2.1.3. Feynman diagrams includiggohotons coupling
to sea-quark loops cancel in the case of the isovector, andisfinction between
VQCD and full QCD vanishes. This is fortunate, since the calboih of the dis-
connected loops is computationally expensive. As a reggrgtiminary lattice QCD
isovector results for two-flavap(a)-improved Wilson quark action from the QCDSF
Collaboration are analyzed.

The magnetic moment and the electric charge radius can eashitben as chi-
ral expansions, ordered ir?, due to the Gell-MannOakes-Renner Relation from
Equation (3.43) in Chapter 3. Each expansion comprises apolial residual se-
ries, and loop integrals that contribute to non-analyticattbehaviour. The dia-
grams that correspond to the leading-order loop integralsiaown in Figures 7.1
through 7.3.

7.1 Renormalization of the Magnetic Moment

7.1.1 Chiral Expansion of the Magnetic Moment

Recalling the definition of the magnetic moment of the isavecticleon in Equation

(3.80), the chiral expansion is as follows:

O _ gl + &) M2+ T (M2 A) + TH(MB; A) + O(mih) (7.1)

for loop integrals denoted) to differentiate them from the self energies. In this in-
stance, only two free parameters are chosen, since theradytia contributions are
included only to chiral orde©(mZlogmy). For a process with zero mass-splitting,
such as that shown in the diagram in Figure 7.1, the leadidgramon-analytic term
is proportional tany; a lower chiral order than the leading-order term in the eacl
mass expansion. As a result, greater chiral curvature isa@d, and the automatic
renormalization process introduced in Chapter 4 will be tooged only to order

o(m), that is, for the chiral coefficierty. The fully renormalized chiral expansion
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B B B

Figure 7.1: The pion/kaon loop contribution (with photon attachmeotthie magnetic moment
and the electric charge radius of an octet barpallowing a transition to a baryol. All charge
conserving transitions are implicit.

Figure 7.2:The pion/kaon loop contribution (with photon attachmeatite magnetic moment and
the electric charge radius of an octet bar@mllowing a transition to a nearby and strongly-coupled
decuplet baryofT .

Figure 7.3: The tadpole contribution ab(my) (with photon attachment) to the electric charge
radius of an octet baryoB.

may be written to leading non-analytic ordefmy,) as:

U = co+ XjMn+ O(MG), (7.2)

wherep is an implicit mass scale. Note also that the diagram in Egu8 does not
contribute to the magnetic moment of the nucleon since jgxtse, the photon cou-

ples to spinless pseudo-Goldstone bosons that have nalabgular momentum.
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7.1.2 Chiral Loop Integrals

Each loop integral has a solution in the form of a polynomigdaamsion analytic in

m? plus non-analytic terms, of which the leading-order termfiparticular interest:

T (m2; A) = by £ xK mp+ by N m2 o+ o(md) (7.3)
THm2; A) = B 4+ b M2 4 X mBlogmy/p+ O(mg), (7.4)

wherep is a mass scale associated with the logarithm.

The corresponding loop integrals can be expressed in a s@mtdorm by taking
the non-relativistic heavy-baryon limit, and performirge tpole integration fokg.
The integral corresponding to the diagram in Figure 7.1g¢ake form [WLTYO07,
WLTY09a]:

~ . XK (6 x K)2U2(K;A) AN

T(mein) = N / d% T bt (7.5)
_ XK KW(KA) AN
_ XK KW (k;A) AN
B W/dsk(kz+n%>2 b (7.7)

whered'is the direction of the external momentum introduced by @omming pho-
ton. The argument for this substitution of the perpendicpktk; is expounded

in Appendix B.1.1. The functiom(k;A) is the regulator, with associated momen-
tum cut-off scaleA. In this case, a dipole regulator will be used (correspamndin
to a choice ofn = 1 in Equation (3.105) in Chapter 3). Since the working-order
O(m2logmy,) of the calculation is less than in the case of the nucleon euaalysis,
there is a reduced possibility of extra scale-dependerdamatytic terms frustrating
the chiral fit. Thus, ensuring that these scale-dependantinalytic terms are re-
moved from the chiral expansion is not so vital, and a dipolenfis an acceptable

choice of regulator. The integral corresponding to the @iagin Figure 7.2 takes
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the form:
~ . —Xh k2 (20(K) +A)U2(k; A) AA
THmR;A) = 28 /d3k AL (7.8)
_ X K*(20(k) + A)P(K;A) — una
A/ b 263 (K) [w(K) + A2 b, (7.9)

wherew(k) = \/kZ+m2 andA is the mass-splitting. The chiral coefficient§ and

xx are constants in terms of the chiral Lagrangian of EquaBo®8) in Chapter 3:

XkP = (D+F)2=—xk", (7.10)

81‘2

Xa"="gniz 9 ~ Xo-

(7.11)

On the finite-volume lattice, each momentum component iswtiged in units of
21/, that is,k; = n;2rt/L for integersn;. Finite-volume correctiond-FVC are writ-
ten as the difference between the finite sum and the corrdsgpmtegral. It is
known that the finite-volume corrections saturate to a fixeslit for large values
of regularization scale [HLY10]. As before, this is achidua practice by evaluat-
ing the finite-volume corrections with fixed regularizaterale:/\’ = 2.0 GeV. The

finite-volume version of Equation (7.1) can thus be expreésse

b = Co+ 80 M2+ (T4 (mB; A) + 8TV (M A'))
+(Ta(mB; A) + 8PV (m& A)) + o(mf) . (7.12)

7.2 Evidence for an Intrinsic Scale in the Magnetic

Moment

The analysis of the magnetic moment of the nucleon providexeellent check for
the identification of an intrinsic scale in the nucleon-pioteraction. Using chiral
effective field theoryXEFT), it has been demonstrated in Chapter 5 that lattice QCD

results for the nucleon mass have an energy scale embedthaad them. This prop-
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erty is a consequence of the small size of the power-counéigigne (PCR), where
the expansion formulae of chiral perturbation theoti?T) hold formally. Since
a selection of lattice QCD results reasonable for fitting amagolation invariably
extend outside the restrictive PCR [LTYO05], the validity dioamal scheme for ex-
trapolation, and for identifying the leading-order termsthe chiral expansion, is
compromised. Fortunately, a finite-range regularizatleiRR) scheme, in conjunc-
tion with xEFT as described in Chapter 4, provides a robust method fagach an
extrapolation to physical quark masses, and identifyingamsic scale embedded
within lattice QCD results.

Recall that the method proceeds by analyzing the behaviotlieofenormal-
ization of one or more low-energy coefficients of the chirgbansion as a func-
tion of the FRR scale. Ideally, that is, with lattice QCD reswbnstrained entirely
within the PCR, the renormalized coefficients should be inddest of regulariza-
tion scale. However, in practice, a scale-dependence isreds; particularly for
data sets including data points corresponding to largekquasses. By truncating
the lattice QCD results at different valuesmﬁmax, an optimal FRR scale can be
identified. This optimal scale is the value Afat which the low-energy coefficient
under analysis is least sensitive to the truncation of ttieeéadata. If the optimal
scale is consistent among the analyses of magnetic momeéhh@mucleon mass in
Chapter 5, it provides evidence for an intrinsic scale in theleon.

The preliminary QCDSF results for the magnetic moment at &taof m2
values are displayed in Figure 7.4. The experimental vaduslso marked. The
set of data is listed in Appendix C, Table C.5. The lattice sifesach data point
vary from 143 to 304 fm usingNs = 2 and O(a)-improved Wilson quark action.
A simple linear fit is included in this plot, which does not ¢akto account the
chiral loop integrals, nor the finite-volume correctionshe data. Therefore, it is
not surprising that the linear fit fails to reach the expentaévalue of the magnetic
moment at the physical pion mass. Since the lattice QCD sesuliend outside
the PCR, the result of an extrapolation that includes the kcluog integrals will

be scale-dependent. However, the scale-dependence maydherated using the
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Figure 7.4: Preliminary lattice QCD data fou$®” from QCDSF, with the physical value from

experiment as marked.

procedure, which obtains both an optimal regularizati@ilesand an estimate of its

systematic uncertainty, constrained by the lattice result

7.2.1 Renormalization Flow Analysis

In order to obtain the optimal regularization scale, the-Evergy coefficienty from
Equation (7.12) will be calculated across a range of valfiesgularization scalé.
Thus the renormalization flow can be constructed. Multiglearmalization flow
curves may be obtained by constraining the fit window by a mara, mﬁmax, and
sequentially adding data points to extend further outdidePCR. The renormaliza-
tion flow curves for a dipole regulator are plotted on the sagteof axes in Figure
7.5. Note that each data point plotted has an associatedbarobut for the sake
of clarity only a few points are selected to indicate the geh&ize of the statistical
error bars. As more data are included in the fit, a greateregegfrscale-dependence
is observed. There is a reasonably well-defined valug af which the renormal-
ization ofcy is least sensitive to the truncation of the dat&“@€~ 1.1 GeV. This
indicates the optimal regularization scale embedded witine lattice QCD results

themselves.
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Figure 7.5: The renormalization flow of for S obtained using a dipole regulator, based on
lattice QCD data from QCDSF.
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Figure 7.6: X3, for the renormalization flow o€, for p$% obtained using a dipole regulator,
based on lattice QCD data from QCDSF.

7.2.2 Analysis of Systematic Uncertainties

The optimal regularization scale for a dipole form can beermecisely extracted
from Figure 7.5 using the chi-square-style analysis. Sucarelysis will also pro-
vide a measure of the systematic uncertainty in the optiegallarization scale. By
plotting xgof against the regularization scafe wheredof equals the number of

curvesn minus one for the fit parametep, a measure of the spread of the renor-
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malization flow curves can be calculated, and the interseqgidint obtained. The
xgof plot corresponding to Figure 7.5 is shown in Figure 7.6. Tptnaal regular-
ization scale\°@€js taken to be the central valu&€e""@ of the plot, and the upper
and lower bounds obey the conditigf,; < x§0f7min+ 1/(dof). Thus the optimal
regularization scale for a dipole regulator 5°3¢= 1.13"9-22 GeV. This value is
consistent with the optimal regularization scale obtaifeedhe nucleon mass using
a dipole form, based on lattice QCD results in Chapter 5. Rduatlithe mean value
for the optimal regularization scale from the nucleon massyeis iszﬂgfg"ez 13
GeV. This provides evidence that the optimal regularizeticale is associated with

an intrinsic scale characterizing the size of the nuclesmprabed by the pion.

7.2.3 Chiral Extrapolation Results

Using the optimal regularization scale, extrapolationsterpolations can be made
to any quark mass. Consider the behaviour of the magnetic mtossea function of
the quark mass as shown in Figure 7.7 (in physical units).eHée finite-volume
expansion of Equation (7.12) is constrained by the lateéseilts from several differ-
ent volumes. Extrapolation curves are then plotted for it&imolume and a variety
of finite volumes at which current lattice QCD results are picatl. For each curve,
only the values for whichm;L > 3 are plotted, provisionally, to avoid undesired
effects of thee-regime. The infinite-volume extrapolation to the physipaint is
within 2% of the experimentally derived valugs®’ = 4.6798uy. The finite-volume
extrapolations are useful for estimating the result of #eckatQCD calculation at cer-
tain box sizes. This can provide a benchmark for estimahegtitcome of a lattice
QCD simulation at larger and untested box sizes. Note that awelatively stan-
dard 3 fm lattice box length will differ significantly from ¢hexperimental value at
the physical point. Since the data points in Figure 7.7 adgfatring finite volumes,

the infinite-volume corrected data are also displayed inféid.8.
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Figure 7.7: Extrapolations ofi$% at different finite volumes and infinite volume, using a deol
regulator, based on lattice QCD data from QCDSF, latticessiZ43— 3.04 fm. The provisional
constraintmyL > 3 is used. The physical value from experiment is marked. Amese in the
uncertainty in the extrapolation due A§°®€has been calculated from Figure 7.6, and is indicated at
the physical value af. The curve corresponding to a lattice size of 10 fm is almdistinguishable
from the infinite-volume curve.
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Figure 7.8: Extrapolations ofi$% at different finite volumes and infinite volume, using a deol
regulator, based on lattice QCD data from QCDSF, latticessiZ43— 3.04 fm. The provisional

constraintmyL > 3 is used. The infinite-volume corrected data points are ahde physical value

from experiment is marked. An estimate in the uncertainth@extrapolation due t145¢@€has been

calculated from Figure 7.6, and is indicated at the physiahle ofm2. The curve corresponding to
a lattice size of 10 fm is almost indistinguishable from thinite-volume curve.
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7.3 Finite-Volume Considerations for the Electric Charge

Radius

Reliable extrapolations take into account finite-volumee#, as well as leading-
order chiral loop corrections. In many cases, calculatigfinite-volume correc-
tions to loop integrals poses no essential problems. ExesnpixEFT analyses
accounting for finite-volume effects can be found in Refeesr{8ea04b, HLY10].

However, the treatment of the electric charge radius is raba#ienging. Once
form factors have been extracted from the lattice simutatioey are typically con-
verted directly into charge radii, The essential difficdigs in the definition of the
charge ‘radius’ at finite volume. In order to define the radmsglerivative in the
momentum transfe®? = d? — g3 (at Q*> = 0) must be applied to the electric form
factor. This approach breaks down on the lattice, where didgrete momentum
values are allowed.

In this chapter, a method is outlined for handling finiteewak corrections to a
given lattice simulation result. It will be discovered ttihé finite-volume correc-
tions to the loop integrals must be applied before the camerfrom form factor
to charge radius. By applying the finite-volume correctioimedly to the electric
form factor, and ensuring that the procedure preservesléutrie charge normal-
ization, an extrapolation i@? may be used to construct an infinite-volume charge
radius. The infinite-volume charge radius can be defined amaloA finite-volume
charge radius may also be defined, as long as an allowed va{@®is used in the
conversion from infinite to finite volume.

The first challenge involves the definition of the electriaue radius in terms
of this derivative in Equation (3.82). Since only certairsodete values of momenta
are allowed on the lattice, the derivative may only be carcséd from these allowed
momenta when calculating finite-volume corrections. Thig@l observation be-
comes apparent when a comparison is made between the |egpalst evaluated at
allowed, and unallowed, values of momentum transfer, i&sdy. The comparison

is shown in Figures 7.9 and 7.10, for momentges (21in/L), on the lattice. Here,
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Figure 7.9:Finite-volume correction for the loop integral contrimgito Gg, with g = gmin. The
choice ofq/2 = gmin/2 is not an allowed value on the lattice. The momentum tréedland untrans-
lated behaviour of the finite-volume correction are incetesit with each other.
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Figure 7.10:Finite-volume correction for the loop integral contrimgito Gg, with g = 20min.
The choice ofy/2 = gmin is an allowed value on the lattice. Therefore, the momentanstated and
untranslated behaviour of the finite-volume correctiordéntical.
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nis an integer. Note that, if there is a momentum-translaiiatie loop integrals,

k — k—q/2, the choice ofj = gmin = (21/L) (for box lengthL), means that|/2

is no longer an allowed value on the lattice, and these firotame corrections will

be inconsistent with the untranslated result. Under suclomemtum-translation,
external momenta af/2 flow through the loop integral, and one should choose at
least a value ofj = 2gmin to define a consistent discrete derivative for use in the
definition of the charge radius in Equation (3.82). Howegbnosing a momentum
transfer ofq = gmin for a moderate lattice size of 3 fm leads to a relatively large
value: Q? ~ 700 Me\2. In defining the charge radius, the necessary extrapolation
to Q% = 0 will be made more reliable by choosing a value@fto be as small as
possible. This situation differs from the infinite-volumaaulation of loop integrals,
where true momentum-translation invariance is restoned aacontinuous derivative

may be used as normal.

7.3.1 Chiral Loop Integrals

Though loop integrals in the continuum limit are invariander momentum trans-
lationsk — k+ cq, ¢ € Z (for internal loop momenturk), a finite-volume loop sum
must not include any values ofless thangmin = (21/L). Therefore, to obtain a
suitable charge radius one chooses a definition of the Idegrals such that no fac-
tors of /2 appear. In fact, as long as no fractiongjaippear in the integrand, the
finite-volume version will converge correctly to the infedtolume version as the

box length is taken to infinity, fog = (2rtin/L), n € Z:

E 2 XN /.3 (K% —k- ) u(k; A)u(k—d; A)
IV (Q9) = 3T[/d k Oy (Ut g (7.13)
£~z X [ (¥ —k-@)u(k;A)u(k—d;A)
Q)= Sn/d k(u)RJrA)(wR_quA)(wRerR_q)’ (7.14)
TP =X d3k0‘)f<+L;)fk\)q, (7.15)
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wherewy, = \/k? —m2, andA is the mass-splitting. The chiral coefficient§ and
X5 andxE are summarized by Wang [WLTY09a]:

Ep__ ° 2_ _\En

XP = 16Tr2fT2[(D+F) X, (7.16)
Ep_ 9D 4C? __JEn
Ep_ _ _ _yEn 71

The integrals which contribute to the electric charge radienotedTF), are ex-
actly analogous to the integralgt) defined in Equations (7.13) through (7.15), that
correspond to the electric form factGg. To obtain the integrals that contribute to
the charge radius, one simply takes the derivative witheetspp momentum transfer

Q? at vanishingly small values @?. This is allowed in the infinite-volume limit:
(7.19)

Note that the ensuing procedure for calculating the findgkenwie corrected electric
charge radius uses only the infinite-volume versions of beaktloop integrals. Fit-
ting methods need only be applied at infinite volume. Thusgtkternal momentum
derivative in Equation (7.19) need not be discretized, bay niemain a continuous
derivative.

To achieve a chiral extrapolation, it is convenient to satitthe coefficients)

from the respective loop integrals that contribute to tleeteic charge radius:

T =T7 —pp", (7.20)
LT A (7.21)
b= Tha—bo™. (7.22)

This removes the regularization scale-dependence frohowest-order fit parame-
ter of the chiral expansion. This technique provides anaidege in easily extracting

the low-energy coefficierdy from the chiral expansion, described in Section 7.3.2.
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As emphasized already, Figures 7.9 and 7.10 show that the-fioilume correc-
tions to the loop integrals cannot be applied directly todharge radius itself. The
momentum discretization ruins the circular symmetrg gxcept at the values coin-
ciding with lattice momentum valu€@mnn/L), n € Z. The finite-volume corrections
should be applied to the electric form fac®g (Q?) instead. A momentum conven-
tion in the loop integral is chosen such tlgaihay be chosen to bgn, = (2rin/L).
The procedure for achieving the correct finite-volume adroas is outlined below.

First, the lattice finite-volume charge radi{r$)t must be converted into a finite-
volume form factoiGE (Q?), usingg = Omin = (21t/L). This is achieved through use

of an extrapolation inQ?. As an example, a dipole Ansatz yields the following

formula: L
Ge (Qhin) = (1+ Qm”i<2 I ) , (7.23)
where Q2 = d2.. — (Ex —Mn)?. In many cases, this simply reverses the steps

used to convert lattice results to charge radii. In this stigation, the electric form
factor was fortunately obtained directly from the preliany lattice QCD data from
QCDSF. The next step is to transform the finite-volume formdiaGg(Q2,.,) to

an infinite-volume form factoGg(Q2,,,), so that the infinite-volume charge radius
can be calculated. This is achieved by subtracting the redechharge symmetry-

preserving finite-volume correction, defined by:

AL(QRin:0) = 8L [T5(Qfin) — TF(0)] . (7.24)

The second term of Equation (7.24) ensures that both infiaie finite-volume
form factors are correctly normalized, that%’“’(O) = 1. Thus, the infinite-volume

electric form factor can be calculated using the equation:

GE (len) GE(Qrznin) _AL(QZmimO)- (7.25)
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7.3.2 Chiral Expansion of the Electric Charge Radius

The infinite-volume charge radiug?)g can be recovered from the form factor by
using the extrapolation i?. Once the infinite-volume charge radius has been ob-
tained, a chiral extrapolation can be performed if needdt dhiral loop integrals
corresponding to the charge radius are those defined by iBgu&t19). Using the

dipole Ansatz:

200 _ 12 1 —1 7.26
<r >E lel’l < G°°(Qmm> ) ' ( . )

This infinite-volume radius, calculated at multiple valugism?, can be used for

fitting and obtaining coefficients from the chiral expansion

(r? >E_{CO Vo ahme) + T (M2 A) + TEMRSA) + TE(m2sA) + o), (7.27)

where the expansion has been renormalized in anticipafidgheoanalysis of the
renormalization flow of the coefficiemp. This expansion contains an analytic poly-
nomial inm? plus the leading-order chiral loop integrals, from whichramnalytic
behaviour arises.

By evaluating the loop integrals, the fully renormalizedrahexpansion can be
written in terms of a polynomial im2 and non-analytic terms. To leading non-

analytic orderO(logmy):

(e = + (x§+ X )Iog”—JT +0(mR). (7.28)

Since the chiral expansion of Equation (7.28) contains aritlgn, the value o€

can only be extracted relative to some mass geakhich is chosen to be 1 GeV.
Finally, the finite-volume charge radius can be evaluateadying the finite-

volume correction to the form factor at any box lendithand corresponding mo-

mentum transfer on the lattic@?,

GE () = G2 (Q2in) + 8¢ (G20, 0). (7.29)
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The finite-volume charge radii are obtained from the chosémapolation formula at
box sizel.. An electric charge radius may be calculated at any desakae\of box
length, based on lattice QCD simulation results. Thus, theefirolume behaviour

of the charge radius may be analyzed.

7.4 Evidence for an Intrinsic Scale in the Electric Charge

Radius

The preliminary QCDSF results for the electric charge radiuthe nucleon are
displayed, with the experimental value marked, in Figuel7.The set of data is
also listed in Appendix C, Table C.6. The lattice sizes of eaath goint vary from

1.92 to 325 fm usingNs = 2 and O(a)-improved Wilson quark action. A simple
linear fit is included in this plot, which does not take int@agnt the non-analytic
behaviour of the chiral loop integrals, nor the finite-vokigorrections to the data.
Just as for the case of the magnetic moment, the linear fit doeseach the ex-
perimental value of the electric charge radius at the payfion mass. Since the
lattice QCD results extend outside the PCR, the result of ammgodation will be

scale-dependent. However, this scale-dependence camdietdy obtaining an

optimal regularization scale using the aforementionedguxlare.

7.4.1 Renormalization Flow Analysis

In order to obtain an optimal regularization scale, the Evergy coefficient:(()“)
from Equation (7.27) will be calculated across a range diilaigation scale values.
Multiple renormalization flow curves may be obtained by ¢waising the fit win-
dow by a maximummﬁmax, and sequentially adding data points to extend further
outside the PCR. The renormalization flow curves for a dipajeletor are plotted

on the same set of axes in Figure 7.12. Note that each data gotted has an

associated error bar, but for the sake of clarity only a feimgsare selected to indi-
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Figure 7.11:Preliminary lattice QCD data fofr2)% from QCDSF, with physical value from
experiment as marked.
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Figure 7.12: The renormalization flow ofo for (r?)i% obtained using a dipole regulator, based
on preliminary lattice QCD data from QCDSf.is calculated relative to the energy scale 1 GeV.
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cate the general size of the statistical error bars. Note tindike the analysis of the
nucleon mass and the magnetic moment, there is no distiecsection point in the
renormalization flow curves. In addition, the regulariaatscale-dependence of the
coefﬁcientcé”) is very slight, as long as the regularization scale is notstoall, as
discussed in Section 4.2.1. This lack of scale-dependenaenatural consequence
of the logarithm in the chiral expansion of Equation (7.2&)jch is slowly-varying

with respect to the regularization scale.

7.4.2 Analysis of Systematic Uncertainties

An optimal regularization scale for a dipole form can nevelgss be extracted from
Figure 7.12 using the chi-square-style analysis. The arsdyso provides a measure
of the systematic uncertainty in the optimal scale. By phgt;{éof against the regu-
larization scalé\, wheredo f equals the number of curvasninus one, a measure of
the spread of the renormalization flow curves can be cakd)and the intersection
point obtained. The functio;qgof is constructed in the same way as Equations (5.2)
and (5.3). The(gof plot corresponding to Figure 7.12 is shown in Figure 7.13usTh
the optimal dipole regularization scale for a dipole regards: ASC3e= 167958
GeV. This value, though larger than optimal dipole reguak#ion scale values ob-
tained from the previous analyses of the nucleon mass anchdiggmetic moment,
is nevertheless consistent, with one-standard-deviaijpeement. Thus, strong ev-
idence is found that the optimal regularization scale iatdis the existence of an

intrinsic scale, which characterizes the nucleon-pioeranttion.

7.4.3 Chiral Extrapolation Results

Using the optimal regularization scale, a reliable chirdlapolation can be per-
formed, with the systematic uncertainty in the optimal tegmation scale taken
into account. Consider the behaviour of the electric chaagaus as a function of
the quark mass as shown in Figure 7.14 (in physical units)ramlation curves
are plotted for infinite-volume, and a variety of finite-volas at which current lat-

tice QCD results are produced. For each curve, only the vétuweghich myL > 3
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Figure 7.13: x3,; for the renormalization flow ofy for (r2)£° obtained using a dipole regulator,
based on preliminary lattice QCD data from QCDE&fis calculated relative to the energy scale 1
GeV.

are plotted, provisionally, to avoid undesired effectshaf d-regime. The infinite-
volume extrapolation to the physical point differs from #agerimentally derived
value: (r?)%v = 0.88 f?, by merely 05%. The finite-volume extrapolations are
also useful for estimating the result of a lattice QCD caltiataat certain box sizes.
This can also provide a benchmark for estimating the outaaimadattice QCD sim-
ulation at larger and untested box sizes. Note that thetrelaih extrapolation to the
physical point, using an optimistic 4 fm lattice box lengiill differ significantly
from the experimental value. Since the data points in Figutd are at differing fi-
nite volumes, the infinite-volume corrected data pointsdsplayed in Figure 7.15.
To highlight the insensitivity of the extrapolation to thegyularization scalascale
an estimate of the systematic uncertainty in the extrajpolad the physical point
solely due toASc@€ s displayed in Figure 7.16. The size of the error bar at the
physical point is comparable to that due to statistical ttagaty, as shown in Figure
7.17. This indicates that, in the case of the electric cheadais, the identification
of an intrinsic scale is borderline, due to the dominancéeflogarithm in the chi-
ral expansion, and its slowly varying property in the largeregime. Therefore,
chiral extrapolations of the electric charge radius areamobust, in the sense that

the scale-dependence in the result is suppressed, ancktiidightion of an intrinsic
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scale is not so vital as in the case of the nucleon mass or magmement.

7.5 Summary and Specific Issues for the Electromag-

netic Properties of the Nucleon

It was discovered that finite-volume corrections for chaegii are ill-defined on the
lattice. The use of continuous derivatives in constructhmyelectric charge radius
leads to inconsistent results for the finite-volume coroest It was discovered that
the finite-volume corrections must be applied to the ele¢trim factors rather than
to the charge radii directly. Therefore, a procedure wald@ed to apply finite-
volume corrections to the electric form factor, strictlyatving momenta available
on the lattice. The resultant finite-volume corrected foaotdr may then be con-
verted into a charge radius using an extrapolation in moumentansferQ?.

The technique for obtaining an optimal regularization sdabm lattice QCD
data has been investigated in the context of the magneticeamband the electric
charge radius of the isovector nucleon. By using recentjmpirgry lattice QCD
results from QCDSF, an optimal regularization scale for aldipegulator was ob-
tained. This was achieved, in each case, by analyzing tleemetization flow of the
low-energy coefficienty of the relevant chiral expansion with respect to the scale
A, whilst extending the data step-wise beyond the PCR. A reigaléon scale was
discovered, for both the magnetic moment and the electaegehradius, for which
the renormalization of eady is least sensitive to the truncation of the lattice QCD
data. The values of the optimal regularization scale wensistent with each other,
as well as with the results from the nucleon mass analysisis & intrinsic scale
has been uncovered, which characterizes the size of theanychs probed by the
pion.

Using the value of the intrinsic scale, the extrapolatiothef magnetic moment
and the electric charge radius to the physical pion masshtenidfinite-volume limit
is consistent with experiment. The finite-volume extrapotes provide a bench-

mark for estimating the outcome of a lattice QCD simulatioreatistic or currently



Chapter 7. Electromagnetic Properties of the Nucleon Hall2 13

1.0 xl: | | | | I
09 —g 8 Physical value
k) x  Lattice data

08 =y ——-15 fm fin.vol
807 L —-— 2 fm fin.vol
g : A\ ----3 fm fin.vol
~ 0.6 i ‘l‘\\\ ---- 4 fm fin.vol -
2 : TN, T 5 fm fin.vol
# 05 F: I \\ —mes 10 fm finvol
S L _g— s inf.vol
g (<] 0.4 _E - ‘T:-\":"-‘m ~ i
O : R _l?_‘_\‘_\_____—n
& 03 [ P X
\ .

0.2 7

0.1 | 7

0.0 : 1 1 1 1 1

0.0 0.1 0.2 0.4 0.5 0.6

0.3
m_? (GeV?)
Figure 7.14: Extrapolations of(r?)E% at different finite volumes and infinite volume, using a
dipole regulator, based on preliminary lattice QCD datanfilQCDSF, lattice sizes:.92— 3.25 fm.

The provisional constraimnL > 3 is used. The physical value from experiment is marked. The
curve corresponding to a lattice size of 10 fm is almost imisiishable from the infinite-volume
curve.
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Figure 7.15: Extrapolations ofr?)is°" at different finite volumes and infinite volume, using a
dipole regulator, based on preliminary lattice QCD datatfiQCDSF, lattice sizes:.92— 3.25 fm.
The provisional constraimn,L > 3 is used. The infinite-volume corrected data points are show
The physical value from experiment is marked. The curveesmonding to a lattice size of 10 fm is
almost indistinguishable from the infinite-volume curve.
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Figure 7.16: Extrapolations ofr?)is°" at different finite volumes and infinite volume, using a
dipole regulator, based on preliminary lattice QCD datatfiQCDSF, lattice sizes:.92— 3.25 fm.
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corresponding to a lattice size of 10 fm is almost indistisgable from the infinite-volume curve.
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Figure 7.17: Extrapolations of(r?)E% at different finite volumes and infinite volume, using a
dipole regulator, based on preliminary lattice QCD dataff@QCDSF, lattice sizes:.92— 3.25 fm.
The provisional constrainin,L > 3 is used. The physical value from experiment is marked. An
estimate of the statistical uncertainty in the extrapotats marked at the physical valuemf. The
curve corresponding to a lattice size of 10 fm is almost itndimishable from the infinite-volume
curve.
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optimistic lattice box sizes.
The results clearly demonstrate a successful proceduraesiag lattice QCD

data to extrapolate an observable to the low-energy rediQCD.



Chapter 8

Conclusion

“Recall that in our theoretical construction those probhies appeared simply as
a logical, or linguistic, tool. It is only at this stage thdidy finally acquire the em-
pirical significance they were lacking, and that chance entbe theoretical frame-
work” (Omres, R. 2002.Quantum Philosophy: Understanding and Interpreting
Contemporary Scienge209) [Omn02]

8.1 Evaluation and Summary Analysis

Chiral effective field theory(EFT) offers unique insights into the low-energy be-
haviour of hadrons. By usingEFT in conjunction with lattice quantum chromody-
namics (lattice QCD) results, a deeper understanding ofridenlying chiral inter-
actions may be derived. In particular, the mathematicabbelr of the chiral ex-
pansion of an observable, within a power-counting scher@®jPwas investigated.
This led to the development of a method for identifying the P@Rere the renor-
malization of the low-energy coefficients of the chiral expian are independent
of the regularization scale. Novel methods for identifyagreferred renormaliza-
tion scheme allowed the extrapolation of an observabledcattfiral regime, and to
infinite-volume lattice box sizes, without introducing guéarization scale in aad
hocfashion.

In this thesis, a procedure was established whereby an alptagularization

135
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scale could be obtained from lattice QCD data. By construcorge ideal pseudo-
data using a known functional form, and based on actuatégimulation results,
the behaviour of the low-energy coefficients, with respethe regularization scale,
indicated an optimal value for the scale. By considering gedata sets that ex-
tended increasingly beyond the PCR, there was a value of r&zatlan scale at
which the renormalization was least sensitive to this esttan This optimal scale is
the value at which the correct values of the low-energy adefiis are recovered.

Actual lattice simulation results for the nucleon mass, nedig moment and
electric charge radius were also analyzed using the sanoequoe. In each case,
the analysis led to a consistent value of optimal regulidmascale. In cases where
multiple low-energy coefficients were analyzed, the opliscale realized from each
matched exactly: a non-trivial result.

The analysis of lattice simulation results for the mass efghencheg meson
was used to test the robustness of the method. A reliablaitpod for determining
an optimal regularization scale, and performing infinitdevne and chiral extrapo-
lations, was established.

Comparing the optimal scales obtained from the nucleon nmagnetic mo-
ment and electric charge radius analyses, a consistemhalptegularization scale
was found. This indicates the existence of an intrinsic gnecale that character-
izes the nucleon-pion interaction: the size of the nucleoprabed by the pion.

In the analysis of the nucleon mass, as described in Chaptewas demon-
strated that a preferred regularization scheme exists fomlglata sets extending
outside the PCR. However, it is not always possible to idehify scale. The scale-
dependence of an observable can be weakened by working ¢herlaghiral order.
The aforementioned procedure was used to calculate thearuohass at the phys-
ical point, the low-energy coefficientg andc,, and their associated statistical and
systematic errors. Several different functional formsegfulator were considered,
and lattice QCD data from JLQCD, PACS-CS and CP-PACS were used améig-
ses. By working to chiral ordep(m2), an optimal cut-off scal&Sc@efor each set of

lattice QCD data was obtained, and an estimate of the systeenadr in the choice
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of renormalization scheme was calculated, using a chirsgstgle analysis. A mean
value for the optimal regularization scale/&@?@'ez 1.3 GeV was obtained for the
dipole, A3k~ 1.0 GeV for the double-dipole antijea®~ 0.9 GeV for the triple-

dipole. An analysis of the lowest suitable value for a rega#dion scale allowed
the identification of a breakdown region of finite-range tegaation (FRR). The
existence of a breakdown region indicates that the ultlatvregularization scale is
low enough to remove or suppress the low-energy chiral behialeeing analyzed.

The robustness of the procedure for determining an optietallarization scale
and performing chiral extrapolations was tested in Chaptetn6order to estab-
lish the predictive power of the procedure, the quengheteson mass was consid-
ered. Because an experimental value of this observable dvesist, its calculation
served to demonstrate the ability of the procedure to ma&eéigrons without prior
bias. Using lattice simulation results from the Kentucky @y, the procedure was
tested, and the interesting low-energy simulation resuéiee predicted correctly
By restricting the procedure to use only higher energy sitiariadata points, the
low-energy coefficientsy, c; andcs were considered and an optimal regularization
scale was identified\S5ae = 0.67" 533 GeV. An optimal value of the maximum pion
mass used for fitting was also calculated, and was found mﬁp@a[: 0.35 Ge\2.
By using only the data contained in the optimal pion mass regionstrained by
2 max @ vaIueAf)ft‘?i'g = 0.64 GeV is estimated for the optimal regularization scale,
with a wider systematic uncertainty corresponding to theerange of suitable val-
ues ofA\. These two estimates of the optimal regularization scaeansistent with
each other.

Upon revealing the omitted low-energy data, the extrapmiatwere compared
to the simulation results at each value of pion mass. Thescbohiral curvature
was reproduced by the extrapolations, indicating the naalydic chiral behaviour
of the loop integrals. The results of extrapolations us{gdrT, and the results of
lattice QCD simulations were demonstrated to be consistém extrapolation to the
physical point obtained for this quenched data set, USRS = 0.67 503 GeV, is:

MG (M2 oy = 0.92575028 GeV, an uncertainty of less than 6%. The result of the
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extrapolation, using\gﬁﬁ'g = 0.64 GeV, with the systematic uncertainty calculated
by varying A across all suitable values, isnfS(m2 o = 0.922"3:3%5 GeV, an
uncertainty of only 7%.

In the case of the electromagnetic properties of the nucle@timinary results
from QCDSF were used. The magnetic moment of the isovectdeonavas an-
alyzed for a dipole regulator. A well-defined optimal regidation scale was ob-
tained: ASGe= 1.13°3%5 GeV, for chiral ordero(mZlogmy), and a successful ex-
trapolation to the physical pion mass and infinite-volumes wehieved, and com-
pared to the experimental value. The infinite-volume exlaion to the physical
point was within 2% of the experimentally derived value.

When considering charge radii, there are subtleties in paifg finite-volume
corrections. In defining the charge radius, the finite-vauoorrections must be
applied before an extrapolation @ = 0 is taken. Thus the finite-volume correc-
tions must be applied to the form factors directly. Using timethod, the electric
charge radius of the isovector nucleon was analyzed for @ealggulator. Assum-
ing the regularization scale is not within the breakdowrioe®f FRR, the scale-
dependence of the low-energy coefficieﬁt(up to some scalg@ of the chiral log-
arithm) is weak. The leading-order non-analytic behavigiuthe logarithm in the
chiral expansion is slowly varying with respect to the reguziation scale. Neverthe-
less, an optimal regularization scale was obtaing§c = 1.67°53 GeV, working
to chiral orderO(m2logmy;). A successful extrapolation to the physical pion mass
and infinite-volume was achieved, and compared to the axpeaital value. The
infinite-volume extrapolation was merely596 different from the experimentally
derived value.

Figure 8.1 collates the values of the intrinsic scale forpeldi regulator obtained
from each of the three sets of lattice results from the nurcteass analysis, the mag-
netic moment analysis and the electric charge radius aralpssummary, a method
for determining the existence of a well defined intrinsidsd¢es been discovered. It

has also been illustrated how its value can be determined lfxtiice QCD results.
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Figure 8.1:Collated values for the intrinsic scale obtained from eaata det for the nucleon mass,
magnetic moment and electric charge radius, by analyziragiaty of low-energy coefficients. Each

point, with its associated systematic error bar, is laldithe low-energy coefficient analyzed. The
results from the analyses of the nucleon mass are furtheteey the collaboration whose lattice

2
results are used) andcér ) denote the intrinsic scale obtained from the analysis ofdheenergy
coefficient cp corresponding to the magnetic moment, and the electricgeheadius expansions,
respectively. A dipole regulator is used.

8.2 Future Studies and Further Developments

The research presented in this thesis encourages severales/for further inves-
tigation. In the heavy-baryon formulation of chiral pekiation theory XPT), pre-
sented first for the renormalization of the mass of the nucleoChapter 4, the
finite-volume corrections to the tadpole contribution ao¢ evaluated. This is due
to a technical subtlety associated with the langebehaviour of the finite-volume
correction, due to the®. coefficient occurring in Equations (4.16) through (4.18).
The tadpole finite-volume corrections divergers& Since it is known that the
finite-volume corrections must converge [Bea04b], anddatpCD simulations do
not exhibit any divergence associated with lamgeon a finite volume, higher-order
terms, for example, those occurring at ordént}), must act to reduce the estimated
value of the finite-volume correction.

In the analysis of the renormalization flow of the nucleon snasvas discovered
that the scale dependence was weakened by working to a enffichigh chiral
order. It was also found, however, that the residual scafgeddence persisted as a

significant component of the systematic uncertainty. Ricieht propagation of this
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uncertainty, an interesting future direction would be tosider Bayesian methods
of marginalization over the scale-dependence [SP09].

More generally, this research provides a strong basis ferirtestigation of
baryon resonances by analysing lattice QCD simulations. rRem®s of the nu-
cleon, such as the Roper Resonance, are not well understoerdna of effective
field theory. The structure and behaviour of the resonareres themselves to a
fruitful future area of research. Indeed, it is not possiblénk the finite-volume re-
sults of lattice QCD to experiment without understandingrttedation to the multi-
particle states that dress the resonances. KRRT is particularly well-suited to

exploring this important area of research.

8.3 Codetta

“[T]he collective efforts of numerous physicists have @ee some of nature’s best-
kept secrets. And once revealed, these explanatory genesdpened vistas on
a world we thought we knew, but whose splendor we had not even cosetol
imagining.” (Greene, B. 1999The Elegant Universp.386) [Gre99]

The dynamics of quantum chromodynamics provide a rich freonle for the
investigation of the properties of hadrons. In particulew-energy effective field
theory allows one to glean insights into the physical behavof subatomic parti-
cles and the structure of matter. By incorporating the furetaal symmetries of
guantum chromodynamics into the action, chiral pertudmatheory provides a ro-
bust method for the calculation of hadronic observablebiwithe power-counting
regime. In this thesis, finite-range regularized chiradetiive field theory was used
to develop a procedure for performing calculations beybegbwer-counting regime,
and handling any subsequent finite-range regularizatiafestependence. Using
chiral effective field theory in conjunction with the nonrpebative approach of
lattice quantum chromodynamics, chiral extrapolationsitdivolume effects; the
consequences of dynamical chiral symmetry breaking ontsaba behaviour; the

importance of strangeness; vacuum polarizations; and roidn®y phenomena yield
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fruitful understanding into the inner workings of the unise.

Concluding Statement

Chiral effective field theory allows the identification of antrinsic energy scale
in the nucleon-pion interaction from lattice simulatiorsu#és. An optimal finite-
range regularization scale, obtained from analyzing themaalization flow of the
low-energy coefficients of the chiral expansion, allowscassful extrapolations to
be made to the chiral regime and to the infinite-volume lirihere is strong evi-
dence to suggest that the optimal scale characterizesttiresio energy scale of the
interaction between the pion and the nucleon.

The datum, the results and the rigorous theory integratenm & strong ar-
gument. Chiral effective field theory extended beyond thegyovounting-regime
allows the identification of an intrinsic energy scale, agalds to a robust method
for chiral and infinite-volume extrapolations. This is thrégmal contribution of this
thesis.

“We have thus achieved the point where the theory may finalbpobgared with
experience, and the road leading from formalism to concreddity is at last com-
plete” (Omres, R. 2002.Quantum Philosophy: Understanding and Interpreting
Contemporary Scienga209) [Omn02]
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Appendix A

Conventions

A.1 Dirac and Pauli Spin Matrices

The Pauli matrices are usually chosen as such:

. [0 1)
T = (A.1)
10
2 (° i) (A.2)
i 0
°= ! O) (A.3)
0 -1

There are several conventions for the definition of the Dinatrices (such as Weyl/Chiral

or the Majorana Representation). Here is the Dirac Reprdsamta

Y5 =

I o)
(A.4)
0 —I
0 oi)

. (A.5)
-0 0
01

) = iV (A.6)
I 0
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All representations of these matrices satisfy the requerdaraf Clifford Algebra due

to the conditions imposed in the derivation of the Dirac BEoue[Pes95].

{Y¥.y'} =20", (A7)

A.2 SU(3) Gell-Mann Matrices
The generators of the Lie Group §) satisfy the commutator relations:
A3 AP = if3PO\C. (A.9)

This, combined with the relevant Jacobi Indentities for ge@erators, defines the

structure constants [Pes95]:

fades bcd+ fbdefcad+ fcdegabd (A.10)

A.3 Spinor Fields

The equal-time canonical anti-commutation relations foa®spinor fields are:

{WX), DY) hromyo = M (X—Y) (A.11)
{WX), W(Y) hxo=yo = 0. (A.12)

The fields take the form [Pes95]:

dp 1

W0 = [ s mz(%“ i"‘X+b%*v%p)ép*), (A13)

and the canonical anti-commutation relations expressegtins of the Pauli-Jordan

function:

{WX),B(y)} = (idx+m)iA(x—y;m). (A.14)
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The Grassmann algebra is defined by the anticommutatiorbaileeen Grass-

mann variableg) and a commutation rule with non-Grassmann numbers

{$i, g} =0=[yi,c]. (A.15)

For Berezin integration over fermion spinor fieldsand g, the follow rules are

adopted:
. /dllJiLUjZ/leiLFj:C?Sij, (A.16)
of
. /dL|Jia—L|Jj:O, (A.17)

where the non-Grassmann consterg chosen, by convention, to be equal to 1 and
the functionf is defined on the Grassmann algebra. As a consequence ofdquat

(A.17), the Berezin integral over unity vanishes:

/qu:/dLE:O. (A.18)

A.4 Meson and Baryon Field Definitions

The SU3) mixed-symmetric meson octet fieldsx) = 1@(x)A? can be encoded in a

traceless X 3 matrix of the form:

1 1 +
m(x) = V2 ™ — 0+ n KO [, (A.19)
K~ KO :/—ér]

In SU(2) the pions form the triplet representatitm, 7, ") which can be written

by summing over the Pauli spin matrices in Appendix (A.1):

(A.20)

T(X) = T81%(X) = (\];; ﬁg) ;
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Using the convention for Clebsch-Gordan coefficients fronmy\ét al. [WLTY09a],

the the mixed-symmetric baryon octet matrix has the form:

150, 1 +
ﬁz +\/6A > p

B(X) = s —\%Zojt\/ié/\ n |, (A.21)
= =0 =2\

V6

The maximally symmetric decuplet tensor (suppressing htarendices) has ele-

ments defined by:

1 1
Tii=A"" Tio= AT, Tioo= —A° Topp=A",
111 112 \/§ 122 \/:—)’ 222
1 1 1
Tiz= —=2°", Tipz= =30 Topz= =37,
113 \/:—% 123 \/é 223 \/:_’3
1 1
Tisz= —==*0 Togg= =", Ta33=0Q . A.22
133 \/:__% 233 \/§ 333 ( )
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Integration Techniques

B.1 Magnetic Quantities

B.1.1 Angular Components of Magnetic Moment Loop Integrals

In anticipation of applying finite-volume corrections tdrethloop integrals by com-
paring them to their respective summations on the lattieetime-component of the
d*k integral is evaluated using Cauchy'’s Integral Formula, agitkantegral remains
for analysis, as in Chapters 4 through 6.

When calculating the magnetic moment in the heavy-baryoit, limithout ex-
plicitly specifying a regularization scheme, the one-lamjegral (corresponding to

Figure 7.1) takes the following form:
qH— _ﬁ/dfikﬂ (B.1)
" (k2+m2)* |

It is useful to be able to simplify the angular part of the grd, formed by the
cross product of external momentum directipmvith the loop momentunk, into
a numerical coefficient. In order for this to be valid in cd&ting finite-volume

corrections, the simplification must hold in both integnatiaum forms of the loop
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diagram. Evaluating the angular part of Equation (B.1) \geld

2” K*(1— x2)
N =~ 2Tr2/ /dk 1d k2+m$[ 6.2
2
_ XN/ / kzin;[ (B.3)
a8 [ K4
__ 3n/ dk(k2+m%)2 (B.4)

Now, this one-dimensional integral can be transformed mtihree-dimensional
integral simply by adding in a fie solid angle component, using the identity:
1 :

7 JdQ = 1:

u:_4X_N_// k2+m% (B.5)
_%/ k2-|-2m%[ (B.6)

Comparing Equations (B.1) and (B.6) shows that the objectigdokan achieved for
the integral case. For finite volume sums, the result may olokin general, and so

must be checked independently. Define the following sum darlbngthL:

xR /2m\’ < (GxKk)?
TNH,L__Z_T'\[Iz (f) %—(kz-l—mﬁ)z (B.7)

Becausé? = k2 is symmetrical in direction%x,y,z, it follows that:
K=K+ +K =3I (i=xY,2), (B.8)

and since (§x k) =k?, (B.9)
it follows k2 = 2k?. (B.10)
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Thus:
u 3 2
g = XN (2—") K .
NL= "2 | %(k2+n‘$[)2 (B.11)
_ X (z_n) LS )
32 \ L %(k2+n%)2, (B.12)

which is the finite-volume equivalent of Equation (B.6).

B.1.2 Combinatorial Simplification

The calculation of the three-dimensional finite sum can bdemaore efficient com-
putationally, by transforming it to a one-dimensional sumteérms of the new vari-
ablen? = k?(2m/L)2. It does, however, require calculation of the number of gpnfi
urations of the squares &, ky andk; to obtain each value o2, denotecC® (r?).

—

Thus, for an integrand(k):

2T[ 3kmax - 2T[ 3nﬁ1ax

i N e @) r(n?

() S () S, e
wherenZ, ., = k2., (217/L)2.

B.1.3 Sachs Magnetic Form Factors at Finite?

Consider calculations involving the leading-order pionpamntributions to the
magnetic form factoiGy (Q?) at finite Q?, (allowing non-zero mass splitting).

The following integral can be made more easily calculabieguspherical polar co-
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ordinates (usingy(k) = /K2 + mg2):

THQ?) = /d3k
— Lo qﬁm Al ] (B.14)
(k)[ (k) A w(k+ @) [w(k+0) + A [w(K) + w(k+ )]
2 [ [0 [
kZk?sind [w(K) + 0(K+ q) + A] ] (B.15)
(k) [00(K) + A w(k+a) [eo(k+ ) + A [w(k) +(k+g)] ] '

The integral can be further altered to remove the infinitegrdl under the change

of variablesk — k/(1— k). For arbitrary functionf
/dkf /dk k/l k . (B.16)
0

Thus, defining (for convenience)k) = k/(1— k), Equation (B.15) becomes:

Q) =

X“ 211 1 1
i o oo fax o]
k2 p? [0(p) + w(p-+q) + 4] }
w(p)[w(p) +A] w(p+g)[w(p+a) +A] [w(p) + w(p+q)] (1—k)2)

(B.17)

B.2 Electric Charge Radius Integral Expansions

For the infinite-volume electric charge radius, the chimald integrals must be calcu-
lated for use with the chiral expansion of Equation (7.2 4cHtloop integrand is ex-
panded out for smaliD?, and the derivative in the limit of vanishin@? is extracted.

Using the notation of Chapter 7, and a dipole regulator, theeloap contribution
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takes the following form:

TN _Q“zTo 60‘ISEQ(SZ)
:@m/§hg (K+d/2) - (K—0/2) ugip(K+d/2;A) uaip(K— 4/2:A)
S0 | w(k+d/2)e(k—d/2)w(k+6/2) +wk-d/2)] ]|z
(B.18)

= % / dsk(/\f‘{—m?<k’> (K2 + A?)(13K* + 2mBA2 4 5K2(2m2.+ A?))
+KA(21K* + 16+ 5AY + 2K2(16m2 + 5A2)) cog? e}> <1&o7(R) (R2+/\2)6)
(B.19)

-1

If a mass-splitting is included:

6x5 0
E_a [, 9
v = 5n/d kan

(k+d/2) - (k—0/2) uaip(K+7/2;A) uaip(k— /21

(@(k+/2) +8)((k—d/2) + 1) [0(k+7/2) + (k—T/2)]

(B.20)

_ o X5 [N o) (R + %) (130 + 2mR(0%+ B(20(K) + ) A

+R4 (232 + 24w(K)A + 11A% 4+ 5A?)

+K2(10m -+ A(8w(K) + 3A)A? 4 mB(20w(K)A + 10A% + 7A?))]

+KA21K8 4 16mS + 16mFA(200(K) +A) + SmEA* + A(dw(K) +A)A?

+ K*(53m2 + 360(K)A + 17A% + 10A?)

+K(

48+ N2(8w(K)A + 2A% + 5A2) + 2m2(32w(K)A + 16A2+5/\2))]00526}>

X <1ao5(k)(w(k‘)+A) (K2 + N2)8 ) g (B.21)

q?=0

Similarly, the tadpole contribution takes the followingria

6Xt 3 0 udlp( )
Taa= - / d kaq2 w(k+d/2) + wk— q/z)] 0 (B.22)
_ BxE [ g K2cOFO-wP(K) 5 -
= A /d TR B (ki) (B.23)
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B.3 Finite Volume Corrections to Tadpole Amplitudes

Finite-volume corrections should vanishras becomes large, as observed in lattice
guantum chromodynamics (lattice QCD) simpulations. Thgsdiso been observed,
in turn, for each of the finite-volume corrections involvedhe extrapolation of the
nucleon mass to fourth-order. However, the tadpole finitenwe correctiondfYC,
is different in that it is multiplied by a factor afé, as evident in Equation (4.7).
The product,mz3[ Y is not convergent for largey,. Figures B.1 and B.2 show the
behaviour of the tadpole finite-volume correction for.& in box and a O fm box,
respectively.

The finite-volume estimate ah, denotedcy, is not in general the same value
as the infinite-volumes,. Thus the finite-volume correction of the tadpole cannot
be written as simply the difference between the finite volisum and the infinite

volume integral, but must distinguish betwegnandc;:

V
C
C2MiBad = C2My; (C—Zzit\éd - ztad) . (B.24)

Sincec; is by definition the coefficient of the?. term in the nucleon mass expan-
sion, the renormalization of the residual coefficiapby the contributions from the

integralsZy, 2a andZ;,q, defined in Equations (4.3) through (4.8), can be written as

follows:
Com?. = (az + b + b5 + cobb)m2, (B.25)
NN
=2 2T (B.26)

An analogous relation exists for the finite volule

v _ at+bN byt
02 = Vi .
1-by

(B.27)

By simultaneously solving foay andc\z’, the ratioc\z’/cz can be calculated in prin-

ciple, and the tadpole finite volume corrections are trdetaltt should be noted
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Figure B.1: Behaviour of the finite-volume correctialig,” vs. A on a 29 fm box
using a dipole regulator. Results for two different valuesgfare shown.
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Figure B.2: Behaviour of finite-volume correctiodfg/~ vs.A on a 40 fm box using
a dipole regulator. Results for two different valuesigfare shown.

however, that this does not resolve the problem of divergehaviour for largen.
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Table C.1:JLQCD [0 08] lattice QCD simulation results for the nucleon misat various pion

mass squared values. The lattice spacing is.018 fm and the spatial lattice length i0 fm.

m2(GeV?) Mn(GeV) myl

0.567 1615(6)
0.386 1456(6)
0.273 1350(6)
0.191 1255(6)
0.135 1164(8)
0.084 1111(10)

725
598
503
420
354
278

Table C.2:PACS-CS [A09] lattice QCD simulation results for the nucleon mag at various
pion mass squared valugg. The lattice spacing is.0907 fm and the spatial lattice length i@

fm.

m2(GeV?) Mn(GeV) myl

0.492 1583(5)

0.325 1411(12)
0.169 1215(12)
0.087 1093(19)
0.024 0932(78)

1032
838
605
435
229

Table C.3:CP-PACS [AK"02] lattice QCD simulation results for the nucleon mitsg the lattice

spacinga and the spatial lattice lengthat various pion mass squared values

m2(GeV?) My(GeV) a(fm) L(fm) myl
0.940 1809(15) 0102 245 1203
0.913 1798(4) 0130 312 1511
0.704 1652(9) 0099 238 1010
0.689 1643(5) 0123 295 1242
0.539 1519(9) 0095 228 849
0.502 1497(6) 0118 283 1017
0.353 1348(12) 0092 221 665
0.272 1275(7) 0111 266 704
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Table C.4: Quenched lattice QCD data for tipemeson massn, at various pion mass squared

valuesm?. The lattice size is 20x 32, with a lattice spacing of.053 fm.

myGeV?) my(GeV) mil
3.150 2001(1) 2753
2.187 17002) 2294
1.742 15482) 2047
1.329 13992) 17.88
1212 1354(2) 17.08
1.062 1294(2) 1598
0.867 1214(3) 14.44
0.743 1162(4) 1337
0.676 11334) 1275
0.610 11035) 1212
0.515 10605 1113
0.422 1016(6) 10.07
0.347 Q9857) 9.13
0.288 0960(8) 8.32
0.241 093818) 7.62
0.204 Q926(9) 7.00
0.172 Q914(11) 6.43
0.143 Q908(14) 5.87
0.114 Q899(15) 5.24
0.094 Q899(16) 4.75
0.080 Q896(18) 4.38
0.068 Q89820) 4.04
0.059 Q902(22) 3.77
0.053 Q90326) 3.58
0.047 Q907(28) 3.37
0.041 091332) 3.15
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Table C.5: Preliminary lattice QCD simulation results from QCDSF fbetisovector nucleon
magnetic momenty, the lattice spacing and the spatial lattice lengthat various pion mass squared

valuesm?.

ma(GeV?) (k) a(fm) L(fm) myl
0.863 2394(69) 0089 143 673
0.709 2483(45) 0073 176 750
0.688 2548(159) 0091 145 611
0.591 2621(49) 0084 201 785
0.392 2863(86) 0070 167 530
0.357 2781(51) 0084 203 613
0.290 2840(121) 0070 167 457
0.198 3082(120) 0081 196 442
0.159 3006(118) 0077 184 372
0.077 3711(158) 0076 304 426

Table C.6: Preliminary lattice QCD simulation results from QCDSF fbetisovector nucleon
electric charge radiug?)g, the lattice spacing and the spatial lattice lengthat various pion mass

squared values?.

M(GeV®) (r2e(fm?) a(fm) L(fm) mpl
0.591 Q303(8) 0084 201 785
0.357 0349(6) 0084 203 613
0.349 Q340(5) 0080 192 575
0.198 0384(11) 0081 196 442
0.188 0392(12) 0068 219 481
0.074 0494(25) 0076 304 418
0.053 0586(24) 0068 325 379
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Chiral effective field theory (YEFT) complements numerical simulations of quantum chromodynamics
(QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice
simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic
nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of
the power-counting regime (PCR) of yEFT, where higher-order terms of the expansion may be regarded
as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety
of renormalization schemes and associated parameters, techniques to identify the PCR where results are
independent of the renormalization scheme are established. The nucleon mass is considered as a
benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation
results are also examined to search for the possible presence of an intrinsic scale which may be used in a
nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that
improve on the current optimistic application of chiral perturbation theory (xyPT) beyond the PCR are

reported.

DOI: 10.1103/PhysRevD.82.034010

I. INTRODUCTION

The low energy chiral effective field theory (YEFT) of
quantum chromodynamics (QCD) provides a model-
independent approach for understanding the consequences
of dynamical chiral-symmetry breaking in the chiral prop-
erties of hadrons. Nonanalytic contributions in the quark
mass are generated by the pseudo-Goldstone meson dress-
ings of hadrons through meson-loop integrals. Chiral per-
turbation theory (yPT) provides a formal approach to
counting the powers of low-energy momenta and quark
masses such that an ordered expansion in powers of the
quark mass m,, « m?2 is constructed. yPT indicates that, in
general, the most singular nonanalytic contributions to
hadron properties lie in the one-loop ‘“meson cloud” of
the hadron. For example, the leading nonanalytic behavior

of a baryon mass is proportional to mg/ % or m3.. More
generally, baryon masses can be written as an ordered
expansion in quark mass or m2.

To establish a model-independent framework in yPT,
the expansion must display the properties of a convergent
series for the terms considered. There is a power-counting
regime (PCR) where the quark mass is small, and higher-
order terms in the expansion are negligible beyond the
order calculated. Within the PCR, the truncation of the
chiral expansion is reliable to a prescribed precision.

The asymptotic nature of the chiral expansion places the
focus on the first few terms of the expansion. A survey of
the literature for the baryon sector of yEFT illustrates the
rarity of calculations beyond one-loop [1-3], and there are
no two-loop calculations which incorporate the effects of
placing a baryon in a finite volume. With only a few terms
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of the expansion known for certain, knowledge of the PCR
of YEFT is as important as knowledge of the expansion
itself. It is within the PCR that higher-order terms of the
expansion may be regarded as negligible.

Numerical simulations of QCD on a space-time lattice
are complemented by YEFT through the provision of a
model-independent formalism for connecting lattice simu-
lation results to the physical world. Simulations at finite
volume and a variety of quark masses are related to the
infinite volume and physical quark masses through this
formalism. However, the formalism is accurate only if
one works within the PCR of the truncated expansion.
Present practice in the field is best described as optimistic.
Truncated expansions are regularly applied to a wide range
of quark (or pion) masses with little regard to a rigorous
determination of the PCR.

When considering nucleons, there is some evidence that
the PCR may be quite small; constrained by m, <
200 MeV at 1% accuracy at the chiral order
O(m? logm,) [4,5]. This estimate of the PCR of yPT
was identified using specific finite-range regularization
(FRR) techniques to analyze lattice QCD data. Using
FRR, the regime is manifest when the quark-mass depen-
dence of the nucleon mass is independent of the
renormalization-scheme parameter.

A chief focus of this paper is to establish a rigorous
approach to determining the PCR of a truncated chiral
expansion quantitatively. Through the consideration of a
variety of renormalization schemes and associated parame-
ters, new techniques to identify the PCR are established.
The PCR is the regime where results are scheme indepen-
dent. The nucleon mass is considered as a benchmark for

© 2010 The American Physical Society
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illustrating this general approach. Here, the chiral expan-
sion is examined, focusing on the individual low-energy
coefficients of the chiral expansion. This approach pro-
vides a determination of the PCR for a truncated expansion
in YEFT. As discussed in detail in the following section,
the PCR is indeed small for the nucleon mass. Other
observables are expected to show a similar if not smaller
PCR. Thus most of today’s lattice simulation results lie
outside the PCR, and the truncated chiral expansions have
been used to extrapolate from outside the PCR. The low-
energy coefficients determined by applying the truncated
expansion outside the PCR will take on unphysical values,
as they accommodate important but otherwise missing
contributions from nonnegligible higher-order terms.

While continued advances in numerical simulations of
lattice QCD will be vital to some extent in resolving this
problem, the physical value of the strange-quark mass
presents a challenge that will not diminish with super-
computing advances. If one were to include the effects of
kaons, vital to understanding strangeness in the nucleon,
for example, then one must either calculate to significantly
higher order in the expansion of yPT or develop new
nonperturbative approaches which utilize the nonperturba-
tive information expressed in the lattice simulation results.
Since the former is likely to be compromised by the
asymptotic nature of the expansion, attention is given to
the latter approach.

Thus the second focus of this paper is to examine the
numerical simulation results, to identify the possible pres-
ence of an intrinsic scale. This may then be used to address
lattice simulation results outside of the PCR in a non-
perturbative manner. Of course, the nonperturbative for-
malism must incorporate the exact perturbative results of
XPT in the PCR. Positive results are reported that improve
on the current optimistic application of yPT outside of the
PCR.

The outline of the presentation is as follows. Section II
reviews chiral effective field theory and the process of
regularization and renormalization. The adoption of FRR
provides a wide range of schemes and scales, which over-
lap with the more popular massless renormalization
schemes as the finite-range regulator parameter is taken
to infinity. Section III investigates FRR in the context of a
particular model. By generating a set of pseudodata and
analyzing it with a variety of renormalization schemes, a
robust method for determining the PCR 1is obtained, along
with an optimal renormalization scale to use beyond the
PCR. Finally, Section IV includes the analysis of three sets
of lattice results for the nucleon mass, utilizing the tools
developed in the previous section. Conclusions are sum-
marized in Sec. V.

II. EFFECTIVE FIELD THEORY

This section begins by briefly reviewing the process of
regularization and renormalization in finite-range regular-
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ized chiral effective field theory, providing a range of
renormalization schemes and scales. A central focus is to
search for the dependence of physical results on the
scheme and associated scales, as these will be an indication
that one is applying the chiral expansion outside the PCR.

The focus is to establish techniques that provide a quan-
titative test of whether a given range of m . lies within the
PCR. This is achieved through an examination of the flow
of the low-energy coefficients as a function of the renor-
malization scheme parameter(s). A negligible dependence
would confirm that the pion-mass range is within the PCR.
On the other hand, the properties of the flow will be used to
identify a preferred regularization scheme in a nonpertur-
bative sense that best describes the results beyond the PCR.

A. Renormalization in FRR yEFT

Using the standard Gell-Mann—Oakes—Renner relation
connecting quark and pion masses, m, m2 [6], the for-
mal chiral expansion of the nucleon can be written as a
polynomial expansion in m2 plus the meson-loop integral
contributions:

My ={ag + aym% + aymy + O(m&)} + 2y + 3y
+ 2tad- (1)

The pion cloud corrections are considered in the heavy-
baryon limit, with loop integrals, 3y, 24, and 3,4, corre-
sponding to Figs. 1-3, respectively. The coefficients a; of
the analytic polynomial, contained in brackets { } in Eq. (1)

/l\
4 \
/ \

N N N

FIG. 1. The pion loop contribution to the self-energy of the
nucleon, providing the leading nonanalytic contribution to the
nucleon mass. All charge conserving transitions are implicit.

/l\
4 \
L\

N A N

FIG. 2. The pion loop contribution to the self-energy of the
nucleon allowing transitions to the nearby and strongly coupled
decuplet baryons.

FIG. 3. Tadpole contributions to the nucleon self-energy.

034010-2



POWER COUNTING REGIME OF CHIRAL EFFECTIVE ...

, are related to the low energy constants of yPT. In this
investigation, they will be determined by fitting to lattice
QCD data. These coefficients will be referred to as the
residual series coefficients. These bare coefficients
undergo renormalization due to contributions from the
loop integrals 2y, %4, and 3.

Under the most general considerations, each loop inte-
gral, when evaluated, produces an analytic polynomial in
m2 and nonanalytic terms:

Sy = bY + bYm2 + xymd + bYmi + Om3),  (2)

3 m,

+ O(m3), 3

Sa = bymZ + bymb + ximk log% + O(m3). (4)

Here A is the delta-nucleon mass splitting in the chiral
limit, taken to be 292 MeV. xu, xa, and x! denote the
model-independent chiral coefficients of the terms that are
nonanalytic in the quark mass. The b; coefficients are
renormalization-scheme dependent as are the a; coeffi-
cients. It can be noted that the tadpole loop contribution
2 aa does not produce a b, term because it enters with a
leading factor of mZ, as discussed in Sec. II B. The primes
on the coefficients bg and y} here simply indicate that they
will be used later in a slightly different form.

The process of renormalization in FRR yEFT proceeds
by combining the renormalization-scheme-dependent co-
efficients to provide the physical low-energy coefficients,
which are denoted as c;. Thus, the nucleon mass expansion
takes on the standard form:

My = co + com% + yymi + cum?

3
+ (- —Xa T Cz)(z)mi log™ ™ + O(m3).  (5)
47A o

By comparing Egs. (1) through (5), the following renor-
malization procedure is obtained:

C0=ao+b8]+b€, (6)
¢y =ay + by + b5 + bh, (7)
¢y = ag + bY + by + b, etc. ®)

The coefficients c; are scheme-independent quantities, and
this property will be demonstrated when determined within
the PCR. The value of ¢ is the nucleon mass in the chiral
limit (m2 = 0), and ¢, is related to the so-called sigma
term of explicit chiral-symmetry breaking [7-9]. The non-
analytic terms m3>. and m* logm,/u have known coeffi-
cients denoted by xy, xa, and y;. The value of c, is scale
dependent, such that the total m%. term in Eq. (5), including
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the logarithm, is independent of the scale w. It can be noted
that the nucleon mass itself is completely independent of
the choice of w. For the numerical analysis, u is set equal
to 1 GeV.

Of course, EFT loop calculations are commonly diver-
gent without some regularization method. Since the effec-
tive field theory is only applicable for low energies, hard
momenta contributions to loop calculations may be elim-
inated. However, the traditional schemes including dimen-
sional regularization (DR) often do not involve an explicit
scale dependence when evaluating loop diagrams. Without
any momentum cutoff, the b; coefficients from each loop
integral become either infinite or vanish, and the c¢; coef-
ficients from Eq. (5) undergo an infinite renormalization or
none at all:

Co = ag — %, (9)
Cy = ap + oo, (10)
Cqy = Ay + 0, etc. (11)

Since the c; coefficients are finite after renormalization, the
a; coefficients must have been infinite, with the opposite
sign of the b; coefficients. As emphasized above, both the
a; and b; coefficients are scheme dependent. The infinities
are absorbed in constructing the c¢; coefficients and thus
subtracted from the chiral expansion. This minimal sub-
traction scheme with no explicit scale dependence makes
DR quite suitable for elementary fields, where the absence
of new degrees of freedom at higher energies is assumed.
However, for EFTs there is an energy scale beyond which
the effective fields are no longer the relevant degrees of
freedom. When one integrates loop contributions over this
high-energy domain, there is no guarantee that one can
efficiently subtract the model-dependent, ultraviolet phys-
ics with a finite number of counterterms (unless in the
PCR). As a result, the chiral expansion typically only
shows reliable convergence properties over a narrow range
of pion mass.

Indeed this problem of beginning with rapidly varying
loop contributions, which must then be removed with a
finite number of counterterms, can easily be overcome. The
hard momentum contributions to the meson-loop diagrams
can be suppressed via the introduction of a regulator. As
such, the coefficients of the residual expansion are likely to
be smaller, and the utility of the expansion has the potential
to apply to a broader range of quark or pion masses. The
introduction of a regulator acts to resum the chiral expan-
sion, with loop integrals having the general properties
described in Egs. (2) through (4).

The resummation of the chiral series through the intro-
duction of a regulator (or similar variant) has been studied
in various instances [5,10-18]. The method consists of
inserting a regulator function u(k?) into the integrand of
the meson-loop integrals. The regulator can take any form,
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so long as it is normalized to 1, and approaches O suffi-
ciently fast to ensure convergence of the loop. Unlike DR,
this method involves an explicit momentum cutoff scale,
A. The chiral expansion can now be written in terms of this
cutoff scale:

={ap + adm? + afmi + O(m)} + = (m%, A)
+ EA(mWJ A) + 2tad(’/nw" A) (12)

The superscript A denotes the scheme dependence of the

a’ coefficients. The loop integrals are functions of the

]
scale A and also m?2.

Through the introduction of the regulator, the loop in-
tegrals are now low-energy contributions, significant for
small m2 and becoming negligible as m2 becomes large.
The scheme-dependent af.\ coefficients undergo a renor-
malization, as before, via their combination with the b,’-\
coefficients, whose scheme dependence is now explicit,
reflecting the regularization of the loop integrals:

co=ap + bé\’N + bé\’A, (13)
ey = al + b + b2 + bl (14)
ey =al + b + pMA + b etc, (15)

Dimensional analysis reveals that the coefficients b; are
proportional to AG~%. Thus it can be realized that as the
cutoff scale A goes to infinity the FRR expansion reduces
to that of Eq. (5) via Egs. (9) through (11). At any finite A,
a partial resummation of higher-order terms is introduced.

Previous studies indicate that extrapolation results show
very little sensitivity to the precise functional form of the
regulator [14]. In this investigation, the family of smoothly
attenuating dipole regulators will be considered. The gen-
eral n-tuple dipole function takes the following form, for a
cutoff scale of A:

k2n -2
un(R2) = (1 T Azﬂ) . (16)
The standard dipole is recovered for n = 1. The cases n =
2, 3 are the “double-” and “triple-dipole” regulators,
respectively. In the following, u(k?) is used to denote one
of these regulators. This functional form allows one to
interpolate between the dipole regulator and the step func-
tion (which corresponds to n — ).

In a study by Bernard et al. [15], it was suggested that
only a sharp cutoff FRR scheme is consistent with chiral
symmetry. Djukanovic et al. [16] have demonstrated more
general functional forms can be generated by proposing a
scheme in which the regulator function is interpreted as a
modification to the propagators of the theory, obtained
from a new chiral-symmetry-preserving Lagrangian.
Higher-derivative coupling terms are built into the
Lagrangian in order to produce a regulator from the
Feynman rules in a symmetry-preserving manner.
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The regulators used in the present investigation are
introduced in a less systematic fashion, such that chiral
symmetry is not automatically preserved to the order cal-
culated. The higher-derivative couplings of the regulator
induces scheme-dependent nonanalytic terms. To maintain
chiral symmetry, one must introduce the necessary vertex
corrections.

Alternatively, one can choose the regulator judiciously
such that any extra scheme-dependent nonanalytic terms
are removed to any chosen order. For example, the n-tuple
dipole regulators generate extra nonanalytic terms in the
chiral expansion of Eq. (5) at higher chiral orders. For a
dipole regulator, regulator-dependent nonanalytic terms
occur at odd powers of m,,, beginning at O(m>,)." In the
case of the double dipole, the nonanalytic terms begin at
O(m’), and for the triple dipole the nonanalytic terms
begin only at O(m?.).

In a final observation, it is essential to note that the
degrees of freedom present in the residual series coeffi-
cients, a’, are sufficient to eliminate any dependence on
the regulator parameter, A, to the order of the chiral
expansion calculated: in this case @(m%). By definition,
higher-order terms in the FRR expansion are negligible in
the PCR, and therefore FRR yEFT is mathematically
equivalent to yPT in the PCR. Any differences observed
in results obtained at the same chiral order but with differ-
ent regularization schemes are a direct result of consider-
ing data that lie outside the PCR (provided that the
regulator A is not chosen too small such as to introduce
an unphysical low-energy scale).

B. Loop integrals and definitions

The leading order loop integral contributions to the
nucleon mass, corresponding to the diagrams in Figs. 1-3
can be simplified to a convenient form by taking the heavy-
baryon limit and performing the pole integration for k.
Renormalization, as outlined above, is achieved by sub-
tracting the relevant terms in the Taylor expansion of the
loop integrals and absorbing them into the corresponding
low-energy constants, c;:

~ k2 2k2
Sy = Xny 2fd3k ( )—bAN—bAN 2 (17)

w?*(k)
= yyms + bf’Nmfr + O(m3), (18)
~ 1 Ku?(k?)
— - dSk— _ bA,A _ bA,A 2
TaTXago / o)A + wk) ° "

19)

"While scheme-dependent, it is significant to note that with a
dipole regulator, A = 0.8 GeV, the coefficient of the induced
m3, term compares favorably with the two-loop calculation [1—
3,5,14]
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— pAA 4
= b,""my;

o Xamblog=t + O(m3),  (20)
T 5

= 1 2u*(k?)
— 2 3 _ At
S czmﬂ(x, s f Py b ) @n

= czmi(bf’tm%, + x,m% log% + @(mf,)) (22)
m

= Com% 0. (23)

These integrals are expressed in terms of the pion energy,

w(k) = vJk?> + m2. The tilde () denotes that the integrals
are written out in renormalized form to chiral order O(m?2).
As the b; coefficients are regulator and scale dependent,
this subtraction removes this dependence. The coefficients
ag and a, of the analytic terms in the chiral expansion in
Eq. (5) are now automatically the renormalized coeffi-
cients ¢y and c,. This is because the b, and b, terms in
Egs. (13) and (14) are removed in the subtraction. Note
also that the tadpole amplitude in Egs. (22) and (23)
contains the renormalized ¢, in its coefficient. The inter-
action vertex in this diagram arises from expanding out the
pion field in the leading quark-mass insertion.

The constant coefficients y, xa, and y; for each inte-
gral are defined in terms of the pion decay constant, which
is taken to be f, = 93 MeV, and the axial coupling pa-
rameters D, F, and C which couple the baryons to the pion
field. The phenomenological values for these couplings are
used, applying the SU(6) flavor-symmetry relations
[19,20] to yield C = —2D, F = 2D and the value D =
0.76:

3
=———(D+F)> 24
3 8
= - e, 25
3
- 26
Xt 16722 (26)

With the renormalized integrals specified, the FRR
modified version of the chiral expansion in Eq. (5) takes
the form:

My = co + cm%(1 + Gq) + ajmb + Sy+ 3. 27)

The af term is left in unrenormalized form for simplicity.
Indeed, the b, can be evaluated by expanding out corre-
sponding loop integrals, such as in Ref. [12]. However, the
focus here is on the behavior of ¢; and c,.

Since the results of lattice simulations reflect the pres-
ence of discrete momentum values associated with the
finite volume of the lattices, the formalism must also take
into account these finite-volume effects. In order to accom-
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modate the effect of the finite volume, the continuous loop
integrals occurring in the meson-loop calculations in infi-
nite volume are transformed into a sum over discrete
momentum values. The difference between a loop sum
and its corresponding loop integral is the finite-volume
correction, which should vanish for all integrals as m.L
becomes large [21].

While Eq. (27) is useful in describing the pion-mass
evolution of the nucleon mass, for the consideration of
lattice QCD results, one also needs to incorporate correc-
tions to allow for the finite-volume nature of the numerical
simulations. As the pion is the lightest degree of freedom in
the system, it is the leading order pion loop effects that are
most sensitive to the periodic boundary conditions. The
corrections can be determined by considering the trans-
formation of each loop integral in Egs. (17), (19), and (21),
into a discrete sum for lattice volume V = L,L,L, [22]:

j CL 3. (28)

L.L,L, KKy k.

Each momentum component is quantized in units of 277/L,
that is k; = n;27/L for integers n;. The finite-volume
correction 87VC can be written as the difference between
the finite sum and the integral:

SEVC — L[ 2m)*

> 1k m, A)

! 272 L.L,L,, ywi
- / BKIE m2, A)], (29)
where i =N, A, and the integrands are denoted

Il-(lg, m2, A). By adding the relevant finite-volume correc-
tion (FVC) to each loop contribution, the finite-volume
nucleon mass can be parameterized:

My, = ¢y + comi(1 + Gpq) + af‘\m‘}, + (iN + BR,VC)
+ (3, + 8VYO). (30)

It is also anticipated that the FVC are independent of the
regularization scale A in this domain. In Figs. 4 and 5, the
scale dependence of the finite-volume corrections is shown
for a dipole regulator and a 2.9 fm box (the same box size
used for the PACS-CS data [23]). It is notable that choosing
A too small suppresses the very infrared physics that one is
trying to describe, and therefore it is sensible to be cautious
by not selecting a A that is too low. Figures 6 and 7 show
the behavior of the FVC for a 4.0 fm box, and the correc-
tions are much smaller as expected.

For large A the results saturate to a fixed result. For the
light pion masses, provided A = 0.8 GeV, the estimated
finite-volume corrections are stable. The asymptotic result
is used, which has been demonstrated to be successful in
previous studies [24]. Numerically, this is achieved by
evaluating the finite-volume corrections with a parameter,
A= 2.0 GeV, §FVC = SFVE(A/). It should be noted that
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FIG. 4 (color online).
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Behavior of the finite-volume correc-

tions 6§,VC vs A on a 2.9 fm box using a dipole regulator. Results
for two different values of m2 are shown.
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FIG. 5 (color online).
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vs A on a 2.9 fm box using a dipole regulator. Results for

0.020 T T T T T
—— m_? = 0.024 GeV?
0.015 - ——— mp?= 0272 GeVZ| |
=
[
(&)
~ 0.010 - -
o
£
2
©
0.005 -
0.000 === L L L
0.0 0.4 0.8 1.2 1.6 2.0 2.4
A(GeV)

FIG. 6 (color online).

Behavior of finite-volume corrections
85VC vs A on a 4.0 fm box using a dipole regulator. Results for
two different values of m2 are shown.
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FIG. 7 (color online). Behavior of finite-volume corrections
8%YC€ vs A on a 4.0 fm box using a dipole regulator. Results for
two different values of m2 are shown.

this is equivalent to the more algebraic approach outlined
in Ref. [21].

III. INTRINSIC SCALE: PSEUDODATA

This yEFT extrapolation scheme to order O(m% logm.,.)
will be used in conjunction with lattice QCD data from
JLQCD [27], PACS-CS [23], and CP-PACS [28] collabo-
rations to predict the nucleon mass for any value of m2.
The lattice data used in this analysis can be used to ex-
trapolate M, to the physical point by taking into account
the relevant curvature from the loop integrals in Eqs. (18),
(20), and (22). As an example, a regulator value of A =
1.0 GeV was chosen for Figs. 8-10, where the finite-
volume corrected EFT appears concordant with previous
QCDSF-UKQCD collaboration results [24]. If the regula-
tor is changed away from the choice A = 1.0 GeV, the
extrapolation curve also changes. This signifies a scheme
dependence in the result due to using lattice QCD data
beyond the PCR.

2~0 B T T T T T T T T T
1.8 H n
161
—~ B
> :
o z
S 14Ff
; :
12 + original data
: + A = 1.0 GeV, dipole, fin.vol.
10F — A = 10 GeV, dipole, infyol. |
1 1 1 1 1 1 1 1 1

08t
0.0 0.1 02 0.3 04 05 0.6 0.7 0.8 09 1.0
m _? (GeV?)
™

FIG. 8 (color online). Example dipole extrapolation based on
JLQCD data [27], box size: 1.9 fm.
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10K —— A = 1.0 GeV, dipole, inf.vol. |
0.8 Lt | | | | | | | | |
0.0 0.1 02 0.3 04 05 0.6 0.7 0.8 09 1.0
m ? (GeV?)

FIG. 9 (color online). Example dipole extrapolation based on
PACS-CS data [23], box size: 2.9 fm.

To demonstrate this, consider the infinite volume ex-
trapolation of the CP-PACS data. The extrapolation is
achieved by subtracting the finite-volume loop integral
contributions defined in Egs. (17), (19), and (21) from
each data point and then fitting the result to obtain the
coefficients c¢(, c,, and af as shown in Eq. (27). The
infinite volume loop integrals are then added back at any
desired value of m2.

Figure 11 shows that the curves overlap exactly when
m? is large, where the lattice data reside. They diverge as
the chiral regime is approached. This section addresses this
problem in detail.

A particular regularization scale is selected and a dense
and precise data set is generated, which smoothly connects
with state of the art lattice simulation results. If all the data
considered lie within the PCR then the choice of regulator
parameter is irrelevant, and the FRR chiral expansion is
mathematically equivalent to scale-invariant renormalza-
tion schemes including DR. However, the purpose here is
to consider an insightful scenario, whereby a set of ideal

2.0 T T T T T T T T T

+ original data
¢ A = 10 Gev, dipole, fin.vol.
Lop — A = 1.0 GeV, dipole, inf.vol. |
0.8 Py ! ! ! ! ! ! ! !
0.0 0.1 02 0.3 04 05 06 0.7 08 0.9 1.0

FIG. 10 (color online).

CP-PACS data

m ? (GeV?)

Example dipole extrapolation based on
[28], box size: 2.3-2.8 fm.
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m ? (GeV?)

FIG. 11 (color online). Close zoom of the regulator depen-
dence for dipole extrapolation based on CP-PACS data. Only the
data point corresponding to the smallest m2 value is shown at
this scale.

pseudodata with known low-energy coefficients is pro-
duced. This scenario will form the basis of the investiga-
tion of the PCR, and ultimately the possible existence of an
intrinsic scale hidden within the actual lattice QCD data.

The pseudodata are produced by performing a finite-
volume extrapolation such as that shown in Figs. 8—10. The
difference is that 100 infinite volume extrapolation points
are produced close to the chiral regime. The exercise is to
pretend that it is actual lattice QCD data. Clearly, a regu-
larization scheme must be chosen to produce the pseudo-
data. In this case, a dipole regulator was chosen and
pseudodata were created at A, = 1.0 GeV.

The regularization dependence of the extrapolation is
characterized by the scale dependence of the renormalized
constants ¢;. Consider how ¢y and ¢, behave when ana-
lyzed with a variety of regulator values in Figs. 12 and 13.

0.92 T T T T T T T T T T
- —m__.° = 004 GeV®
™~ -——- m”mx2 = 0.25 GeV?
N —-— m, = 0.5 GeV?
091 N mex _
¥\\ \.
~ N
o \‘\ ~.
0.90 - NI
0.89 | | | | i | | | | | |
0.0020406081.0121416 18202224
A (GeV)

FIG. 12 (color online). Behavior of ¢, vs regulator parameter
A, based on infinite volume pseudodata created with a dipole
regulator at A, = 1.0 GeV (based on lightest four data points
from PACS-CS). Each curve uses pseudodata with a different
upper value of pion mass m2 ..
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FIG. 13 (color online). Behavior of ¢, vs A, based on infinite
volume pseudodata created with a dipole regulator at A, =
1.0 GeV (based on lightest four data points from PACS-CS).
Each curve uses pseudodata with a different upper value of pion
mass m2 -

By choosing to use pseudodata produced at infinite vol-
ume, one eliminates the concern that behavior of the low
energy constants across a range of regulators and pion
masses is a finite-volume artefact. The equivalents of
Figs. 12 and 13 for finite-volume pseudodata exhibit the
same features.

If three pseudodata sets are compared, each with differ-
ent upper bounds on the range of m2 considered in the fit,
an increasing regulator dependence in ¢, and ¢, is seen
further from the PCR. A steep line indicates a strong
scheme dependence in the result, and naturally occurs for
data samples extending far outside the PCR. Scheme in-
dependence will appear as a completely horizontal graph.
The latter is what one expects for a value of m%ﬂmax <
0.04 GeVZ, as shown in Figs. 12 and 13. Note that, for each
figure, all three curves (corresponding to different m?, ,,,)
arrive at stable values for ¢j and ¢, on the right-hand side
of the graph (large A). To read off the values of ¢ and ¢,
for large A is tempting but wrong. It is known that the
correct values of ¢ and ¢, are recovered at A = 1.0 GeV,
because at that value the pseudodata were created.

The analysis of the pseudodata in Figs. 12 and 13 shows
that as the value of m2, .., is changed, the correct value of
co is recovered at exactly A = A, where the curves inter-
sect. This is also the intersection point for ¢, at A = A..
This suggests that when considering lattice QCD results
extending outside the PCR, there may be an optimal finite-
range cutoff. Physically, such a cutoff would be associated
with an intrinsic scale reflecting the finite size of the source
of the pion dressings. Mathematically, this optimal cutoff is

reflected by an independence of the fit parameters on

2
M7 max-

To illustrate the nontriviality of this scale of curve-
intersection, the pseudodata were analyzed with a different
regulator, e.g. a triple-dipole regulator. Figures 14 and 15

FIG. 14 (color online). Behavior of ¢y vs A, based on infinite
volume pseudodata created with a dipole regulator at A, =
1.0 GeV but subsequently analyzed using a triple-dipole regu-
lator.

show that the scale of the intersection is no longer a clear
point but a cluster centered about 0.5 to 0.6 GeV. The triple
dipole will of course predict a different “‘best scale”, since
the shape of the regulator is different from that of the
dipole used to create the pseudodata. The essential point
of this exercise is that clustering of curve intersections
identifies a preferred renormalization scale that allows
one to recover the correct low-energy coefficients. In this
case, the crossing of the dashed and dotted-dashed curves
(from fitting) clearly identifies Affi?)le = 0.6 GeV as a pre-

ferred regulator, which reflects the intrinsic scale used to
create the data. Table I compares the values for ¢, and ¢,
recovered in this analysis for two different regulators: the
preferred value Afrci‘l;le = 0.6 GeV, and a large value
Agip = 2.4 GeV reflecting the asymptotic result recovered

3.3 T T T T T T T T T T T
32+ o - |
3.1 i
ON
3.0 i
= 0.04 GeV?

2.9 = 0.25 GeV? |

/ = 0.5 GeV?

/. m.max
2.8 L[l 1 1 1 1 1 1 1 1 1
000204060810121416 18202224

A (GeV)

FIG. 15 (color online). Behavior of ¢, vs A, based on infinite
volume pseudodata created with a dipole regulator at A, =
1.0 GeV but subsequently analyzed using a triple-dipole regu-
lator.
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TABLE I. A comparison of the parameters ¢, (GeV) and c,
(GeV ™) at their input value (pseudodata created with a dipole at
A. = 1.0 GeV) with the values when analyzed with a triple-
dipole regulator. Different values of Ay, (GeV) and m%,}max
(GeV?) are chosen to demonstrate the scheme dependence of
co and ¢, for data extending outside the PCR.

Parameter Input A€ =06 Ay, =24 Ay, =24

trip
Mm% nax = 0.25 m2 0 = 0.25 m2 . = 0.5

o 0.902 0.901 0.899 0.896
Cy 3.00 3.07 3.17 3.23

from DR. The input values of ¢, and ¢, used to create the
pseudodata are also indicated.

Note that the finite-range renormalization scheme
breaks down if the finite-range regulator is too small.
This is because A must be large enough to include the
chiral physics being studied. The exact value of a sensible
lower bound in the finite-range regulator will depend on
the functional form chosen as regulator. This is estimated
for three dipolelike regulators in Sec. IV.

Figure 13 shows that the renormalization for ¢, breaks
down for small values of the regulator A. FRR breaks down
for a value of Adip much below 0.6 GeV, because the
coefficients b; of the loop integral expansion in Egs. (18),
(20), and (22) are proportional to AG~?. For high-order
terms with large i, the coefficients will become large when
A is small. This will adversely affect the convergence
properties of the chiral expansion. One obtains a residual
series expansion with good convergence properties only
when A reflects the intrinsic scale of the source of the pion
dressings of the hadron in question.

The pseudodata analysis provides a good indication of a
lower bound for A using a dipole regulator: Ag, =
0.6 GeV. Similarly, Fig. 6 suggests a lower bound for the
triple-dipole regulator: Ay, = 0.3 GeV. The same analy-
sis can be repeated for the double-dipole regulator to obtain
Agoun = 0.4 GeV.

One may also constrain the lowest value that A can take
by considering phenomenological arguments. Based on the
physical values of the sigma commutator and the nucleon
mass, a pion mass of m_ = 0.5 GeV bounds the radius of
convergence [13,25,26]. Therefore, in order to ensure the
inclusion of important contributions to the chiral physics,
one should choose an energy scale A, ~ 0.5 GeV for a
sharp cutoff (step function) regulator. To compare this
estimate for the sharp cutoff to that of dipolelike regulators,
one can calculate the regulator value required such that
u?(k?) = 1/2 when the momentum takes the energy scale
of Agharp- This results in a rough estimate for a sensible
value for the dipole, double dipole, and triple dipole. These
values are Ag, ~ 1.1 GeV, Agqp ~0.76 GeV, and
Agip ~ 0.66 GeV, respectively. In any event, a wide range
of regulator values will be considered, and the intersections
of the curves for the low-energy coefficients will be used in
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order to construct fits outside the PCR. This will be done in
order to identify the presence of an intrinsic scale for the
pion source and an associated preferred regularization
scale.

IV. INTRINSIC SCALE: LATTICE RESULTS

A. Evidence for an intrinsic scale

In the example of the pseudodata, an optimal finite-
range cutoff was obtained from the data themselves.
Clearly, the pseudodata have an intrinsic scale: the renor-
malization scale A, at which they were created. This test
example leads the researcher to wonder if actual lattice
QCD data have an intrinsic cutoff scale embedded within
them. That is, by analyzing lattice QCD data in the same
way as the pseudodata, can a similar intersection point be
obtained from the renormalization scale flow of ¢, and ¢,?
If so, this indicates that the lattice QCD data contain
information regarding an optimal finite-range regulariza-
tion scale, which can be calculated.

The results for the renormalization of ¢y and ¢, as a
function of A are now presented for JLQCD [27], PACS-
CS [23], and CP-PACS [28] lattice QCD data. The JLQCD
data use overlap fermions in two-flavor QCD, but the
lattice box size for each data point is ~1.9 fm, smaller
than the other two data sets. The PACS-CS data use the
nonperturbatively O(a)-improved Wilson quark action at a
lattice box size of ~2.9 fm, but the data set only contains
five data points and a large statistical error in the smallest
m2 point. The CP-PACS data use a mean field improved
clover quark action on lattice box sizes for each data point
varying from ~2.2 fm to ~2.8 fm.

The chiral expansion is first used to chiral order O(m>).
In this case, the fit parameters are ¢, and ¢, only. The
results for a dipole regulator are shown in Figs. 16-21, the
results for the double-dipole case are shown in Figs. 22-27,

12 T T T T T
_— muwf = 0.27 GeV?
1.1 ——-m__ * =039 GeV® -
——-m__ %=057 GeV?
1.0F —%— _ ]

0.6 1 1 1 1 1

00 04 08 12 168 20 24
A (GeV)

FIG. 16 (color online). Behavior of ¢; vs A, based on JLQCD
data. The chiral expansion is taken to order O(m?), and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 17 (color online). Behavior of ¢, vs A, based on JLQCD
data. The chiral expansion is taken to order O(m2.), and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 18 (color online). Behavior of ¢y vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m3>.), and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 19 (color online). Behavior of ¢, vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m>.), and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 20 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order @(m3.), and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 21 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order @(m>.), and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 22 (color online). Behavior of ¢; vs A, based on JLQCD
data. The chiral expansion is taken to order @(m?.) and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 23 (color online). Behavior of ¢, vs A, based on JLQCD
data. The chiral expansion is taken to order @(m>.) and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 24 (color online). Behavior of ¢y vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m3>.) and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 25 (color online). Behavior of ¢, vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m3>.) and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 26 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order O(m>.) and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

and the results for the triple dipole are shown in Figs. 28—
33. To estimate the statistical error in the renormalized
constants dc, a bootstrap technique of 200 configurations
of nucleon mass data is used. The configurations differ by
the statistical error in the data, with values generated by a
Gaussian distribution. In each plot, the same configurations
are used for a variety of values of A considered. A few
points are selected in Figs. 16-33 to indicate the general
size of the statistical error bars.

It should be noted that none of these curves is flat to
within 1% accuracy. All fits have included data beyond the
commonly accepted PCR. Clearly, there is a well-defined
intersection point in the renormalization flow curves. Also,
the value of A at which the intersection point occurs is the
same even for different data sets, and for different ¢;. The
tight groupings of the curve crossings lend credence to the
ansatz of an intrinsic scale associated with the finite size of
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FIG. 27 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order @(m3.) and a
doubledipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 28 (color online). Behavior of ¢, vs A, based on JLQCD
data. The chiral expansion is taken to order O(m3.) and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 29 (color online). Behavior of ¢, vs A, based on JLQCD
data. The chiral expansion is taken to order O(m3.) and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 30 (color online). Behavior of ¢y vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m3>.) and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 31 (color online). Behavior of ¢, vs A, based on PACS-
CS data. The chiral expansion is taken to order @(m3>.) and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

the source of the pion dressings of the nucleon. This is a
central result of this analysis.

An intrinsic scale of Affi;le ~ 1.3 GeV was obtained for

the dipole, Afﬁ}g ~ 1.0 GeV for the double dipole and
Affii‘)le =~ (0.9 GeV for the triple dipole. These values differ
because the regulators have different shapes, and different
values of A% are required to create a similar suppression

of large loop momenta.

B. Statistical errors

On each renormalization plot in Figs. 16-33 there are
many curves, each corresponding to different values of
m%,,max. It is of primary interest to what extent these curves
match. Therefore, a )(gof should be constructed, where dof
equals the number of curves on each plot minus one for the

best fit value of ¢, or c,, denoted by ¢’ in the following.

12 T T T T T
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1.1 = 0.69 GeV?® -
= 0.70 GeV?
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0.0 0.4 0.8 1.2 1.6 2.0 2.4
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FIG. 32 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order @(m3.) and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 33 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion is taken to order O(m>.) and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

This also serves to quantify the constraint on the intrinsic
scale A The x3 . is evaluated separately for each
renormalized constant ¢ (with error §¢) and regulator value

A:
I & (e(A) = cT(A))?

2

& o)

X§0f=n 31

for i corresponding to data sets with differing m2, .. The
theoretical value ¢’ is given by the weighted mean:

1 ei(A)/ (M)
" /(3¢ (A)

cT(A) = (32)

The x3.; can be calculated as a function of the regulator
parameter A for each of the renormalization plots of
Figs. 16-33. In the case of the PACS-CS data, the mini-
mum of the x3; curve will be centered at the intersection

2.0 T T
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1.2
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X%t ©F €,

------ upper bound

***** lower bound

FIG. 34 (color online). Behavior of )(fjof for ¢ vs A, based on
JLQCD data. The chiral expansion is taken to order O(m3), and
a dipole regulator is used.
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FIG. 35 (color online). Behavior of ,\/ﬁof for ¢, vs A, based on
JLQCD data. The chiral expansion is taken to order O@(m2.), and
a dipole regulator is used.

point. In the case of the JLQCD and CP-PACS data, there
appears to be a single intersection point on each plot, but in
fact there are multiple intersections over a very small
window of A. The results for ,\/ﬁof will indicate the
“best” central value of A. This central value of A will
be taken to be the intrinsic scale. The x3 curves for a
dipole regulator are shown in Figs. 34-39, the Xgof curves
for the double-dipole case are shown in Figs. 40—45, and
the X(ziof curves for the triple dipole are shown in Figs. 46—
51.

C. Higher chiral order

Consider the renormalization of ¢, and ¢, as a function
of A, for chiral order O(m* logm,,). The results for PACS-
CS and CP-PACS data are shown in Figs. 52-55, as an
example. In this case, no clear intersection points in the
renormalization curves can be found, and so one is unable
to specify an intrinsic scale. This certainly should be the
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1.6 X% Of € -
upper bound

lower bound

0.0 1 1 1
0.0 0.4 0.8 1.2 1.6 2.0 2.4
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FIG. 36 (color online). Behavior of Xﬁcf for ¢ vs A, based on
PACS-CS data. The chiral expansion is taken to order O(m3.),
and a dipole regulator is used.
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FIG. 37 (color online). Behavior of xj. for c; vs A, based on  FIG. 40 (color online). Behavior of x3 for ¢, vs A, based on
PACS-CS data. The chiral expansion is taken to order O(m3}),  JLQCD data. The chiral expansion is taken to order O(m3), and

and a dipole regulator is used. a double-dipole regulator is used.
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FIG. 38 (color online). Behavior of x3 ; for ¢y vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m3.),
and a dipole regulator is used.

FIG. 41 (color online). Behavior of )(?M for ¢, vs A, based on
JLQCD data. The chiral expansion is taken to order @(m3.), and
a double-dipole regulator is used.
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FIG. 39 (color online). Behavior of )(ﬁof for ¢, vs A, based on FIG. 42 (color online). Behavior of Xﬁof for ¢ vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m3), PACS-CS data. The chiral expansion is taken to order O(m3.),
and a dipole regulator is used. and a double-dipole regulator is used.
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FIG. 43 (color online). Behavior of Xﬁ(,f for ¢, vs A, based on
PACS-CS data. The chiral expansion is taken to order O(m>.),
and a double-dipole regulator is used.
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FIG. 44 (color online). Behavior of )(czjof for ¢ vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m3),
and a double-dipole regulator is used.
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FIG. 45 (color online). Behavior of )(ﬁof for ¢, vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m3),
and a double-dipole regulator is used.
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FIG. 46 (color online). Behavior of ,\/ﬁof for ¢ vs A, based on
JLQCD data. The chiral expansion is taken to order O@(m2.), and
a triple-dipole regulator is used.
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FIG. 47 (color online). Behavior of Xﬁof for ¢, vs A, based on
JLQCD data. The chiral expansion is taken to order @(m3.), and
a triple-dipole regulator is used.
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FIG. 48 (color online). Behavior of Xﬁof for ¢ vs A, based on
PACS-CS data. The chiral expansion is taken to order O(m3.),
and a triple-dipole regulator is used.
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FIG. 49 (color online). Behavior of Xﬁ(,f for ¢, vs A, based on
PACS-CS data. The chiral expansion is taken to order O(m>.),
and a triple-dipole regulator is used.
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FIG. 50 (color online). Behavior of )(flof for ¢ vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m>.),
and a triple-dipole regulator is used.
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FIG. 51 (color online). Behavior of )(ﬁof for ¢, vs A, based on
CP-PACS data. The chiral expansion is taken to order O(m3),
and a triple-dipole regulator is used.
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FIG. 52 (color online). Behavior of ¢ vs A, based on PACS-
CS data. The chiral expansion taken to order @(m% logm,,) and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

6.5 T T T T T

55 N

45 T

= 0.32 GeV?
= 0.49 GeV?
05 | | | | |
0.0 04 0.8 1.2 1.6 2.0 2.4

A (GeV)

FIG. 53 (color online). Behavior of ¢, vs A, based on PACS-
CS data. The chiral expansion taken to order @(m% logm,,) and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 54 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion taken to order O(m? logm,,)
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 55 (color online). Behavior of ¢, vs A, based on CP-
PACS data. The chiral expansion taken to order O(m? logm,)
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

case when working with data entirely within the PCR,
because all renormalization procedures would be equiva-
lent (to a prescribed level of accuracy) and so there would
be no optimal regulator parameter. It is known that this is
not the case for the data sets used in this study. This is
verified by considering the evident scale dependence of ¢,
and ¢, in Figs. 52-55. The fact that ¢, and ¢, change over
the range of A values indicates that the data are not inside
the PCR. Further, since no preferred scale is revealed, any
choice of A appears equivalent at this order. While this is
encouraging that the scheme dependence is being weak-
ened by working to higher order, it must be recognized that
there is a systematic error associated with the choice of A.
In the case of the CP-PACS results shown in Figs. 54 and
55, it can be seen that the statistical errors are substantially
smaller than the systematic error associated with a charac-
teristic range, Ajoyer < A < 00, where Aoy, i the lowest
reasonable value of A.

Since it is difficult to identify the intrinsic scale at this
chiral order, the results for chiral order @(m3) will be
chosen to demonstrate the process of handling the exis-
tence of an optimal regulator scale in lattice QCD data. The
results for the calculation of the intrinsic scales A% for
different data sets and regulators are given in Table II. This
table simply summarizes the central values from Figs. 34—
51. Such excellent agreement between the c, analysis and
the c, analysis is remarkable, and indicative of the exis-
tence of an instrinsic scale in the data. There is also
consistency among independent data sets. It is important
to realize that the value of A*° is always the order of
~1 GeV, not 10 GeV, nor 100 GeV; nor is it infinity.

In calculating the systematic uncertainty in the observ-
ables ¢, ¢, and the nucleon mass at the physical point due
to the intrinsic scale at order O(m? logm,.), two methods
are provided. First, the upper and lower bounds from the
X’ analysis at order O(m3,) will be used to constrain A,

PHYSICAL REVIEW D 82, 034010 (2010)

TABLE II. Values of the central A value in GeV, taken from
the ,\/ﬁof analysis for ¢( and ¢,, based on JLQCD, PACS-CS, and
CP-PACS data.

Regulator form

Optimal scale Dipole Double Triple
A oep 1.44 1.08 0.96
AE oep 1.40 1.05 0.94
AZ‘;‘%ZCS-CS 1.21 0.93 0.83
A Eacs-cs 1.21 0.93 0.83
A Eopacs 1.20 0.98 0.88
A¥pacs 1.19 0.97 0.87

and taken to be an accurate estimate of the systematic
uncertainty in the contributions of higher-order terms.
Second, variation of the observables across the character-
istic range of scale values, Ajgyer < A < 00 will be used,
where A}, takes the value of 0.6, 0.4, and 0.3 GeV for the
dipole, double-dipole, and triple-dipole regulator, respec-
tively. The results from both of these methods are dis-
played in Table III.

The final results for the calculation of the renormalized
constants ¢, ¢, and the nucleon mass extrapolated to the
physical point (m s = 140 MeV) are summarized in
Table IV. The lightest four data points from each of
JLQCD, PACS-CS, and CP-PACS lattice QCD data are
used. The nucleon mass is calculated at the scale deter-
mined by the data.

TABLE III.  Results at O(m? logm,,) for the systematic error
due to the intrinsic scale, calculated using two methods, for the
values of ¢, (GeV), ¢, (GeV™!), and the nucleon mass My
(GeV) extrapolated to the physical point (1, phys = 140 MeV).
The first number in each column is the systematic error due to
the intrinsic scale using the upper and lower bound from the x2
analysis at order O(m>.). The second number is the systematic
error due to the instrinsic scale across the whole range of A
values from the lowest reasonable value (A = Aj,,.;) obtained
from the pseudodata analysis, to the asymptotic value (A = c0).

Regulator form

Sys. err. Dipole Double Triple

NP 0,001, 0009 0001, 0013 0001, 0016
SACEACSCS 0,005, 0.006 0.005, 0010 0.006, 0012
SACSPPACS 0,002, 0.024 0002, 0.037 0002, 0.045
AP 002, 031 003, 038 001, 048
SACEACSCS 018, 025 016, 033 014, 043
SACSPPACS 002, 040 002, 058 002, 073

SAMYSY 00004, 0.0051 0.0003, 0.0073 0.0003, 0.0090
SAMEACSCS 00022, 0.0030 0.0025, 0.0046 0.0025, 0.0058
SAMSEPACS 10,0012, 0.0175 0.0013, 0.0270 0.0014, 0.0326
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TABLE IV. Results at O(m* logm,,) for the values of ¢, (GeV), ¢, (GeV ™), and the nucleon mass My (GeV) extrapolated to the
physical point (m, ;,c = 140 MeV). WM is the weighted mean of each row. The nucleon mass is calculated at the optimal scale Ascale,
which is the average of Af,f)ale and Aii"ﬂe for each data set. The extrapolations are performed at box sizes relevant to each data set:
Likt?:f,D = 1.9 fm, LggGy ™ = 2.9 fm, and LGS = 2.8 fm. The errors are quoted as the estimate of the statistical error first (based
on random bootstrap configurations), and the systematic error obtained from the number of m?2 values used second. Two seperate
weighted means are calculated for each row. WM(1) incorporates the systematic error in the intrinsic scale using the upper and lower
bound from the x3 ; analysis at order O(m3,). The WM(2) incorporates the systematic error due to the intrinsic scale across the whole
range of A values from the lowest reasonable value (A = Aj,.,) Obtained from the pseudodata analysis, to the asymptotic value
(A = o). The weighted means also include an estimate of the systematic error in the choice of regulator. All errors are added in

quadrature. Note that any order O(a) errors have not been incorporated into the total error analysis.

Regulator form

Parameter Dipole Double Triple WM(1) WM(Q2)
cy P 0.873(18)(16) 0.875(17)(16) 0.891(17)(16) 0.880(29) 0.879(32)
CPACS-CS 0.900(51)(15) 0.899(51)(14) 0.898(51)(14) 0.899(53) 0.899(55)
cSP-PACS 0.924(3)(8) 0.914(3)(7) 0.918(3)(7) 0.918(13) 0.920(37)
chHep 3.0909)(11) 3.18(9)(12) 3.2009)(11) 3.16(18) 3.14(43)
(PACS-CS 3.06(32)(15) 3.15(31)(14) 3.17(31)(14) 3.13(39) 3.12(49)
cSP-PACS 2.54(5)(4) 2.70(5)(2) 271(5)(3) 2.66(18) 2.61(60)
Noohys 1.02(2)(9) 1.02(2)(9) 1.02(2)(9) 1.02(9) 1.02(9)
MEACS €S 0.967(45)(43) 0.966(45)(43) 0.966(45)(43) 0.966(62) 0.966(62)
Chpacs 0.982(2)(40) 0.975(2)(43) 0.978(2)(42) 0.979(43) 0.979(50)

V. CONCLUSION

In conclusion, it has been demonstrated that chiral ef-
fective field theory is an important tool for investigating the
chiral properties of hadrons, and for extrapolating lattice
QCD results. Because the chiral expansion is only conver-
gent within a PCR, a renormalization scheme such as
finite-range regularization should be used for current lat-
tice QCD results, and into the foreseeable future.
Renormalization-scheme dependence occurs when lattice
QCD data extending outside the PCR are used in the
extrapolation. This provides a new quantitative test for
determining when lattice QCD data lie within the PCR.
As most lattice data extend beyond the PCR, a formalism
was developed to determine if there is an optimal regulari-
zation scale A% in the finite-range regulator, and to
calculate it if it exists. It was concluded that such an
optimal scale can be obtained from the data itself by
analyzing the renormalization flow curves of the low-
energy coefficients in the chiral expansion. The optimal
scale is selected by the value for which the renormalized
constants are independent of the upper bound of the fit
domain. This also means that the renormalized constants
are not to be identified with their asymptotic values at large
A.

It was revealed that a preferred regularization scheme
exists only for data sets extending outside the PCR. Such
a preferred regularization scheme is associated with an
intrinsic scale for the size of the pion dressings of the
nucleon. By working to sufficiently high chiral order, it
was discovered that the scale dependence was weakened.
Nevertheless, the residual scale dependence persists as
a significant component of the systematic uncertainty.
For efficient propagation of this uncertainty, an interest-
ing future direction would be to consider marginali-
zation over the scale dependence [29]. The described pro-
cedure was used to calculate the nucleon mass at the
physical point, the low-energy coefficients ¢, and c,
and their associated statistical and systematic errors.
Several different functional forms of regulator were con-
sidered, and lattice QCD data from JLQCD, PACS-CS, and
CP-PACS were used. An optimal cutoff scale A for
each set of lattice QCD data was obtained, and the system-
atic error in the choice of renormalization scheme was
calculated.

In summary, the existence of a well-defined intrin-
sic scale has been discovered. It has also been illus-
trated how its value can be determined from lattice QCD
results.
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Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when
used in conjunction with non-perturbative schemes such as lattice quantum chromodynamics (QCD).
In this discourse, the attention is focused on extrapolating the mass of the p meson to the physical
pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves
to demonstrate the ability of the extrapolation scheme to make predictions without prior bias.
By using extended effective field theory developed previously, an extrapolation is performed using
quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The
method involves an analysis of the renormalization flow curves of the low-energy coefficients in a
finite-range regularized effective field theory. The analysis identifies an optimal regularization scale,
which is embedded in the lattice QCD data themselves. This optimal scale is the value of the
regularization scale at which the renormalization of the low-energy coefficients is approximately
independent of the range of quark masses considered. By using recent precision, quenched lattice
results, the extrapolation is tested directly by truncating the analysis to a set of points above 380
MeV, while temporarily disregarding the simulation results closer to the chiral regime. This tests
the ability of the method to make predictions of the simulation results, without phenomenologically

motivated bias. The result is a successful extrapolation to the chiral regime.

PACS numbers:

I. INTRODUCTION

In lattice quantum chromodynamics (QCD), the cal-
culation of observables with light dynamical quarks is
computationally intensive, and only in recent times have
there been successful attempts to perform calculations of
any observable at the physical point (m, = 140 MeV) [1-
3]. Usually, some extrapolation scheme is needed if one is
to compare theoretical calculations with the correspond-
ing physical observables. Utilizing lattice QCD results
spread over a larger range of quark masses naturally en-
ables greater statistical precision in the extrapolation.

Quenched QCD (QQCD) was introduced as a way to
ameliorate the computational difficulty of simulating dy-
namical fermions on the lattice. Quenched simulations
typically have been superseded by the wide availability
of dynamical configurations. Nevertheless, it can still be
used as an efficient testing ground. This is particularly
true of the chiral extrapolation problem, where the ex-
perimentally known values may introduce a prejudice on
a chosen form. In QQCD, the physical target point does
not exist, and an extrapolation of moderate-mass points
to the chiral regime provides an unbiased test of the pro-
cedure.

In order to discuss the chiral behaviour of the p meson
in QQCD, one first constructs an effective field theory
describing the relevant low-energy degrees of freedom.
The mass of the p meson is described by a chiral ex-
pansion in the quark mass (m,), which includes analytic
terms that are polynomial in m,, and non-analytic terms
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arising from chiral loop integrals. These loop integrals
are commonly divergent, and thus it is necessary to in-
troduce a regularization procedure. Finite-range regu-
larization (FRR) is selected as a regularization scheme,
which introduces a momentum cutoff scale A into the
loop integrals. The properties of FRR allow it to be used
with data extending outside the power-counting regime
(PCR), at the expense of complete scheme-independence.
As has been demonstrated, an optimal choice of regular-
ization scale, Agcale, can be extracted from the lattice
simulation results [4]. A systematic uncertainty in Ascale
can also be estimated, which provides a range of suitable
values for the scale obtained from the data [5]. Thus the
scheme-dependence in using data extending outside the
PCR can be quantified in an unbiased fashion.

II. EXTENDED EFFECTIVE FIELD THEORY

In chiral effective field theory (YEFT), the diagram-
matic formulation can be used to identify the major
contributions to the p meson mass in QQCD [6, 7].
The leading-order diagrams are the double and single
7’ hairpin diagrams as shown in Figures 1 and 2, re-
spectively. The constant coefficients of these loop inte-
grals are endowed with an uncertainty to encompass the
possible effects of smaller contributions to order O(mz).
Interactions with the flavour-singlet ' are the most im-
portant contributions to the p meson mass in QQCD.
This is an artifact of the quenched approximation, where
the i’ also behaves as a pseudo-Goldstone boson, having
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FIG. 4. Alternative double hairpin quark flow diagram.
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FIG. 5. Single hairpin quark flow diagram.

a “mass” that is degenerate with the pion. The dressing
of the p meson by the n’ field is illustrated in Figures
3 through 5. Since the hairpin vertex must be a flavor-
singlet, the mesons that can contribute are the ' meson,
and the w meson. The contributions from the w meson
are insignificant due to OZI suppression and the small
p-w mass splitting. However, in QQCD, the 1’ loop be-
haves much as a pion loop, yet with a slightly modified
propagator.

In full QCD however, the i’ does not play any role
in the low-energy dynamics. The physical 1’ acquires a
finite mass — which survives in the chiral limit — by
resumming the chain of vacuum insertions as depicted in
Figure 6. As a “heavy” degree of freedom, the ' can

—
+—OC=
00O C=
= OOC=

FIG. 6. Diagrammatic representation of n’ propagator terms.

then be integrated out of the of the effective field theory.

A. Loop integrals and definitions

Using the Gell-Mann—QOakes—Renner Relation con-
necting quark and pion masses, m, o< m2 [8], the p meson
mass extrapolation formula in QQCD can be expressed
in a form that contains an analytic polynomial in m?2
plus the chiral loop integrals (3%):

2 2 4
m, o = Qo + aogmi + agm

Q 2 Q)2 5
+ X0 (ma, A) + X5 (mz, A) + O(mz). (1)

The coefficients a; are the ‘residual series’ coefficients,
which correspond to direct quark-mass insertions in
the underlying Lagrangian of chiral perturbation theory.
However, the non-analytic behaviour of the expansion
arises from the chiral loop integrals. Upon renormaliza-
tion of the divergent loop integrals, these will correspond
with low-energy constants of the quenched YEFT. The
extraction of these parameters from lattice QCD results
will now be demonstrated.

By convention, the non-analytic terms from the dou-
ble and single hairpin integrals are y;m, and yzm3, re-
spectively. The coeflicients x; and y3 of the leading-
order non-analytic terms are scheme-independent con-
stants that can be estimated from phenomenology. The
low-order expansion of the loop contributions takes the
following form:

Zg,n, = bg,”l + X1 My + b;’/"/mfr + Xg/"lmfr + bfl’l"/mjlT
+0(m?), (2)
£ = b+ 0 md w6 mk + O(mS),  (3)

The coefficient x3 is obtained by adding the contribu-

tions from both integrals, y3 = Xg/"' + x4 . Each integral
has a solution in the form of a polynomial expansion ana-
lytic in m2 plus non-analytic terms, of which the leading-
order term is of greatest interest. The coefficients b; are
scale-dependent and therefore scheme-dependent. In or-
der to achieve an extrapolation based on an optimal FRR
scale, first the scale-dependence of the low-energy ex-
pansion must be removed through renormalization. The



renormalization program of FRR combines the scheme-
dependent b; coefficients from the chiral loops with the
scheme-dependent a; coefficients from the residual series
at each chiral order i. The result is a scheme-independent
coefficient ¢;:

Co = Qg —+ bg,n, + bgl, (4)
cy=as+b]" b7 (5)
c4 = ag+ bzln/ + bZ/, ete. (6)

That is, the underlying a; coefficients undergo a renor-
malization from the chiral loop integrals. The renormal-
ized coefficients ¢; are an important part of the extrap-
olation technique. A stable and robust determination of
these parameters forms the core of determining an opti-
mal scale Ascale,

The loop integrals can be expressed in a convenient
form by taking the non-relativistic limit and performing
the pole integration for kg. Renormalization is achieved
by subtracting the relevant terms in the Taylor expan-
sion of the loop integrals and absorbing them into the
corresponding low-energy coefficients, ¢;:

X,n/n/ /dBk(Mng + %AOkA)uQ(k',A)

Q@ 2, _
En/n’ (mﬁ’ A) -

s (k2 +m2)*
— 50" = by m2 — by my, (7)
2,,2
Q2. Ay X/ 3, k*u® (ks A) ! ' 9
En/(mﬂ.,A)— 271_2 /d km_bg _bg mﬂ.
— b mi. (8)

The tilde (7) denotes that the integrals are written out
in renormalized form to chiral order O(m2). The coeffi-
cients x,n and X, are related to the coefficients of the
leading-order non-analytic terms by:

X1 = M02 Xnm' 9)
X3 =X3" +x45 = Ao xnm + X (10)

These couplings are discussed in detail below. The func-
tion wu(k; A) is a finite-range regulator with cutoff scale
A, which must be normalized to 1 at k% = 0, and must
approach 0 sufficiently fast to ensure convergence of the
loop. Different functional forms of u(k; A) are equivalent
within the PCR [9, 10]. Different choices of u(k; A) for
this investigation are discussed in Sec. I1B.

With the loop integrals specified, Eq. (1) can be rewrit-
ten in terms of the renormalized coefficients ¢;:

min = co + com? + cam? + f]g,n/(mfr; A)

+ 5% (m2;A) + O(m?) (11)
X co + X1Mx + ComZ + x3mi + camiy
+0O(m?2). (12)

Eq. (11) will be used as the extrapolation formula for
m, g at infinite lattice volume. The fit coefficients are

co, c2 and ¢4, and m,, g is obtained by taking the square
root of Egs.(11). It is important to note that the formula
in Eq. (12) holds only in the chiral regime. At larger pion
masses, the higher order terms encoded in the integrals
of Eq. (11) cannot be neglected. Therefore, beyond the
PCR, the formula in Eq. (12) is not equivalent to that of
Eq. (11), and is included only to indicate the ordering of
the terms in the chiral expansion.

Since lattice simulations are necessarily carried out
on a discrete spacetime, any extrapolations performed
should take into account finite-volume effects. The low-
energy effective field theory is ideally suited for charac-
terising the leading infrared effects associated with the
finite volume. In order to achieve this, each of the three-
dimensional integrals can be transformed to its form on
the lattice using a finite sum of discretized momenta, fol-
lowing Armour et al. [7], for instance:

/d3k L e S (13)
LoL,L.
‘ ko ky,kz

Each momentum component is quantized in units of
27/ L, that is k; = n;27 /L for integers n;. Finite-volume
corrections 6"V€ can be written simply as the difference
between the finite sum and the corresponding integral.
It is known that the finite-volume corrections saturate to
a fixed result for large values of the regularization scale
[4]. Following the example set by this article, the value
A =2.0 GeV is chosen to evaluate all finite-volume cor-
rections independent of the FRR cutoff scale A in Eqgs.(7)
and (8). The finite-volume version of Eq. (11) can thus
be expressed:

m;Q),Q = co + com?Z + eymi + (i?ﬂn/(mi; A)
b (mz: A1) + (57 (25 A) + 6,V (m2; A))
+0(m2). (14)

The convention used for defining the values of x1, x3,
and the various coupling constants that occur in each,
follows Booth [11]. For the possible different values that
coupling constants can take, definitions by Chow & Rey
[6], Armour et al. [7] and Sharpe [12] are used. The
types of vertices available are shown in Figure 7, where
g2 and g4 occur explicitly in the two diagrams considered
here. Booth suggests naturalness for go ~ 1, and that
g4 ~ 1/N.. These quenched coupling constants can be
connected with the experimental value of g.,» as per
Lublinsky [13] by the relation:

1

g2 = ngpwfm (15)

where g, = 142 GeV~! and the pion decay constant
takes the value f; = 0.0924 GeV. Thus g5 is chosen to
be 0.65+0.09 GeV and g4 is chosen to be approximately
92/3. The coupling between the separate legs of the dou-
ble hairpin diagram are approximated by the massive

constant M@ m%,. The next-order correction to M



FIG. 7. Coupling types following convention introduced by Booth
[11].

in momentum & defines the coupling to be —Mg + Agk?.
These constants can be connected to the full QCD n’
meson mass m,y by considering the geometric series of
terms as previously illustrated in Figure 6. As a result,
Mg is taken to be 0.6 + 0.2 GeV? and A is taken to be
0+0.2.

The coefficients x4 and X, can be specified in terms
of the relevant coupling constants:

o g3
X = —2Mm, 47_‘_77%,
o g204
Xﬂ/ = -2 mp 67Tf7%’ (16)

where the couplings are defined relative to ﬁlp represent-
ing the p meson mass in the chiral limit, which is taken
to be 770 MeV.

B. Finite-range regularization

In FRR, regulator functions u(k; A) with characteristic
scale A are inserted into the loop integrals to control the
ultraviolet divergences that occur in the loop integrals en-
countered. For some choices of regulator, extra regulator-
dependent non-analytic terms arise in the chiral expan-
sion of Eq. (12). Since the correct non-analytic terms of
the chiral expansion are regularization scale-independent
terms, the extra non-analytic terms within working chi-
ral order must be removed. All scale-dependence should
be absorbed into the analytic fit parameters a;. For ex-
ample, if a dipole regulator is chosen, the extra terms
bVm3, (b + b¥)ym? and higher-order terms occur-
ring at odd powers of m, feature in Eq. (12). One can
avoid this by choosing a regulator that does not gener-
ate these extra terms, up to working-order O(m2). Since
the step function u?(k; A) = 6(A — k) introduces inconve-
nient finite-volume artifacts, a ‘triple-dipole’ form factor
will be chosen, defined by:

1213 -2
u(k; A) = <1+ [A,J ) . (17)

III. LATTICE SIMULATION DETAILS

The calculation is performed on a 202 x 32 lattice
with 197 gauge configurations generated with the Iwasaki
gauge action [14] at § = 2.264, and the quark propagators
are calculated with overlap fermions and a wall-source
technique. The lattice spacing is 0.153 fm, as determined
from the Sommer scale parameter.

The massive overlap Dirac operator is defined [15] in
the following way so that at tree-level there is no mass
or wavefunction renormalization [16]:

D(m) = p+ 5 + (p = 3 )yse(H), (18)

where €(H) is the matrix sign function of an Hermitian
operator H. ¢(H) = Hw /|Hw| = HW/(H;EVHW)I/z is
chosen, where Hy (x,y) = v5Dw (z,y). Here Dy is the
usual Wilson-Dirac operator on the lattice, except with
a negative mass parameter —p = 1/2x — 4 in which . <
K < 0.25. Taking x = 0.19 in the calculation corresponds
to p = 1.368 [17, 18].

In Figure 8 the simulation results for the vector meson
mass are shown for a range of quark masses.

The data displayed in Figure 8 are split into two parts.
All the data left of the solid vertical line is unused for ex-
trapolation and kept in reserve. Indeed, the authors per-
forming the extrapolation were blind to these data. This
is so that the extrapolation can be checked against these
known data points once the extrapolation is established.
In other words, the results of the chiral extrapolation are
genuine predictions of the hidden lattice results. Only
the data points to the right of the solid vertical line are
used for extrapolation. The full set of data is also listed
in Table 1.

To estimate finite-volume effects using overlap
fermions, quenched lattices of volumes 163 x 28 and
123 x 28 with ¢ = 0.2 fm are used. For a pion mass
of 180 MeV, mpgL =~ 3, and the finite-volume correction
is approximately 2.7 MeV: about 1.5% of the pion mass
[17]. The current 20% x 32 lattice with a = 0.153 fm is
about the same physical size as that of a 163 x 28 lattice
and a similar finite-volume correction is expected. To es-
timate the finite-volume correction of the lowest p meson
mass at m, ~ 200 MeV, the same percentage of error
is used, and a shift of ym, =~ 13 MeV to the p mass
is calculated for the p meson mass of m, ~ 917 MeV.
This is about half of the statistical error of the lattice
data. It should be noted that the data that will be used
in chiral extrapolations are those with pion mass greater
than 400 MeV, with mpgL > 6.2. The predictions are
extended to the region with pion mass less than 400 MeV
and compared with the lattice data.

The enhancement of zero modes effects in QQCD pri-
marily affects the pseodoscalar and scalar mesons. Since
all the zero modes appear in one chiral sector in each
gauge configuration, the pseodoscalar and scalar mesons
will have a leading 1/m? singularity from the zero modes.



TABLE I. Quenched lattice QCD data for the p meson mass m,, at
various pion mass squared values mfr The lattice size is 203 x 32,
with a lattice spacing of 0.153 fm. Entries below the line (under-
neath m2 = 0.143 GeV?) remained hidden until the extrapolation
was determined.

m2(GeV?) m,(GeV) mxL

1.329 1.399(2) 17.88
1.212 1.354(2) 17.08
1.062 1.294(2) 15.98
0.867 1.214(3) 14.44
0.743 1.162(4) 13.37
0.676 1.133(4) 12.75
0.610 1.103(5) 12.12
0.515 1.060(5) 11.13
0.422 1.016(6) 10.07
0.347 0.985(7) 9.13
0.288 0.960(8) 8.32
0.241 0.938(8) 7.62
0.204 0.926(9) 7.00
0.172 0.914(11) 6.43
0.143 0.908(14) 5.87
0.114 0.899(15) 5.24
0.094 0.899(16) 4.75
0.080 0.896(18) 4.38
0.068 0.898(20) 4.04
0.059 0.902(22) 3.77
0.053 0.903(26) 3.58
0.047 0.907(28) 3.37
0.041 0.913(32) 3.15

These appear in both the quark and antiquark propaga-
tors in the meson correlator [16]. Nevertheless, the vec-
tor and axial vector mesons have only a 1/m sigularity,
which is a less dramatic effect. In either case, the quan-
tity that determines the size of the zero mode effects is
mXV in the p-regime [19]. It has been demonstrated that
when mXV 2 5, the zero mode effect is hardly detectable
[17, 20]. For the present lattice with pion mass greater
than 400 MeV, mXV > 6. Therefore, there is no reason
to suggest that there is a zero mode contribution to the
p meson correlators being studied.

IV. EXTRAPOLATION RESULTS
A. Renormalization flow curves

In order to produce an extrapolation to each test value
of m2, a finite-range regularization scale A must be se-
lected. As an example, one can choose a triple-dipole
regulator at A = 1.0 GeV. By using Eq.(14), finite-
and infinite-volume extrapolations are shown in Figure

9. Note that the m2 values selected for the finite-volume
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FIG. 8. (color online). Quenched lattice QCD data for the p
meson mass. The dashed vertical line indicates the physical pion
mass and the solid vertical line shows how the data set is split into
two parts. The lower-mass portion of the data was not known at
the time of extrapolation.
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FIG. 9. (color online). A test extrapolation based on the four light-
est original data points (excluding the low-energy set) as shown.
Both the finite- and infinite-volume results are shown for a triple-
dipole regulator at A = 1.0 GeV. The dashed vertical line indicates
the physical pion mass.

extrapolations exactly correspond to the ‘missing’ low-
energy data points set aside earlier. The physical point
m2 = 0.0196 GeV? is included as well.

Now the regularization scale-dependence of low-energy
coeflicients cg, ¢y and ¢4 is investigated for various upper
limits of the range of pion masses. The renormalization of
these low-energy coefficients is considered for a series of A
values. The aim is to obtain renormalization flow curves,
each corresponding to a different value of maximum pion
mass, 2 .. Thus the behaviour of the renormalization
of the low-energy coeflicients can be examined as lattice
data extend further outside the PCR. Figures 10 through
12 show the renormalization flow curves for each of ¢y,
co and ¢4. Note that each data point plotted has an
associated error bar, but for the sake of clarity only a
few points are selected to indicate the general size of the
statistical error bars. Using the procedure described in
Ref. [4], the optimal regularization scale is identified by
the value of A that minimizes the discrepancies among
the renormalization flow curves. This indicates the value
of regularization scale at which the renormalization of
co, ¢ and ¢y is least sensitive to the truncation of the
data. Physically, this value of A can be associated with
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.88 GeV?
.74 GeV?

720 1 1 1 1 1

0.0 0.4 0.8 1.2 1.6 2.0 2.4

FIG. 12. (color online). Behaviour of ¢4 vs. A. A few points are
selected to indicate the general size of the statistical error bars.

an intrinsic scale related to the size of the source of the

pion cloud.
By examining Figures 10 through 12, increasing
M2 max leads to greater scheme-dependence in the renor-

malization, since the data sample lies further from the
PCR. Complete scheme-independence would be indicated
by a horizontal line at the physical point. Since the ef-
fective field theory is calculated to a finite chiral order,
complete scheme-independence across all possible values
of A will not occur in practice. Note that an asymptotic
value is usually observed in the renormalization flow as A
becomes large, indicating that the higher-order terms of

the chiral expansion are effectively zero. However, these
asymptotic values of the low-energy coeflicients are poor
estimates of their correct values, as previously demon-
strated in a pseudodata model [4]. Instead, the best
estimates of the low-energy coefficients lie in the iden-
tification of the intersection point of the renormalization
flow of the low-energy coeflicients. It is also of note that,
for small values of A, FRR schemes break down. The reg-
ularization scale must be at least large enough to include
the chiral physics being studied.

B. Optimal regularization scale

The optimal regularization scale A*®!® can be obtained
from the renormalization flow curves using a chi-square
analysis described below. In addition, the analysis will
allow the extraction of a range for A%, Knowing how
the data are correlated, the systematic uncertainties from
the coupling constants and AS°®!® will be combined to ob-
tain an error bar for each extrapolation point. Of partic-
ular interest are the values of m, ¢ at the values of m2
explored in the lattice simulations but excluded in the
chiral extrapolation.

To obtain a measure of the uncertainty associated with
an optimal regularization scale, a X(ziof function is con-
structed. This function should allow easy identification of
the intersection points in the renormalization flow curves,
and a range associated with this central regularization
scale. The first step is to plot X?iof against a series of A
values. The relevant data are the extracted low-energy
coefficients with differing values of m2 ... A plot of

Xzof is constructed separately for each renormalized co-
efficient ¢ (with uncertainty dc):

n 2

PSR B N 27 S VS
o . 2 )

n—1&& (dc(i; A))
for i corresponding to fits with differing values of mfumax

(n = 8). The theoretical value ¢ is given by the weighted
mean:

() - Shr el )/ (5eli s )*

20
o1 1/ (8e( s A)° .
The X2, P plots using a triple-dipole regulator are shown
in Figures 13 through 15. The optimal regularization
scale A ig taken to be the central value Aeptral Of
each plot. The upper and lower bounds obey the condi-
tion xflof < Xzof,min +1/(dof). The results for the opti-
mal regularization scale and the upper and lower bounds
are shown in Table II. It is remarkable that each low-
energy coefficient leads to the same optimal value of A,
i.e. Acentral = 0.67 GeV. By averaging the results among
co, C2, and ¢4, the optimal regularization scale Agcale for
the quenched p meson mass can be calculated for this
data set: Ageale = O.67f8:8§ GeV.
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The result of the final extrapolation, using the estimate
of the optimal regularization scale Agcale = 0.671“8:82
GeV, and using the initial data set to predict the low-
energy data points, is shown in Figure 16. The extrap-
olation to the physical point obtained for this quenched

ext

data set is: mS%(m2 ;) = 0.925100%% GeV, an uncer-

tainty of less than 6%.

Note that each extrapolation point displays two error
bars. The inner error bar corresponds to the systematic
uncertainty in the parameters only, and the outer error
bar corresponds to the systematic and statistical uncer-
tainties of each point added in quadrature. Also, the
infinite-volume extrapolation curve is displayed in order
to illustrate the effect of finite-volume corrections to the

TABLE II. Values of the central, upper and lower regularization
scales, in GeV, obtained from the X?iof analysis of cp, c2 and cy4,
displayed in Figures 13 through 15.

scale (GeV) c¢o (Fig.13)  c2 (Fig.14) ¢4 (Fig.15)
Acentral 0.67 0.67 0.67
Aupper 0.78 0.75 0.75
Atower 0.58 0.59 0.60

loop integrals.

In Figure 17, the extrapolation predictions are com-
pared against the actual simulation results, which were
not included in the fit. Note that both the extrapolations
and the simulation results display the same non-analytic
curvature near the physical point. Figure 18 shows the
data plotted with error bars correlated relative to the
lightest data point in the original set, m2 = 0.143 GeV?.
To highlight the importance of this application of an ex-
tended YEFT, a simple linear fit is included in Figure
18. By ignoring low-energy chiral physics, the linear fit
is statistically incorrect at the physical point. Note also
that all of the missing original data points are consis-
tent within the extrapolations’ systematic uncertainties.
After statistical correlations are subtracted, the extrap-
olated points correspond to an error bar almost half the
size of that of the lattice data points. In order to match
this precision at low energies, the time required in lattice
simulations would increase by approximately four times.

In order to check if scheme-independence is recovered
using data within the PCR, the low-energy data that
were initially excluded from analysis can now be treated
in the same way. That is, renormalization flow curves can
be constructed as a function of A for sequentially increas-
ing m2 ... The results are shown in Figures 19 through
21. Clearly, the renormalization flow curves for each plot
corresponding to ¢y, co and ¢4 are flatter than those of
the initial analysis, indicating a reduction in the regular-
ization scale-dependence due to the use of data closer to
the PCR. One is not able to extract an optimal regular-
ization scale from these plots, as shown in the behaviour

of Xflof, displayed in Figures 22 through 24. However,
each Xio ¢ curve provides a lower bound for the regular-
ization scale, where FRR breaks down [4], as discussed
in Section IV A. These lower bounds are: A%, = 0.39
GeV, A2 . =0.52 GeV and A2 = 0.59 GeV.

The statistical error bars of the low-energy coefficients
corresponding to a small number of data points in Fig-
ures 19 through 21 is large, and a statistical difference
among the curves does not appear until mfr’max ~ 0.11
GeV2. Thus the identification of an optimal regulariza-
tion scale will be aided by incorporating data correspond-
ing to even larger values of miymax. By considering all
of the available data, the behaviour of X2 7+ as displayed
in Figures 25 through 27, resolve precise optimal regular-

ization scales: A2 . = 0.72 GeV, A2 0.71 GeV

central —
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FIG. 17. (color online). Comparison of chiral extrapolation predic-
tions (blue diamond) with Kentucky Group data (red cross). Ex-

trapolation is performed at Agcale = 0.67J_r8'_8§ GeV, and using the

= 0.35
GeV?2. The inner error bar on the extrapolation points represents
purely the systematic error from parameters. The outer error bar
represents the systematic and statistical error estimates added in

optimal number of data points, corresponding to mi,max

quadrature.
1.000 T T T T T T T
0975 |- i .
__ 0950 % :
> A
o 01
C 0925 - s 4
: g
g g
0.900 { [ f .
: St . x original data
0.875 - it + fin.vol. extrap
i --- naive linear fit
0.850 — I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

m * (GeV?)
FIG. 18. (color online). Comparison of chiral extrapolation predic-
tions (blue diamond) with Kentucky Group data (red cross), with
errors correlated relative to the point at m2 = 0.143 GeV?2. Ex-

trapolation is performed at Agcale = 0.67f8:§g GeV, and using the
optimal number of data points, corresponding to Th?r’max = 0.35

GeV?2. The error bar on the extrapolation points represents the sys-
tematic error only. A simple linear fit, on the optimal pion mass
region, is included for comparison.

1.6 T T T

1.5 I i

14 |

o 1.3

1.2

mmexp
mmaxp

11

EEEEEEEY]
L
I

mmex

- ONR—E®Ie
Q
@
)

1.0

0.0 0.4 0.8 1.2 1.6 2.0 2.4
A (GeV)
FIG. 19. (color online). Behaviour of ¢g vs. A including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

20 ¥ T T T
L —m__ %= 006 GeV? -
18 ?: — —mp = 0.07 GeV?
—- m = 0.08 GeV
16 % — - m™™ = 009 GeV* q
\ﬁ -o- mpTtt = 0.11 GeV?
. - m = 0.14 GeV .
14 i m"™2 = 017 GeV?
12 L v - m72 = 0,20 GeV?
o'10
8
6
4
2
0 ! ! !

0.0 04 0.8 1.2 1.6 2.0 2.4
A (GeV)
FIG. 20. (color online). Behaviour of ¢ vs. A including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

50 T T T T
40
30
20
10 -
o‘r 0r
-10 %
EI — m"M: = 0.06 GEV:
—20 =7 mrm 2 605 Gove 7
-30 I T Ty 2 037 Geve 1
f EEmoenew
_ L e = 0.17 Ge) 4
40 {,/E 2::‘“2 = 0.20 GeV?
~50 ik 1 1 1
0.0 0.4 0.8 1.2 1.6 2.0 2.4
A (GeV)

FIG. 21. (color online). Behaviour of ¢4 vs. A including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

and A2 =0.71 GeV. The systematic errors obtained
from each x7,, curve seem arbitrarily constrained as a
consequence of including more data points, which extend
well outside the chiral regime, and possibly outside the
applicable region of FRR techniques. This issue is ad-

dressed in the ensuing section.
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2.4

C. Optimal pion mass region

In this section, a robust method for determining an
optimal range of pion masses is presented. This range
corresponds to an optimal number of simulation results
to be used for fitting. First, consider the extrapolation
of the quenched p meson mass, which can now be com-
pleted. The statistical uncertainties in the values of ¢y,
ca, ¢4 are dependent on mfmmax. As a consequence, the

uncertainty in the extrapolated p meson mass mZXt must
also be dependent on m?2 Since the estimate of the
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FIG. 27. (color online). X?lof’ for ¢4 versus A, corresponding to

all available data, including the low-energy set.

2.4

statistical uncertainty in an extrapolated point will tend
to decrease as more data are included in the fit, one might
naively choose to use the largest miymax value possible
in the data set. However, at some large value of mi’max,
FRR xEFT will not provide a valid model for obtaining
a suitable fit. At this upper bound of applicability for
FRR xEFT, the uncertainty in an extrapolated point is
dominated by the systematic error in the underlying pa-
rameters. This is due to a greater scheme-dependence
in extrapolations using data extending outside the PCR,
meaning that the extrapolations are more sensitive to
changes in the parameters of the loop integrals. Thus
there is a balance point mZ2 .. = m2 .., where the sta-
tistical and systematic uncertainties (added in quadra-



ture) in an extrapolation are minimized.

In order to obtain this value m;max, consider the be-
haviour of the extrapolation of the p meson mass to the
physical point mS¢ (m2 ;. ), as a function of m2 ...
Treating the parameters gs, gs, M2, Ag and Al as
independent, their systematic uncertainties from these
sources are added in quadrature. In addition, the sys-
tematic uncertainty due to the choice of the regulator
functional form is roughly estimated by comparing the
results using the double-dipole and the step function.
These functional forms are the two most different forms
of the various regulators considered, since the dipole was
excluded due to the extra non-analytic contributions it
introduces. The results for the initial and complete data
sets are shown in Figures 28 and 29, respectively. Fig-
ure 28 indicates an optimal value mi’max = 0.35 GeV?,
which will be used in the final extrapolations, in order
to check the results of this method with the low-energy
data. By using only the data contained in the optimal
pion mass region, constrained by mi’max, an estimate of
the optimal regularization scale may be calculated with
a more generous corresponding systematic uncertainty.

The value A%?® = (.64 GeV is the average of Acale

Co

Aigale and Aiﬁale using this method. The X(Qiof analysis
does not provide an upper or lower bound at this value
of mfmmm Note that these two estimates of the optimal
regularization scale are consistent with each other. Both
shall be used and compared in the final analysis. Figure
29 indicates an optimal value 72 .. = 0.20 GeV? for the
complete data set, which includes the low-energy data. A
higher density of data in the low-energy region serves to
decrease the statistical error estimate of extrapolations to
the low-energy region. The corresponding value of AS°21¢
is unconstrained in this case, since the data lie close to
the PCR.

The values of ¢y, co and ¢4 for both the original data
set and the complete data set are shown in Table III,
with statistical error estimate quoted first and system-
atic uncertainty due to the parameters go, g4, Mg, Ao,
A€ and the regulator functional form quoted second.
In the case of the original data set, the value of ¢4 is not
well-determined, due to the small number of data points
used. In the case of the complete data set, the results
are dominated by statistical uncertainty and also results
in an almost unconstrained value of ¢4. The coefficients
of the complete set are less well-determined due to the
fact that Thiymax = 0.20 GeV?2, leaving only low-energy
results with large statistical uncertainties for fitting.

The result using the estimate of the optimal regular-
ization scale Al = (.64 GeV, with the systematic un-
certainty calculated by varying A across all suitable val-
ues, and using the initial data set, is shown in Figure 30.
The extrapolation to the physical point obtained for this
quenched data set is: mS(m2 ;) = 0.922F7080 GeV,
an uncertainty of approximately 7%. Figure 31 shows
the data plotted with error bars correlated relative to
the lightest data point in the original set, m2 = 0.143
GeV?, using Agcale = 0.64 GeV, and varying A across its
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mg‘.’max using the initial data set, which excludes the lowest mass
data points. In each case, cq is obtained using the scale Aceptrar (for
a triple-dipole regulator) as obtained from the Xgof analysis. The
error bars include the statistical and systematic uncertainties in cg
added in quadrature. The optimal value fnfr’max =0.35 GeV?2.
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; ; ()2
quenched p meson mass to the physical point mg<¢ (mmphys) vSs.
m%max using the complete data set, which includes the lowest mass
data points. In each case, cg is obtained using the scale Acentral (for
a triple-dipole regulator) as obtained from the X?lof analysis. The
error bars include the statistical and systematic uncertainties in cg
added in quadrature. The optimal value fn?rymax =0.20 GeV2.

full range of values. This naturally increases the estimate
of the systematic uncertainty of the extrapolations, but
also serves to demonstrate how closely the results from
lattice QCD and yEFT match.

V. CONCLUSION

A technique for isolating an optimal regularization
scale, established in Ref. [4], was tested in quenched
QCD through an examination of the quenched p meson
mass. The result is a successful extrapolation based on
an extended effective field theory procedure. By using
quenched lattice QCD results that extended beyond the
power-counting regime, an optimal regularization scale
was obtained from the renormalization flow of the low-
energy coefficients.

An optimal value of the maximum pion mass to be
used for fitting was also calculated, and this resulted in



TABLE III. The values of cg, ca and c4 as obtained from both
the original data set and the complete set, which includes the low-
energy data. In each case, the coefficients are evaluated using the
scale Acentral (for a triple-dipole regulator) as obtained from the
X2, ¢ analysis. The value of m?r,max used is that which yields the
smallest error bar in adding statistical and systematic uncertain-
ties in quadrature. For the initial data set, ™2 . = 0.35 GeV2.
For the complete data set, mi,max = 0.20 GeV2. The statistical
uncertainty is quoted in the first pair of parentheses, and the sys-
tematic uncertainty is quoted in the second pair of parentheses.
For the original data set, c4 is not well-determined, with only a
small number of data. For the complete data set, large statistical
uncertainties result in an almost unconstrained value of c4. The
coefficients of the complete set are less well-determined due to the
fact that rh?r’max = 0.20 GeV?2, leaving only low-energy results
with large statistical uncertainties for fitting.

C()(GGVQ) C2
131(5)(17)  7.9(4)(
complete set 1.35(4)(241)  6.8(5)(

C4(GeV_2)
26) —16.2(8)(382)
31) —3.3(17)(361)

original set

an alternative estimate of the value of the optimal regu-
larization scale, which was consistent with the first result.
The mass of the p meson was calculated in the low-energy
region, including the physical point, using each estimate
of the optimal regularization scale, and both results were
compared. The results of extrapolations using yEFT,
and the results of lattice QCD simulations, were demon-
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strated to be consistent. The extrapolation correctly pre-
dicts the low-energy curvature that was observed when
the low-energy lattice simulation results were revealed.

In full QCD, using dynamical fermions, the process
p — mm contributes to the p meson mass. This means
that the pion energy increases as the chiral limit is ap-
proached, and therefore is not amenable to the methods
of low-energy expansions, as entailed by xPT. Therefore,
one needs to resort to alternative techniques, such as
FRR.

However, since there exists no experimental value for
the mass of a particle in the quenched approximation,
this analysis demonstrates the ability of the technique to
make predictions without phenomenologically motivated
bias. The results clearly indicate a successful procedure
for using lattice QCD data outside the power-counting
regime to extrapolate an observable to the chiral regime.
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FIG. 30. (color online). Comparison of chiral extrapolation pre-
dictions (blue diamond) with Kentucky Group data (red cross).
Extrapolation is performed at Agcale = 0.64 GeV, varied across
the whole range of A values, and using the optimal number of data
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on the extrapolation points represents purely the systematic error
from parameters. The outer error bar represents the systematic
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Chiral extrapolations for nucleon magnetic moments

J.M.M. Hall, D.B. Leinweber, and R.D. Young
Special Research Centre for the Subatomic Structure of Matter (CSSM),
Department of Physics, University of Adelaide 5005, Australia

Chiral effective field theory is a model-independent approach to connecting lattice quantum chro-
modynamics (QCD) results with experiment. Within the power-counting regime (PCR) of the chiral
expansion, the result of a chiral effective field theory calculation is independent of the regularization
scheme. However, since few lattice QCD results in the literature are constrained entirely within the
PCR, it is useful to extend effective field theory in a model-independent way to take full advantage
of the lattice QCD results available. By considering the magnetic moment of the isovector nucleon
using a finite-range regularization scheme and using lattice QCD results that may extend outside
the PCR, any emerging scheme-dependence can be quantified and handled by the identification of
an intrinsic scale. By analyzing the renormalization flow of the low-energy coefficients, the intrinsic
scale can be obtained from the lattice QCD results themselves, which provide guidance on the selec-
tion of an optimal regularization scale. This optimal scale, for a given functional form, is consistent
with the result from the nucleon mass, and thus provides evidence for the existence of an intrinsic

scale in the nucleon.

PACS numbers: 12.39.Fe 12.38.Aw 12.38.Gc 13.40.Em

I. INTRODUCTION

The analysis of the magnetic moment of the nucleon
provides an excellent check for the identification of an in-
trinsic scale in the nucleon-pion interaction. Using chiral
effective field theory (YEFT), it has been demonstrated
that lattice quantum chromodynamics (QCD) results for
the nucleon mass have an energy scale embedded within
them [1]. This property is a consequence of the small
size of the power-counting regime (PCR), where the ex-
pansion formulae of chiral perturbation theory (xPT)
formally hold. Since a selection of lattice QCD results
reasonable for fitting an extrapolation invariably extend
outside the restrictive PCR [2], the validity of a formal
scheme for extrapolation, and for identifying the leading-
order terms in the chiral expansion, is compromised.
Fortunately, a finite-range regularization (FRR) scheme,
in conjunction with yEFT, provides a robust method
for achieving an extrapolation to physical quark masses,
and identifying an intrinsic scale embedded within lattice
QCD results.

This extended effective field theory proceeds by analyz-
ing the behaviour of the renormalization of one or more
low-energy coefficients of the chiral expansion as a func-
tion of the FRR scale. Ideally, that is, with lattice QCD
results constrained entirely within the PCR, the renor-
malized coefficients should be independent of regulariza-
tion scale. However, in practice, a scale-dependence is
observed; particularly for data sets including data points
corresponding to large quark masses. By truncating the
lattice QCD results at different points corresponding to
an mfr’max, an optimal FRR scale can be identified. This
optimal scale is the value of A at which the low-energy
coefficient is least senstive to the truncation of the lat-
tice results. Due to consistent results among the analysis
of the magnetic moment and the various analyses of the
nucleon mass using the same technique [1], this provides

evidence for an intrinsic scale in the nucleon.

The magnetic moment is of interest because of the
physical significance of its anomalous component, ob-
tained from the Pauli form factor. Because electrically
charged pions with non-zero angular momentum dress
the bare nucleon, they contribute non-trivially to its mag-
netic moment, altering the value from its semi-classical
Dirac value.

In lattice QCD, the isovector combination of the nu-
cleon (p — n) is often calculated. Feynman diagrams in-
cluding any photons coupling to sea-quark loops cancel
in the case of the isovector. This is fortunate, since the
calculation of the disconnected loops is computationally
expensive. As a result, the lattice QCD data analyzed
from the QCDSF Collaboration will be isovector nucleon
data for two-flavor O(a)-improved Wilson quark action.

II. CHIRAL EFFECTIVE FIELD THEORY

In an effective field theory of the electromagnetic prop-
erties of baryons such as the nucleon, the matrix element
for the baryon-photon interaction can be parameterized
by the Dirac and Pauli form factors, F; and Fy, respec-
tively. In the non-relativistic limit, this can be written
as:

(B(p")17,.B(p)) =
o0 {ri@)+ 2L m@ fee). )
B
Q? is a positive momentum transfer Q% = —(p’—p)?. The

Sachs electromagnetic form factors Gg ps are the linear
combinations of F; and F; defined by:

Q2
Go(@)=F(Q") - 17 R(@Q), ()
B
Gu(Q%) = F1(Q*) + F>(Q%). 3)



By considering the behavior of the Sachs magnetic
form factor of the nucleon at zero momentum transfer,
Gu(Q? = 0), one obtains the magnetic moment as two
separate pieces: an anomalous component due to the
finite-size of hadron interactions, and unity due to charge
conservation:

Hn = G}}W (Q2 = O) (4)
=14 kp. (5)

For the leading-order contributions to the magnetic
moment, the standard first-order interaction Lagrangian
from heavy-baryon chiral perturbation theory is used [3—
8]:

L) = 2D Tr [BoSH{ AL, By} + 2F Te[B,SE[A,, By])
+C(TV'AuBy + ByATY), (6)

(S8 = 5350""0,), (7)

where the pion fields are encoded as the adjoint represen-
tation of SU(3)r ® SU(3)g, and forming an axial vector
combination A,:

£ =exp {;WT“WQ} , (8)

Au= (€060 —€10,6). )

By the convention presented here, fr = 92.4 MeV. The
values for the couplings in the interaction Lagrangian
are obtained from the SU(6) flavor-symmetry relations
[5, 9] and from phenomenology: D = 0.76, F = 2D and
C=-2D.

From the full Lagrangian, the chiral behaviour of the
magnetic moment can be written in terms of an ordered
expansion in pion mass squared, through use of the Gell-
Mann—OQOakes—Renner Relation, m, oc m2 [10]:

2oA) + Ta(m2;A) +O(md).

(10)
This expansion contains an analytic polynomial in m2
plus the leading-order chiral loop integrals (7,), from
which non-analytic behaviour arises. The coefficients a;
are the ‘residual series’ coefficients, which correspond to
direct quark-mass insertions in the full Lagrangian. Upon
renormalization of the divergent loop integrals, these will
correspond with low-energy coefficients of yEFT. In this
instance, only two free parameters are chosen in the resid-
ual series, since the non-analytic contributions are in-
cluded only to order O(m&logm,). The leading-order
included in this investigation are simply the 1-pion loops,
in Ny =2 QCD, as shown in Figures 1 and 2.

fin = ay + ay mZ + T (m

A. Finite-range regularization

A finite-range regularized effective field theory handles
divergences in the ultraviolet region of the loop integrals

FIG. 1. The pion/kaon loop contributions to the magnetic mo-
ment of an octet baryon B, allowing a transition to a baryon B’,
with photon attachment, which provides the leading non-analytic
contribution. All charge conserving transitions are implicit.

FIG. 2. The pion/kaon loop contribution to the magnetic moment
of an octet baryon B, with photon attachment, allowing transitions
to the nearby and strongly-coupled decuplet baryons 7'

by introducing a regulator function as part of the cou-
pling to each vertex of the diagram. The regulator func-
tion u(k; A) introduces a cutoff scale A, and should sat-
isfy u|p—0 = 1 and u|g oo = 0. The exact functional form
chosen for the regulator should be independent of the re-
sult of calculation, so long as the lattice QCD results
are constrained within the PCR. In order to avoid ob-
fuscating the calculation with inconvenient finite-volume
artifacts, a smooth attenuating dipole form is chosen for
this investigation:

u(k;A) = (1+i22>_2, (11)

though, detailed analyses exist for a range of alternative
forms [1, 2].

It has been suggested that a sharp cutoff FRR scheme
should be chosen to ensure the preservation of the chiral
Ward Identities [11]. In this investigation, chiral symme-
try may be maintained by including the necessary vertex
corrections at higher-order, in order to suppress any ex-
tra scheme-dependent non-analytic terms induced by the
regulator [12]. However, since the renormalization of a
single observable at any time is considered in this analy-
sis, the issue is not so urgent.

B. Loop integrals and definitions

Each loop integral has a solution in the form of a
polynomial expansion analytic in m2 plus a non-analytic



term:
Tn(m2 i A) = by + xyma + by m2+0(m),  (12)
Ta(mZ; A) = b + b3 m2 + xa m2 logm/p+ O(m3),

(13)

where p is an implicit mass scale, chosen here to be 1
GeV. The coefficients of the polynomial, blN’A are entirely
regulator-dependent and therefore scheme-dependent. In
order to achieve an extrapolation based on some opti-
mal FRR scale, first the scale-dependence of the low-
energy expansion must be removed through renormal-
ization. The renormalization program of FRR combines
the scheme-dependent b; coefficients from the chiral loops
with the scheme-dependent a; coefficients from the resid-
ual series at each chiral order i. The result is a scheme-
independent coefficient c;:

co = ap + b)) +b§, (14)
co = ad + b)Y + b5, ete. (15)

This means the underlying a; coefficients undergo a
renormalization from the chiral loop integrals. The renor-
malized coefficients ¢; are an important part of the ex-
trapolation technique. A stable and robust determina-
tion of these parameters forms the heart of determining
an optimal scale Ascale,

The loop integrals can be expressed in a convenient
form by taking the non-relativistic limit and performing
the pole integration for ky. Renormalization is achieved
by subtracting the relevant b{)\ term from the integral,
effectively absorbing it into the corresponding renormal-
ized coefficient ¢g. The integrals take the form [8, 13]:

Tn(m2;A) = ;ig /d%(kk;‘ji;;&)l -l (16)

~ R N k2(2w(k) + A)u?(k; A)

Talmiid) =53 /dgk 253 (k) [w(k) + A2 b
(17)

where ¢ is the direction of the external momentum intro-
duced by the incoming photon. The chiral coefficients x
and ya are constants in terms of the chiral Lagrangian
of Eq.(6) and the relevant Clebsch-Gordan coefficients:

mn

_ 2 _
» my 2C? n
S0\ N 1

Since lattice simulations are necessarily carried out on a
discrete spacetime, any extrapolations performed should
take into account finite volume effects. The low-energy
EFT is ideally suited for characterising the leading in-
frared effects associated with the finite volume. In order
to achieve this, each of the 3-dimensional integrals can
be transformed to its form on the lattice using a finite-
sum of discretized momenta, see Allton et al. [14] for

instance:

(2m)°

Bh— . 20
/ 7 L.L,L. > (20)
kz7kyakz

On the finite-volume lattice, each momentum component
is quantized in units of 27 /L, that is k; = 27 n,; /L for in-
tegers n;. Finite volume corrections 6" VC can be written
simply as the difference between the finite sum and the
corresponding integral. It is known that the finite volume
corrections saturate to a fixed result for large values of
regularization scale [1]. The value A’ = 2.0 GeV is cho-
sen to evaluate all finite volume corrections independent
of the integral cutoff scale A in Eqgs.(16) and (17). The
finite-volume version of Eq.(10) can thus be expressed:

fin = co + ay mZ + (T (m2; A) + 65 (m2; A'))
+ (Ta(mZ;A) + 6.7 (m2; ) + O(m2).  (21)

III. RESULTS

The QCDSF results for the isovector magnetic moment
at a variety of m2 values are displayed in Figure 3. The
lattice sizes of each data point vary from 1.43 to 3.04
fm using Ny = 2 and O(a)-improved Wilson quark ac-
tion. A simple linear fit is included in this plot, which
does not take into account the chiral loop integrals, nor
the finite-volume corrections to the data. Therefore, it
is not surprising that the linear fit does not reach the
experimental value of the magnetic moment at the phys-
ical pion mass. Since the lattice QCD results extend
outside the PCR, the result of an extrapolation will be
regulator-dependent. However, scheme-dependence can
be handled by obtaining an optimal regularization scale
in the extrapolations, as described in Ref. [1].

A. Renormalization flow analysis

In order to obtain the optimal regularization scale, the
low-energy coefficient ¢ from Eq.(21) will be calculated
across a range of A values. Thus the renormalization
flow can be constructed. Multiple renormalization flow
curves may be obtained by constraining the fit window by
a maximum, mi’maw and sequentially adding data points
to extend further outside the PCR. The renormalization
flow curves for a dipole regulator are plotted on the same
set of axes in Figure 4. As more data are included in the
fit, a greater degree of regulator-dependence is observed.
Note that there is a reasonably well-defined A value at
which the renormalization of ¢q is least sensitive to the
truncation of the data. This indicates that there exists
an optimal regularization scale embedded in the lattice
QCD results themselves.

The optimal regularization scale for a dipole form can
be extracted from Figure 4 using a x2, 7 analysis. Such an
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FIG. 3. (color online). Lattice QCD data for ui**V from QCDSF,

with physical value from experiment as marked.

analysis will also provide a measure of the systematic un-
certainty in the optimal regularization scale. By plotting
X2 7 against A, where dof equals the number of curves
n minus one, a measure of the spread of the renormaliza-
tion flow curves can be calculated, and the intersection
point obtained. A plot of Xgof is constructed at each
value of A for ¢y (with uncertainty dcp):

n i _G 2
Xgof _ ni - Z (co(A) . A)) ’ (22)

) (23)

The indices 7 and j correspond to data sets with differ-
ing m2 .. The x7,; plot corresponding to Figure 4
is shown in Figure 5. The optimal regularization scale
Aseale g taken to be the central value Aceptra; Of the
plot, and the upper and lower bounds obey the condi-
tion X7,; < Xiof.min T 1/(dof). Thus the optimal reg-
ularization scale for a dipole form is A%le = 1.137033
GeV. This value is consistent with the optimal regular-
ization scale obtained for the nucleon mass using a dipole
form [1], based on lattice QCD results from JLQCD [15],
PACS-CS [16] and CP-PACS [17]. This is strong evidence
that, for a given functional form, the optimal regular-
ization scale is associated with an intrinsic scale, which
characterizes the size of the nucleon, as probed by the
pion.

IV. CHIRAL EXTRAPOLATIONS

Using the optimal regularization scale, extrapolations
can be made to any quark mass. Consider the behaviour
of the magnetic moment as a function of the quark mass
as shown in Figure 6 (in physical units). Here, the finite-
volume expansion of Eq.(21) is constrained by the lat-
tice results from several different volumes. Extrapolation
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FIG. 4. (color online). The renormalization flow of cg for pis°v
obtained using a dipole regulator, based on lattice QCD data from
QCDSF.
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FIG. 5. (color online). Xiof for the renormalization flow of ¢o for

1% obtained using a dipole regulator, based on lattice QCD data
from QCDSEF.

curves are then plotted for infinite-volume and a variety
of finite-volumes at which current lattice QCD results
are produced. For each curve, only the values for which
myL > 3 are plotted, provisionally, to avoid undesired ef-
fects of the e-regime. The infinite-volume extrapolation
to the physical point is within 2% of the experimentally
derived value. The finite-volume extrapolations are also
useful for estimating the result of a lattice QCD calcula-
tion at certain box sizes. This can also provide a bench-
mark for estimating the outcome of a lattice QCD sim-
ulation at larger and untested box sizes. Note that even
a relatively standard 3 fm lattice box length will differ
significantly from the experimental value at the physical
point. Since the data points in Figure 6 are at differing
finite volumes, the infinite-volume corrected data points
are displayed in Figure 7.
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FIG. 6. (color online). Extrapolations of pi*°V at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.43 — 3.04 fm. The
provisional constraint mxL > 3 is used. The physical value from
experiment is marked. An estimate in the uncertainty in the ex-
trapolation due to AS°@l€ has been calculated from Figure 5, and is
indicated at the physical value of m2.

V. CONCLUSION

The technique for obtaining an optimal regularization
scale from lattice QCD data has been investigated in
the context of the magnetic moment of the isovector nu-
cleon. By using recent precision lattice QCD results from
QCDSF, an optimal regularization scale for a dipole form
was obtained. This was achieved by analyzing the renor-
malization flow of the low-energy coefficient ¢y with re-
spect to the scale A, whilst extending the data beyond
the power-counting regime. A regularization scale was
discovered where the renormalization of ¢q is least sen-
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FIG. 7. (color online). Extrapolations of ui*°V at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.43 — 3.04 fm. The
provisional constraint m;L > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked. An estimate in the uncertainty in the extrapolation due
to As°@le has been calculated from Figure 5, and is indicated at the
physical value of m2.
sitive to the truncation of the lattice QCD data. The
value of the optimal regularization scale was consistent
with results from the nucleon mass. Thus an intrinsic
scale has been uncovered, which characterizes the energy
scale of the nucleon-pion interaction.

Using the value of the intrinsic scale, the extrapolation
of the magnetic moment to the physical pion mass and
infinite-volume lattice box size is consistent with experi-
ment. The finite-volume extrapolations provide a bench-
mark for estimating the outcome of a lattice QCD simu-
lation at realistic or optimistic box sizes.

The results clearly indicate a successful procedure for
using lattice QCD data to extrapolate an observable to
the chiral regime.
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Finite volume corrections to charge radii
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Abstract

Lattice quantum chromodynamics (QCD) provides importantperturbative
techniques for the analysis of observables. Neverthelesstder to compare
lattice simulation results with experiment, an extrapolato infinite volume is
required. The electric charge radius is of particular iegémwhen considering
the implementation of finite-volume corrections. It is stard practice in the
literature to transform electric form factors on the latiato charge radii prior
to analysis. However, there is a fundamentdaliclilty with using these charge
radii results in a finite-volume extrapolation. The suli¢ietare a consequence of
the absence of a well-defined continuous derivative, whscalequired to define
the charge radius. In this discourse, a procedure is odtlioehandling finite-
volume corrections, which should be applied directly toebextric form factors
rather than to the charge radii themselves.

Keywords:
electric charge radii,féective field theory, finite-volume corrections, chiral
extrapolation, lattice QCD

1. Introduction

Extrapolations of lattice QCD simulation results are a uidefal in examining
the chiral properties of observables. Reliable extrapmiatitake into account
leading-order chiral loop corrections and account for éiviblume &ects. In
many cases, calculating the finite-volume corrections poseessential problems.
Examples of chiral #ective field theory analyses accounting for finite-volume
effects are in Refs. [1, 2].

However, the treatment of the electric charge radius is mioadlenging. Once
form factors have been extracted from the lattice simutattbey are typically
converted directly into charge radii, The essentidliclilty lies in the definition

1



of the charge ‘radius’ at finite volume (more precisely, thape of the electric
form factor). In order to define the radiusQ& derivative must be applied to the
electric form factor, for small momentum transf@f = & — g3. This approach
breaks down on the lattice, where only discrete momentuoegadre allowed.

In this discourse, a method is outlined for handling finitdevne corrections
to a given lattice simulation result. It will be shown thae thinite-volume cor-
rections to the loop integrals must be applied before thevexsion from form
factor to charge radius. By applying the finite-volume caiicets directly to the
electric form factor, and ensuring that the procedure pvesethe electric charge
normalization, an extrapolation {@* may be used to construct an infinite-volume
charge radius. The infinite-volume charge radius can be etfas normal. A
finite-volume charge radius may also be defined, so long ai@mea value of
momentuny is used in the conversion from infinite to finite volume.

2. Effective field theory

In electromagnetic chiral perturbation theogP(), it is usual to define the
Sachs electromagnetic form fact@s i, which parameterize the matrix element
for the quark currend,:

(B(P)IIB(P)) =
Eyva'Vp Se qv

i
w(p) {Vﬂ Ge(Q) + Gm(Qz)} u(p), (1)
whereQ? is the positive momentum transféf = —q? = —(p’ — p)?. Lattice QCD
results are often constructed from an alternative reptaen, using the form

factorsF; andF,, which are called the Dirac and Pauli form factors, respebti
The Sachs form factors are simply linear combinationBcandF:

2
Ge(Q) = Fa(Q) - 4%285@2), @)
Gu(Q®) = F1(Q?) + Fo(QD). 3)

In the heavy-baryon formulation of Eq.(1), the covarianinspperatorS, =
—%75[7", v']v, has the useful properties that its commutation and antircotation
rules depend only on the 4-velocity.v

The external-momentum-dependent electric form faGteQ?) allows a charge
radius, or (strictly speaking) the slope of the form factohe defined in the usual

2



manner: 5 ()
()e = (|?i2rl10 _66E—Q2' (4)
The first challenge involves the definition of the electriaxde radius in terms
of this derivative in Eq.(4). Since only certain, discretdues of momenta are al-
lowed on the lattice, the derivative may only be construdtech these allowed
momenta when calculating finite-volume corrections. Thigi@l observation be-
comes apparent when a comparison is made beween the lograistevaluated at
allowed, and unallowed, values of momentum trangfeespectively. The com-
parision is shown in Figures 1 and 2. Note that, if there is engratum-translation
in the loop integral& — k — g/2, the choice o) = gmin = (27/L) is no longer an
allowed value on the lattice, and the finite-volume cormdiwill be inconsistent
with the untranslated result. Under such a momentum-iénsl, external mo-
mentag;/2 flow through the loop integral, and one must choose at lezsiu@ of
g = 20min if ONne is to define a consistent discrete derivative for ugeqri4). This
situation difers from the infinite-volume calculation of loop integraidere true
momentum-translation invariance is restored, and a cootis derivative may be
used as normal.

3. Loop integral definitions

Though loop integrals in the continuum limit are invariander momentum
translation&k — k + cq, ¢ € Z (for internal loop momenturR), a finite volume
loop sum must not include any valuesafess thamg,, = (2r/L). Therefore,
to obtain a sensible definition of the charge radius one awaslefinition of the
loop integrals such that no factors@f2 appear. In fact, as long as no fractions of
g appear in the integrand, the finite-volume version will cenge correctly to the
infinite-volume version ak — oo, for g = (27 n/L), n € Z. The loop integrals in
the heavy-baryon approximation that correspond to thengaokrder diagrams in
Figures 3 through 5 are:

-

2y _ AN [ 3 (K -Kk-q
TnQ) =73, |d kwﬁwﬁ_@(wE Ty’ (5)
2y _ XA [ 3 (K-K-9
Ta@) =73 )d k(wR + A)(wp g+ A)wg + wpg)’ ©)
1
Td @) =% [l ™)
Vs wp t+ a)lz_q

3
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Figure 1: (color online). Finite-volume correction for tlep integral contributing t&g, with

d = Qgmin- The choice ofg/2 = gmin/2 is not an allowed value on the lattice. The momentum
translated and untranslated behaviour of the finite-volgoreection are inconsistent with each
other.
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Figure 2: (color online). Finite-volume correction for tle®p integral contributing t&g, with
d = 2qmin- The choice ofy/2 = gmin is an allowed value on the lattice. Therefore, the momentum
translated and untranslated behaviour of the finite-volaoreection is identical.
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wherew; = /K2 - mg, my is the pion or kaon mass, ardis the baryon mass
splitting. The finite-volume correction is defined througk tonvention:

(2m)° f 3
— | dk| T, 8

ke

olT] =x

for integrandZ. The integrals which contribute to the electric chargeusdde-
noted ), are exactly analogous to the integr&lS) (defined in Eqgs.(5) and (7),
that correspond to the electric form fac®g. To obtain the integrals that con-
tribute to the charge radius, one simply takes the dergatiith respect to mo-
mentum transfe? at vanishingly small values a@?. This is allowed in the

infinite-volume limit: ,
T = lim —GGT(Q ).

9
Q20 (9Q2 ( )
Note that the ensuing procedure for calculating the fingkenwme corrected electric
charge radius uses only the infinite-volume versions of itegrals 7). Fitting
methods need only be applied at infinite volume. Thus, thereat momentum
derivative in Eq.(9) need not be discretized, but may reraaontinuous deriva-
tive.

4. Procedure for obtaining the charge radius at finite volume

As emphasized already, Figures 1 and 2 show that the finltenscorrec-
tions cannot be applied directly to the charge radius itseffe momentum dis-
cretization ruins the circular symmetry qnexcept at the values coinciding with
lattice momentum values £21/L), n € Z. The finite-volume corrections should
be applied to the electric form fact@:(Q?) instead. A momentum convention in
the loop integral is chosen such tleganay be chosen to bg,i, = (27 n/L). The
procedure for achieving the correct finite-volume coraudiis outlined below.

First, the lattice finite-volume charge radiy)t is converted into a finite-
volume form factoiGE(Q?), usingq = Gmin = (2r/L). This is achieved through
use of an extrapolation iQ?. As an example, a dipole Ansatz yields the following
formula:

L 2 r2nin<r2>lé .
Ge(Qhin) = (1 + T) , (10)
respectively, wher@?. = 2. — (Ex — My)?. In many cases, this simply reverses

the steps used to convert lattice results to charge radsally] one should start

5



Figure 3: The piorkaon loop contributions to the self energy of an octet bargpallowing a
transition to a baryo®’, with photon attachment, providing the leading nonanalgtintribution
to the electric charge radius. All charge conserving ttéors are implicit.

Figure 4: The piofkaon loop contribution to the self-energy of an octet bargomwith photon
attachment, allowing transitions to the nearby and stienglupled decuplet baryoris

Figure 5: Tadpole contributions é{my) to the octet baryon self energy, with photon attachment.



with the form factors as extracted from the lattice, and @alyvert them into radii
using an Ansatz after correcting for lattice finite-voluntéeets. The next step is
to transform the finite-volume form fact@g(Q2,,) to an infinite-volume form
factorGy(QZ,,), so that the infinite-volume charge radius can be calcdilaais
is achieved by subtracting the electric charge symmeteggmving finite-volume
correction, defined by:

AL(QR . 0) = 8L [T(Q%) - TO)]. (11)

The second term of Eq.(11) ensures that both infinite- antefirolume form
factors are correctly normalized, i.eGE""’(O) = 1. Thus, the infinite-volume
electric form factor can be calculated using the equation:

GE (Qfin) = Ge(Qnin) = AL(Qin: 0)- (12)

The infinite-volume charge radiusz)‘g’ can be recovered from the form factor by
using the extrapolation i?. Once the infinite-volume charge radius has been ob-
tained, a chiral extrapolation can be performed if needée. chiral loop integrals
corresponding to the charge radius are those defined by)Eq.(9

Finally, the finite-volume charge radius can be evaluatedduing the finite-
volume correction to the form factor at any box lenfttand corresponding mo-
mentum transfer on the lattic?, :

GE(Qhin) = GE(Qiin) + Az (Qhin, 0): (13)

The finite-volume charge radii are obtained from the chosdrapolation for-
mula at box sizel. Thus, an electric charge radius may be calculated at any
desired value of box length, based on lattice QCD simulatsnlts. In doing so,
the finite-volume behaviour of the charge radius may be aedly

5. Conclusion

It was discovered that finite-volume corrections for chawdi are not well
defined on the lattice. The use of continuous derivative®irstructing the elec-
tric charge radius leads to inconsistent results in theefimilume corrections.
Furthermore, finite-volume corrections must be appliechtodlectric form fac-
tors rather than to the charge radii directly. Therefore,ca@dure was developed
to apply finite-volume corrections to the electric form fagctstrictly involving
momenta available on the lattice. The resultant finite-w@tcorrected form fac-
tor may then be converted into a charge radius using an etatign in Q2.

7
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Chiral extrapolations for nucleon electric charge radii

J.M.M. Hall, D.B. Leinweber, and R.D. Young
Special Research Centre for the Subatomic Structure of Matter (CSSM),
Department of Physics, University of Adelaide 5005, Australia

Chiral effective field theory allows the extrapolation of lattice quantum chromodynamics (QCD)
simulation results to the infinite-volume limit and the chiral regime. The electric charge radius
of the nucleon affords an opportunity to explore the subtleties of both these extrapolations. To
achieve an extrapolation to infinite-volume electric charge radii, the finite-volume corrections must
be applied directly to the electric form factors. Additionally, since lattice QCD results typically
reside outside the chiral power-counting regime of chiral effective field theory, care must be taken in
performing a chiral extrapolation. Using finite-range regularized chiral effective field theory, one can
obtain an optimal regularization scale by analyzing the scale-flow of the renormalization of the chiral
coefficients. Thus, effective field theory is extended beyond the PCR. This optimal regularization
scale is retrieved from the lattice QCD results themselves. A comparison of this optimal scale with
previous analyses of the mass and magnetic moment of the nucleon demonstrates consistency in the
value of the optimal scale. This provides evidence for the existence of an intrinsic energy scale in
the nucleon-pion interaction, as calculated from lattice QCD results. Using the optimal scale, chiral
extrapolations and infinite-volume corrections are presented. Extrapolations to a variety of finite
lattice box sizes are also included, which are useful for predicting the outcome of lattice simulations

in a finite volume.

PACS numbers:
I. INTRODUCTION

The analysis of the electric charge radius of the nu-
cleon provides an important test case for extrapolations
to the infinite-volume limit and the physical point. Since
the finite box size of the lattice entails undesirable finite-
volume effects in the simulated behaviour of the hadrons,
it is important to be able to quantify these effects with
a reliable infinite-volume extrapolation. In order to
avoid model-dependence in the result, one should ideally
use lattice simulations that lie within the chiral power-
counting regime (PCR). The PCR is defined by the range
of quark or pion masses at which a YEFT calculation is
independent of regularization scheme, up to some toler-
ance [2]. Within the PCR, the chiral expansion of an ob-
servable converges, and the result is independent of any
resummation of the higher-order terms of the expansion.

In finite-range regularization (FRR), a regulator is in-
troduced into the chiral loop integrals, which serves to
suppress the ultraviolet divergences of the effective field
theory. The selection of the momentum cutoff scale A
is arbitrary within the PCR, but outside the PCR the
results of YEFT calculations are scale-dependent. Since
lattice QCD results typically extend outside the PCR,
one is restricted by the available data when performing
an extrapolation. However, using the techniques devel-
oped in Refs. [1], the extent of scale-dependence in chiral
exptrapolations can be quantified. This is achieved by
identifying an optimal regularization scale A% embed-
ded within the lattice data themselves. The optimal scale
is realized by analyzing the renormalization scale-flow of
the coefficients of the chiral expansion.

This optimal scale can be compared with previous re-
sults for an optimal scale derived from lattice QCD data

12.39.Fe 12.38.Aw 12.38.Gc 13.40.Em

for the nucleon mass and the magnetic moment. If the
values of the optimal scales are consistent, this lends cre-
dence to the notion that one can obtain an intrinsic scale
for the nucleon-pion interaction from lattice QCD simu-
lations. Moreover, the resultant scale AS°®!® can be used
to perform chiral extrapolations in which any scheme-
dependence in the result has been handled, and incor-
porated into the systematic uncertainty in the choice of
Ascale'

In lattice QCD, the isovector combination of the nu-
cleon (p — n) is often calculated to avoid the computa-
tionally expensive disconnected loops that occur in full
QCD. Quark-flow diagrams including any photons cou-
pling to sea-quark loops cancel in the case of the isovec-
tor. Isovector nucleon data for two-flavor O(a)-improved
Wilson quark action from the QCDSF Collaboration is
used in this analysis, which is displayed in Figure 1.

II. CHIRAL EFFECTIVE FIELD THEORY

In electromagnetic chiral perturbation theory (xPT), it
is usual to define the Sachs electromagnetic form factors
G g v, which parameterize the matrix element for the
quark current J,. In the non-relativistic limit, this can
be written as:

(B(')| T B(p)) =

o i€ vP 8B gv
o 0) {v Gel@) + 222 L G ) )
B
(1)
Q? is defined as positive momentum transfer Q? = —¢? =
—(p' — p)?. Lattice QCD results are often constructed
from an alternative representation, using the form factors
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FIG. 1. (color online). Lattice QCD data for (r2)g from QCDSF,
with physical value from experiment as marked.

Fy and F5, which are called the Dirac and Pauli form
factors, respectively. The Sachs form factors are simply
linear combinations of F} and Fs:

Q2
Gp(@Q®) = F1(Q%) - = F(Q%), (2)
4mey
Gu(Q%) = F1(Q*) + F»(Q%). 3)
In the heavy-baryon formulation of Eq.(1), the covari-
ant spin operator St = —%75 [v*,7"]v, has the useful

properties that its commutation and anti-commutation
rules depend only on the 4-velocity v,. The external-
momentum-dependent electric form factor Gg(Q?) al-
lows a charge radius (more precisely, the slope of the
electric form factor) to be defined in the usual manner:

G E(Q*)
Q%
For the leading-order contributions to the electric form

factor, the standard first-order interaction Lagrangian

from heavy-baryon chiral perturbation theory is used [3—
8]:

2 T
<7’ >E = 621%210*6

(4)

£} = 2D Tr [B,SH{ A, By} + 2F Te[B,SE[A,, By]]
+C(TFA, By + B,A,T"), (5)

where the pion fields are encoded as the adjoint represen-
tation of SU(3);, ® SU(3)g, and forming an axial vector
combination A,:

E=exp {;T“ﬂ“} , (6)

Au= (0,8~ €10,6) @

By the convention presented here, f, = 92.4 MeV. The
values for the couplings in the interaction Lagrangian
are obtained from the SU(6) flavor-symmetry relations
[5, 9] and from phenomenology: D = 0.76, F = 2D and
C=-2D.

FIG. 2. The pion/kaon loop contributions to the electric charge
radius of an octet baryon B, allowing a transition to a baryon
B’, with photon attachment. All charge conserving transitions are
implicit.

FIG. 3. The pion/kaon loop contribution to the electric charge
radius of an octet baryon B, with photon attachment, allowing
transitions to the nearby and strongly-coupled decuplet baryons 7.

FIG. 4. The tadpole contribution at O(mg) to the electric charge
radius of an octet baryon B, with photon attachment.

A. Finite-range regularization

In finite-range regularized effective field theory, regu-
lator functions u(k;A), with characteristic momentum
scale A, are inserted into the loop integrals. The regu-
lators should be chosen such that they satisfy u|p—g =1
and u|k— 0o = 0. The exact functional form chosen for the
regulator should be independent of the result of calcula-
tion, so long as the lattice QCD results are constrained
within the PCR. In order to avoid obfuscating the calcu-
lation with inconvenient finite-volume artifacts, a smooth
attenuating dipole form is chosen for this investigation:

K2\
ki) = (145) 0
though detailed analyses exist for a range of alternative

forms [1, 2]. Further discussion of the subtleties involved
in choosing a regulator can be found in Refs. [10, 11].

B. Loop integrals and definitions

The leading-order loop integral contributions to the
electric form factor, corresponding to the diagrams in



Figures 2 through 4, can be simplified to a convenient
form by taking the heavy-baryon limit, and performing
the pole integration for kg:

/d3 u(E A)u(k —

TH(Q?) =

E (2 7@ 3 (kQ_E'@U(q§A)U(E—§'7A)
TA(Q)757T/C1 (wk—I—A)( §+A) UJ,‘C‘+UJ]'€‘7Q‘),
(10)
TE 2\ _ XtE d3k U2(E,A) 11
@ = fan T ()

where wy = | /k? — mi, mg is the pion or kaon mass, and

A is the baryon mass splitting.

The chiral coefficients %, x& and x¥ are constants in
terms of the chiral Lagrangian of Eq.(5) and the relevant
Clebsch-Gordan coefficients, as summarized by Wang
[12]:

5
E E.n
XNpi 167T2f7%(D+F)2:7XN ) (12)
5 4C?
E.p En
= = - 13
E, 1 En
Xt P=- 16’/T2f2 =Xt - (14)

C. Finite-volume corrections

Finite-volume corrections cannot be applied directly
to the charge radius itself. Instead, the electric form fac-
tors Gg(Q?) are corrected to infinite-volume using an
extrapolation in Q?, such as a dipole Ansatz. The inte-
grals which contribute to the electric charge radius, de-
noted (TF), are exactly analogous to the integrals (77),
defined in Egs.(9) through (11), that correspond to the
electric form factor Gg. To obtain the integrals that con-
tribute to the charge radius, one simply takes the deriva-
tive with respect to momentum transfer Q2 at vanish-
ingly small values of Q2. This is allowed in the infinite-
volume limit:

E_ T (@)
T = Ql%rgo 6 a2 (15)
Note that the ensuing procedure for calculating the finite-
volume corrected electric charge radius uses only the
infinite-volume versions of the chiral loop integrals.

The finite-volume correction to the electric form
factors is achieved by subtracting the electric charge
symmetry-preserving finite-volume correction, defined
by:

AL( ?nin? ) = 5L [TE( mm) TE(O)] ) (16)

where the functional 1, is defined through the conven-
tion:

SL[T" = x L(zj_er /d3 Iz, (17

for integrand Z. The second term of Eq.(16) ensures
that both infinite- and finite-volume electric form fac-
tors are correctly normalized, ie. Gé’oo(O) = 1. Thus,
the infinite-volume electric form factor can be calculated
using the equation:

Goo ( mm) GL ( IIlll’l) AL( min>» O) (18)

The infinite-volume charge radius (r?)$ can be recovered
from the form factor by using the extrapolation in Q2.
Once the lattice data have been converted into infinite-
volume charge radii, the chiral behaviour of the electric
charge radius can be written in terms of an ordered ex-
pansion in pion mass squared, through use of the Gell-
Mann—OQakes—Renner Relation, m, oc m2 [13]:

()% ={ap +asm2} + TN + +TX
+TE, +0(m3). (19)

(o x . . . . . 2
This expansion contains an analytic polynomial in mZ

plus the leading-order chiral loop integrals, from which
non-analytic behaviour arises. The scale-dependent co-
efficients a* are the ‘residual series’ coefficients, which
correspond to direct quark-mass insertions in the full La-
grangian. Since the residual coefficients (a;) are expected
to be volume-independent quantities, fitting methods
need only be applied at infinite volume. Upon renor-
malization of the divergent loop integrals, these will cor-
respond with low-energy coefficients of YEFT. In this in-
stance, only two free parameters are chosen in the resid-
ual series, since the non-analytic contributions are in-
cluded only to order O(m3).

D. Renormalization

In order to obtain the renormalized chiral coefficients
co and cg, one must add the terms from each of the loop
integrals in Eqgs.(9) through (11) to the residual coeffi-
cients a) and a}:

co = apy + by + by + b, (20)
o = ad + by 4 b3 4 byt (21)

The coefficients b2 are the coefficients of the polynomial
terms obtained from calculating the relevant loop inte-
grals. The resultant ¢q is A-independent within the PCR,
where the chiral series converges and the renormalization
scheme is successful. By evaluating the loop integrals,
the fully-renormalized chiral expansion can be written in
terms of a polynomial in m?2 and non-analytic terms:

My
()F = + O +xi)log —F +0mz). (22)



Since the chiral expansion of Eq.(22) contains a loga-
rithm, the value of ¢y can only be extracted relative to
some mass scale p, which is chosen to be 1 GeV. To
achieve a chiral extrapolation, it is convenient to subtract
the coefficients bf} from the respective loop integrals:

TE =TE — )", (23)
TX =T - bo™, (24)
Tha=TE: - bg’t- (25)

This removes the A-dependence from the lowest-order fit
parameter of the chiral expansion. Thus, in renormalized
form, the chiral expansion used for fitting may be written:

()% = {e" +aym2} + T +TX

+TE +0(m3), (26)

and the renormalization flow of the coefficient ¢y will be
considered.

III. RESULTS

The QCDSF results for the electric charge radius of
the isovector nucleon are displayed, with the experimen-
tal value marked, in Figure 1. The lattice sizes of each
data point vary from 1.92 to 3.25 fm using Ny = 2 and
O(a)-improved Wilson quark action. A simple linear fit
is included in this plot, which does not take into account
the non-analytic behaviour of the chiral loop integrals,
nor the finite-volume corrections to the data. Therefore,
it is not surprising that the linear fit does not reach the
experimental value of the electric charge radius at the
physical pion mass. Since the lattice QCD results extend
outside the PCR, the result of an extrapolation will be
scale-dependent. However, the scheme-dependence may
be ameliorated using a procedure that obtains an opti-
mal regularization scale and an estimate of its systematic
uncertainty, constrained by the lattice results.

A. Renormalization flow analysis

In order to obtain an optimal regularization scale, the
low-energy coefficient ¢g from Eq.(26) will be calculated
across a range of regularization scale values. Multiple
renormalization flow curves may be obtained by con-
straining the fit window by a maximum, mi)max, and se-
quentially adding data points to extend further outside
the PCR. The renormalization flow curves for a dipole
regulator are plotted on the same set of axes in Figure
5. Note that, unlike the analysis of the nucleon mass
[1] and the magnetic moment, there is no distinct inter-
section point in the renormalization flow curves. In ad-
dition, the scale-dependence of the coefficient ¢( is very
slight, so long as the regularization scale is not too small.
(A discussion of the best estimate for a lower bound on

the regularization scale can be found in Ref. [1].) This
lack of scale-dependence is a natural consequence of the
logarithm in the chiral expansion of Eq.(22), which is
slowly-varying with respect to the regularization scale.

The optimal dipole regularization scale can be ex-
tracted from Figure 5 using a szof analysis. Such an
analysis will also provide a measure of the systematic un-
certainty in the optimal scale. By plotting x?2, 7 against
the regularization scale A, where dof equals the num-
ber of curves n minus one, a measure of the spread of the
renormalization flow curves can be calculated, and the in-
tersection point obtained. A plot of X% ¢ 1s constructed
at each value of A for ¢y (with uncertainty dcp):

9 1 " (et (A) — G (A
Vet =1 2 | 0(<5)(:3<A;>(2 e
no 4 t 2
Eo(A) 2317711 CO(A)/(6 O(A2)) (28)
> =11/ (6cg(A))

The indices ¢ and j correspond to data sets with differ-
ing values of m2 ... The X?zof plot corresponding to
Figure 5 is shown in Figure 6. The value of the optimal
regularization scale Al is taken to be the central value
Acentral of the plot, and the upper and lower bounds obey
the condition X7,; < XZofmin + 1/(dof). Thus the op-
timal dipole scale is A%*® = 1.677055 GeV. This value
is consistent with the optimal dipole regularization scale
values obtained for the nucleon mass, using lattice QCD
data from JLQCD [14], PACS-CS [15] and CP-PACS][16],
and the magnetic moment, using lattice QCD data from
QCDSF. This is strong evidence that, for a given func-
tional form, the optimal regularization scale is associated
with an intrinsic scale, which characterizes the size of the
nucleon, as probed by the pion.

IV. CHIRAL EXTRAPOLATIONS

Using the optimal regularization scale, a reliable chi-
ral extrapolation can be performed, with the systematic
uncertainty in the optimal scale taken into account. Con-
sider the behaviour of the electric charge radius as a func-
tion of the quark mass as shown in Figure 7 (in physical
units). Extrapolation curves are then plotted for infinite-
volume and a variety of finite-volumes at which current
lattice QCD results are produced. For each curve, only
the values for which m,L > 3 are plotted, provisionally,
to avoid undesired effects of the e-regime. The infinite-
volume extrapolation to the physical point differs from
the experimentally derived value: (r?)5°V = (.88 fm?, by
merely 0.5%. The finite-volume extrapolations are also
useful for estimating the result of a lattice QCD calcula-
tion at certain box sizes. This can also provide a bench-
mark for estimating the outcome of a lattice QCD sim-
ulation at larger and untested box sizes. Note that even
a relatively standard 3 fm lattice box length will differ
significantly from the experimental value at the physical
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point. Since the data points in Figure 7 are at differing
finite volumes, the infinite-volume corrected data points
are displayed in Figure 8.

To highlight the insensitivity of the extrapolation to
the regularization scale A an estimate of the sys-
tematic uncertainty in the extrapolation to the physical
point solely due to A€ is displayed in Figure 9. The
size of the error bar at the physical point is compara-
ble to that due to statistical uncertainty, as shown in
Figure 10. This indicates that, in the case of the elec-
tric charge radius, the identification of an intrinsic scale
is borderline, due to the dominance of the logarithm in
the chiral expansion, and its slowly varying property in
the large m, regime. Thus, chiral extrapolations of the
electric charge radius are more robust, in the sense that
the scale-dependence in the result is suppressed, and the
identification of an intrinsic scale is not so vital as in the
case of the nucleon mass or magnetic moment.
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FIG. 7. (color online). Extrapolations of (r2)g at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92 — 3.25 fm. The
provisional constraint mrL > 3 is used. The physical value from
experiment is marked.
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FIG. 8. (color online). Extrapolations of (r2)g at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92 — 3.25 fm. The
provisional constraint m,L > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked.

V. CONCLUSION

The technique for obtaining an optimal regularization
scale from lattice QCD data has been investigated in the
context of the electric charge radius of the isovector nu-
cleon. By using recent precision lattice QCD results from
QCDSF, an optimal regularization scale for a dipole form
was obtained. This was achieved by analyzing the renor-
malization flow of the low-energy coefficient ¢y with re-
spect to the scale A, whilst extending the data beyond
the power-counting regime. A regularization scale was
discovered where the renormalization of ¢y is least sensi-
tive to the truncation of the lattice QCD data. The value
of the optimal regularization scale was consistent with re-
sults from the nucleon mass and the magnetic moment
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FIG. 9. (color online). Extrapolations of (r2)g at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92 — 3.25 fm. The
provisional constraint m,L > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked. An estimate in the uncertainty in the extrapolation,
due to AS°@le has been calculated from Figure 6, and is indicated
at the physical value of m2.

of the isovector nucleon. Thus an intrinsic scale has been
uncovered, which characterizes the size of the nucleon, as
probed by the pion.

Using the value of the intrinsic scale, the extrapolation
of the electric charge radius to the physical pion mass and

infinite-volume lattice box size is consistent with experi-
ment. The finite-volume extrapolations provide a bench-
mark for estimating the outcome of a lattice QCD simu-
lation at realistic or currently optimistic lattice sizes.

The results also demonstrates a successful procedure
for using lattice QCD data to extrapolate an observable
to the low-energy region of QCD.
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FIG. 10. (color online). Extrapolations of (r?)g at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92 — 3.25 fm. The
provisional constraint mxL > 3 is used. The physical value from
experiment is marked. An estimate of the statistical uncertainty in
the extrapolation is marked at the physical value of mf‘.
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