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Abstract

Chiral effective field theory complements numerical simulations of quantum

chromodynamics on a spacetime lattice. It provides a model-independent formal-

ism for connecting lattice simulation results at finite volume, and at a variety of

quark masses, to the physical region. Knowledge of the power-counting regime of

chiral effective field theory, where higher-order terms of the expansion may be re-

garded as negligible, is as important as knowledge of the expansion. Through the

consideration of a variety of renormalization schemes, techniques are established to

identify the power-counting regime. Within the power-counting regime, the results

of extrapolation are independent of the renormalization scheme.

The nucleon mass is considered as a benchmark for illustrating this approach.

Because the power-counting regime is small, the numerical simulation results are

also examined to search for the possible presence of an optimal regularization scale,

which may be used to describe lattice simulation results outside of the power-counting

regime. Such an optimal regularization scale is found for the nucleon mass. The

identification of an optimal scale, with its associated systematic uncertainty, mea-

sures the degree to which the lattice QCD simulation results extend beyond the

power-counting regime, thus quantifying the scheme-dependence of an extrapola-

tion.

The techniques developed for the nucleon mass renormalization are applied to

the quenchedρ meson mass, which offers a unique test case for extrapolation schemes.

In the absence of a known experimental value, it serves to demonstrate the ability of

the extrapolation scheme to make predictions without priorphenomenological bias.

The robustness of the procedure for obtaining an optimal regularization scale and

performing a reliable chiral extrapolation is confirmed.

The procedure developed is then applied to the magnetic moment and the elec-

tric charge radius of the isovector nucleon, to obtain a consistent optimal regulariza-

tion scale. The consistency of the results for the value of the optimal regularization

scale provides strong evidence for the existence of an intrinsic energy scale for the

nucleon-pion interaction.
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Chapter 1

Introduction

“One measure of the depth of a physical theory is the extent towhich it poses seri-

ous challenges to aspects of our worldview that had previously seemed immutable.”

(Greene, B. 1999.The Elegant Universep.386) [Gre99]

1.1 Prologue

The theoretical physicist challenges previous theory, using original research that en-

ables alternative coherence to emerge, as outlined by Bohm [Boh92] (p.223). The

underlying theory behind the strong force of particle interactions, which is the force

responsible for the binding of protons and neutrons together in atomic nuclei, had

been a persistent mystery throughout the first half of the Twentieth Century. This

hitherto unknown force acts in opposition to the electric Coulomb force that repels

positively charge protons from each other, but is at least two orders of magnitude

stronger at the distance scale of an atomic nucleus. The strong interaction between

protons and neutrons, or nucleons, is currently most successfully described by the

theory of quantum chromodynamics (QCD). The advent of the quark model, and

the theory of the colour force by which the quarks interact, opened a new field of

research into the internal structure of matter.

In 1964, Gell-Mann and Zweig independently proposed the existence of a new

constituent particle, the quark, in order to classify the bewildering array of subatomic
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Chapter 1. Introduction Hall 2

particles called hadrons [GM64]. It was discovered that thehadrons can be arranged

into families that correspond to representations of the group SU(3), and that three

quark types, or flavours, were required to form the fundamental representation of

this group. It was not until 1968 that the results of deep inelastic scattering experi-

ments provided the first evidence of the existence of these new elementary particles.

As more hadrons were discovered, additional quark flavours were proposed. It is

currently accepted that six flavours of quark are required toproduce the full range

of hadrons observed in particle accelerator experiments. Their names, in ascending

order of mass, are: up, down, strange, charm, bottom and top.Of the six flavours, the

most recent to be discovered experimentally was the top quark, in 1995 at Fermilab,

with a mass of 172 GeV [Pro96].

Each quark has a unit of charge equal to+2/3 or−1/3 times the charge of a

proton (units of+e). An an example, the proton consists of two up quarks and a

down quark for a total charge of+1e, whereas a neutron consists of two down quark

and an up quark for a total charge of zero. However, because quarks have a cer-

tain spatial distribution inside the nucleon, or indeed anyhadron, the internal, high

energy dynamics as described by the behaviour of quarks gives rise to properties

such as non-zero magnetic moments for the neutron and anisotropic momentum dis-

tributions. It is clear that in order to describe the internal behaviour of a hadron,

one cannot assume that a quark behaves as a static source. Instead, the dynamics of

quarks must be described by a theory, the most successful of which is QCD.

QCD connects the quark model of nuclear physics to quantum gauge field the-

ories by introducing the quarks as the relevant degrees of freedom inside a hadron.

The hadrons are formed by confined colour singlets of three quarks called baryons,

or quark-antiquark pairs, known as mesons. Quarks are spin-1/2 fermions, which

also have the properties of colour and approximate flavour symmetry. Since fermions,

by definition, must satisfy Fermi-Dirac statistics, the fact that each baryon contains

three bound quarks in the same state violates the Pauli Exclusion Principle. There-

fore, it was necessary to suppose an the existence of an additional quantum number,

known as colour charge, so that each quark may be assigned oneof three, orthogonal
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basis states, labelled red, green and blue. Colour is mediated by the related gauge

particles of the strong force; the gluons, and the quarks also form a representation of

the colour gauge group SU(3)c, with eight group generators.

Mathematically, QCD is a non-Abelian theory. That is, the gauge connection

of the gluons is non-commutative. The fact that isolated, unbound quarks are never

found in experiment is one of the striking consequences of a non-Abelian theory.

Confinement of the quarks within a hadron is a result of the gluon fields exert-

ing a linear potential that increases with distance betweenquarks [Wil74]. That

is, for a large distance scale, the strong coupling parameter αs also becomes large.

This behaviour contrasts with electromagnetism, where theelectric Coulomb force

diminishes as two charged particles are separated. However, quarks experience

only a small force from the gluon fields asαs becomes small at short distances

[GW73b, Pol73, GW73a, GW74]. This asymptotic freedom is observed when prob-

ing the internal structure of hadron at high energies, wherethe small de Broglie

wavelength of the probe is able to resolve the short distances within the composite

particle. Near this asymptotically free regime, the methods of perturbative quantum

field theory are suitable for constructing amplitudes, cross-sections and scattering

matrices. However, it leads to a difficulty in finding an appropriate method for per-

forming a calculation with QCD in the low-energy region. Two of the most suc-

cessful methods that will be discussed in this thesis are chiral effective field theory

(χEFT) and lattice QCD.

Using χEFT, one is able to encapsulate the dynamics of a quantum system by

writing down an ‘effective’ action of low-energy degrees offreedom. By imposing

symmetries satisfied by QCD, one can expand out the formula foran observable

property into a series of quantum amplitudes that can be arranged in order of the

importance of their contribution by a choice of power-counting scheme: usually in

increasing powers of mass/energy. These amplitudes can alter, or renormalize the

calculation of an observable from its naı̈ve value, and landmark success has been

made in confirming these real and measurable effects by experiment. For example,

the value of the anomalous magnetic dipole moment of the electron agrees with ex-
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periment to better than twelve significant figures. The Casimir effect (1948), which

describes the forces arising from the quantum vacuum fluctuations, were success-

fully predicted by the gauge field theory of quantum electrodynamics (QED). In the

low-energy, non-perturbative region of QCD, many phenomenacan be explained

by the emergent properties of quark confinement and the behaviour of their bound

states as hadrons. For example, the proton and neutron also have a large anomalous

component of their magnetic moment. This is due to the cloud of interacting fields,

which renormalize the core of the observable. This ‘hadron cloud’ is one of the

unique properties of a quantum field theory. Of the availablelow-energy effective

theories of QCD, chiral perturbation theory (χPT) is the most notable, in its careful

incorporation of the fundamental symmetries of QCD. However, the robustness of

χPT is confined only to a restrictive region called the power-counting regime. Within

the power-counting regime, the perturbative expansions that occur inχPT are con-

vergent; the terms of the expansion series are ordered such that higher-order terms

are sufficiently smaller than lower-order terms. The details of the power-counting

regime are discussed in more detail in Chapter 3.

Lattice QCD is a discretized version of QCD, where the dynamicsare evaluated

on a finite-sized box with only certain allowed values of position (or momentum)

separated by a fixed spacing. Thus, lattice QCD is equivalent to QCD in the limit

of infinite box size and vanishing lattice spacing. Using lattice QCD, one is able to

access the non-perturbative, low-energy regime of QCD and provide reliable predic-

tions of hadronic behaviour. In addition, lattice QCD simulations do not suffer from

the common problems of quantum field theory associated with renormalization. The

discrete lattice spacing and the finite box size of the lattice act as an ultraviolet and

infrared regulator, respectively. Thus, observable quantities evaluated on the lattice

are finite and calculable. Nevertheless, it can be computationally expensive to evalu-

ate observables at large box sizes, small lattice spacings and physical quark masses.

To be able to obtain a result using quark masses as small as their physical values, an

extrapolation is a practical alternative to a brute-force approach. In addition, the cor-

rections to finite-volume effects ought also to be calculated for a realistic comparison
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with experiments.

1.2 Overview and Aims

The framework of QCD provides a rich selection of possibilities for inquiry. Among

these, the low-energy, chiral dynamics of hadrons providesus with a uniquely suc-

cessful understanding of many of their imporant properties.

This thesis explores the properties of the aforementioned power-counting regime

by considering how low-energy constants, which occur in a calculation using the

methods ofχPT, are renormalized, or altered, at different energy scales. This knowl-

edge of the power-counting regime, in turn, yields insight into the repercussions of

chiral symmetry breaking in QCD.

The results of lattice QCD simulations provide an important application for the

investigation intoχPT and the power-counting regime. Lattice QCD results are typ-

ically produced at a variety of quark masses larger than the physical quark mass. As

such, a chiral extrapolation to the physical point is required before the result can be

compared to experiment. In addition, experimental resultsare not constrained by the

boundaries of a small box only a few fermi in length. It is important to be able to

quantify how the finite-volume nature of lattice QCD affects calculations. Analysis

shows that the finite-volume behaviour of QCD on the lattice can affect the result

of a calculation in non-trivial ways. Being able to perform anextrapolation that

takes into account finite-volume effects is also an important step in understanding

the effects of a finite-volume box on the dynamics of QCD.

The investigation of the power-counting regime has additional importance. Few

lattice QCD results in the literature are evaluated at quark masses that lie within

the power-counting regime. As such, the powerful tools associated withχPT may

not be used legitimately, since the chiral power-counting expansion of an observable

would not be convergent. If higher-order terms in the seriesexpansion are not small

with respect to some power-counting scheme, the result of anextrapolation will be

scheme-dependent. This thesis describes the constructionof an extended effective
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field theory that can be applied outside the power-counting regime by extracting a

quantative estimate of the extent of the energy scale-dependence, associated with the

process of regularization inχPT calculations. It is discovered that lattice simulation

results themselves can provide guidance on an optimal choice of regularization scale.

This optimal scale indicates a possible connection with thefinite-size of the hadron

cloud in the form of an intrinsic scale.

Thus, by analyzing the results from the supercomputer simulations of lattice

QCD, an intrinsic scale will be discovered that characterizes the finite size of the

interaction between the hadron cloud and the core of the hadron.



Chapter 2

Lattice QCD

“While the classical vision of the world is intrinsically limited, nothing restricts the

scientific representation. During the conception stage, the method is free to consider

all hypotheses, even the most far-fetched, in order to mimicReality.” (Omǹes, R.

2002.Quantum Philosophy: Understanding and Interpreting Contemporary Science

p.268) [Omn02]

The inception of a discrete, lattice approach to quantum chromodynamics (QCD)

in 1974 by Wilson marked the beginning of a robust, investigative technique into the

previously inaccessible low-energy region of strong forceinteractions [Wil74]. By

simulating the behaviour of quarks on a lattice, bound states of hadrons are formed,

exhibiting confinement, and the behaviour of particle interactions is correctly pre-

dicted: a testament to the achievement of QCD as a theory of thestrong force.

Lattice QCD provides non-perturbative techniques for obtaining results from the

low-energy, chiral dynamics of hadrons. It involves the construction of a finite-

volume box of discrete momenta, with calculations performed from first principles.

The finite box size of the lattice removes any infrared divergences that would occur

in infinite-volume QCD, and the lattice spacing acts to regulate the ultraviolet be-

haviour of observable quantities by limiting the lattice momenta to discrete values.

In lattice QCD, a Euclidean hypercube is constructed with finite length and dis-

crete lattice spacing. The quantum field theory can then be represented by the func-

tional integrals defined on such a box. The momenta can only take the discrete values

7
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in the four-box:

kµ =
2π
aN

nµ , (2.1)

wherea is the lattice spacing,nµ is an integer array representing the lattice sites,

andN is the number of lattice sites in each direction, such that−N/2< nµ≤ N/2.

Thus, the maximum valuekµ can take isπ/a. This means that the ultraviolet physics

included in our lattice is entirely determined by the lattice spacing, which thus acts to

regulate arbitrarily hard momentum contributions to quantum field theoretical quan-

tities. The real-world dynamics of QCD are recovered in the limit of vanishing lattice

spacing (the continuum limit) and the infinite-volume limit.

The dynamics of QCD are encoded in the QCD Lagrangian: a quantity in quan-

tum field theory that extends the classical notion of the difference between the ki-

netic and potential energy terms to a density in spacetime. The generalized kinetic

and potential terms are constructed from the relevant degrees of freedom: quantum

fields [Wei95]. The QCD Lagrangian includes a sum of Fermi-Dirac Lagrangians

for all quark flavours, an interaction term and a Yang-Mills term. In tensor form (and

summing over repeated indices), the Lagrangian reads:

LQCD = LDirac+Lint +LYM (2.2)

= ∑
q

{

ψ̄i
q(γ

µ
↔
∂ µ−mq)ψi

q−αsψ̄i
qγµJi j

a A
a
µψ j

q

}

− 1
4

Ga
µνGµν

a . (2.3)

The fieldsψq and ψ̄q are Dirac spinors representing different quark flavours and

colours, with massmq. (Dirac spinor algebra was introduced in References [Dir28b,

Dir28a], and some of the basic properties of a Dirac spinor can be found in Appendix

A.3.) The fieldsGa
µν are the non-Abelian field strength tensors corresponding tothe

gluon fieldAa
µ, via the equation:

Ga
µν = ∂µA

a
ν −∂νA

a
µ− iαs fabcA

b
µA

c
ν , (2.4)

where the structure constantsfabcare defined in Appendix A.2. The Yang-Mills term

describes the self-interaction of the gluon fields, such that the result is invariant with
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respect to a special type of symmetry known as the gauge symmetry. In QCD, the

gauge symmetry is realized in the Lagrangian by forming representions of a mathe-

matical group, in this case, SU(3)c (wherec stands for ‘colour’). Each term in the

Lagrangian must be invariant under transformations involving this group. The quark

spinors form a basis for the fundamental representation of the group. The gluon

fields, however, are defined in the eight-dimensional representation of SU(3), and

the indexa runs from 1 through 8. The matricesJi j
a are the generators of the gauge

group SU(3). A detailed review of the symmetries of QCD is included in Chapter

3. Suffice to say, the Lagrangian in Equation (2.3) will be assumed in defining the

QCD Action in the following Section.

2.1 Functional Methods

Lattice QCD relies on a variety of techniques to obtain information about the dy-

namics of QCD. In particular, the path integral method of quantization serves as

a starting point, where complex valued Grassmann fields are used to represent the

quark spinorsψ and their adjoints̄ψ. (For a short summary on the properties of

Grassmann algebra and Berezin integrals, refer to Appendix A.3.) Before introduc-

ing the procedure for calculating the expectation values ofobservables using lattice

QCD, it is helpful to review the functional methods required for defining the gener-

ating functionals and then-point Green’s Functions. In the following Section, use is

made of the functional derivativeδ
δJ (x) , the properties of which follow analogously

from the standard derivative of a function [RS80].

Consider the generating functional technique, choosing a set of fieldsΦ= {Aa
µ,ψ, ψ̄},

defined by a set of gauge fieldsAa
µ and Dirac spinorsψ & ψ̄, and integrating over

all possible paths. In general, for a LagrangianL(Φ,∂µΦ), the corresponding action

can be written as follows:

S[Φ] =
∫

d4xL(Φ(x),∂µΦ(x)) . (2.5)
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The generating functional with source termsJ (xi) takes the form:

Z[J (xi)] =
1
N

∫
DΦ exp

{

iS[Φ]−
∫

d4xJ (xi)Φ(xi)

}

,
∫
DΦ≡

∞

∏
i=1

∫
dΦi , (2.6)

with normalization:

N =
∫
DΦ exp{iS[Φ]} . (2.7)

The calculation of then-point Green’s Functions is performed by taking functional

derivatives of the generating functional with respect to sourcesJ (xi), and then setting

each source to zero:

τ(n)(x1, · · · ,xn) =
1
N

∫
DΦ Φ1 · · ·Φnexp{iS[Φ]} . (2.8)

In order to obtain only the connected diagrams for the generating functional, one can

define the connected generating functionalW :

W [J ] =−i logZ[J ]. (2.9)

The connected (or irreducible)n-point Green’s Functions can then be calculated as

the time-ordered vacuum expectation values of the fields, with respect to the inter-

acting vacuum|Ω〉:

G(n)(x1, · · · ,xn) = 〈Ω | T [Φ(x1) · · ·Φ(xn)] |Ω〉=
1
in

δ(n)W [J ]

∏n
i=1δJ (xi)

∣

∣

∣

∣

∣

J=0

. (2.10)

The generating functional of Equation (2.6) is useful for constructing an expan-

sion of amplitudes. This expansion is obtained from the Schwinger-Dyson equa-

tions, the set of differential equations satisfied by the generating functional:

δ
δΦ(xi)

S

[

1
i

δ
δJ

]

Z[J (xi)]+ J (xi)Z[J ] = 0. (2.11)

The Schwinger-Dyson Equations are simply the Euler-Lagrange equations of mo-

tion for the n-point Green’s Functions of the gauge field theory. They provide a
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continuum persective to the challenging problems of non-perturbative QCD, as sum-

marized by Roberts and Williams [RW94]. The investigation of the analytic prop-

erties of these equations form a crucial component of the study of quark confine-

ment: where the strong coupling parameter becomes large. The Schwinger-Dyson

Equations also shed light onto the process of dynamical chiral symmetry breaking,

discussed in detail in Chapter 3.

Physical observables of a system can be obtained conveniently using Equation

(2.10). To evaluate expectation values〈O〉 numerically, it is common practice to

remove the difficulties of Minkowski spacetime by an analytic continuation to imag-

inary Euclidean time, or a Wick rotation,t→−it , andS= iSE. Thus the expectation

values become numerically soluble, since the highly oscillatory behaviour of the

n-point Green’s Functions have been exponentially damped. Thus:

〈O〉=
∫
DΦO exp{−SE[Φ]}∫
DΦ exp{−SE[Φ]} , (2.12)

which is of the same form as the correlation function in statistical mechanics. Using

the Euclidean Action, the fermionic part of the partition function can be calculated

explicitly, leaving an expression in terms of a fermion correlation matrixM :

Z =
∫
DAa

µ det(M [Aa
µ]) exp

{

−SE[A
a
µ]
}

. (2.13)

2.1.1 Wilson Fermions

In constructing an action on the lattice, such as that of Equation (2.5), there is a

difficulty in implementing the fermion field. This difficultyis known as the fermion

doubling problem. The problem occurs when solving the kinetic part of the Dirac

Equation of motion,(i/∂−m)ψ = 0, on the lattice. The derivative∂ is taken as an av-

erage (or a forward-backward average so that the result is Hermitian), and the prop-

agator derived is of the form: sin(/p+m)−1. The correct behaviour of the Green’s

Function is exhibited asp→ 0, but asp→ π the propagator also vanishes at the edge

of the Brillouin Zone: the fundamental cell of a lattice theory with a periodic bound-
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ary. Thus for sin(/p) = 0 there are 2dim degenerate quarks for each flavour, which

corresponds to sixteen degenerate quarks in four-space. Inorder to amend this, Wil-

son introduced a five-dimensional operator, which increases the mass of the doubler

species proportional to lattice spacinga [Wil74]. Note that asa→ 0 in the con-

tinuum limit, the Wilson term disappears and does not alter the dynamics of QCD.

However, the Wilson Action violates chiral symmetry. This important symmetry en-

sures the consistent renormalization of the low-energy constants of the Lagrangian

via the chiral Ward Identities, which describe the conservation of a symmetry as ap-

plied to quantum amplitudes. Chiral symmetry is described inmore depth in Chapter

3. Additionally, a so-called Clover term is often added to theLagrangian, which is

proportional toψ̄JaGa
µνψ. This term is also a five-dimensional object, and, like the

Wilson Action, is suppressed in the continuum limit. In addition, errors ofO(a)

can be removed, and higher-order errors ofO(a2) can be suppressed by using non-

perturbatively improved actions [NN95, LSSW96, Z+02]. Lattice QCD simulation

results relying on a variety of actions are presented in Chapters 4 through 7, and the

benefits and shortcomings of each one will be addressed as they arise.

2.1.2 Correlation Functions and the Effective Mass

Consider the following example regarding the construction of a correlation matrix

element, and the extraction of the effective mass. In applying lattice QCD to the

extraction of the mass of the nucleon, one defines interpolating fieldsχ andχ̄, which

incorporate the structure of a nucleon in terms of its constituent quarks. For ex-

ample, in the case of a proton,χ = εabc(uT
a Cγ5db)uc is a suitable choice, since the

maximally anti-symmetric Levi-Civita symbolε ensures a colour-singlet state, and

the Dirac spin matrixγ5 (defined in Appendix A.1) preserves the spinor properties

of the interpolating field. The fieldsu, d are Dirac spinors representing the up and

down quarks, respectively, and the charge conjugation matrix C= iγ0γ2 ensures that

the product of a spinor and its transpose satisfies Lorentz invariance.

The two-point Green’s Function for a proton, or more generally, the nucleon, can

be expanded by inserting both a complete set of momentum- andspin-dependent
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eigenstates|A(q,s)〉, and a translation operator on theχ field:

G(2)(~x, t) = 〈Ω|χ(~x, t) χ̄(0)|Ω〉, (2.14)

G(2)(~p, t) = ∑
~x,A,~q,s

e−i~p·~x〈Ω|e−iq·xχ(0)eiq·x|A(q,s)〉〈A(q,s)|χ̄(0)|Ω〉 (2.15)

= ∑
~x,A,~q,s

e−i(~p−~q)·~xe−EA(~q)t〈Ω|χ(0)|A(q,s)〉〈A(q,s)|χ̄(0)|Ω〉 (2.16)

= ∑
A,~q,s

δ(~p−~q)e−EA(~q)t |〈Ω|χ(0)|A(q,s)〉|2 (2.17)

= ∑
A,s

|λA,p,s|2e−EA(~p)tψ(~p,s) ψ̄(~p,s), (2.18)

for complex-valued scalar coefficientsλA,p,s, λ∗A,p,s and spinor fieldsψ, ψ̄ defined by

the matrix elements:

λA,p,sψ = 〈Ω|χ(0)|A(p,s)〉; λ∗A,p,sψ̄ = 〈A(p,s)|χ(0)|Ω〉. (2.19)

The mass of the nucleon can then be extracted from the two-point Green’s Function

at zero 3-momentum, that is,EA(~p= 0) = MA. To obtain a measure of this quantity

from the exponential, one defines the effective massMeff by comparing the behaviour

of the Green’s Function at timest andt +1:

Meff = log

(

G2(0, t)
G2(0, t +1)

)

. (2.20)

Note thatMeff is a dimensionless quantity, and the calculation of the massof the

nucleon must involve the conversion to physical units from lattice units by dividing

by the lattice spacinga. Since the Green’s Function incorporates the full quantum

mechanical spectrum of modes, the behaviour ofMeff is strongly influenced by the

excited states of the nucleon at smallt. In the limit of larget, however, the ground-

state nucleon mass can be recovered:

MN = lim
t→∞

Meff

a
. (2.21)
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2.1.3 Quenching and Computational Alternatives

Computing the quantity det(M [Aa
µ]) is the most time-consuming operation in the

calculation of the partition function in Equation (2.13). For this reason, calculations

are performed at fermion masses larger than their physical value, thus decreasing

the Compton wavelength of a fermion and significantly reducing the computational

resource requirement of the summation over all paths and thetime required to ex-

ecute all the necessary fermion matrix inversion algorithms. Usually, results from

lattice QCD are obtained at multiple fermion masses, so an extrapolation can be

used to obtain the result at the physical value, or at zero mass (the chiral limit). A

complementary computational simplification known as quenching exists, whereby

det(M [Aa
µ]) is set equal to a constant. This has the effect of removing from the

theory all vacuum polarization diagrams, changing the dynamics of the quantum

field theory in a non-trivial way. For this reason, quenched QCD (QQCD) should

be considered, in essence, a different theory from QCD. The results from QQCD

calculations can nonetheless be interesting points of investigation, as they offer a

unique testing ground for extrapolation schemes. This is because results from the

unphysical QQCD calculation cannot be known in advance from experiment.

Several other alternatives to quenching have been used in the literature to date.

Sometimes, the vacuum polarizations, normally omitted in QQCD, are calculated

for a different (usually larger) quark mass than the valencequarks, which couple to

external sources. The quarks that appear in the disconnected loops are known as sea

quarks. This distinction between sea quark mass and valencequark mass provides

some of the dynamics of QCD, albeit altered, whilst still ameliorating the computa-

tional intensity of the calculation of det(M [Aa
µ]). An alternative, particularly used

in electromagnetic contributions to QCD, is to omit diagramsthat include indirect

couplings, that is, external fields coupling to sea quark-antiquark pairs, as shown in

Figure 2.1. The computation of the indirect couplings to disconnected quark loops

is by far the most time-consuming portion of the calculationof a diagram. Valence

QCD (VQCD) therefore only includes diagrams where any external particles, such

as incoming photons, couple directly to valence quarks in the relevant hadron. Al-
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Figure 2.1:An external photon coupling to a sea quark-antiquark pair. Diagrams including this
kind of coupling are omitted in Valence QCD.

though the resulting theory differs from full QCD, often properties of particles are

calculated using an isovector combination. In the case of anisovector, a linear com-

bination of isospin partners is formed so that the resultantcombination transforms

as a vector in isospin space. For example, in the case of the nucleon, the combi-

nation of the fermion fields:p−n (proton minus neutron) is isovectorial with total

isospin of 1, and all diagrams containing indirect couplings cancel. This is because

diagrams that contain indirect couplings to disconnected loops are exactly the same

for the proton and neutron, and thus disappear in the combination: p−n. It is only

the valence quark composition that differs between the proton (uud) and the neu-

tron (d d u). Thus the distinction between full QCD and VQCD disappears for this

observable, and the calculations of its properties are lesscomputationally intensive.

2.2 Lattice QCD Applicability and Issues

It is important to identify clearly the constraints of lattice gauge theory. Lattice

QCD is well defined over all box sizes, lattice spacings and quark masses, and it

is also infinitely scalable. However, the computational cost of the calculation of an

observable is generally proportional to the square of the lattice volume and inversely

proportional to the sixth power of the lattice spacing. To avoid major finite-volume

effects, the literature suggests that the lattice box length should be about 2.5 to 3.0 fm

[SW85, LTTW00, FKOU95, DLL96, LS96]. This is the typical size of most current

lattice QCD calculations. Nevertheless, finite-volume effects can still be significant
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at these box sizes, and ought not to be neglected. In fact, formany observables, a box

length of 3.0 fm is insufficient to avoid large finite-volume correctionsat physical

quark masses. This will be demonstrated in Chapters 4 through7 for a variety of

observables.

While continued supercomputing advances in numerical simulations of lattice

QCD are important, one ought to recognize its limitations in providing a thorough

understanding of the internal structure of hadrons, which can be aided, in part,

by complementary techniques such as chiral perturbation theory (χPT). For exam-

ple, consider the effects of the mesons known as kaons, vitalfor understanding

strangeness in the nucleon, which appear in the meson octet (see in Appendix A.4).

One must either useχPT calculated to significantly high order in the relevant per-

turbative expansion, or develop new non-perturbative approaches which utilize the

non-perturbative information expressed in the lattice simulation results. Since the

former is likely to be compromised by the asymptotic nature of the expansion, atten-

tion is given to the latter approach in Chapter 4.

The computation of observables in lattice QCD provides greatinsight into the

non-perturbative region of QCD. As long as one can account forfinite-volume and

momentum discretization effects, lattice QCD provides excellent predictions of the

behaviour of quarks at low-energy. In simulating the interactions of hadrons, and

demonstrating confinement, lattice QCD is a landmark achievement in the realm of

chiral dynamics.

The complementary methods obtained from effective field theory offer guidance

in the calculation of observables on the lattice. They provide estimates of finite-

volume effects and extrapolations to physical quark masses, and providing a deeper

understanding of the applicable regions of lattice QCD. Thiscan serve to ameliorate

the otherwise unseen difficulties encountered in a brute-force approach to calculation

by considering symmetries, renormalization, power-counting, and other techniques

built into the formalism of chiral effective field theory. Each method presents its

own challenges, but also brings enlightenment through the significantly different

approaches to a given problem.



Chapter 3

Chiral Effective Field Theory

“Everything can be tried, a bold abstraction of something that has succeeded else-

where, the exploration of the faintest clue, or a leap throughempty spaces. . .

Thus, the method exists, boundless, its ultimate foundation being the freedom of

the mind.” (Omǹes, R. 2002.Quantum Philosophy: Understanding and Interpreting

Contemporary Sciencep.268) [Omn02]

In an effective field theory, one identifies the relevant degrees of freedom at a

particular energy, and encodes the behaviour of these degrees of freedom in a suit-

able Lagrangian. For a low-energy effective field theory corresponding to quantum

chromodynamics (QCD), such as chiral effective field theory (χEFT), effective La-

grangians may take on different forms to the QCD Lagrangian, but the physics of

the strong interaction must remain the same in each case. That is, results for cal-

culating elements of the S-matrix must agree among effective field theories, up to

some order. In order to construct such a theory, terms in the effective Lagrangian are

chosen so that they satisfy the fundamental symmetries of QCD. The coefficients of

the terms in the effective Lagrangian are new coupling constants, the values of which

are determined from experiments.

The method of effective Lagrangians provides alternative machinery to lattice

QCD for understanding the low-energy behaviour of QCD, and physical theories in

general at a specific energy level. The dynamics of the low-energy degrees of free-

dom, such as mesons and baryons in the case ofχPT, are incorporated directly into

17
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the Lagrangian, whereas very massive particles are treatedas static sources [DGH96,

Bor07]. Examples of important effective field theories include the Sigma Model

and its various instructive representations, the MIT Bag Model [CJJ+74, Joh78] and

Cloudy Bag Model [MTT80], as well as quantum electrodynamics (QED) and QCD

themselves [Wei95].

Recall that the QCD Lagrangian comprises a Yang-Mills term involving vector

potentialsAa
µ, their field strength tensorsGa

µν = ∂[µAa
ν]− iαs fabcA

b
µA

c
ν and a Dirac

term of quark spinorsψ corresponding to a mass matrixM . The spinors and the

mass matrix are extended to contain the six flavour and three colour components

of QCD. Using the slash-notationγµDµ≡ /D, the QCD Lagrangian may written out

conveniently in matrix form1:

LQCD = ψ̄(i
↔
/D −M )ψ− 1

2
Tr [ḠµνḠµν] , (3.1)

where the trace acts over colour indices for the matrix-valued versions of the gluon

field strength tensor̄Gµν, defined by summing over the generatorsJa of SU(3):

Ḡµν = JaGa
µν = ∂[µĀν]+ iαs[Āµ, Āν] . (3.2)

The generatorsJa in the eight-dimensional representation of SU(3) are related to the

Gell-Mann matricesλa, defined in Appendix A.2, by a factor of a half:

Ja =
λa

2
. (3.3)

The quark-gluon interaction vertex is incorporated into the covariant derivative, de-

fined as:

Dµ = ∂µ+ iαs
λa

2
Aa

µ , (3.4)

which acts as a parallel transport in gauge-space, so that the QCD Lagrangian of

Equation (3.1) is gauge-invariant. By substituting into Equation (3.2), it can be seen

1The double-headed arrow indicates the difference between the derivative acting to the right and

to the left. i.e.
↔
D =

→
D−

←
D.
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that the anti-symmetrization of the covariant derivative is the field strength tensor.

This is a consequence of the gauge connectionĀµ lacking torsion:

Ḡµν =
i

αs
[Dµ,Dν] . (3.5)

The fundamental symmetries of QCD are built into the QCD Lagrangian of

Equation (3.1). In particular, chiral symmetry will be important in the subsequent

analyses of observables usingχEFT. The consequences of chiral symmetry break-

ing ultimately have a profound effect on the behaviour of subatomic particles, their

masses, magnetic moments and other properties. Therefore,it will be beneficial to

describe some of the subtleties of chiral symmetry with carein the discussion below.

3.1 Chiral Symmetry

In general, a symmetry, or an invariance of a dynamical quantity under a transfor-

mation of one of its parameters, leads to important physicalinsights into a system.

Noether’s Theorem demonstrates that a conserved current can always be constructed

from a (non-anomalous) symmetry of a field theory.

Chirality is defined as the handedness of the representationsof the Poincaŕe

group (which encodes the isometries of Minkowski spacetime) under which the

quark spinors transform. It is related to the helicity of a particle: the projection

of its spin on its direction of linear momentum, which is equivalent to chirality if the

quarks are massless. Helicity is not in general a Lorentz-invariant quantity. Its value

in one frame may be flipped with respect to its value in a boosted frame.

The QCD Lagrangian in Equation (3.1) can be split into separate left- and right-

handed chiral states under the projectionsΓL,R = 1
2(1± γ5). The left- and right-

handed spinors are written as:

ψL,R = ΓL,Rψ . (3.6)

Note that the resultant chirality of the quark fields is decoupled only for zero mass
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[DGH96]:

LQCD = LL +LR+LYM +Lmass

= iψ̄L

↔
/D ψL + iψ̄R

↔
/D ψR−

1
2

Tr [ḠµνḠµν]− (ψ̄LMψR+ ψ̄RMψL) . (3.7)

The quark fields transform under the chiral rotationsL andR, which are elements of

the left- and right-handed Lie Algebra, respectively, defined for the group generators

Qa
L,R and arbitrary, continuous, real parametersαa

L,R:

L = exp(iαa
LQa

L) ∈ SU(3)L , (3.8)

R= exp(iαa
RQa

R) ∈ SU(3)R. (3.9)

The transformation laws for each of the spinor fields can thusbe written:

ψL→ LψL = ψL +δψL , (3.10)

ψR→ RψR = ψR+δψR. (3.11)

Noether’s Theorem allows one to construct the left and rightsymmetry currents, with

the corresponding time-independent charges forming the eight unique invariants of

the group. These invariants are the generators, and are found by integrating over

a spacelike surfaceσ. Note that in the case of SU(3)L,R the generators are related

to the previously mentioned Gell-Mann matricesλa, after chiral projection by the

group elements (up to a minus sign and a factor of a half, by convention):

Jµa
L,R =

∂LQCD

∂∂µψ̄L
δψ̄L =

1
2

ψ̄L,Rγµ λa

2
ψL,R, (3.12)

Qa
L,R =

∫
dσµJµa

L,R =
∫

d3x J0a
L,R = −ΓL,R

λa

2
. (3.13)

An equivalent convention to that of left/right chirality isthe construction of vec-

tor and axial vector transformations. The group action can be written out explicitly

for either convention, using the definition of a Lie group with continuous group pa-

rametersαa
V,A. The chargesQa

V andQa
A simply count the sum and the difference of
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left- and right-handed fermions, respectively:

V = exp(iαa
VQa

V) ∈ SU(3)V , (3.14)

A= exp(iαa
AQa

A) ∈ SU(3)A , (3.15)

Qa
V = Qa

L +Qa
R =−λa

2
, (3.16)

Qa
A = Qa

L−Qa
R =−λa

2
γ5 . (3.17)

These sets of rotations are the most convenient for asserting the invocation of an

important theorem known as Goldstone’s Theorem. Goldstone’s Theorem, described

below, is crucial in understanding the connection between axial chargesQa
A and the

origin of mesons in QCD.

3.1.1 Spontaneous Symmetry Breaking

In QCD, particles are believed to utilize the Nambu-Goldstone mode of spontaneous

breaking of a continuous global gauge symmetry. This symmetry breaking occurs

in flavour space, and only the lightest three quark flavours will be considered: up,

down, strange. Since the up and down quarks have relatively low mass (mu,d ∼ 2-6

MeV, ms∼ 100 MeV) compared to the other quarks (mc∼ 1.3 GeV), they contribute

the most strongly to symmetry breaking effects.

Goldstone’s Theorem states that the symmetry group SU(3)V ⊗SU(3)A is not

respected by the (no-particle) vacuum state|0〉, even though this group is a symmetry

of the massless QCD Lagrangian. One might naı̈vely expect that the vacuum state is

invariant under the group transformations:

V|0〉= A|0〉= |0〉 . (3.18)
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Noether’s Theorem entails that the symmetry charges are time-independent:

d
dt

Qa
V,A = 0= [HQCD,Q

a
V,A] . (3.19)

This means that the charges should annihilate the vacuum state |0〉, since the QCD

HamiltonianHQCD annihilates the vacuum state. In 1984, Witten and Vafa proved

this result for vector charges even without assuming chiralsymmetry [VW84]. How-

ever, were this the case for axial charges, a spectrum of mass-degenerate partners

with opposite parity would be expected to exist for all hadrons. This is because

the axial charges are odd under parity transformations, andany state acted on by

the axial charges will also retain the same energy eigenvalue (but with a flipped

parity eigenvalue), because of the commutation relation inEquation (3.19). There

is a stark lack of experimental evidence for such particles [Y+06]. Thus, physical

hadrons merely observe the symmetry group SU(3)V .

Instead of annihilating the vacuum state, the axial chargestransform it to an

element of a new Hilbert space:

Qa
V |0〉= 0, (3.20)

Qa
A|0〉= qA|πa(~p)〉 6= 0. (3.21)

This new state (with axial eigenvalueqA) has the same energy as the vacuum state as

long as the symmetry is not also explicitly broken by terms inthe Lagrangian. Gold-

stone’s Theorem states that new particles are created, the number of which corre-

sponds to the number of generators for the relevant representation of SU(3)A. These

new particles must be massless and spinless pseudoscalar mesons, called Goldstone

bosons.

If the physical manifestation of a symmetry of a Lagrangian involves the spon-

taneous breaking of one or several local continuous transformations, the theory pre-

dicts a massive spin zero boson called a Higgs field, and the Higgs mode is said to

be realized. Although the Higgs mode is not expected to occurin the strong nuclear

force sector of the Standard Model, its actualization in theelectroweak sector would
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result in a mass term for the{W±,Z} weak gauge bosons. Such a mass is observed

in experiments, and also explains how the charged fermion fields gain mass, through

the following argument. By considering the Lagrangian for anSU(2) complex dou-

blet of bosons, which can be expanded about its minimum potential energy in the

same manner as the Goldstone bosons, one must arbitrarily choose a direction in

isospin space in which to expand. Three of the Higgs degrees of freedom combine

to become the longitudinal spin modes of the three weak gaugebosons, and the mass

of the fermions is produced by the vacuum expectation value of the remaining Higgs

boson, which remains in the theory [GHK64]. It should be noted that the Higgs

mechanism contributes only a small amount to the mass of hadrons in QCD, and

that the dominant process for their mass acquisition is dynamical chiral symmetry

breaking [GN74, RCR10]. A more detailed analysis of the consequences of dynam-

ical chiral symmetry breaking for the mass of the nucleon is discussed in Chapter 4,

in the context of varying quark masses in lattice QCD results.

3.1.2 Partial Conservation of the Axial Current

Before discussing the powerful techniques associated with effective Lagrangians, a

brief overview is now presented for the current algebra method for obtaining the

low-energy matrix elements of pion decay. It is known that the SU(3) axial currents

Jµa
A are non-zero. But in order to know exactly how these matrix elements vary and

how they depend on the octet meson masses, one requires a current algebra tech-

nique known as Partial Conservation of the Axial Current (PCAC).The statement of

Goldstone’s Theorem in Equation (3.21) can be re-expressedas a matrix element:

〈0|Jµa
A |πb(~p)〉= i fπ pµδab, (3.22)

from which follows the divergence:

〈0|∂µJµa
A |πb(~p)〉= fπm2

πδab. (3.23)
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Equation (3.22) serves as a suitable definition of the pion decay constantfπ. Taking

the value from experiment:fπ ≈ 92.4 MeV.

Equation (3.23), together with the Haag Theorem, forms the principal statement

of PCAC, that eitherπa or ∂µJµa
A can be used equivalently, and that if the pion mass

becomes zero then the axial current is totally conserved. Thus the following relation

may be written:

πa =
1

fπm2
π

∂µJµa
A . (3.24)

This situation is a special case of the Soft-Pion Theorem fora matrix element in-

volving a general local operatorO :

lim
pµ→0
〈πa(~p)β|O |α〉=− i

fπ
〈β| [Ja

A,O] |α〉 . (3.25)

While they are useful in obtaining specific information aboutthe low-energy matrix

elements of pion decay, the methods of PCAC can be subtle in determining possible

momentum dependence in an amplitude of a low-energy process. One must also

make the assumption that matrix elements vary continuouslyin taking the soft pion

limit, pµ→ 0. The method of effective Lagrangians is less awkward in obtaining the

appropriate momentum dependence and any quantum corrections to a low-energy

amplitude. This is because the effective Lagrangians are ordered by a systematic ex-

pansion in momentum or mass, which encodes the relative importance of corrections

to an amplitude in question.

3.1.3 The Sigma Model

The Linear Sigma Model [GML60] is a useful pedagogical tool,because with it im-

portant theoretical techniques such as the construction ofsymmetry currents, spon-

taneous symmetry breaking and changes in parameterizationcan be demonstrated

easily [DGH96]. First, consider an SU(2) Sigma Model Lagrangian consisting of a

massless spinor fieldψ, a so-called pion field~π spanning the triplet representation of

SU(2) and a massive scalar fieldσ. The consideration of isospin symmetry in SU(2)

provides a simple and instructive example for investigating symmetries [DGH96].
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The Lagrangian takes the following form:

Lσ = ψ̄i /
↔
∂ ψ+

1
2

∂µ~π ·∂µ~π+
1
2

∂µσ∂µσ−gψ̄(σ− i~τ·~πγ5)ψ+
µ2

2
(σ2+~π2)− λ

4
(σ2+~π2)

2
,

(3.26)

(for constant coupling parametersg, µ andλ, and SU(2) Pauli Spin matrices~τ de-

fined in Appendix A.1).

Spontaneous symmetry breaking occurs in the Lagrangian of Equation (3.26) for

µ2 > 0. In minimizing the potential:

V(σ,~π) =−µ2

2
(σ2+~π2)+

λ
4
(σ2+~π2)

2
, (3.27)

a ground state is found that is non-trivial (unlike the caseµ2 < 0, for which the only

ground state solution is:σ =~π = 0). This ground state is defined by:

σ2+~π2 =
µ2

λ
. (3.28)

By redefining theσ field and expanding the Lagrangian about the new ground state

〈σ〉0≡ v, the Linear Sigma Model exhibits spontaneous symmetry breaking, evident

in the acquisition of mass for thẽσ field:

σ̃ = σ−v, (3.29)

Lσ̃ = ψ̄(i /
↔
∂ −gv)ψ+

1
2

∂µ~π ·∂µ~π+
1
2
(∂µσ̃∂µσ̃−2µ2σ̃2)−gψ̄(σ̃− i~τ ·~πγ5)ψ

−λvσ̃(σ̃2+~π2)− λ
4
[(σ2+~π2)

2−v4] . (3.30)

Nevertheless, SU(2) isospin symmetry is preserved in this Lagrangian.

The active degrees of freedom in an effective field theory do not necessarily cor-

respond to elementary particles of nature, and so it is expected that changes in the

representation do not alter the outcome of physical processes. This notion is formal-

ized in the Haag Theorem [Haa58], which states that for two field variables derived

from (unitarily) equivalent representations, if one is a free field, then the other is

also free, regardless of how they are related and whether theassociated diagrams
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and Lagrangian vertices change [Gue66]. As a corollary, an interacting quantum

field theory ‘does not exist’, in the sense that its fields do not transform covariantly

under the interacting Poincaré group. Weinberg suggested that only free fields are

required to construct the S-matrix from the relativistic Hamiltonians in QED, but in

QCD one must simply resort to writing down the most general Lagrangian [Wei95].

An alternative approach demonstrates that an interaction picture can be constructed

consistently if time evolution is taken to be only locally unitarily implementable

[Gue66].

By redefining the scalar field in either linear or non-linear combinations of the

other involved fields, different sets of interaction vertices can be assembled. For

example, using the Linear Sigma Model, two particularly instructive representations

are considered for later adaptation to low-energy QCD. By rewriting the heavyσ

field and pion triplet as a matrix quantityΣ ≡ σ+ i~τ ·~π, the resultant new fieldΣ

transforms as an object in the adjoint representation, which forms left cosets of the

group SU(2)L⊗SU(2)R, as described by Scherer [SS05]:

Σ→ LΣR† . (3.31)

In this representation, the Lagrangian becomes:

LΣ = ψ̄Li /
↔
∂ ψL + ψ̄Ri /

↔
∂ ψR+

1
4

Tr [∂µΣ∂µΣ†]+
1
4

µ2Tr [Σ†Σ]− λ
16

Tr [Σ†Σ]2

−g
(

ψ̄LΣψR+ ψ̄RΣ†ψL

)

. (3.32)

This form is useful because it allows one to identify easily the terms involved in

spontaneous chiral symmetry breaking (∼ Tr [Σ†Σ]). Terms responsible for explicit

chiral symmetry breaking (eg.σ∼ Tr [Σ+Σ†]) do not occur in this case, but will be

considered in the context ofχPT, in Section 3.2.

The exponential representation is most commonly employed for its application to

low-energy QCD. By defining a matrix-valued fieldU ≡ exp(i~τ ·~π/v) that transforms

the same way as the previousΣ field, and a massive scalar fieldS, the Lagrangian
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becomes:

LU =+ψ̄Li /
↔
∂ ψL + ψ̄Ri /

↔
∂ ψR+

1
2

(

(∂µS)2−2µ2S2)+
(v+S)2

4
Tr [∂µU∂µU†]

−λvS3− λ
4

S4−g(v+S)
(

ψ̄LUψR+ ψ̄RU†ψL

)

, (3.33)

for an arbitrary coupling constantv. This representation combines the matrix form

with a heavy scalar degree of freedom, which can be integrated out of the theory eas-

ily using the prescription provided by Donoghue, Golowich and Holstein [DGH96].

This is exactly the form needed to construct a low-energy effective field theory.

3.2 Chiral Perturbation Theory

The formalism of chiral perturbation theory (χPT) will take advantage of Gold-

stone’s Theorem and the study of symmetries discussed in theprevious section. In

this case, however, the global gauge group considered is flavour SU(3). In order

for the effective field theory to emulate physical results, one must write down the

mechanics of a Lagrangian field theory incorporating the necessary symmetries and

degrees of freedom at the observed scale. To represent particles such as pions and

kaons obeying Bose-Einstein statistics, one can write the standard massless scalar

Lagrangian:

Leff =
1
2

∂µπa∂µπa+O(π4) , (3.34)

and interpretπa as the octet of Goldstone bosons (whose explicit form can be found

in Appendix A.4). By defining a matrix-valued functionU , and its transformation

law, one can collect together the interaction terms in the exponential representation

in a similar way to the Sigma Model:

U = exp

(

i
f

πaλa
)

, (3.35)

U → LUR† , (3.36)
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with constantf . Now the effective Lagrangian can be written down as an expan-

sion of successive orders of momenta. The two derivatives inthe scalar Lagrangian

mean that only even chiral powers are admitted for particlessuch as mesons. For

the lowest-order free mesonic Lagrangian, there is only onelow-energy coupling

constant,f :

L
(2)
eff =

f 2

4
Tr [∂µU∂µU†] . (3.37)

(Higher-order mesonic Lagrangians can be found in References [SS05, Bor07, Ber08].)

The coefficientf from the definition of the fieldU appears here as a low-energy

constant (LEC), since it is expected that the expanded effective Lagrangian for the

pseudo-Goldstone fields will have the standard normalization for bosons,Leff =

1
2∂µπa∂µπa+O(π4). This LEC can further be identified with the pion decay con-

stant fπ by first considering the Fermi weak interaction Lagrangian as a left-handed

source field and computing the decay rate from the resultant invariant S-matrix ele-

ment [DGH96, SS05].

The second-order Lagrangian of Equation (3.37) will be the starting place for the

consideration of the low-energy meson sector of QCD.

3.2.1 Meson Sector

In the theory of mesons, one considers a set of Goldstone boson fields and interprets

them as the meson sector of QCD. One can use the knowledge of explicit symmetry

breaking from Section 3.1.1 to provide the fields with a (small) mass. Using the ex-

ponential representation,U(x) can be systematically expanded in powers of its small

momentum and mass with respect to some energy scaleΛχ. In 1984, Manoharet al.

identified this scale of chiral symmetry breaking asΛχ ∼ 4π f ≈ 1 GeV [MG84]. In

renormalization, this is the scale at which the next-order loop contribution retains

the same effective coupling strength (see Section 3.3).

The total mesonic Lagrangian can be written out in the expanded form of even
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chiral powers [Bor07]:

Lπ(U(x),M ) =
∞

∑
i=1

L
(2i)
π (U(x),M ) . (3.38)

In order to quantify the extent of the chiral symmetry breaking caused by the mass

terms in the expansion, initially letM transform as a field (M → LMR†), so that

the Lagrangian will remain invariant under global SU(3)L⊗SU(3)R. At lowest non-

trivial order:

L
(2)
π = Lkin

π +Lmass
π

=
f 2
π
4

Tr [∂µU∂µU†]+
f 2
π B0

4
Tr [MU†+UM†] , (3.39)

whereB0 is a constant (with dimensions of mass) included for generality. Chiral

symmetry breaking then results from imposing the Hermitiancondition for the quark

mass matrixM =M †. Thus the constantB0 directly corresponds to the extent of

chiral symmetry breaking [SS05, Bor07].

Some terms in the Lagrangians of either QCD orχPT explicitly break chiral

symmetry. For example,Lmassinvolving the quark mass in Equation (3.7) is invari-

ant under an axial group actionA= exp(− i
2αa

Aλaγ5). The associated axial Noether

currentsJµa
A encountered in PCAC will not be conserved, but diverge according to

the equation:

∂µJµa
A = 2iψ̄M γ5

λa

2
ψ . (3.40)

To relate the meson masses to the quark masses, consider chiral SU(3). It is

expected that the vacuum expectation values of the scalar quark densities are the

same in each theory: QCD andχPT. That is, the quark condensate〈q̄q〉, whereq

stands foru, d or s quarks, should be an observable independent of representation.

Consider the explicit chiral symmetry breaking terms of eachLagrangian, namely,

Lmassdefined in Equation (3.7) for QCD, and the mass termLmass
π of Equation (3.39)
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for χPT. By expanding out the exponential fieldU in Lmass
π , one obtains:

Lmass
π = B0 f 2

π Tr [M ]− 1
2

B0Tr [M π2]+O(π4) . (3.41)

For approximate isospin symmetrymu≈md≈ 1
2(mu+md)≡ m̂ 6=ms, expanding the

first of these terms yields the relations:

〈q̄q〉=−〈0|∂Lmixed

∂m̂
|0〉=−〈0|∂L

mass
π

∂m̂
|0〉=−B0 f 2

π . (3.42)

Thus there is a profound connection between quark condensation and the process of

dynamical chiral symmetry breaking. The second term yieldsthe Gell-Mann−Oakes−Renner

Relations [GMOR68] relating meson masses to quark masses:

m2
π = 2B0m̂, (3.43)

m2
K = B0(md +ms) , (3.44)

m2
η =

2
3

B0(m̂+2ms) . (3.45)

Just like PCAC, Equation (3.43) shows that if the light quark masses are zero, then

the pion mass must also be zero, and thus chiral symmetry holds. This leads to the

Gell-Mann−Okubo Mass Relation:

3m2
η = 4m2

K−m2
π . (3.46)

By additionally enforcing local chiral symmetry, the set of all chiral Ward Identi-

ties become an invariant of the generating functional encountered in Section (2.1), as

long as no anomalies are present [SS05]. The chiral Ward Identities simply encode

the statement of symmetry preservation and the existence ofconserved quantities as

a consequence, much like Noether’s Theorem; but applied to quantum amplitudes.

Consider QED, a U(1) gauge theory, as an example. The Ward Identity amounts

to a statement of charge conservation, and the existence of aconserved electric cur-

rent. In QCD, to be able to generate all the Green’s Functions for the theory, the
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Lagrangian must include pseudo-scalar (p) and vector (lµ, rµ) source fields, which

vanish to recover the standard QCD Lagrangian in Equation (3.1), and a scalar field

(s) that assumes the role of the quark massesM . This is known as the method of

external sources. This generalization of the QCD Lagrangianis vital for calculating

the divergence of Green’s Functions. These fields obey the following transformation

laws for the local chiral rotationsL(x),R(x) ∈ SU(3)L,R:

lµ→ L(x) lµL†(x)+ i(∂µL(x))L†(x) , (3.47)

rµ→ R(x) rµR†(x)+ i(∂µR(x))R†(x) , (3.48)

(s+ ip)→ L(x)(s+ ip)R†(x) . (3.49)

The QCD Lagrangian, invariant under local SU(3)L⊗SU(3)R, becomes:

L local
QCD = iψ̄/

↔
∂ ψ− 1

2
Tr [ḠµνḠµν]− ψ̄L(s+ ip)ψR− ψ̄R(s+ ip)ψL

− ψ̄γµΓLlµψ− ψ̄γµΓRrµψ . (3.50)

In the case of the low-energy effective Lagrangian, one mustdefine a covariant

derivative with transformation law:

∇µU = ∂µU + ilµU− iUrµ , (3.51)

∇µU → L(x)∇µUR†(x) . (3.52)

Therefore, the lowest-order non-trivial Lagrangian for mesons obeying local chiral

symmetry can now be written with mass source defined using theconventionχ =

2B0(s+ ip), functioning as a field, as before:

L
(2)
π =

f 2
π
4

Tr [∇µU∇µU†+χU†+Uχ†] . (3.53)
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3.2.2 Baryon Sector

Since the Lagrangian of a low-energy theory can be expanded out in a convergent

series of small momentap/Λχ, the mass of the baryons themselves cannot be treated

as an expansion parameter, since their mass and momenta are of the same order of

magnitude as the scaleΛχ; thus the perturbation theory diverges. That is, the mass

of a baryonMB ∼ Λχ, so the expansion parameterMB/Λχ cannot be small. To

overcome this difficulty in ordering the chiral series in thebaryon sector ofχPT,

consider the heavy-baryon approximation.

Define some alternative fieldsBv(x) to the SU(3) octet baryonsB(x) = Ba(x)λa,

with velocity vµ largely unchanged by pion interactions [Geo90, JM91a, JM91b].

These fieldsBv(x) are only just off-shell by a small amountk ·v:

pµ
B = MBvµ+kµ . (3.54)

A perturbation theory about this small momentumkµ can now be constructed. In

addition, the difficult spin structure of the new fieldsBv can be handled by using

the particle projection operatorPv =
1
2(1+ /v), thus absorbing the effects of virtual

baryon loops into higher chiral orders of the theory:

Bv(x) = Pv eiMB/vv·xB(x) . (3.55)

This procedure can be repeated in exact analogy for the totally symmetric Rarita-

Schwinger tensorTµabc
v (x), which represents the spin-3/2 decuplet fields, as long as

all spin-1/2 components are removed (γ ·Tabc
v = 0). It is defined by:

Tv(x) = Pv ei(MB+MT)/vv·xT(x) . (3.56)

The sum of the octet and decuplet masses is used, by convention, in the exponential

in order to avoid extra factors of mixed octet-decuplet fields in the final Lagrangian.

This results in a positive term proportional to the mass splitting ∆ = |MT −MB|
[JM91a]. (The explicit representation of these fields in SU(3) can be found in
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Appendix A.4). Treating the mass splitting∆≪ Λχ as a small perturbation, the

new velocity-dependent fieldsBv andTv (indices suppressed) obey a massless Dirac

Equation, and a Dirac Equation with small mass splitting, respectively:

i/∂Bv(x) = 0, (3.57)

(i/∂−∆)Tv(x) = 0. (3.58)

To write out a completely velocity-dependent Lagrangian for baryons and their

interactions with mesons, it now remains to rewrite all Dirac bilinears in terms of

a covariant spin operatorSµ
v = −1

8γ5[γµ,γν]vν, which has the useful property that

its commutation and anti-commutation rules depend only on the four-velocity vµ.

The meson interactions are incorporated into the theory by coupling baryon fields to

the axial current encountered in PCAC (Section (3.1.1)), which is equivalent to the

Goldstone bosons as per the Haag Theorem. The convention is to define exponential

fieldsξ2≡U , which follow the transformation rule [JM91b]:

ξ→ LξH†(x) = H(x)ξR† . (3.59)

The transformation matrixH = H(x) is a spacetime dependent combination of the

chiral transformation matrices and the Goldstone bosons themselves. This means

that the octet and decuplet fields’ transformation rules also involve H, and in fact,

the axial currentAµ and the octet baryon fieldBv are exactly analogous to theξ field

in their transformations. The additional subtlety with thedecuplet field is that each

of its three indices transforms separately:

B→ H BH† , (3.60)

Tabc
µ → Haa′Hbb′Hcc′Ta′b′c′

µ . (3.61)

Because the transformation matrixH is a spacetime-dependent object, a vectorial

connection needs to be included to preserve the gauge invariance of the Lagrangian.

Similarly, an axial vector combination of exponential fields can be defined. Under
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the Haag Theorem, these axial vectors are equivalent to the pseudo-Goldstone boson

fields:

Vµ =
1
2
(ξ∂µξ†+ξ†∂µξ) , (3.62)

Vµ→ HVµH†− (∂µH)H† , (3.63)

Aµ =
i
2
(ξ∂µξ†−ξ†∂µξ) , (3.64)

Aµ→ HAµH† . (3.65)

Thus the covariant derivative can now be included for both octet and decuplet fields.

As before, the decuplet requires a separate connection to act on each index:

DµBv = ∂µBv +[Vµ,Bv] , (3.66)

DµTαabc
v = ∂µTαabc

v +Vd
µaT

αdbc
v +Vd

µbT
αadc
v +Vd

µcT
αabd
v . (3.67)

The most general lowest-order Lagrangian for the baryon octet and decuplet

fields, including transition vertices, can be now written byidentifying the relevant

SU(3) invariants [JM91a, JM91b, Jen92, LS96, WL05, WLTY07]:

L
(1)
oct&dec= i Tr [B̄v(v ·D)Bv]+2DTr [B̄vSµ

v{Aµ,Bv}]+2F Tr [B̄vSµ
v[Aµ,Bv]]

−iT̄µ
v (v ·D)Tvµ+C (T̄µ

v AµBv + B̄vAµTµ
v )

+2H T̄µ
v SvαAαTvµ+∆T̄µ

v Tvµ . (3.68)

The so-calledD-style andF-style couplings for the octet occur simply as linear com-

binations of the most general first-order invariants of flavour SU(3) symmetry. The

reversed sign of the kinetic term of the decuplet simply encodes the spacelike nature

of its positive energy spinors (U2 < 0), and the Rarita-Schwinger field propagators

contain a polarization projector that sums over these spinors [JM91a]:

Pv =
4

∑
i=1

U
µ
i Ū

ν
i = (vµvν−gµν)− 4

3
Sµ

v Sν
v. (3.69)
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When considering the mass renormalization of the nucleon in Chapters 4 and

5, contributions from the second-order octet LagrangianL
(2)
oct are required, which

correspond to anNNππ vertex. This gives rise to a tadpole contribution. In full

SU(3) form, the vertices required fromL(2)
oct are [WL05]:

L
(2)
tad = 2σM Tr [M+]Tr [B̄B]+2DMTr [B̄{M+,B}]+2FMTr [B̄[M+,B]] , (3.70)

whereM+ ≡ 1
2(ξ

†M ξ†+ξM ξ) is the Hermitian mass source constructed from the

quark massM [GSS88, WL05].

Consider now the lowest-order Lagrangian for the nucleon-pion interaction by

simplifying Equation (3.68) to involve only the nucleon doublet field Ψ = (p, n)T

and the SU(2) pion triplet (see Appendix A.4). This is a useful approach when

kaon loop contributions are neglected. The axial coupling constant below is simply

defined as
◦
gA= D+F [SS05]:

L
(1)
πN = Ψ̄



/∂−
◦
MN +

◦
gA

2
◦
f π

γµγ5~τ ·∂µ~π



Ψ . (3.71)

The tadpole Lagrangian now takes the form:

L
(2),tad
πN = c2Tr [M+]Ψ̄Ψ , (3.72)

where the coeffcient is a combination of the LECsσm, DM andFM, labelledc2 in

anticipation of the analysis presented in Chapter 4.

A local, chirally symmetric form of Equation (3.71) can be recovered simply

with the replacement:

∂µ→ ∇µ = (∂µ+Γµ−
i
2
(lµ+ rµ)) , (3.73)

Γµ =
1
2
(ξ†(∂µ− irµ)ξ+ξ(∂µ− ilµ)ξ†) , (3.74)

and also by replacing the product~τ · ∂µ~π with a more general object: the Hermitian

axial combinationuµ≡ i{ξ†(∂µ− irµ)ξ− ξ(∂µ− ilµ)ξ†}. The values of
◦
MN,

◦
gA and
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◦
f π are taken to be the nucleon mass, the axial coupling strengthand the pion decay

constant, respectively, in the chiral limit. The Goldberger-Treiman Relation relates

the nucleon-pion interaction strength to the axial coupling gA [GT58], and can be

obtained by comparing the matrix elements〈p|π(x)|n〉 and〈p|∂µAµ(x)|n〉 using the

relation between the pion field and the axial current in Equation (3.23) as per PCAC

[Col85]:

gπNN≈ gA
MN

fπ
. (3.75)

This equation becomes exact in the chiral limitgA(m2
π→ 0) =

◦
gA.

3.2.3 Electromagnetic Contributions

The baryon form factors comprise a parameterization for thematrix element ob-

tained from the isovector quark currentJµ ≡ ψ̄Q γµψ, whereQ is the SU(3) quark

charge matrixQ ≡ diag(2/3,−1/3,−1/3). To evaluate this matrix element, one

must calculate the fully-amputated vertex for a baryon-photon interaction, wedged

between the usual in- and out-going fermion spinorsus(p) andūs′(p′):

〈B(p′)|Jµ|B(p)〉= ūs′(p′)

{

γµF1(Q
2)+

iσµνqν

2MB
F2(Q

2)

}

us(p) , (3.76)

for the tensor quantityσµν ≡ i
4{γµ,γν}. Q2 is a positive momentum transferQ2 =

−(p′− p)2, andF1 andF2 are called the Dirac and Pauli form factors, respectively.

The Sachs electromagnetic form factorsGE,M are the linear combinations:

GE(Q
2) = F1(Q

2)− Q2

4M2
B

F2(Q
2) , (3.77)

GM(Q2) = F1(Q
2)+F2(Q

2) . (3.78)

Thus, in the non-relativistic, heavy-baryon formulation:

〈B(p′)|Jµ|B(p)〉= ūs′(p′)

{

vµGE(Q
2)+

iεµνρσvρ Sβ
v qν

MB
GM(Q2)

}

us(p) . (3.79)
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By considering the behaviour of the Sachs form factors at zeromomentum transfer,

one can construct moments and charge radii. Two such important examples that

will be considered are the magnetic moment, and the electriccharge radius of the

isovector nucleon. Recall from Section 2.1.3 that the isovector nucleon is simply

the combinationp−n, which transforms as a vector in isospin space, chosen so that

diagrams containing indirect couplings will cancel, and the computation will be less

intensive. The magnetic momentµv
n is simply the value ofGv

M atQ2 = 0:

µv
n = Gv

M(Q2 = 0) (3.80)

= 1+κv
n. (3.81)

The first term is simply the value of the Dirac form factor of the proton atQ2 = 0,

and the second termκv
n is the anomalous magnetic moment originating from the

finite-size behaviour of the hadron interactions of the effective quantum field theory:

the hadron cloud, which surrounds the nucleon.

The electric charge radius is obtained by taking a derivative with respect toQ2

in the limit thatQ2 equals zero:

〈r2〉vE = lim
Q2→0

−6
∂GE(Q2)

∂Q2 . (3.82)

For octet baryons, the magnetic moments obey the Coleman-Glashow SU(3)

relations, related to the following Lagrangian of two independent terms [JLMS93,

WLTY07, WLTY09a, WLTY09b]:

Le−m
oct =

e
4mN

(µD Tr B̄vσµν{F+
µν,Bv}+µF Tr B̄vσµν[F+

µν,Bv]) . (3.83)

For an electromagnetic gauge fieldAµ with field strength tensorFµν ≡ ∂[µAν], the

quantityF+
µν has been chosen such that it is invariant under local chiral symmetry

transformations:

F+
µν ≡

1
2
(ξ†FµνQ ξ+ξFµνQ ξ†) . (3.84)

In the case of decuplet baryons, there is only a single invariant term that can be
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obtained from the group product̄10⊗ 10⊗ 8 that is proportional to their electric

charge tensorqi jk [JLMS93]:

Le−m
dec = i

e
mN

µC qi jk T̄µ
v,ikl T

ν
v, jkl F

+
µν . (3.85)

The transition Lagrangian can be written out likewise:

Le−m
trans = i

e
2mN

µTFµν(εi jk Q
i
l B j

vmSµ
v Tv,klm

v + εi jk Q l
i T̄µ

v,klmSν
v Bm

v j) . (3.86)

These electromagnetic Lagrangians are obtained simply by collecting the photon-

baryon terms from the electromagnetic covariant derivative. This new covariant

derivative can be expressed by updating Equation (3.66) so that the electromagnetic

field is included in both the vector connectionVµ from Equation (3.62) and the axial

combinationAµ from Equation (3.64):

Vµ→Vµ+
1
2

ieAµ(ξ†Q ξ+ξQ ξ†) , (3.87)

Aµ→ Aµ−
1
2

eAµ(ξQ ξ†−ξ†Q ξ) . (3.88)

The covariant derivative for the pseudo-Goldstone Lagrangian can be updated in a

similar fashion:

∇µU → ∇µU + ieAµ [Q ,U ]. (3.89)

3.3 Regularization and Renormalization

3.3.1 Historical Overview

The calculation and interpretation of amplitudes from a quantum field theory proved

more subtle than other theories due to their divergent behaviour. Despite success

in predicting hitherto unexplained phenomena, many quantities calculated using the

relevant quantum field theory become infinite, though the known experimental value

is finite. Consideration of the Lamb Shift in the electron energy levels in hydrogen
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atoms (1947) prompted the first real insight into this problem. It was conceived that

if a quantity were altered infinitely by quantum correctionsso that the final result was

finite, the initial ‘bare’ quantity should never have been expected to be finite. That is,

the bare quantity becomes renormalized. For example, the bare core of an electron

has certain properties, such as electric charge, which become altered by an infinite

amount due to vacuum polarizations. This polarization cloud surrounding the un-

physical, bare electron core contains all possible diagrams of electron-positron pair-

production from virtual (off-shell) photons, which serve to screen the electron core’s

infinite charge, so that the observed, long-range charge is−1.6×10−19 Coulomb,

or−e (in units of the charge of the proton). This ‘running’ of the electron’s charge

to large values under deep probing from hard momenta in Bhabhascattering was

confirmed in 1997 by the TOPAZ Collaboration at TRISTAN [A+05]. The virtual

particles of a quantum field theory are simply consequences of the Green’s Functions

of the equations of motion. The Fourier transform of a particle propagator integrates

the whole momentum spectrum, with a pole on the mass shellk2 = m2 (up to factors

of c and~). Heisenberg’s Uncertainty Principle for energy and time,(∆E)(∆t)≥ ~,

allows the extra energy of pair-production, and other processes, for sufficiently small

time. As a corollary, the virtual interactions take place over a spacelike time interval.

3.3.2 The Power-Counting Regime

The Lagrangians ofχPT are constructed with the intention that they can be expanded

in a series of some expansion scale, such as small momenta or masses. Although,

ideally, the series is convergent for a sufficiently small expansion scale, it need not

necessarily be convergent, and instead will often take the form of an asymptotic (or

Poincaŕe) series. Nevertheless, in a realistic calculation, whichinvolves calculating

the expansion series only up to some finite order, it is desirable to be able to ensure

that the uncertainty in the truncation is small. Thus, a knowledge of the applicable

region of the expansion is as crucial as knowledge of the terms of the expansion

series themselves. The range of values of the expansion scale for which a chiral

expansion is convergent is known as the power-counting regime (PCR), and the ex-
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pansion series is generally known as the chiral expansion.

The PCR is the region where the quark masses are small, and higher-order terms

in the chiral expansion are negligible beyond the order calculated. Within the PCR,

the truncation of the chiral expansion is reliable to some prescribed precision. A

chief focus of this thesis is to establish a formal approach to determining the PCR of

a truncated chiral expansion quantitatively. The chiral expansion will be examined,

and the individual low-energy coefficients of the chiral expansion will be analyzed.

The approach involves the examination of these low-energy coefficients as they un-

dergo the process of renormalization. This approach provides a determination of the

PCR for a truncated expansion inχEFT.

First, it is essential to discuss methods of regularizationin the chiral loop inte-

grals, so that the renormalization can take place. In order to renormalize a quantity,

one must find a way to make the divergent amplitudes tractable, using a process

called regularization. This involves solving an integral over propagators in such

a way as to isolate the divergent piece, ready for handling with a suitable renor-

malization scheme. There is a wide variety of regularization schemes available.

Pauli-Villars regularization (1949) involves the introduction of fictitious, ‘auxiliary’

particles, associated with some mass scale, into a Lagrangian with a quadratic in-

teraction. The extra formal terms in the Lagragian vanish asthe mass scale is taken

to infinity, and then a subtraction can take place. However, because Pauli-Villars is

not a gauge-covariant scheme, it is not applicable directlyto Yang-Mills theory. In

Slavnov’s regularization scheme (1971) of higher covariant derivatives, once again,

additional terms are added to the Lagrangian, but these do not render all amplitudes

finite, thereby requiring a Pauli-Villars or other scheme tobe used for divergent

fermion-loop Feynman diagrams. In this thesis, a finite-range regularization scheme

is used, which has powerful benefits in establishing the PCR, aswill become appar-

ent in Chapter 4.
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3.3.3 Dimensional Regularization

Dimensional regularization (DR) (1972) is an important procedure whereby loop in-

tegrals are analytically continued to generalized fractional dimensions and shown to

converge [tHV72]. The infinitesimal four-volume box d4k is replaced with d4−εk,

and the limit asε→ 0+ is then taken. For example, the integral over a single (Eu-

clidean) pion propagator is easy solved in spherical polar coordinates, evaluating the

angular part explicitly2:

∫
d4k
(2π)4

1
k2+m2

π
→ lim

ε→0+

∫ ∞

0

dk
(2π)4−ε

k3−ε

k2+m2
π

2π2−ε/2

Γ(2− ε/2)
. (3.90)

Thus the minimal subtraction scheme result is recovered correctly.

Since there is no explicit scale-dependence in the interaction, this minimal sub-

traction scheme makes DR suitable for use with elementary fields, where the absence

of new degrees of freedom at higher energies is assumed. Thisis a powerful tech-

nique by which the divergent term(s) of a loop integral can beobtained, and then

handled using a renormalization scheme.

Nevertheless, in the case of effective field theories, thereexists an energy scale

beyond which the effective fields are no longer the relevant degrees of freedom, and

so DR is not ideally suited. Selecting a hard energy scale in the renormalization

group equation, changes the relevant degrees of freedom in the Lagrangian. At high

energy scales, the high de Broglie frequency would resolve the internal structure

of the hadrons, which would be the quarks (and beyond, if suchhigher degrees of

freedom exist). However, quarks are integrated out of the low-energyχEFT La-

grangian by construction. When one calculates quantum amplitudes over this high

energy domain, there is no guarantee that one can efficientlysubtract the model-

dependent, ultraviolet physics with a finite number of counter-terms, as is required

for successful renormalization, unless the perturbative expansion is convergent. In-

deed this problem of beginning with rapidly varying loop contributions, which must

then be removed with a finite number of counter-terms, can easily be overcome. The

2The Gamma function onC is defined asΓ(z) =
∫ ∞

0 dse−ssz−1.
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hard momentum contributions to the chiral loop integrals can be suppressed via the

introduction of a finite-range regulator.

3.3.4 Finite-Range Regularization

One alternative to DR is finite-range regularization (FRR), inwhich one introduces

a functional formu(k;Λ), known as a finite-range regulator, which controls the di-

vergent integral at high momentum values. In this case, the integral over a single

pion propagator would be modified as follows:

∫
d4k
(2π)4

1
k2+m2

π
→

∫
d4k
(2π)4

u2(k;Λ)
k2+m2

π
. (3.91)

FRR involves the choice of a finite-valued momentum cutoffΛ. Allowing hard,

internal momenta to flow through a loop integral yields unphysical results, in the

form of a divergence. The high de Broglie frequency would resolve the internal

structure of the hadrons, which would be the quarks (and beyond, if such higher

degrees of freedom exist). Therefore, a finite value ofΛ is suitable for an effective

field theory, where quarks are integrated out of the Lagrangian by construction. The

choice of parameterΛ determines how fast the integral will now converge, and the

regulator function should satisfyu|k=0 = 1 andu|k→∞ = 0. The exact functional

form chosen for the regulator should be independent of the result of calculation, as

long as the perturbative expansion is convergent, that is, one works within the PCR.

FRR has already been shown to be a powerful technique in solving the chiral

extrapolation problem and identifying the PCR. The infinite series is resummed so

that leading-order terms are large and the series converges. A variety of choices of

functional forms for the regulator have been demonstrated to agree with each other,

and with DR, in extrapolating lattice QCD results for the mass of the nucleon to

physical quark masses [LTY05]. Thus, the results of calculations using FRR are

consistent with DR within the PCR.

Consider the example of a one-pion loop contribution for a nucleon, denotedΣN,

with constant coefficientχN. (This type of calculation is considered in more detail
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in Chapter 4.) The chiral expansion for the mass of the nucleonin this simple case,

with one pion loop only, takes the form:

MN = {a0+a2m2
π +a4m4

π +O(m6
π)}+ΣN , (3.92)

working to chiral orderO(m4
π). The chiral expansion comprises a polynomial ex-

pansion inm2
π and the contribution from the one-pion loop. Each of the coefficients

a0, a2 anda4 is renormalized by the contributions from the loop integral, at each or-

der. The result of the integral using DR is equivalent to a massless renormalization

scheme, with no explicit momentum cutoff:

ΣN =
2χN

π

∫ ∞

0
dk

k4

k2+m2
π

(3.93)

=
2χN

π

∫ ∞

0
dk

(k2+m2
π)(k

2−m2
π)+m4

π
k2+m2

π
(3.94)

=
2χN

π

(∫ ∞

0
dkk2−m2

π

∫ ∞

0
dk

)

+χNm3
π . (3.95)

In a massless renormalization scheme, there is no explicit momentum cutoff, so each

of the coefficientsai undergoes an infinite renormalization or none at all:

c0 = a0+
2χN

π

∫ ∞

0
dkk2 , (3.96)

c2 = a2−
2χN

π

∫ ∞

0
dk, (3.97)

c4 = a4+0, etc. (3.98)

By contrast, in a FRR scheme, a momentum cutoffΛ is introduced, and the chiral

expansion is resummed. Using a sharp momentum cutoffΛ:

ΣN(Λ) =
2χN

π

∫ Λ

0
dk

k4

k2+m2
π

(3.99)

=
2χN

π

(

Λ3

3
−Λm2

π +m3
π arctan

[

Λ
mπ

])

(3.100)

=
2χN

π
Λ3

3
− 2χN

π
Λm2

π +χNm3
π−

2χN

π
1
Λ

m4
π +O(m6

π) . (3.101)
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The result obtained from DR can be recovered in an FRR scheme bytaking the

regularization scale parameterΛ to infinity:

c0 = a0+
2χN

3
Λ3 , (3.102)

c2 = a2−
2χN

π
Λ , (3.103)

c4 = a4−
2χN

π
1
Λ
, etc. (3.104)

Thus, DR applied outside the PCR could be considered equivalent to a model with an

arguably injudicious choice of cutoff scheme. The polynomial expansion of hadron

mass is not expected to converge, and indeed it does not, using DR χPT, as men-

tioned by Young,et al. [YLT03]. Outside PCR, the expansion breaks down since

the chiral expansion is truncated without an attempt to estimate the higher-order

contributions [LTY05, LTY06].

In addition, because FRR involves the resummation of the higher-order terms

of the chiral expansion, it affords an opportunity to perform a calculation beyond

the PCR. Using FRR, one must select a value for the ultraviolet regularization scale

Λ. The choice in the value ofΛ is irrelevant within the PCR, where the results of

extrapolations are scheme-independent (so long asΛ is not chosen to be too small, as

explained in Section 4.2.1). Nevertheless, the principal exercise of this thesis will be

to handle any scheme-dependence occuring in aχEFT calculation outside the PCR.

By quantifying the scheme-dependence one arrives at a rigorous procedure for using

FRR beyond the PCR.

In Chapter 4, a variety of finite-range regulators are used andcompared. For

example, the Heaviside Step Functionu2(k;Λ) = θ(Λ−k) is an acceptable choice;

however, it is unfavorable for finite-volume considerations because discrete lattice

momenta are either fully included in the integral or not included at all. This results

in inconvenient finite-volume artefacts. In the investigation of the nucleon mass, the

family of smoothly attenuating dipole regulators will be considered. The general
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Figure 3.1:Behaviour of three dipole-like regulators as a function of momentumk, for a regulator
parameterΛ = 1.0 GeV.

multiple-dipole function of ordern takes the following form, for a cutoff scale ofΛ:

un(k;Λ) =
(

1+
k2n

Λ2n

)−2

. (3.105)

The standard dipole is recovered forn = 1. The casesn = 2,3 are the ‘double-’

and ‘triple-dipole’ regulators, respectively. The behaviour of each of these three

attenuators is shown in Figure 3.1. These functional forms allow one to interpolate

between the dipole regulator and the step function (which corresponds ton→ ∞).

Thesen−tuple-dipole regulators generate extra non-analytic terms.

It has been suggested in the literature that the only FRR scheme consistent

with chiral symmetry uses the step function regulator [BHM04]. Djukanovic et

al. [DSGS05] have demonstrated that more general functional forms can be gen-

erated by proposing a scheme in which the regulator functionis interpreted as a

modification to the propagators of the theory, obtained froma new chiral symmetry-

preserving Lagrangian. Higher derivative coupling terms are built into the Lagrangian

to produce a regulator from the Feynman Rules in a symmetry-preserving manner.

Alternatively, one can choose the regulator judiciously such that any extra scheme-
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dependent non-analytic terms are removed to any chosen order. The regulators used

in the present investigation follow the latter approach. For example, then−tuple

dipole regulators generate extra non-analytic terms in thechiral expansion of Equa-

tion (4.2) in Chapter 4 at higher chiral orders. An explicit example of this is shown

for the quenchedρ meson mass in Section 6.1.2, once the renormalization scheme

has been introduced.



Chapter 4

The Intrinsic Scale of the Nucleon

“There lies the originality of our approach:to deduce common sense from the quan-

tum premises, including its limits− that is, to demonstrate also under which condi-

tions common sense is valid, and what is its margin for error. . .

[W]e no longer explain reality from our mental representation of it, taken for

granted without question: but it is this representation,. . . that we want toexplain[.]”

(Omǹes, R. 2002.Quantum Philosophy: Understanding and Interpreting Contem-

porary Sciencep.165) [Omn02]

4.1 Renormalization Issues for the Nucleon Mass

In chiral effective field theory (χEFT), the nucleon mass may be written as an or-

dered, chiral expansion in the quark mass. The Gell-Mann−Oakes−Renner Rela-

tion from Equation (3.43) entails the proportionalitymq ∝ m2
π. By considering the

renormalization of the nucleon mass
◦
MN→ MN from the Lagrangian in Equation

(3.71), the chiral expansion will generally include a polynomial in m2
π and non-

analytic terms obtained from the chiral loop integrals. In addition, to establish a

model-independent framework inχPT, the expansion must display the properties of

a convergent series for the terms considered. Recall that within the power-counting

regime (PCR) the higher-order terms of the expansion may be regarded as suffi-

ciently small for the truncation of the chiral expansion to be reliable to a prescribed

47
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precision. However, truncated expansions are typically applied to a wide range of

quark (or pion) masses, with little regard to a rigorous determination of the PCR. In

the case of the nucleon mass, evidence suggests that the PCR issmall: limited to

mπ . 200 MeV at 1% accuracy at the chiral orderO(m4
π logmπ) [Bea04a] [LTY05].

This estimate of the PCR ofχPT was identified by comparing the results of infrared

regularization, dimensional regularization (DR) and a variety of finite-range regula-

tors in analyzing lattice quantum chromodynamics (latticeQCD) simulation results.

The different regularization schemes constitute different ways of summing higher-

order terms in the chiral expansion. Thus, the PCR is manifestwhen the pion mass

dependence of the nucleon mass is independent of the renormalization scheme. In

addition, the asymptotic nature of the chiral expansion places the focus on the first

few terms of the expansion.

A survey of the literature for the baryon sector ofχEFT illustrates the rarity

of calculations beyond one-loop [MB99, MB06, SDGS07], and there are currently

no two-loop calculations that incorporate the effects of placing a baryon in a finite

volume. With only a few terms of the expansion known for certain, knowledge of the

PCR ofχEFT is as important as knowledge of the expansion itself. Though scheme-

dependent, it is worthwhile to note that, using a dipole regulator with Λ = 0.8 GeV,

the coefficient of the inducedm5
π term compares favorably with the infinite-volume

two-loop calculation [MB99, LTY04, LTY05, MB06, SDGS07].

4.1.1 Chiral Expansion of the Nucleon Mass

The nucleon mass expansion formula can be expressed in a formthat collects the

non-analytic behaviour into the loop integral contributions:

MN = {aΛ
0 +aΛ

2 m2
π +aΛ

4 m4
π +O(m6

π)}+ΣN(m
2
π,Λ)+Σ∆(m

2
π,Λ)

+Σ tad(m
2
π,Λ) (4.1)

= c0+c2m2
π +χNm3

π +c4m4
π +
(

− 3
4π∆

χ∆ +χt

)

m4
πlog

mπ
µ

+O(m3
π). (4.2)
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Figure 4.1: The pion loop contribution to the self-energy of the nucleon, providing the leading
non-analytic contribution to the nucleon mass. All charge conserving transitions are implicit.

Figure 4.2:The pion loop contribution to the self-energy of the nucleon, allowing a transition to a
nearby and strongly-coupled decuplet baryon.

Figure 4.3:TheO(mq) tadpole contribution to the nucleon self energy.

The superscriptΛ denotes the scale-dependence of theaΛ
i coefficients. The analytic

terms inm2
π can be written as a polynomial with renormalized coefficients ci. The

non-analytic contributions arise from the self energy integrals (Σ), which correspond

to the diagrams in Figures 4.1 through 4.3.

It is essential to note that the degrees of freedom present inthe residual se-

ries coefficientsaΛ
i are sufficient to eliminate any dependence on the regulariza-

tion scale parameterΛ, to the order of the chiral expansion calculated: in this case

O(m4
π logmπ). Any differences observed in results obtained at the same chiral order,

but with different regularization schemes, are a direct result of considering data that

lie outside the PCR (provided that the scaleΛ is not chosen so small that it introduces

an unphysical low-energy scale).
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4.1.2 Chiral Loop Integrals

Each of the loop integral contributions to the nucleon mass can be simplified to a

convenient form by taking the non-relativistic heavy-baryon limit, and performing

the pole integration fork0. The integrals may be expanded out to a particular chiral

order, in this case orderO(m4
π logmπ), to obtain an analytic polynomial with coef-

ficientsbΛ
i , and the leading-order non-analytic term. Using a finite-range regulator

u(k;Λ):

ΣN(m
2
π ;Λ) =

χN

2π2

∫
d3k

k2u2(k;Λ)
k2+m2

π
(4.3)

= bΛ,N
0 +bΛ,N

2 m2
π +χNm3

π +bΛ,N
4 m4

π +O(m5
π) , (4.4)

Σ∆(m
2
π ;Λ) =

χ∆
2π2

∫
d3k

k2u2(k;Λ)
ω(k)(∆+ω(k))

(4.5)

= bΛ,∆
0 +bΛ,∆

2 m2
π +bΛ,∆

4 m4
π−

3
4π∆

χ∆m4
π log

mπ
µ

+O(m5
π) , (4.6)

Σtad(m
2
π ;Λ) = c2m2

π

(

χt

4π

∫
d3k

2u2(k;Λ)
ω(k)

)

(4.7)

= c2m2
π

(

bΛ,t
2 +bΛ,t

4 m2
π +χtm

2
π log

mπ
µ

+O(m5
π)

)

, (4.8)

whereµ is an implicit mass scale from the logarithm,ω(k) =
√

k2+m2
π and∆ is

the nucleon-delta baryon mass-splitting, treated as a perturbation in the approximate

flavour symmetry. The mass of the∆ baryon is chosen to be the centre of its Breit-

Wigner resonance.

ThebΛ
i coefficients renormalize the residual coefficients of the chiral expansion

of Equation (4.1), to obtain the scale-independent coefficientsci. Though both the

aΛ
i coefficients and thebΛ

i coefficients are scale-dependent, adding them together

at each order results in a scale-independent coefficient. These are the renormalized
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coefficientsci . Explicitly:

c0 = aΛ
0 +bΛ,N

0 +bΛ,∆
0 , (4.9)

c2 = aΛ
2 +bΛ,N

2 +bΛ,∆
2 +bΛ,t ′

2 , (4.10)

c4 = aΛ
4 +bΛ,N

4 +bΛ,∆
4 +bΛ,t ′

4 , etc. (4.11)

This is simply a slight generalization from the worked example in Section 3.3.4.

Dimensional analysis reveals that the coefficientsbΛ
i are proportional toΛ(3−i). Thus

it can be realized that as the cutoff scaleΛ tends to infinity, the result from DR, as

described in Section 3.3.3, is recovered. At any finiteΛ, a partial resummation of

higher-order terms is introduced. Previous studies indicate that extrapolation results

show very little sensitivity to the precise functional formof the regulator [LTY04].

A modification is now made to the integrals of Equations (4.3)through (4.8),

by subtractingbΛ
i terms from their Taylor expansion, thus absorbing them intothe

corresponding low-energy coefficientsci. This achieves the renormalization to a

chosen chiral order. In this case, only the low-energy coefficientsc0 andc2 will be

analyzed. The amplitudes for each process are thus altered:

Σ̃N(m
2
π ;Λ) =

χN

2π2

∫
d3k

k2u2(k;Λ)
k2+m2

π
−bΛ,N

0 −bΛ,N
2 m2

π (4.12)

= χNm3
π +bΛ,N

4 m4
π +O(m5

π) , (4.13)

Σ̃∆(m
2
π ;Λ) =

χ∆
2π2

∫
d3k

k2u2(k;Λ)
ω(k)(∆+ω(k))

−bΛ,∆
0 −bΛ,∆

2 m2
π (4.14)

= bΛ,∆
4 m4

π−
3

4π∆
χ∆m4

π log
mπ
µ

+O(m5
π) , (4.15)
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Σ̃tad(m
2
π ;Λ) = c2m2

π

(

χt

4π

∫
d3k

2u2(k;Λ)
ω(k)

−bΛ,t
2

)

(4.16)

= c2m2
π

(

bΛ,t
4 m2

π +χtm
2
π log

mπ
µ

+O(m5
π)

)

(4.17)

= c2m2
πσ̃tad(m

2
π ;Λ) . (4.18)

Note that the coefficient of the tadpole amplitude contains the renormalized low-

energy coefficientc2. This is because the same coefficientc2 from the chiral expan-

sion occurs in the tadpole Lagrangian in Equation (3.72). The tilde (˜) denotes that

the integrals are written out in renormalized form to chiralorderO(m2
π). As thebΛ

i

coefficients are regulator and scale-dependent, the subtraction reshuffles this depen-

dence into higher-order terms. The coefficientsaΛ
0 andaΛ

2 of the analytic terms in

the chiral expansion in Equation (4.2) automatically become the scale-independent

renormalized coefficientsc0 andc2.

With the renormalized integrals specified, the finite-rangeregularization (FRR)

modified version of the chiral expansion in Equation (4.2) takes the form:

MN = c0+c2m2
π(1+ σ̃tad(m

2
π,Λ))+aΛ

4 m4
π + Σ̃N(m

2
π,Λ)+ Σ̃∆(m

2
π,Λ) . (4.19)

TheaΛ
4 term is left in unrenormalized form for simplicity. Indeed,the coefficientbΛ

4

can be evaluated by expanding out corresponding loop integrals, such as in Refer-

ence [YLT03]. However, the focus here is on the behaviour ofc0 andc2.

4.1.3 The Sigma Term

In addition to the mass of the nucleon in the chiral limitc0, the low-energy con-

stant (LEC)c2 corresponding to the tadpole vertex is of interest phenomenologically

because, by inspection of Equation (3.72), it is a measure ofthe explicit chiral sym-

metry breaking of the relevant flavour symmetry group. That is, a sigma term can

be defined for the light quarks up and down, and the explicit breaking of the group

SU(2)V⊗SU(2)A may be investigated. In order to obtain a value for the sigma term

relating to the heavier strange quark,χEFT has been used to study the explicit break-
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ing of the baryon octet representation of SU(3) [Gas81, NK87, BM97, YT10b].

It can be seen that the termc2mq, and higher-order terms in the nucleon mass

expansion formula of Equation (4.2), will disappear if the chiral symmetry breaking

quark mass is zero. To investigate this, one can consider howthe QCD Hamilto-

nian behaves under commutation with the three-component axial charge operator of

flavour SU(2). If the symmetry were unbroken, all quantitiesQi
A|0〉 would vanish,

so the commutator[Qi
A,HQCD] would also vanish. In the more general case, con-

sider two applications of the commutator, which yield the symmetry breaking mass

term Hsb from the total Hamiltonian. This defines the pion-nucleon sigma term

[CD71, LTW00, WLT00, HMRW06, YT10b]:

σπN =
1
3
〈N|[Qi

A, [Q
i
A,HQCD]]|N〉 (4.20)

= 〈N|(muūu+mdd̄d)|N〉= 〈N|Hsb|N〉 . (4.21)

Under the simplification of mass degeneracy between quark fields (which is approx-

imately true under flavour SU(2)), one can apply the Feynman−Hellmann Theorem

[Fey39] and recover the important result for smallm2
π:

σπN = mq
∂MN

∂mq
= c2m2

π +O(m5/2
π ) . (4.22)

That is, the value of the sigma term is dominated by the leading-order term with

coefficientc2. The violation of this axial symmetry is therefore important for un-

derstanding the behaviour of hadrons, because a non-zero sigma term affects the

structure of the interaction between hadrons and the meson cloud which surrounds

them, and provides a small, but not statistically insignificant contribution to the total

mass of the hadron.

The standard result for the sigma term using SU(2) χPT, incorporating meson

loop corrections, is:ΣπN = 35±5 MeV [Gas81]. By analyzing data fromπp and

ππ scattering experiments [Ḧoh83], an early analysis by Gasser suggests a value of

ΣπN = 45±8 MeV [GLS91]. The currently accepted value of the sigma term, due

to the work of Koch, is larger than the theoretical value:ΣπN = 64±8 MeV [KP80,
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Koc82]. A more recent analysis of the experimental data by Pavan, incorporating

a partial wave and dispersion relation analysis, suggests an even higher value of

ΣπN = 79±7 MeV [PSWA02]. In contrast, calculations from two-flavour dynamical

quark lattice QCD comparatively underestimate the value of the sigma term. In a

study by G̈usken, it was found thatΣπN = 18±5 MeV, by direct calculation of the

scalar matrix element in Equation (4.21) [G+99]. This apparently low value for the

sigma term was found to be a consequence of its sensitivity tochiral extrapolation,

and large pion masses (above 500 MeV) were used in the extrapolation [LTW00,

YT10b].

4.1.4 Scheme-Independent Coefficients

The chiral coefficientsχN, χ∆ andχt for each integral are defined in terms of the

pion decay constant, which is taken to befπ = 92.4 MeV, and the axial coupling

parametersD, F andC which couple the baryons to the pion field, as shown in

the LagrangianL(1)
oct&dec of Equation (3.68). The coeffcientc2, which occurs in the

tadpole loop integral of Equations (4.16) through (4.18), is a combination of the

LECs σm, DM andFM, which occur in the tadpole Lagrangian of Equation (3.70).

Thoughc2 is treated as a fit parameter, the phenomenological values for theD, F and

C couplings are used, applying the SU(6) flavour-symmetry relations [Jen92, Leb95]

to yieldC =−2D, F = 2
3D and the valueD = 0.76:

χN =− 3
32π f 2

π
(D+F)2 , (4.23)

χ∆ =− 3
32π f 2

π

8
9
C2 , (4.24)

χt =−
3

16π2 f 2
π
. (4.25)

These coefficients are constant and remain unaffected by renormalization scale or

finite-volume effects. Ultimately, one may try to determinethese directly from lattice

simulation results. Nevertheless, because of the limited number of lattice simulation

results currently available, this analysis will focus on the determination ofc0, c2 and
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the nucleon massMN.

4.1.5 Finite-Volume Effects

In lattice QCD, the introduction of finite-volume effects become significant for small

box sizes. The expansion parameter 1/L contributing to finite-volume effects should

be of the same order of magnitude as the momenta for the perturbation scheme

to remain valid. IfL is small, the exponential factore−mπL no longer suppresses

the finite-volume corrections [BNS10]. As a general rule, thecharacteristic di-

mensionless quantitymπL specifies theε-regime through the conditionmπL ≤ 1

[Han90, HL91, HL90]. This is a breakdown region inχPT, since divergences in

the leading-order pion contributions cannot be approximated by standard perturba-

tive techniques [BNS10].

Since the results of lattice simulations reflect the presence of discrete momentum

values associated with the finite volume of the lattices, theformalism ofχEFT must

also take into account these finite-volume effects.χEFT is ideally suited for exam-

ining finite-volume effects, because of its accurate characterization of the dominant

infrared physics. In order to accommodate the effect of the finite volume, the con-

tinuous loop integrals occurring in the meson loop calculations in an infinite volume

are transformed into a sum over discrete momentum values. The difference between

a loop sum and its corresponding loop integral is defined to bethe finite-volume cor-

rection, which should vanish for all integrals asmπL becomes large [GL88, Bea04b].

While Equation (4.19) is useful in describing the pion mass evolution of the nucleon

mass, for the consideration of lattice QCD results, one also needs to incorporate

corrections to allow for the finite-volume nature of the numerical simulations. As

the pion is the lightest degree of freedom in the system, it isthe leading-order pion

loop effects that are most sensitive to the periodic boundary conditions. The correc-

tions can be determined by considering the transformation of each loop integral in

Equations (4.12), (4.14) and (4.16) into a discrete sum for agiven lattice size. The

three-dimensional integrals can be replaced by summationsover all possible mo-

mentum values [AAL+06]. It is useful to define the finite-volume correction to the
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loop integral, by convention, by subtracting the integral from the sum quantity. This

technique will be used to correct for finite-volume effects encountered in Chapters 4

through 7.

The finite-volume correctionδFVC can be written as the difference between the

finite sum and the integral:

δFVC
i (m2

π,Λ)=
χi

2π2

[ (2π)3

LxLyLz
∑

kx,ky,kz

Ii(~k,m
2
π,Λ) −

∫
d3k Ii(~k,m

2
π,Λ)

]

, (4.26)

wherei = N,∆, and the integrands are denotedIi(~k,m2
π,Λ). The finite-volume cor-

rections to the tadpole contribution are not considered in this investigation because

of subtleties in their behaviour at largemπ. Details regarding the finite-volume be-

haviour of the tadpole amplitude are discussed in Appendix B.3, and a more general

discussion of its convergence properties occurs in Section8.2. By adding the rel-

evant finite-volume correction to each loop contribution, the finite-volume nucleon

mass can be parameterized:

MV
N = c0+c2m2

π(1+ σ̃tad)+aΛ
4 m4

π +(Σ̃N +δFVC
N )+(Σ̃∆ +δFVC

∆ ) . (4.27)

It is also shown that the finite-volume corrections are independent of the regular-

ization scaleΛ in this domain. In Figures 4.4 and 4.6, the scale-dependenceof the

finite-volume corrections is shown for a dipole regulator (from Equation (3.105) in

Chapter 3) and a 2.9 fm box (the same box size used for the PACS-CS data [A+09]).

It is of note that choosingΛ too small suppresses the very infrared physics that one

is trying to describe. Thus, caution should be exercised in choosing a suitable value

of Λ. Figures 4.5 and 4.7 show the behaviour of the finite-volume correction for a

4.0 fm box, and the corrections are much smaller, as expected.

For largeΛ, the finite-volume corrections, displayed in Figures 4.4 through 4.7,

saturate to a fixed value. Provided thatΛ& 0.8 GeV, the estimated finite-volume cor-

rections are stable for light pion masses. In order to preserve the scale-independence

of the finite-volume corrections, their asymptotic result will be used. This approach

has been demonstrated to be successful in previous studies [AK+04]. Numeri-
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Figure 4.4: Behaviour of the finite-
volume correctionsδFVC

N vs. Λ on a
2.9 fm box using a dipole regulator.
Results for two different values ofm2

π
are shown.

Figure 4.5: Behaviour of finite-
volume correctionsδFVC

N vs. Λ on a
4.0 fm box using a dipole regulator.
Results for two different values ofm2

π
are shown.

Figure 4.6: Behaviour of finite-
volume correctionsδFVC

∆ vs. Λ on a
2.9 fm box using a dipole regulator.
Results for two different values ofm2

π
are shown.

Figure 4.7: Behaviour of finite-
volume correctionsδFVC

∆ vs. Λ on a
4.0 fm box using a dipole regulator.
Results for two different values ofm2

π
are shown.

cally, this is achieved by evaluating the finite-volume corrections with a parameter,

Λ′= 2.0 GeV,δFVC
i = δFVC

i (Λ′). It should be noted that this is equivalent to the more

algebraic approach outlined by Beane [Bea04b].

4.2 The Intrinsic Scale: An Example by Construction

This χEFT extrapolation scheme to orderO(m4
π logmπ) will be used in conjunc-

tion with lattice QCD data from JLQCD [O+08], PACS-CS [A+09] and CP-PACS
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[AK +02] to predict the nucleon mass for any value ofm2
π. The full set of data from

each of these collaborations is listed in Appendix C, Tables C.1 through C.3. The

JLQCD data were generated using overlap fermions in two-flavor QCD, but the lat-

tice box size for each data point is∼ 1.9 fm, smaller than the other two data sets.

The PACS-CS data were generated using non-perturbativelyO(a)-improved Wilson

quark action at a lattice box size of∼ 2.9 fm, but the data set only contains five data

points and a large statistical error in the smallestm2
π point. The CP-PACS data were

generated using a mean field improved clover quark action on lattice box sizes for

each data point varying from∼ 2.2 fm to∼ 2.8 fm.

The lattice data used in this analysis will be used to extrapolateMN to the phys-

ical point by taking into account the relevant curvature from the loop integrals in

Equations (4.13), (4.15) and (4.17). As an example, a regularization scale ofΛ = 1.0

GeV was chosen for Figures 4.8 through 4.10, where the finite-volume corrected

effective field theory appears concordant with previous QCDSF-UKQCD results

[AK +04]. An extrapolation or interpolation is achieved by subtracting the finite-

volume loop integral contributions from each data point andthen fitting the result to

obtain the coefficientsc0, c2 andaΛ
4 using Equation (4.19). The finite- or infinite-

volume loop integrals are then added back at any desired value ofm2
π.

If the regularization scale is altered from the choiceΛ = 1.0 GeV, the extrapo-

lation curve also changes. This signifies a scheme-dependence in the result due to

using lattice QCD data beyond the PCR. To demonstrate this, consider the infinite-

volume extrapolation of the CP-PACS data, as shown in Figure 4.11. Figure 4.11

also shows that the curves overlap exactly whenm2
π is large, where the lattice data

reside, and they diverge as the chiral regime is approached.

Consider an insightful scenario, whereby a set of ideal ‘pseudodata’ with known

low-energy coefficients is produced, using the formula fromEquation (4.27). A

particular regularization scale is selected and a dense andprecise pseudodata set is

generated, which smoothly connects with the lattice simulation results. In this case,

the pseudodata are converted to infinite-volume results in order to ensure that the

following analysis is not simply a consequence of finite-volume effects. If all the
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Figure 4.8: Example dipole extrapolation based on JLQCD data [O+08], box size: 1.9 fm.

Figure 4.9: Example dipole extrapolation based on PACS-CS data [A+09], box size: 2.9 fm.

Figure 4.10: Example dipole extrapolation based on CP-PACS data [AK+02], lattice sizes: 2.3−
2.8 fm.
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Figure 4.11: Close zoom of the regulator-dependence for dipole extrapolation based on CP-PACS
data. Only the data point corresponding to the smallestm2

π value is shown at this scale.

data considered lie within the PCR then the choice of regularization scale is irrele-

vant, and the finite-range regularized chiral expansion is mathematically equivalent

to scale-invariant renormalization schemes, including DR.This scenario will form

the basis of the investigation of the PCR, and ultimately, willlead to determining the

existence of an intrinsic scale hidden within the lattice QCDsimulation results.

The pseudodata are produced by performing an extrapolationsuch as shown in

Figures 4.8 through 4.10. The difference is that 100 infinite-volume extrapolation

points are produced close to the chiral regime. The exerciseis to treat these pseu-

dodata as if they were lattice QCD data. Clearly, a regularization scheme must be

chosen in generating the pseudodata. In this case, a dipole regulator was chosen and

pseudodata were created atΛc = 1.0 GeV.

The regularization-dependence of the extrapolation is characterized by the scale-

dependence of the coefficientsci. These coefficients are obtained from fitting the

pseudodata. Consider howc0 andc2 behave when analyzed with a variety of regu-

larization scales in Figures 4.12 and 4.13. By using infinite-volume pseudodata, one

eliminates the concern that the variation inci with respect toΛ is merely a finite-

volume artefact.

Three pseudodata sets are compared, each with different upper bounds on the
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Figure 4.12: Behaviour ofc0 vs. regularization scaleΛ, based on infinite-volume pseudodata
created with a dipole regulator atΛc = 1.0 GeV (based on lightest four data points from PACS-CS).
Each curve uses pseudodata with a different upper value of pion massm2

π,max.

Figure 4.13: Behaviour ofc2 vs. Λ, based on infinite-volume pseudodata created with a dipole
regulator atΛc = 1.0 GeV (based on lightest four data points from PACS-CS).
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range ofm2
π considered in the fit. An increasing regulator-dependence in c0 and

c2 is seen as the data extend outside the PCR. In Figures 4.12 and 4.13, the be-

haviour of the fit parametersc0 andc2, respectively, are shown as functions of the

regularization scaleΛ for different values ofm2
π,max. A steep line indicates a strong

scheme-dependence in the result, and this occurs for data samples extending far out-

side the PCR. Scheme-independence will appear as a horizontalline, as is apparent

for m2
π,max< 0.04 GeV2, in Figures 4.12 and 4.13. This indicates that the pseudodata

lie within the PCR.

Note that in both figures all three curves (corresponding to different values of

m2
π,max) arrive at stable values forc0 andc2 on the right-hand side of the plot, corre-

sponding to largeΛ. To read off the values ofc0 andc2 for largeΛ is tempting, but

this does not yield the correct values ofc0 andc2, which are known by construction.

The correct values ofc0 andc2 are recovered atΛ = 1.0 GeV.

The analysis of the pseudodata in Figures 4.12 and 4.13 showsthat even as the

value ofm2
π,max is changed, the correct value ofc0 is recovered at exactlyΛ = Λc,

where the curves intersect. The same value ofΛ for the intersection point is obtained

by analyzingc2. This suggests that when considering lattice QCD results extending

outside the PCR, there may be an optimal finite-range cutoff. Physically, such a

cutoff would be associated with an intrinsic scale reflecting the finite size of the

source of the pion dressings. Mathematically, this optimalcutoff is reflected by an

independence of the fit parameters onm2
π,max.

By analyzing the pseudodata with a different regulator, for example, a triple-

dipole regulator, Figures 4.14 and 4.15 show that the scale of the intersection is no

longer a clear point, but a cluster centred about 0.5 to 0.6 GeV. The triple-dipole will

of course predict a different optimal scale, since the shapeof the regulator is different

from that of the dipole used to create the pseudodata. The essential point of this

exercise is that clustering of curve intersections identifies a preferred renormalization

scale that allows one to recover the correct low-energy coefficients. In this case, the

crossing of the dash and dot-dash curves (from fitting) clearly identifiesΛscale
trip = 0.6

GeV as a preferred regularization scale, which reflects the intrinsic scale used to
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param. input Λscale
trip = 0.6 Λscale

trip = 0.6 Λtrip = 2.4 Λtrip = 2.4

m2
π,max= 0.25 m2

π,max= 0.5 m2
π,max= 0.25 m2

π,max= 0.5

c0 0.902 0.901 0.902 0.899 0.896

c2 3.00 3.07 3.07 3.17 3.23

Table 4.1:A comparison of the parametersc0 (GeV) andc2 (GeV−1) at their input value (pseu-
dodata created with a dipole atΛc = 1.0 GeV) with the values when analysed with a triple-dipole
regulator. Different values ofΛtrip (GeV) andm2

π,max (GeV2) are chosen to demonstrate the scheme-
dependence ofc0 and c2 for data extending outside the PCR. Note: the values ofc0 and c2 are
calculated from an ideal model and thus they are exact; thereare no statistical uncertainties.

create the data. Table 4.1 compares the values forc0 andc2 recovered in this analysis

for two different regularization scales: the preferred value Λscale
trip = 0.6 GeV, and a

large valueΛtrip = 2.4 GeV reflecting the asymptotic result recovered from DR. The

input values ofc0 andc2 used to create the pseudodata are also indicated.

4.2.1 Lower Bounds for the Regularization Scale

Figures 4.13 and 4.15 clearly indicate that the finite-rangerenormalization scheme

breaks down if the FRR scale is too small. This is becauseΛ must be large enough to

include the chiral physics being studied. The exact value ofa sensible lower bound

in the FRR scale will depend on the functional form chosen as the regulator.

Figure 4.13 shows that the renormalization forc2 breaks down for small values

of Λ. FRR breaks down for a value ofΛdip much below 0.6 GeV, simply because the

coefficientsbΛ
i of the loop integral expansion in Equations (4.13), (4.15) and (4.17)

are proportional toΛ(3−i). For higher-order terms with largei, the coefficients will

become large whenΛ is small. In theory, these very large terms add up to zero,

and so the limitΛ→ 0 amounts to neglecting the infrared physics of the hadron.

In practice, the finite curvature and higher-order terms of the residual series are not

large enough to cancel the small-Λ behaviour of thebΛ
i coefficients, which dominate.

This adversely affects the convergence properties of the chiral expansion. On the

other hand, one obtains a residual series expansion with good convergence properties

whenΛ reflects the intrinsic scale of the source of the pion dressings of the hadron
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Figure 4.14: Behaviour ofc0 vs. Λ, based on infinite-volume pseudodata created with a dipole
regulator atΛc = 1.0 GeV but subsequently analyzed using a triple-dipole regulator.

Figure 4.15: Behaviour ofc2 vs. Λ, based on infinite-volume pseudodata created with a dipole
regulator atΛc = 1.0 GeV but subsequently analyzed using a triple-dipole regulator.
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in question.

The pseudodata analysis provides a good indication of a lower bound forΛ using

a dipole regulator:Λdip & 0.6 GeV. Similarly, Figure 4.15 suggests a lower bound

for the triple-dipole regulator:Λtrip & 0.3 GeV. The same analysis can be repeated

for the double-dipole regulator to obtainΛdoub& 0.4 GeV.

One can also estimate the lowest reasonable value ofΛ by considering arguments

from phenomenology. Based on the physical values of the sigmacommutator and

the nucleon mass, a pion mass ofmπ ≈ 0.5 GeV is a suitable upper bound for the

radius of convergence [BHLO02, YHL09, YT10a]. This follows from the estimate

of the two-flavour pion-nucleon sigma term due to Gasser [GLS91]. Using the Gell-

Mann−Oakes−Renner Relationmq ∝ m2
π:

ΣπN = m2
π

∂MN

∂m2
π
= c2m2

π +χNm3
π +c4m4

π +O(m5
π)≈ 45 MeV. (4.28)

For good convergence, it is expected that the sigma term is dominated by the leading-

orderc2 term. The second and third terms in the expansion are as largeas the leading-

orderc2 term formπ ≈ 0.5 GeV. Therefore, in order to maintain good convergence

of the chiral expansion whilst ensuring the inclusion of important contributions to

the chiral physics, one should choose a scaleΛsharp∼ 0.5 GeV for a sharp cutoff

(step function) regulator. To compare this estimate for thesharp cutoff to that of

dipole-like regulators, one can calculate the regularization scale required such that

u2
n(k;Λ) = 1/2 when the momentum takes the energy scale ofΛsharp. This results in

a rough estimate for a sensible value for the dipole, double-dipole and triple-dipole

regulators. These values areΛdip ∼ 1.1 GeV, Λdoub∼ 0.76 GeV andΛtrip ∼ 0.66

GeV, respectively.

In the forthcoming chapter, a range of regularization scales will be considered,

and the intersections of the curves for the low-energy coefficients will be used to

construct fits that include data sets that extend outside thePCR. This is done in order

to identify the presence of an intrinsic scale for the pion source and an associated

preferred regularization scale.
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Chapter 5

Results for the Mass of the Nucleon

“The datum is a classical property concerning only the instrument; it is the expres-

sion of a fact. The result concerns a property of the quantum world. The datum is an

essential intermediary for reaching a result.”(Omǹes, R. 2002.Quantum Philoso-

phy: Understanding and Interpreting Contemporary Sciencep.209) [Omn02]

This quotation, and those introduced in Chapters 6 to 8, contain an argument that

links data, results, theory and experience.

The aim of this chapter is to apply an analysis that allows a reliable extrapolation

of the nucleon mass to the physical point by obtaining an optimal regularization

scale, using lattice quantum chromodynamics (lattice QCD) simulation results. The

identification of an optimal regularization scale, along with its associated systematic

uncertainty, indicates the degree to which the lattice QCD simulation results extend

beyond the power-counting regime (PCR). This quantifies and effectively handles

the scheme-dependence of chiral extrapolations. Ultimately, the agreement among

optimal regularization scales obtained from different simulation results indicates the

existence of an intrinsic scale that characterizes the interaction between the pion

cloud and the core of the nucleon. Such an agreement will be demonstrated through

the results in this chapter, and Chapter 7. In Chapter 6, the procedure developed

in this thesis for analyzing the renormalization flow of the low-energy coefficients,

obtaining a possible intrinsic scale (or a range of acceptable regularization scales),

and performing a robust chiral extrapolation will be tested.

67
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In the previous Chapter, extrapolation of the lattice results was discussed in the

context of finite-range regularized chiral effective field theory (χEFT). The scheme-

dependence of the various extrapolations was analyzed. A method was developed for

extracting an optimal finite-range regularization scale from ideal pseudodata. Since

the pseudodata were generated at a known scaleΛc, they contain an intrinsic scale by

construction, and so it was demonstrated that an optimal finite-range regularization

scale could be extracted from the pseudodata by analyzing the scale-dependence of

the low-energy coefficients. This optimal scale was the samevalue as the intrinsic

scale built into the pseudodata.

The pseudodata example leads the researcher to consider whether actual lattice

QCD simulation results have an intrinsic cut-off scale embedded within them. That

is, by analyzing lattice QCD data in the same way as the pseudodata, can a similar

intersection point be obtained from the renormalization-scale flow of the low-energy

coefficients? If so, it would indicate that the lattice data contain information regard-

ing an optimal finite-range regularization scale, and thus provide evidence for the

existence of an underlying intrinsic scale in the nucleon-pion interaction.

5.1 Evidence for an Intrinsic Scale in the Nucleon Mass

5.1.1 Renormalization Flow Analysis

Consider the mass of the nucleon as extrapolated from the results of lattice QCD

simulations. The results forc0 andc2 as a function of the regularization scaleΛ are

now presented for lattice QCD data from the collaborations: JLQCD, PACS-CS and

CP-PACS. Initially, the chiral expansion, calculated to chiral orderO(m3
π), should

be used for fitting:

MN = c0+c2m2
π(1+ σ̃tad(m

2
π,Λ))+ Σ̃N(m

2
π,Λ)+ Σ̃∆(m

2
π,Λ) . (5.1)

Thus, the relevant fit parameters used in the extrapolation arec0 andc2 only. Results

for the higher chiral order ofO(m4
π logmπ) will be discussed in Section 5.1.3. The
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resultant renormalization flows, using a dipole regulator,are shown in Figures 5.1

through 5.6; the results for the double-dipole case are shown in Figures 5.7 through

5.12; and the results for the triple-dipole are shown in Figures 5.13 through 5.18. On

each plot of the renormalization flow in Figures 5.1 through 5.18 there are multiple

curves, each corresponding to different values of the upperbound of the fit window,

m2
π,max. A few example points are selected in Figures 5.1 through 5.18 to indicate

the general size of the statistical error bars.

It should be noted that none of the curves in Figures 5.1 through 5.18 is flat

to within 1% accuracy. All of the fits have lattice data included beyond the PCR.

Clearly, there is a well-defined intersection point in each plot. Also, the value ofΛ

at which the intersection point occurs is the same, even for different data sets, and for

differentci. The tight groupings of the curve crossings lend credence tothe notion

of an intrinsic scale that can be interpreted as a finite size of the source of the pion

dressings of the nucleon. This is a central result of the analysis.

Using the method described in Chapter 4, the intersection point of the renor-

malization flow curves for different values ofm2
π,max is estimated from Figures 5.1

through 5.18. As an initial estimate, by inspection, a mean value for the optimal

regularization scale of̄Λscale
dip ≈ 1.3 GeV was obtained for the dipole, a value of

Λ̄scale
doub≈ 1.0 GeV was obtained for the double dipole, and a value ofΛ̄scale

trip ≈ 0.9

GeV was obtained for the triple-dipole. These values differbecause the regulators

have different shapes, as evident in Figure 3.1, and thus different values ofΛscaleare

required to create a similar suppression of large loop momenta. In order to determine

an estimate of the systematic uncertainty in an extrapolation due to the choice of reg-

ularization scaleΛscale, one should use a robust method for estimating the systematic

uncertainty ofΛscaleitself. In the following section, a chi-square-style analysis will

be introduced to fulfill this requirement.

5.1.2 Analysis of Systematic Uncertainties

The optimal regularization scaleΛscale can be obtained from the renormalization

flow curves using a chi-square-style analysis. In addition,the analysis will allow the
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Figure 5.1: Behaviour ofc0 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.2: Behaviour ofc0 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.3: Behaviour ofc0 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.4: Behaviour ofc2 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.5: Behaviour ofc2 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.6: Behaviour ofc2 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Figure 5.7: Behaviour ofc0 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.8: Behaviour ofc0 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.9: Behaviour ofc0 vs.Λ, based on CP-
PACS data. The chiral expansion is taken to order
O(m3

π) and a double-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.

Figure 5.10: Behaviour ofc2 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.11: Behaviour ofc2 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.12: Behaviour ofc2 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3

π) and a double-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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Figure 5.13: Behaviour ofc0 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a triple-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.

Figure 5.14: Behaviour ofc0 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.15: Behaviour ofc0 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3

π) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.16: Behaviour ofc2 vs. Λ, based on
JLQCD data. The chiral expansion is taken to or-
derO(m3

π) and a triple-dipole regulator is used. A
few points are selected to indicate the general size
of the statistical error bars.

Figure 5.17: Behaviour ofc2 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m3

π) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.

Figure 5.18: Behaviour ofc2 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m3

π) and a triple-dipole regulator is used.
A few points are selected to indicate the general
size of the statistical error bars.
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extraction of an estimate of the variance forΛscale. The functionχ2
do f defined below

allows easy identification of the intersection points in therenormalization flow plots,

and a range associated with this central regularization scale. This function simply

measures the degree to which the renormalization flow curvesmatch.

The first step is to plotχ2
do f against a variety of regularization scales. The value

of c̄ is given by the weighted mean formula, evaluated separatelyfor each renormal-

ized coefficientc (with errorδc) and regularization scaleΛ:

c̄(Λ) = ∑n
i=1c(i ;Λ)/(δc(i ;Λ))2

∑n
j=11/(δc( j ;Λ))2 . (5.2)

The followingχ2
do f treats relevant degrees of freedom as the extracted chiral coeffi-

cients with differing values ofm2
π,max:

χ2
do f =

1
n−1

n

∑
i=1

(c(i ;Λ)− c̄(Λ))2

(δc(i ;Λ))2 , (5.3)

that is,i corresponds to fits with differing values ofm2
π,max.

Theχ2
do f can be calculated as a function of the regularization scaleΛ for each of

the renormalization plots of Figures 5.1 through 5.18. Thiswill indicate the spread of

the extrapolated values at each value ofΛ. In the case of the PACS-CS data, the min-

imum of theχ2
do f curve will be at the intersection point of the two curves. In the case

of the JLQCD and CP-PACS data, with more than two curves, there isan interaction

region on each plot, over a narrow window ofΛ. The minima ofχ2
do f will indi-

cate the value ofΛ that obtains the best agreement among the renormalization flow

curves. This central value ofΛ will be taken to be the optimal regularization scale.

The upper and lower bounds ofΛ obey the conditionχ2
do f < χ2

do f,min+1/(do f). For

each of the low-energy coefficientsc0 andc2, theχ2
do f curves for a dipole regulator

are shown in Figures 5.19 through 5.24, theχ2
do f curves for the double-dipole case

are shown in Figures 5.25 through 5.30 and theχ2
do f curves for the triple-dipole are

shown in Figures 5.31 through 5.36. These plots indicate that there exists a statisti-

cally significant optimal regularization scale at this chiral order, for these data sets.
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Figure 5.19: Behaviour ofχ2
do f for c0 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a dipole regulator is
used.

Figure 5.20: Behaviour ofχ2
do f for c0 vs. Λ,

based on PACS-CS data. The chiral expansion
is taken to orderO(m3

π) and a dipole regulator is
used.

Figure 5.21: Behaviour ofχ2
do f for c0 vs. Λ,

based on CP-PACS data. The chiral expansion
is taken to orderO(m3

π) and a dipole regulator is
used.

Figure 5.22: Behaviour ofχ2
do f for c2 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a dipole regulator is
used.

Figure 5.23: Behaviour ofχ2
do f for c2 vs. Λ,

based on PACS-CS data. The chiral expansion
is taken to orderO(m3

π) and a dipole regulator is
used.

Figure 5.24: Behaviour ofχ2
do f for c2 vs. Λ,

based on CP-PACS data. The chiral expansion
is taken to orderO(m3

π) and a dipole regulator is
used.
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Figure 5.25: Behaviour ofχ2
do f for c0 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.

Figure 5.26: Behaviour ofχ2
do f for c0 vs. Λ,

based on PACS-CS data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.

Figure 5.27: Behaviour ofχ2
do f for c0 vs. Λ,

based on CP-PACS data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.

Figure 5.28: Behaviour ofχ2
do f for c2 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.

Figure 5.29: Behaviour ofχ2
do f for c2 vs. Λ,

based on PACS-CS data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.

Figure 5.30: Behaviour ofχ2
do f for c2 vs. Λ,

based on CP-PACS data. The chiral expansion is
taken to orderO(m3

π) and a double-dipole regula-
tor is used.
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Figure 5.31: Behaviour ofχ2
do f for c0 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.

Figure 5.32: Behaviour ofχ2
do f for c0 vs. Λ,

based on PACS-CS data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.

Figure 5.33: Behaviour ofχ2
do f for c0 vs. Λ,

based on CP-PACS data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.

Figure 5.34: Behaviour ofχ2
do f for c2 vs. Λ,

based on JLQCD data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.

Figure 5.35: Behaviour ofχ2
do f for c2 vs. Λ,

based on PACS-CS data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.

Figure 5.36: Behaviour ofχ2
do f for c2 vs. Λ,

based on CP-PACS data. The chiral expansion is
taken to orderO(m3

π) and a triple-dipole regulator
is used.
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Furthermore, for each data set and regulator functional form, there is an agreement

between thec0 andc2 analyses as to the value of this optimal scale. This provides

evidence of the existence of an intrinsic scale embedded in that lattice data.

5.1.3 Effects at Higher Chiral Order

Consider the determination ofc0 andc2 as a function of the regularization scaleΛ,

for a higher chiral orderO(m4
π logmπ). As an example, the results for PACS-CS

and CP-PACS data are shown in Figures 5.37 through 5.40. In thiscase, no clear

intersection points in the renormalization curves can be found, and so one is unable

to specify an optimal regularization scale. This certainlyshould be the case when

working with data entirely within the PCR, because all renormalization procedures

would be equivalent (to a prescribed level of accuracy) and so there could be no

optimal scale. It has been demonstrated, however, that the data sets used in this study

extend beyond the PCR. This is further verified by considering the evident scale-

dependence ofc0 andc2 in Figures 5.37 through 5.40. The fact thatc0 andc2 change

over the range ofΛ values indicates that the data are not inside the PCR where the

renormalization must be scale-independent. Furthermore,since no preferred scale is

revealed, any choice ofΛ appears equivalent at this order. While it is encouraging

that the scheme-dependence has been weakened by working to higher order, it must

be recognized that there is a systematic error associated with the choice ofΛ. In the

case of the CP-PACS results shown in Figures 5.38 and 5.40, it can be seen that the

statistical errors are substantially smaller than the systematic error associated with a

characteristic range,Λlower < Λ < ∞, whereΛlower is the lowest reasonable value of

Λ, taken to be 0.6, 0.4 and 0.3 GeV for the dipole, double-dipole and triple-dipole

regulator, respectively, as discussed in Section 4.2.1.

Since it is difficult to identify the optimal regularizationscale at this chiral or-

der, the results for chiral orderO(m3
π) will be chosen to demonstrate the process of

handling the existence of an optimal regularization scale in lattice QCD data. Values

of Λscale for different data sets and regulators, using chiral orderO(m3
π), are given

in Table 5.1. This table simply summarizes the central values from Figures 5.19
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Figure 5.37: Behaviour ofc0 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m4

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.38: Behaviour ofc0 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m4

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.39: Behaviour ofc2 vs. Λ, based on
PACS-CS data. The chiral expansion is taken to
orderO(m4

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.

Figure 5.40: Behaviour ofc2 vs. Λ, based on
CP-PACS data. The chiral expansion is taken to
orderO(m4

π) and a dipole regulator is used. A few
points are selected to indicate the general size of
the statistical error bars.
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Table 5.1:Central values ofΛ in GeV, taken from theχ2
do f analysis forc0 andc2, based on JLQCD,

PACS-CS and CP-PACS data.

regulator form

optimal scale dipole double triple

Λscale
c0,JLQCD 1.44+0.18

−0.18 1.08+0.11
−0.11 0.96+0.09

−0.09

Λscale
c2,JLQCD 1.40+0.02

−0.03 1.05+0.02
−0.01 0.94+0.01

−0.02

Λscale
c0,PACS−CS 1.21+0.66

−0.82 0.93+0.41
−0.58 0.83+0.35

−0.50

Λscale
c2,PACS−CS 1.21+0.18

−0.18 0.93+0.11
−0.12 0.83+0.10

−0.10

Λscale
c0,CP−PACS 1.20+0.10

−0.10 0.98+0.06
−0.07 0.88+0.06

−0.06

Λscale
c2,CP−PACS 1.19+0.02

−0.01 0.97+0.01
−0.01 0.87+0.01

−0.01

through 5.36. Such excellent agreement between thec0 andc2 analyses is remark-

able, and indicative of the existence of an intrinsic scale in the data. There is also

consistency among independent data sets. It is important torealize that the value

of Λscale is always the order of∼ 1 GeV, not 10 GeV, nor 100 GeV; nor is it in-

finity. However, in calculating the systematic uncertaintyin the observablesc0, c2,

and the nucleon mass at the physical point due to the optimal regularization scale at

orderO(m4
π logmπ), two methods are provided. Firstly, the upper and lower bounds

from theχ2
do f analysis at orderO(m3

π) are used to constrainΛ, and taken to be an

accurate estimate of the systematic uncertainty in the contributions of higher-order

terms. Secondly, variation of the observables across the aforementioned character-

istic range of scale values,Λlower < Λ < ∞ are used. The results from both of these

methods are displayed in Table 5.2.

The final results for the calculation of the renormalized coefficients c0, c2 and

the nucleon massMN extrapolated to the physical point (mπ,phys= 140 MeV) are

summarized in Table 5.3. In this table, the nucleon mass is calculated at the optimal

scaleΛscale, which is the average ofΛscale
c0

andΛscale
c2

for each data set. The extrap-

olations are performed at lattice sizes relevant to each data set:LJLQCD
extrap = 1.9 fm,

LPACS−CS
extrap = 2.9 fm andLCP−PACS

extrap = 2.8 fm. The estimate of the statistical error is

quoted in the first pair of parentheses, and the systematic error, obtained from the
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Table 5.2:Results atO(m4
π logmπ) for the systematic error due to the optimal regularization scale,

calculated using two methods, for the values ofc0 (GeV), c2 (GeV−1) and the nucleon massMN

(GeV) extrapolated to the physical point (mπ,phys= 140 MeV). The first number in each column is
the systematic error due to the optimal regularization scale using the upper and lower bound from the
χ2

do f analysis at orderO(m3
π). The second number is the systematic error due to the intrinsic scale

across the whole range ofΛ values from the lowest reasonable value (Λ = Λlower) obtained from the
pseudodata analysis, to the asymptotic value (Λ = ∞).

regulator form

sys. err. dipole double triple

δΛcJLQCD
0 0.001 0.009 0.001 0.013 0.001 0.016

δΛcPACS−CS
0 0.005 0.006 0.005 0.010 0.006 0.012

δΛcCP−PACS
0 0.002 0.024 0.002 0.037 0.002 0.045

δΛcJLQCD
2 0.02 0.31 0.03 0.38 0.01 0.48

δΛcPACS−CS
2 0.18 0.25 0.16 0.33 0.14 0.43

δΛcCP−PACS
2 0.02 0.40 0.02 0.58 0.02 0.73

δΛMJLQCD
N,phys 0.0004 0.0051 0.0003 0.0073 0.0003 0.0090

δΛMPACS−CS
N,phys 0.0022 0.0030 0.0025 0.0046 0.0025 0.0058

δΛMCP−PACS
N,phys 0.0012 0.0175 0.0013 0.0270 0.0014 0.0326

number ofm2
π values used, is quoted in the second pair of parentheses. Twodif-

ferent weighted means are calculated. One incorporates thesystematic error in the

optimal regularization scale using the upper and lower bound from theχ2
do f analy-

sis at orderO(m3
π). The other incorporates the systematic error due to the optimal

regularization scale across the whole range ofΛ values, from the lowest reasonable

value (Λ = Λlower) obtained from the pseudodata analysis, to the asymptotic value

(Λ = ∞). The weighted means also include an estimate of the systematic error in

the choice of regularization scale. All errors are added in quadrature. The lightest

four data points from each of JLQCD, PACS-CS and CP-PACS lattice QCDdata are

used, and the nucleon mass is calculated at the scale determined by the data.
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Table 5.3:Results atO(m4
π logmπ) for the values ofc0 (GeV), c2 (GeV−1) and the nucleon mass

MN (GeV) extrapolated to the physical point (mπ,phys= 140 MeV). WM is the weighted mean of each
row. The nucleon mass is calculated at the optimal scaleΛscale, which is the average ofΛscale

c0
and

Λscale
c2

for each data set. The extrapolations are performed at lattice sizes relevant to each data set:

LJLQCD
extrap = 1.9 fm, LPACS−CS

extrap = 2.9 fm andLCP−PACS
extrap = 2.8 fm. The estimate of the statistical error

is quoted in the first pair of parentheses, and the systematicerror, obtained from the number ofm2
π

values used, is quoted in the second pair of parentheses. Twoseparate weighted means are calculated
for each row. WM(1) incorporates the systematic error in the intrinsic scale using the upper and lower
bound from theχ2

do f analysis at orderO(m3
π). The WM(2) incorporates the systematic error due to

the intrinsic scale across the whole range ofΛ values, from the lowest reasonable value (Λ = Λlower)
obtained from the pseudodata analysis, to the asymptotic value (Λ = ∞). The weighted means also
include an estimate of the systematic error in the choice of the regulator functional form. All errors
are added in quadrature. Note that any orderO(a) errors have not been incorporated into the total
error analysis.

regulator form

parameter dipole double triple WM(1) WM(2)

cJLQCD
0 0.873(18)(16) 0.875(17)(16) 0.891(17)(16) 0.880(29) 0.879(32)

cPACS−CS
0 0.900(51)(15) 0.899(51)(14) 0.898(51)(14) 0.899(53) 0.899(55)

cCP−PACS
0 0.924(3)(8) 0.914(3)(7) 0.918(3)(7) 0.918(13) 0.920(37)

cJLQCD
2 3.09(9)(11) 3.18(9)(12) 3.20(9)(11) 3.16(18) 3.14(43)

cPACS−CS
2 3.06(32)(15) 3.15(31)(14) 3.17(31)(14) 3.13(39) 3.12(49)

cCP−PACS
2 2.54(5)(4) 2.70(5)(2) 2.71(5)(3) 2.66(18) 2.61(60)

MJLQCD
N,phys 1.02(2)(9) 1.02(2)(9) 1.02(2)(9) 1.02(9) 1.02(9)

MPACS−CS
N,phys 0.967(45)(43) 0.966(45)(43) 0.966(45)(43) 0.966(62) 0.966(62)

MCP−PACS
N,phys 0.982(2)(40) 0.975(2)(43) 0.978(2)(42) 0.979(43) 0.979(50)

5.2 Summary and Specific Issues for the Nucleon Mass

Since the chiral expansion is only convergent within the PCR, arenormalization

scheme such as finite-range regularization should be used for current lattice QCD

results, which typically extend beyond the PCR. It was found that renormalization

scheme-dependence occurs when lattice QCD data extending outside the PCR are

used in the extrapolation. This has provided a new quantitative test for determining

whether lattice QCD data lie within the PCR.

The optimal regularization scaleΛscale was selected as the scale at which the
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renormalized coefficients are independent of the upper bound of the fit domain,

m2
π,max. This also means that the renormalized coefficients must notbe identified

with their asymptotic values at largeΛ. It is also apparent that extremely low val-

ues ofΛ cause a breakdown of the finite-range renormalization. The cut-off scale

associated with an ultraviolet regulator must be large enough for the loop integral

contributions to be finite, so that the chiral physics is not suppressed.

The mean value of the optimal regularization scale for both thec0 andc2 anal-

yses across each data set isΛ̄scale
dip ≈ 1.3 GeV for the dipole form,̄Λscale

doub≈ 1.0 GeV

for the double-dipole form and̄Λscale
trip ≈ 0.9 GeV for the triple-dipole form. Each

functional form naturally leads to a different value of optimal regularization scale

due to its different shape of attenuation, as shown in Figure3.1. The value of̄Λscale
dip

is of particular interest in this investigation. In Chapter 7, the magnetic moment and

the electric charge radius of the nucleon are analyzed with the same procedure, and

using a dipole regulator. If an optimal regularization scale can be obtained for these

electromagnetic properties of the nucleon, a comparison can be made with the opti-

mal regularization scale from the analysis of the nucleon mass, to determine whether

there exists an intrinsic scale in the nucleon. If the optimal regulators in each case

are consistent with each other, this suggests the existenceof a well-defined intrin-

sic energy scale in the nucleon-pion interaction. Nevertheless, a robust method for

accomplishing a chiral extrapolation with a reliable and systematic estimate in the

uncertainty has been provided.

In the next chapter, the procedure developed for obtaining an optimal regulariza-

tion scale and performing a reliable chiral extrapolation is tested, by analyzing the

quenchedρ meson mass: an observable for which there does not exist an experimen-

tal value. This serves to demonstrate the ability of the extrapolation scheme to make

predictions without prior bias.



Chapter 6

Results for the Mass of the Quenched

ρ Meson

“A rigorous theory must begin by specifying the attributes that make a given exper-

imental device into a measuring instrument.”(Omǹes, R. 2002.Quantum Philoso-

phy: Understanding and Interpreting Contemporary Sciencep.209) [Omn02]

The quenchedρ meson mass offers a unique test case for the identification ofan

intrinsic scale, and subsequent extrapolation scheme. It serves to demonstrate the

ability of the procedure to make predictions with reduced phenomenological bias,

and also to highlight the difference between quenched and full quantum chromo-

dynamics (QCD) in making extrapolations of an observable. By using the method

developed in Chapter 4, an extrapolation is performed using quenched lattice QCD

data that extend outside the power-counting regime (PCR).

In chiral effective field theory (χEFT), the diagrammatic formulation can be used

to identify the major contributions to theρ meson mass in quenched QCD (QQCD)

[CR98, AAL+06]. The leading-order diagrams are the double and singleη′ hairpin

diagrams as shown in Figures 6.1 and 6.4, respectively. The constant coefficients

of these loop integrals are endowed with an uncertainty to encompass the possible

effects of smaller contributions to orderO(m4
π). Interactions with the flavour-singlet

η′ are the most important contributions to theρ meson mass in QQCD. This is an

artefact of the quenched approximation, where theη′ also behaves as a pseudo-

83
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Figure 6.1:Double hairpinη′ diagram.

Figure 6.2:Double hairpin quark flow diagram.

Figure 6.3: Alternative double hairpin quark
flow diagram.

Figure 6.4:Single hairpinη′ diagram.

Figure 6.5:Single hairpin quark flow diagram.

Goldstone boson, having a mass that is degenerate with the pion. The dressing of

theρ meson by theη′ field is illustrated in Figures 6.2 through 6.5. Since the hairpin

vertex must be a flavour-singlet, the mesons that can contribute are theη′ meson, and

theω meson. The contributions from theω meson are insignificant due to OZI sup-

pression and the smallρ-ω mass splitting. However, in QQCD, theη′ loop behaves

much as a pion loop, yet with a slightly modified propagator.

In full QCD however, this would not be the case. Theη′ masses are large com-

pared to the pion, and the propagators of theη′ meson are suppressed due to their

large denominators. If theη′ propagator in full QCD is expanded out, the terms

can be summed as a geometric series and expressed in closed form, as a function of

some massive coupling constantM0 between the disconnected quark loops and pion
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momentumk, as argued in Allton [AAL+05]:

1
k2+m2

π
− M2

0

(k2+m2
π)

2×
[

1− M2
0

k2+m2
π
+

(

M2
0

k2+m2
π

)2

−·· ·
]

(6.1)

=
1

k2+m2
π
− M2

0

(k2+m2
π)

2

[

1+

(

M2
0

k2+m2
π

)]−1

(6.2)

=
1

k2+m2
π +M2

0

≡ 1

k2+m2
η′
. (6.3)

However in QQCD, the first two terms of Equation (6.1) form the wholeη′ prop-

agator, since they alone correspond to the absence of disconnected loops, as shown

in Figure 6.6.

Figure 6.6:Diagrammatic representation ofη′ propagator terms.
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6.1 Renormalization of the Quenchedρ Meson Mass

6.1.1 Chiral Expansion of the Quenchedρ Meson Mass

Theρ meson mass extrapolation formula in QQCD can be expressed in aform that

contains an analytic polynomial inm2
π plus the chiral loop integrals (ΣQ):

m2
ρ,Q = aΛ

0 +aΛ
2 m2

π +aΛ
4 m4

π +ΣQ
η′η′(m

2
π,Λ)+ΣQ

η′(m
2
π,Λ)+O(m6

π) . (6.4)

The coefficientsaΛ
i are the ‘residual series’ coefficients, which correspond todirect

quark-mass insertions in the underlying Lagrangian of chiral perturbation theory

(χPT). However, the non-analytic behaviour of the expansion arises from the chi-

ral loop integrals. Upon renormalization of the divergent loop integrals, these will

correspond with low-energy constants of the quenched effective field theory. The

extraction of these parameters from lattice QCD results willfollow the same course

as provided in Chapter 4.

By convention, the non-analytic terms from the double and single hairpin inte-

grals areχ1mπ andχ3m3
π, respectively. The coefficientsχ1 andχ3 of each integral are

scheme-independent constants that can be estimated from phenomenology. That is,

they can be expressed purely in terms of known constants fromexperiment, such as

the pion decay constantfπ = 92.4 MeV, and a variety of parameters obtained from

the underlying effective Lagrangian, as described in Section 6.1.3. The low-order

expansion of the loop contributions takes the following form:

ΣQ
η′η′ = bη′η′

0 +χ1mπ +bη′η′
2 m2

π +χη′η′
3 m3

π +bη′η′
4 m4

π +O(m6
π) , (6.5)

ΣQ
η′ = bη′

0 +bη′
2 m2

π +χη′
3 m3

π +bη′
4 m4

π +O(m6
π) . (6.6)

The coefficientχ3 is obtained by adding the contributions from both integrals, χ3 =

χη′η′
3 + χη′

3 . As before, each integral has a solution in the form of a polynomial

expansion analytic inm2
π plus non-analytic terms, of which the leading-order term is

of greatest interest. In order to achieve an extrapolation based on an optimal finite-

range regularization (FRR) scale, once again the scale-dependence of the low-energy
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expansion must be removed through renormalization. The renormalization program

of FRR combines the scheme-dependentbi coefficients from the chiral loops with

the scheme-dependentai coefficients from the residual series at each chiral orderi.

The result is a scheme-independent coefficientci:

c0 = aΛ
0 +bη′η′

0 +bη′
0 , (6.7)

c2 = aΛ
2 +bη′η′

2 +bη′
2 , (6.8)

c4 = aΛ
4 +bη′η′

4 +bη′
4 , etc. (6.9)

That is, the underlyingaΛ
i coefficients undergo a renormalization from the chiral loop

integrals. The renormalized coefficientsci are an important part of the extrapolation

technique. In this chapter, a stable and robust determination of the parametersc0, c2

andc4 forms the core of the method for determining an optimal scaleΛscaleof the

mass of theρ meson.

6.1.2 Chiral Loop Integrals

The loop integrals can again be expressed conveniently by taking the non-relativistic

limit and performing the pole integration fork0. Renormalization is achieved by

subtracting the relevant terms in the Taylor expansion of the loop integrals, and ab-

sorbing them into the corresponding low-energy coefficients,ci:

Σ̃Q
η′η′(m

2
π;Λ) =

−χη′η′

3π2

∫
d3k

(M2
0k2+ 5

2A0k4)u2(k;Λ)
(k2+m2

π)
2

−bη′η′
0 −bη′η′

2 m2
π−bη′η′

4 m4
π , (6.10)

Σ̃Q
η′(m

2
π;Λ) =

χη′

2π2

∫
d3k

k2u2(k;Λ)
k2+m2

π
−bη′

0 −bη′
2 m2

π

−bη′
4 m4

π . (6.11)

The tilde (˜) denotes that the integrals are written out in renormalized form to chiral

orderO(m4
π). The coefficientsχη′η′ and χη′ are related to the coefficients of the
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leading-order non-analytic terms by the following:

χ1 = M2
0 χη′η′ , (6.12)

χ3 = χη′η′
3 +χη′

3 = A0χη′η′+χη′ . (6.13)

In choosing the form of regulator, one must be cautious to avoid any extra

scheme-dependent, non-analytic terms that might occur at working chiral order. For

example, consider pseudodata created from the lattice QCD simulations from the

Kentucky Group, using a dipole regulator created using the scale: Λc = 0.8 GeV.

The renormalization flow curves are shown in Figures 6.7 through 6.9. The dipole

regulator induces non-analytic terms proportional tomπ and m3
π in the loop inte-

gral expansion formulae. By writing out the regulator-dependence explicitly in the

coefficientsb̃i , the following equations are obtained:

ΣQ,dip
η′η′ (k;Λ) = Λ b̃η′η′

0 +χ1mπ +
b̃η′η′

2

Λ
m2

π +
b̃η′η′

3

Λ2 m3
π +

b̃η′η′
4

Λ3 m4
π +

b̃η′η′
5

Λ4 m5
π +O(m6

π) ,

(6.14)

ΣQ,dip
η′ (k;Λ) = Λ3b̃η′

0 +Λ b̃η′
2 m2

π +χ3m3
π +

b̃η′
4

Λ
m4

π +
b̃η′

5

Λ2 m5
π +O(m6

π) . (6.15)

Clearly, the renormalization flow is compromised by the extranon-analytic terms

appearing at such a close chiral order to the fit parameters. Though it is possible to

provide additional fit parametersaΛ
3 andaΛ

5 to contain the contribution from these

terms, there are often not enough available lattice simulation results to constrain all

coefficients. Instead, a more effective approach is to choose a regulator functional

form such that the extra non-analytic terms do not appear in the chiral expansion. By

selecting an multiple-dipole regulator corresponding to achoice ofn> 2 in Equation

(3.105) in Chapter 3, the suppression of additional non-analytic terms below the

working chiral orderO(m4
π) is assured. If one also decides to remove extram5

π

terms, a triple-dipole is sufficient to remove additional non-analytic terms below

chiral orderO(m6
π). The renormalization flow curves for pseudodata created with

a double-dipole are shown in Figures 6.10 through 6.12. The renormalization flow



Chapter 6. Results for the Mass of the Quenchedρ Meson Hall 89

Figure 6.7: Behaviour ofc0 vs. Λ based on infinite-volume pseudodata created with a dipole
regulator atΛc = 0.8 GeV (based on Kentucky Group data). Each curve uses pseudodata with a
different upper value of pion massm2

π,max.

Figure 6.8: Behaviour ofc2 vs. Λ based on infinite-volume pseudodata created with a dipole
regulator atΛc = 0.8 GeV (based on Kentucky Group data).

Figure 6.9: Behaviour ofc4 vs. Λ based on infinite-volume pseudodata created with a dipole
regulator atΛc = 0.8 GeV (based on Kentucky Group data).
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Figure 6.10: Behaviour ofc0 vs. Λ based on infinite-volume pseudodata created with a double-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data). Each curve uses pseudodata with
a different upper value of pion massm2

π,max.

Figure 6.11: Behaviour ofc2 vs. Λ based on infinite-volume pseudodata created with a double-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data).

Figure 6.12: Behaviour ofc4 vs. Λ based on infinite-volume pseudodata created with a double-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data).
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curves for pseudodata created with a triple-dipole regulator are shown in Figures

6.13 through 6.15. In both cases, the pseudodata are createdusing the scale:Λc= 0.8

GeV.

With the loop integrals specified, Equation (6.4) can be rewritten in terms of the

renormalized coefficientsci:

m2
ρ,Q = c0+c2m2

π +c4m4
π + Σ̃Q

η′η′(m
2
π;Λ)+ Σ̃Q

η′(m
2
π;Λ)+O(m6

π) (6.16)

= c0+χ1mπ +c2m2
π +χ3m3

π +c4m4
π +O(m6

π) . (6.17)

Equation (6.16) is the extrapolation formula form2
ρ,Q at infinite lattice volume. The

fit coefficients arec0, c2 andc4; andmρ,Q is obtained by taking the square root of

either Equation (6.16) or (6.17).

6.1.3 Scheme-Independent Coefficients

The convention used for defining the values ofχ1, χ3 and the various coupling con-

stants that occur in each, follows Booth [BCF97]. For the possible different values

that coupling constants can take, the definitions from Chow & Rey [CR98], Armour

et.al. [AAL +06] and Sharpe [Sha97] are used. The types of vertices available are

displayed in Figure 6.16, where the couplingsg2 andg4 occur explicitly in the two

diagrams considered here. Booth suggests naturalness forg2∼ 1, and thatg4∼ 1/Nc

[BCF97]. These quenched coupling constants can be connected to the experimental

value ofgωρπ as per Lublinsky [Lub97] by the relation:

g2 =
1
2

gωρπ fπ , (6.18)

wheregωρπ = 14±2 GeV−1 and the pion decay constant is again taken to befπ =

92.4 MeV. Thusg2 is chosen to be 0.65±0.09 GeV andg4 is chosen to beg2/3. The

coupling between the separate legs of the double hairpin diagram are approximated

by the massive constantM2
0 ∝ m2

η′. The next-order correction toM0 in momentumk

defines the coupling to be−M2
0+A0k2. These constants can be connected to the full
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Figure 6.13: Behaviour ofc0 vs. Λ based on infinite-volume pseudodata created with a triple-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data). Each curve uses pseudodata with
a different upper value of pion massm2

π,max.

Figure 6.14: Behaviour ofc2 vs. Λ based on infinite-volume pseudodata created with a triple-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data).

Figure 6.15: Behaviour ofc4 vs. Λ based on infinite-volume pseudodata created with a triple-
dipole regulator atΛc = 0.8 GeV (based on Kentucky Group data).
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Figure 6.16: Coupling types following convention introduced by Booth [BCF97].

QCD η′ meson mass mη′ by considering the geometric series of terms as illustrated

earlier, in Figure 6.6. As a result, M2
0 is taken to be 0.6±0.2 GeV2 and A0 is taken

to be 0±0.2. The central values of each quantity are used in the final analysis.

The coefficients χη′η′ and χη′ can be specified in terms of the relevant coupling

constants:

χη′η′ =−2
◦mρ

g2
2

4π f 2π
,

χη′ =−2
◦mρ
g2g4
6π f 2π

, (6.19)

where the couplings are defined relative to
◦mρ, representing the ρ meson mass in the

chiral limit, which is taken to be 770 MeV.

The finite-volume version of Equation (6.16) can thus be expressed:

m2
ρ,Q = c0 + c2m2

π + c4m4
π +(Σ̃Qη′η′(m

2
π;Λ)+δFVC

η′η′ (m
2
π;Λ′))

+(Σ̃Qη′(m
2
π;Λ)+δFVC

η′ (m2
π;Λ′))+O(m6

π) . (6.20)

  
                                          NOTE:   
   This figure is included on page 93 of the print copy of  
     the thesis held in the University of Adelaide Library.
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6.2 Extrapolating the Quenchedρ Meson Mass

6.2.1 Renormalization Flow Analysis

The data displayed in Figure 6.17 are split into two parts. All the data points to the

left of the solid vertical line are unused in the extrapolation and kept in reserve. This

is so that the extrapolation can be checked against these known data points. The data

points to the right of the solid vertical line are used for extrapolation. The full set

of data is also listed in Appendix C, Table C.4. Note that in QQCD,the simulation

results are correlated. The correlations have been taken into account in all fits and

extrapolations.

In order to produce an extrapolation to each test value ofm2
π, an FRR scaleΛ

must be selected. As an example, one can choose a triple-dipole regulator atΛ = 1.0

GeV. By using Equation (6.20), finite- and infinite-volume extrapolations are shown

in Figure 6.18. The values ofm2
π selected for the finite-volume extrapolations exactly

correspond with the missing low-energy data points set aside earlier. The physical

pointm2
π = 0.0196 GeV2 is included as well.

Now the regularization scale-dependence of low-energy coefficientsc0, c2 andc4

is investigated for various upper limits of range of pion masses. The renormalization

of these low-energy coefficients is considered across a range of Λ values. Each

renormalization flow curve corresponds to a different valueof maximum pion mass,

m2
π,max. Thus the behaviour of the renormalization of the low-energy coefficients

can be examined as the lattice data set is extended further outside the PCR. Figures

6.19 through 6.21 show the renormalization flow curves for each of c0, c2 andc4.

Each data point plotted has an associated error bar, but for the sake of clarity only a

few points are selected to indicate the general size of the statistical error bars. Using

the procedure described in Chapter 4, the optimal regularization scale is identified

by the value of the regularization scale that minimizes the discrepancies among the

renormalization flow curves. This indicates the scale at which the renormalization of

eachci is least sensitive to truncation of the data. Physically, this value ofΛ can be

associated with an intrinsic scale related to the size of thesource of the pion cloud.
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Figure 6.17: Quenched lattice QCD data for theρ meson mass provided by the Kentucky Group.
The dashed vertical line indicates the physical pion mass and the solid vertical line shows how the
data set is split into two parts.

Figure 6.18:A test extrapolation based on the four original data points shown. Both the finite- and
infinite-volume results are shown for a triple-dipole regulator atΛ = 1.0 GeV. The dashed vertical
line indicates the physical pion mass.
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Figure 6.19: Behaviour ofc0 vs. Λ based on Kentucky Group data. A triple-dipole regulator is
used. A few points are selected to indicate the general size of the statistical error bars.

Figure 6.20:Behaviour ofc2 vs. Λ based on Kentucky Group data. A triple-dipole regulator is
used. A few points are selected to indicate the general size of the statistical error bars.

Figure 6.21:Behaviour ofc4 vs. Λ based on Kentucky Group data. A triple-dipole regulator is
used. A few points are selected to indicate the general size of the statistical error bars.
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By examining Figures 6.19 through 6.21, increasingm2
π,max leads to greater

scale-dependence in the renormalization, since the data sample lies further from

the PCR. Since the effective field theory is calculated to a finite chiral order, com-

plete scale-independence across all possibleΛ values will not occur in practice. An

asymptotic value is usually observed in the renormalization flow asΛ becomes large,

indicating that the higher-order terms of the chiral expansion are effectively zero.

However, these asymptotic values of the coefficients are poor estimates of their cor-

rect values, as previously demonstrated in the pseudodata analysis in Chapter 4.

Instead, the best estimates of the low-energy coefficients lie in the identification of

the intersection point of the renormalization flow of these coefficients. It is also of

note that, for small values ofΛ, the FRR scheme breaks down, as observed for the

nucleon mass in Section 4.2.1. The regularization scale must be at least large enough

to include the chiral physics being studied.

6.2.2 Intrinsic Scale and Systematic Uncertainties

The optimal regularization scaleΛscale can be obtained from the renormalization

flow curves using a chi-square-style analysis. In addition,the analysis will allow

the extraction of a variance forΛscale. Knowing how the data are correlated, the

systematic errors from the coupling constants andΛscalewill be combined to obtain

an error estimate for each extrapolation point. Of particular interest are the values

of mρ,Q at those values ofm2
π that are explored in the lattice simulations, but are

excluded in the chiral extrapolation. The functionχ2
do f is constructed in the same

way as Equations (5.2) and (5.3).

Theχ2
do f plots using a triple-dipole regulator are shown in Figures 6.22 through

6.24. The optimal regularization scaleΛscale is taken to be the central valueΛcentral

of each plot. The upper and lower bounds ofΛ obey the conditionχ2
do f < χ2

do f,min+

1/(do f). The results for the optimal regularization scales obtained from analyzing

each low-energy coefficient, and their associated upper andlower bounds, are shown

in Table 6.1. It is remarkable that each low-energy coefficient leads to the same

optimal value ofΛ, i.e. Λcentral= 0.67 GeV. By averaging the results amongc0, c2,
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Figure 6.22:χ2
do f for c0 versusΛ, corresponding to the renormalization flow curves displayed in

Figure 6.19 based on Kentucky Group data. A triple-dipole regulator is used.

Figure 6.23:χ2
do f for c2 versusΛ, corresponding to the renormalization flow curves displayed in

Figure 6.20 based on Kentucky Group data. A triple-dipole regulator is used.

Figure 6.24:(color online).χ2
do f for c4 versusΛ, corresponding to the renormalization flow curves

displayed in Figure 6.21 based on Kentucky Group data. A triple-dipole regulator is used.
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Table 6.1:Values of the central, upper and lower regularization scales, in GeV, obtained from the
χ2

do f analysis ofc0, c2 andc4, displayed in Figures 6.22 through 6.24.

scale (GeV) c0 (Fig.6.22) c2 (Fig.6.23) c4 (Fig.6.24)

Λcentral 0.67 0.67 0.67

Λupper 0.78 0.75 0.75

Λlower 0.58 0.59 0.60

andc4, the optimal regularization scaleΛscalefor the quenchedρ meson mass can be

calculated for this data set:Λscale= 0.67+0.09
−0.08 GeV.

The result of the final extrapolation, using the estimate of the optimal regular-

ization scaleΛscale= 0.67+0.09
−0.08 GeV, and using the initial data set to predict the

low-energy data points, is shown in Figure 6.25. The extrapolation to the physical

point obtained for this quenched data set is:mext
ρ,Q(m

2
π,phys) = 0.925+0.053

−0.049 GeV, an

uncertainty of less than 6%.

Each extrapolation point displays two error bars. The innererror bar corresponds

to the systematic uncertainty in the parameters only, and the outer error bar corre-

sponds to the systematic and statistical uncertainties of each point added in quadra-

ture. Also, the infinite-volume extrapolation curve is displayed in order to illustrate

the effect of finite-volume corrections to the loop integrals.

In Figure 6.26, the extrapolation predictions are comparedagainst the actual sim-

ulation results, which were not included in the fit. Both the extrapolations and the

simulation results display the same non-analytic curvature near the physical point.

Figure 6.27 shows the data plotted with error bars correlated relative to the lightest

data point in the original set,m2
π = 0.143 GeV2. To highlight the importance of

this application of an extendedχEFT, a simple linear fit is included in Figure 6.27.

By ignoring low-energy chiral physics, the linear fit is statistically incorrect at the

physical point. All of the missing original data points are consistent with the ex-

trapolations’ systematic uncertainties. After statistical correlations are subtracted,

the extrapolated points correspond to an error bar almost half the size of that of the

lattice data points. In order to match this precision at low energies, the time required
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Figure 6.25: Extrapolation atΛscale= 0.67+0.09
−0.08 GeV based on Kentucky Group data, and using

the optimal number of data points, corresponding to ˆm2
π,max = 0.35 GeV2. The inner error bar on

the extrapolation points represents purely the systematicerror from parameters. The outer error bar
represents the systematic and statistical error estimatesadded in quadrature.

Figure 6.26:Comparison of chiral extrapolation predictions (blue diamond) with Kentucky Group
data (red cross). Extrapolation is performed atΛscale= 0.67+0.09

−0.08 GeV, and using the optimal number
of data points, corresponding to ˆm2

π,max= 0.35 GeV2. The inner error bar on the extrapolation points
represents purely the systematic error from parameters. The outer error bar represents the systematic
and statistical error estimates added in quadrature.
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Figure 6.27:Comparison of chiral extrapolation predictions (blue diamond) with Kentucky Group
data (red cross), with errors correlated relative to the point at m2

π = 0.143 GeV2. Extrapolation is
performed atΛscale= 0.67+0.09

−0.08 GeV, and using the optimal number of data points, corresponding to
m̂2

π,max= 0.35 GeV2. The error bar on the extrapolation points represents the systematic error only.
A simple linear fit, on the optimal pion mass region, is included for comparison.

in lattice simulations would increase by approximately four times.

In order to check if scheme-independence is recovered usingdata within the

PCR, the low-energy data that were initially excluded from analysis can now be

treated in the same way. That is, renormalization flow curvescan be constructed as

a function ofΛ for sequentially increasingm2
π,max. The results are shown in Figures

6.28 through 6.30. Clearly, the renormalization flow curves for each plot correspond-

ing toc0, c2 andc4 are flatter than those of the initial analysis, indicating a reduction

in the regularization scale-dependence due to the use of data closer to the PCR. One

is not able to extract an optimal regularization scale from these plots, as shown in

the behaviour ofχ2
do f, displayed in Figures 6.31 through 6.33. However, eachχ2

do f

curve provides a lower bound for the regularization scale, where FRR breaks down

[HLY10], as discussed in Section 6.2.1. These lower bounds are: Λc0
lower= 0.39 GeV,

Λc2
lower = 0.52 GeV andΛc4

lower = 0.59 GeV.

The statistical error bars of the low-energy coefficients corresponding to a small

number of data points in Figures 6.28 through 6.30 are large,and a statistical differ-

ence among the curves does not appear untilm2
π,max≈ 0.11 GeV2. Thus the identi-
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Figure 6.28:Behaviour ofc0 vs. Λ for the initially excluded low-energy data. A triple-dipole
regulator is used. A few points are selected to indicate the general size of the statistical error bars.

Figure 6.29:Behaviour ofc2 vs. Λ for the initially excluded low-energy data. A triple-dipole
regulator is used. A few points are selected to indicate the general size of the statistical error bars.

Figure 6.30:Behaviour ofc4 vs. Λ for the initially excluded low-energy data. A triple-dipole
regulator is used. A few points are selected to indicate the general size of the statistical error bars.
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fication of an optimal regularization scale will be aided by incorporating data corre-

sponding to even larger values ofm2
π,max. By consideringall of the available data, the

behaviour ofχ2
do f, as displayed in Figures 6.34 through 6.36, resolve preciseoptimal

regularization scales:Λc0
central= 0.72 GeV,Λc2

central= 0.71 GeV andΛc4
central= 0.71

GeV. The systematic errors obtained from eachχ2
do f curve seem arbitrarily con-

strained as a consequence of including more data points, which extend well outside

the chiral regime, and possibly outside the applicable region of FRR techniques.

This issue is addressed in the ensuing section.

6.2.3 Optimal Pion Mass Region and Systematic Uncertainties

In this section, a robust method for determining an optimal range of pion masses

is presented. This range corresponds to an optimal number ofsimulation results to

be used for fitting. First, consider the extrapolation of thequenchedρ meson mass,

which can now be completed. The statistical uncertainties in the values ofc0, c2,

c4 are dependent onm2
π,max. As a consequence, the uncertainty in the extrapolated

ρ meson massmext
ρ must also be dependent onm2

π,max. Since the estimate of the

statistical uncertainty in an extrapolated point will tendto decrease as more data are

included in the fit, one might naı̈vely choose to use the largestm2
π,max value possible

in the data set. However, at some large value ofm2
π,max, FRRχEFT will not provide

a valid model for obtaining a suitable fit. At this upper boundof applicability for

FRRχEFT, the uncertainty in an extrapolated point is dominated by the systematic

error in the underlying parameters. This is due to a greater scheme-dependence in

extrapolations using data extending outside the PCR, meaningthat the extrapolations

are more sensitive to changes in the parameters of the loop integrals. Thus there is

a balance pointm2
π,max= m̂2

π,max, where the statistical and systematic uncertainties

(added in quadrature) in an extrapolation are minimized.

In order to obtain this value ˆm2
π,max, consider the behaviour of the extrapolation

of the ρ meson mass to the physical pointmext
ρ,Q(m

2
π,phys), as a function ofm2

π,max.

Treating the parametersg2, g4, M2
0, A0 andΛscaleas independent, their systematic

uncertainties from these sources are added in quadrature. In addition, the systematic
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Figure 6.31:χ2
do f, for c0 versusΛ, correspond-

ing to the renormalization flow curves displayed in
Figure 6.28. A lower bound for the regularization
scale is found:Λc0

lower = 0.39 GeV.

Figure 6.32:χ2
do f, for c2 versusΛ, correspond-

ing to the renormalization flow curves displayed in
Figure 6.29. A lower bound for the regularization
scale is found:Λc2

lower = 0.52 GeV.

Figure 6.33:χ2
do f, for c4 versusΛ, correspond-

ing to the renormalization flow curves displayed in
Figure 6.30. A lower bound for the regularization
scale is found:Λc4

lower = 0.59 GeV.

Figure 6.34:χ2
do f, for c0 versusΛ, correspond-

ing to all available data, including the low-energy
set.

Figure 6.35:χ2
do f, for c2 versusΛ, correspond-

ing to all available data, including the low-energy
set.

Figure 6.36:χ2
do f, for c4 versusΛ, correspond-

ing to all available data, including the low-energy
set.
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uncertainty due to the choice of the regulator functional form is roughly estimated

by comparing the results using the double-dipole and the step function. These func-

tional forms are the two most different forms of the various regulators considered,

since the dipole was excluded due to the extra non-analytic contributions it intro-

duces. The results for the initial and complete data sets areshown in Figures 6.37

and 6.38, respectively. Figure 6.37 indicates an optimal value m̂2
π,max= 0.35 GeV2,

which will be used in the final extrapolations, in order to check the results of this

method with the low-energy data. By using only the data contained in the optimal

pion mass region, constrained by ˆm2
π,max, an estimate of the optimal regularization

scale may be calculated with a more generous corresponding systematic uncertainty.

The valueΛscale= 0.64 GeV is the average ofΛscale
c0

, Λscale
c2

and Λscale
c4

using this

method. Theχ2
do f analysis does not provide an upper or lower bound at this value

of m̂2
π,max. These two estimates of the optimal regularization scale are consistent

with each other. Both shall be used and compared in the final analysis. Figure 6.38

indicates an optimal value ˆm2
π,max= 0.20 GeV2 for the complete data set. A higher

density of data in the low-energy region serves to decrease the statistical error esti-

mate of extrapolations to the low-energy region. The corresponding value ofΛscale

is unconstrained in this case, since the data lie close to thePCR.

The values ofc0, c2 andc4 for both the original data set and the complete data

set are shown in Table 6.2, with statistical error estimate quoted first, and systematic

uncertainty due to the parametersg2, g4, M2
0, A0, Λscaleand the regulator functional

form quoted second. In the case of the original data set, the value ofc4 is not well

determined, due to the small number of data points used. In the case of the complete

data set, the results are dominated by statistical uncertainty, and this also results in

an almost unconstrained value ofc4. The coefficients of the complete set are less

well-determined due to the fact that ˆm2
π,max= 0.20 GeV2, leaving only low-energy

results with large statistical uncertainties for fitting.

The result using the estimate of the optimal regularizationscaleΛscale= 0.64

GeV, with the systematic uncertainty calculated by varyingΛ across all suitable

values, and using the initial data set, is shown in Figure 6.39. The extrapolation to
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Figure 6.37: Behaviour of the extrapolation of the quenchedρ meson mass to the physical point
mext

ρ,Q(m
2
π,phys) vs.m2

π,max using the initial data set, which excludes the lowest mass data points. In each

case,c0 is obtained using the scaleΛcentral (for a triple-dipole regulator) as obtained from theχ2
do f

analysis. The error bars include the statistical and systematic uncertainties inc0 added in quadrature.
The optimal value ˆm2

π,max= 0.35 GeV2.

Figure 6.38: Behaviour of the extrapolation of the quenchedρ meson mass to the physical point
mext

ρ,Q(m
2
π,phys) vs. m2

π,max using the complete data set, which includes the lowest mass data points.
In each case,c0 is obtained using the scaleΛcentral (for a triple-dipole regulator) as obtained from
the χ2

do f analysis. The error bars include the statistical and systematic uncertainties inc0 added in

quadrature. The optimal value ˆm2
π,max= 0.20 GeV2.
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Table 6.2:The values ofc0, c2 andc4 as obtained from both the original data set and the complete
set, which includes the low-energy data. In each case, the coefficients are evaluated using the scale
Λcentral (for a triple-dipole regulator) as obtained from theχ2

do f analysis. The value ofm2
π,max used is

that which yields the smallest error bar in adding statistical and systematic uncertainties in quadrature.
For the initial data set, ˆm2

π,max = 0.35 GeV2. For the complete data set, ˆm2
π,max = 0.20 GeV2. The

statistical uncertainty is quoted in the first pair of parentheses, and the systematic uncertainty is
quoted in the second pair of parentheses. For the original data set,c4 is not well determined, with
only a small number of data. For the complete data set, large statistical uncertainties result in an
almost unconstrained value ofc4. The coefficients of the complete set are less well-determined due
to the fact that ˆm2

π,max= 0.20 GeV2, leaving only low-energy results with large statistical uncertainties
for fitting.

c0(GeV2) c2 c4(GeV−2)

original set 1.31(5)(17) 7.9(4)(26) −16.2(8)(382)

complete set 1.35(4)(241) 6.8(5)(31) −3.3(17)(361)

the physical point obtained for this quenched data set is:mext
ρ,Q(m

2
π,phys)= 0.922+0.065

−0.060

GeV, an uncertainty of approximately 7%. Figure 6.40 shows the data plotted with

error bars correlated relative to the lightest data point inthe original set,m2
π = 0.143

GeV2, usingΛscale= 0.64 GeV, and varyingΛ across its full range of values. This

naturally increases the estimate of the systematic uncertainty of the extrapolations,

but also serves to demonstrate how closely the results from lattice QCD andχEFT

match.

6.3 Summary and Specific Issues for the Quenchedρ

Meson

A technique for isolating an optimal regularization scale was investigated in QQCD

through an examination of the quenchedρ meson mass. The result is a successful

extrapolation based on an extendedχEFT procedure. By using quenched lattice

QCD results that extended beyond the PCR, an optimal regularization scale was

obtained from the renormalization flow of the low-energy coefficients c0, c2 and

c4. The optimal scale is found to beΛscale= 0.67+0.09
−0.08 GeV. An optimal value of

the maximum pion mass used for fitting was also calculated, and was found to be
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Figure 6.39:Comparison of chiral extrapolation predictions (blue diamond) with Kentucky Group
data (red cross). Extrapolation is performed atΛscale= 0.64 GeV, varied across the whole range of
Λ values, and using the optimal number of data points, corresponding tom̂2

π,max= 0.35 GeV2. The
inner error bar on the extrapolation points represents purely the systematic error from parameters.
The outer error bar represents the systematic and statistical error estimates added in quadrature.

Figure 6.40:Comparison of chiral extrapolation predictions (blue diamond) with Kentucky Group
data (red cross), with errors correlated relative to the point at m2

π = 0.143 GeV2. Extrapolation is
performed atΛscale= 0.64 GeV, varied across the whole range ofΛ values, and using the optimal
number of data points, corresponding to ˆm2

π,max = 0.35 GeV2. The error bar on the extrapolation
points represents the systematic error only. A simple linear fit, on the optimal pion mass region, is
included for comparison.
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m̂2
π,max = 0.35 GeV2. By using only the data contained in the optimal pion mass

region, constrained by ˆm2
π,max, a valueΛscale= 0.64 GeV is estimated for the optimal

regularization scale, with a wider systematic uncertaintycorresponding to the entire

range of values ofΛ. These two estimates of the optimal regularization scale are

consistent with each other.

The mass of theρ meson was calculated in the low-energy region. At the

physical point, the result of the extrapolation, usingΛscale= 0.67+0.09
−0.08 GeV, is:

mext
ρ,Q(m

2
π,phys) = 0.925+0.053

−0.049GeV. The result of the extrapolation, usingΛscale= 0.64

GeV, with the systematic uncertainty calculated by varyingΛ across all suitable val-

ues, is:mext
ρ,Q(m

2
π,phys) = 0.922+0.065

−0.060 GeV. The extrapolation also correctly predicts

the low-energy curvature that was observed when the low-energy lattice simulation

results were revealed.

Since there exists no experimental value for the mass of a particle in the quenched

approximation, this analysis demonstrates the ability of the technique to make pre-

dictions without phenomenologically motivated bias. The results clearly indicate a

successful procedure for using lattice QCD data outside the PCR to extrapolate an

observable to the chiral regime.
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Chapter 7

Electromagnetic Properties of the

Nucleon

“[W]e can establish the key to our conclusion:the datum and the result are log-

ically equivalent.” (Omǹes, R. 2002.Quantum Philosophy: Understanding and

Interpreting Contemporary Sciencep.209) [Omn02]

In this chapter, the focus is turned to the magnetic moment and the electric charge

radius of the nucleon. The magnetic moment is often studied for the physical sig-

nificance of its anomalous component, obtained from the Pauli form factorF2 (de-

fined in Equation (3.76)). Since electrically charged pionswith non-zero angular

momentum dress the nucleon, they contribute non-triviallyto its magnetic moment,

altering the value from its semi-classical Dirac value. Likewise, the electric charge

radius, or more precisely, the gradient of the Sachs electric form factorGE in the

soft-photon limit, provides a phenomenological test of quantum chromodynamics

(QCD) theory. The leading-order low-energy contributions from virtual processes

provide non-analytic behaviour in the chiral expansion. Chiral extrapolations for an

infinite-volume box agree with experiment at the physical point, as will be evident

later in this chapter. It is of interest in this investigation to determine if an optimal

regularization scale may also be extracted from lattice QCD results for these two

observables. If so, it would provide compelling evidence for the existence of an

intrinsic scale for the source of the pion cloud of the nucleon.

111
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In lattice QCD, the isovector combination of the nucleon is often calculated,

as described in Section 2.1.3. Feynman diagrams including any photons coupling

to sea-quark loops cancel in the case of the isovector, and the distinction between

VQCD and full QCD vanishes. This is fortunate, since the calculation of the dis-

connected loops is computationally expensive. As a result,preliminary lattice QCD

isovector results for two-flavorO(a)-improved Wilson quark action from the QCDSF

Collaboration are analyzed.

The magnetic moment and the electric charge radius can each be written as chi-

ral expansions, ordered inm2
π, due to the Gell-Mann−Oakes−Renner Relation from

Equation (3.43) in Chapter 3. Each expansion comprises a polynomial residual se-

ries, and loop integrals that contribute to non-analytic chiral behaviour. The dia-

grams that correspond to the leading-order loop integrals are shown in Figures 7.1

through 7.3.

7.1 Renormalization of the Magnetic Moment

7.1.1 Chiral Expansion of the Magnetic Moment

Recalling the definition of the magnetic moment of the isovector nucleon in Equation

(3.80), the chiral expansion is as follows:

µisov
n = aΛ

0 +aΛ
2 m2

π +T
µ

N (m2
π ;Λ)+T

µ
∆ (m2

π ;Λ)+O(m4
π) , (7.1)

for loop integrals denoted (T ) to differentiate them from the self energies. In this in-

stance, only two free parameters are chosen, since the non-analytic contributions are

included only to chiral orderO(m2
π logmπ). For a process with zero mass-splitting,

such as that shown in the diagram in Figure 7.1, the leading-order non-analytic term

is proportional tomπ; a lower chiral order than the leading-order term in the nucleon

mass expansion. As a result, greater chiral curvature is expected, and the automatic

renormalization process introduced in Chapter 4 will be constructed only to order

O(m0
π), that is, for the chiral coefficientc0. The fully renormalized chiral expansion
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Figure 7.1: The pion/kaon loop contribution (with photon attachment) to the magnetic moment
and the electric charge radius of an octet baryonB, allowing a transition to a baryonB′. All charge
conserving transitions are implicit.

Figure 7.2:The pion/kaon loop contribution (with photon attachment) to the magnetic moment and
the electric charge radius of an octet baryonB, allowing a transition to a nearby and strongly-coupled
decuplet baryonT.

Figure 7.3: The tadpole contribution atO(mq) (with photon attachment) to the electric charge
radius of an octet baryonB.

may be written to leading non-analytic orderO(mπ) as:

µisov
n = c0+χµ

Nmπ +O(m2
π) , (7.2)

whereµ is an implicit mass scale. Note also that the diagram in Figure 7.3 does not

contribute to the magnetic moment of the nucleon since, in this case, the photon cou-

ples to spinless pseudo-Goldstone bosons that have no orbital angular momentum.
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7.1.2 Chiral Loop Integrals

Each loop integral has a solution in the form of a polynomial expansion analytic in

m2
π plus non-analytic terms, of which the leading-order term isof particular interest:

T
µ

N (m2
π ;Λ) = bµ,Λ,N

0 +χµ
N mπ +bµ,Λ,N

2 m2
π +O(m3

π) , (7.3)

T
µ

∆ (m2
π ;Λ) = bµ,Λ,∆

0 +bµ,Λ,∆
2 m2

π +χµ
∆ m2

π logmπ/µ+O(m3
π) , (7.4)

whereµ is a mass scale associated with the logarithm.

The corresponding loop integrals can be expressed in a convenient form by taking

the non-relativistic heavy-baryon limit, and performing the pole integration fork0.

The integral corresponding to the diagram in Figure 7.1 takes the form [WLTY07,

WLTY09a]:

T̃
µ

N (m2
π ;Λ) =

−χµ
N

π2

∫
d3k

(q̂×~k)2u2(k;Λ)
(k2+m2

π)
2 −bµ,Λ,N

0 (7.5)

=
−χµ

N

π2

∫
d3k

k2
⊥u2(k;Λ)
(k2+m2

π)
2 −bµ,Λ,N

0 (7.6)

=
−χµ

N

3π2

∫
d3k

k2u2(k;Λ)
(k2+m2

π)
2 −bµ,Λ,N

0 , (7.7)

whereq̂ is the direction of the external momentum introduced by an incoming pho-

ton. The argument for this substitution of the perpendicular part k⊥ is expounded

in Appendix B.1.1. The functionu(k;Λ) is the regulator, with associated momen-

tum cut-off scaleΛ. In this case, a dipole regulator will be used (corresponding

to a choice ofn = 1 in Equation (3.105) in Chapter 3). Since the working-order

O(m2
π logmπ) of the calculation is less than in the case of the nucleon massanalysis,

there is a reduced possibility of extra scale-dependent non-analytic terms frustrating

the chiral fit. Thus, ensuring that these scale-dependent non-analytic terms are re-

moved from the chiral expansion is not so vital, and a dipole form is an acceptable

choice of regulator. The integral corresponding to the diagram in Figure 7.2 takes
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the form:

T̃
µ

∆ (m2
π ;Λ) =

−χµ
∆

π2

∫
d3k

k2
⊥(2ω(k)+∆)u2(k;Λ)
2ω3(k)[ω(k)+∆]2

−bµ,Λ,∆
0 (7.8)

=
−χµ

∆
3π2

∫
d3k

k2(2ω(k)+∆)u2(k;Λ)
2ω3(k)[ω(k)+∆]2

−bµ,Λ,∆
0 , (7.9)

whereω(k) =
√

k2+m2
π and∆ is the mass-splitting. The chiral coefficientsχµ

N and

χµ
∆ are constants in terms of the chiral Lagrangian of Equation (3.68) in Chapter 3:

χµ,p
N =− MN

8π f 2
π
(D+F)2 =−χµ,n

N , (7.10)

χµ,p
∆ =− MN

8π f 2
π

2C2

9
=−χµ,n

∆ . (7.11)

On the finite-volume lattice, each momentum component is quantized in units of

2π/L, that is,ki = ni2π/L for integersni . Finite-volume correctionsδµ,FVC are writ-

ten as the difference between the finite sum and the corresponding integral. It is

known that the finite-volume corrections saturate to a fixed result for large values

of regularization scale [HLY10]. As before, this is achieved in practice by evaluat-

ing the finite-volume corrections with fixed regularizationscale:Λ′ = 2.0 GeV. The

finite-volume version of Equation (7.1) can thus be expressed as:

µn = c0+aΛ
2 m2

π +(T̃
µ

N (m2
π ;Λ)+δµ,FVC

N (m2
π;Λ′))

+(T̃∆(m
2
π ;Λ)+δµ,FVC

∆ (m2
π;Λ′))+O(m4

π) . (7.12)

7.2 Evidence for an Intrinsic Scale in the Magnetic

Moment

The analysis of the magnetic moment of the nucleon provides an excellent check for

the identification of an intrinsic scale in the nucleon-pioninteraction. Using chiral

effective field theory (χEFT), it has been demonstrated in Chapter 5 that lattice QCD

results for the nucleon mass have an energy scale embedded within them. This prop-
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erty is a consequence of the small size of the power-countingregime (PCR), where

the expansion formulae of chiral perturbation theory (χPT) hold formally. Since

a selection of lattice QCD results reasonable for fitting an extrapolation invariably

extend outside the restrictive PCR [LTY05], the validity of aformal scheme for ex-

trapolation, and for identifying the leading-order terms in the chiral expansion, is

compromised. Fortunately, a finite-range regularization (FRR) scheme, in conjunc-

tion with χEFT as described in Chapter 4, provides a robust method for achieving an

extrapolation to physical quark masses, and identifying anintrinsic scale embedded

within lattice QCD results.

Recall that the method proceeds by analyzing the behaviour ofthe renormal-

ization of one or more low-energy coefficients of the chiral expansion as a func-

tion of the FRR scale. Ideally, that is, with lattice QCD results constrained entirely

within the PCR, the renormalized coefficients should be independent of regulariza-

tion scale. However, in practice, a scale-dependence is observed; particularly for

data sets including data points corresponding to large quark masses. By truncating

the lattice QCD results at different values ofm2
π,max, an optimal FRR scale can be

identified. This optimal scale is the value ofΛ at which the low-energy coefficient

under analysis is least sensitive to the truncation of the lattice data. If the optimal

scale is consistent among the analyses of magnetic moment and the nucleon mass in

Chapter 5, it provides evidence for an intrinsic scale in the nucleon.

The preliminary QCDSF results for the magnetic moment at a variety of m2
π

values are displayed in Figure 7.4. The experimental value is also marked. The

set of data is listed in Appendix C, Table C.5. The lattice sizesof each data point

vary from 1.43 to 3.04 fm usingNf = 2 andO(a)-improved Wilson quark action.

A simple linear fit is included in this plot, which does not take into account the

chiral loop integrals, nor the finite-volume corrections tothe data. Therefore, it is

not surprising that the linear fit fails to reach the experimental value of the magnetic

moment at the physical pion mass. Since the lattice QCD results extend outside

the PCR, the result of an extrapolation that includes the chiral loop integrals will

be scale-dependent. However, the scale-dependence may be ameliorated using the
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Figure 7.4: Preliminary lattice QCD data forµisov
n from QCDSF, with the physical value from

experiment as marked.

procedure, which obtains both an optimal regularization scale and an estimate of its

systematic uncertainty, constrained by the lattice results.

7.2.1 Renormalization Flow Analysis

In order to obtain the optimal regularization scale, the low-energy coefficientc0 from

Equation (7.12) will be calculated across a range of values of regularization scaleΛ.

Thus the renormalization flow can be constructed. Multiple renormalization flow

curves may be obtained by constraining the fit window by a maximum,m2
π,max, and

sequentially adding data points to extend further outside the PCR. The renormaliza-

tion flow curves for a dipole regulator are plotted on the sameset of axes in Figure

7.5. Note that each data point plotted has an associated error bar, but for the sake

of clarity only a few points are selected to indicate the general size of the statistical

error bars. As more data are included in the fit, a greater degree of scale-dependence

is observed. There is a reasonably well-defined value ofΛ at which the renormal-

ization of c0 is least sensitive to the truncation of the data:Λscale≈ 1.1 GeV. This

indicates the optimal regularization scale embedded within the lattice QCD results

themselves.
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Figure 7.5: The renormalization flow ofc0 for µisov
n obtained using a dipole regulator, based on

lattice QCD data from QCDSF.

Figure 7.6: χ2
do f for the renormalization flow ofc0 for µisov

n obtained using a dipole regulator,
based on lattice QCD data from QCDSF.

7.2.2 Analysis of Systematic Uncertainties

The optimal regularization scale for a dipole form can be more precisely extracted

from Figure 7.5 using the chi-square-style analysis. Such an analysis will also pro-

vide a measure of the systematic uncertainty in the optimal regularization scale. By

plotting χ2
do f against the regularization scaleΛ, wheredo f equals the number of

curvesn minus one for the fit parameterc0, a measure of the spread of the renor-
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malization flow curves can be calculated, and the intersection point obtained. The

χ2
do f plot corresponding to Figure 7.5 is shown in Figure 7.6. The optimal regular-

ization scaleΛscaleis taken to be the central valueΛcentralof the plot, and the upper

and lower bounds obey the conditionχ2
do f < χ2

do f,min+1/(do f). Thus the optimal

regularization scale for a dipole regulator is:Λscale= 1.13+0.22
−0.20 GeV. This value is

consistent with the optimal regularization scale obtainedfor the nucleon mass using

a dipole form, based on lattice QCD results in Chapter 5. Recall that the mean value

for the optimal regularization scale from the nucleon mass analysis is:Λ̄scale
dip ≈ 1.3

GeV. This provides evidence that the optimal regularization scale is associated with

an intrinsic scale characterizing the size of the nucleon, as probed by the pion.

7.2.3 Chiral Extrapolation Results

Using the optimal regularization scale, extrapolations orinterpolations can be made

to any quark mass. Consider the behaviour of the magnetic moment as a function of

the quark mass as shown in Figure 7.7 (in physical units). Here, the finite-volume

expansion of Equation (7.12) is constrained by the lattice results from several differ-

ent volumes. Extrapolation curves are then plotted for infinite volume and a variety

of finite volumes at which current lattice QCD results are produced. For each curve,

only the values for whichmπL > 3 are plotted, provisionally, to avoid undesired

effects of theε-regime. The infinite-volume extrapolation to the physicalpoint is

within 2% of the experimentally derived value:µisov
n = 4.6798µN. The finite-volume

extrapolations are useful for estimating the result of a lattice QCD calculation at cer-

tain box sizes. This can provide a benchmark for estimating the outcome of a lattice

QCD simulation at larger and untested box sizes. Note that even a relatively stan-

dard 3 fm lattice box length will differ significantly from the experimental value at

the physical point. Since the data points in Figure 7.7 are atdiffering finite volumes,

the infinite-volume corrected data are also displayed in Figure 7.8.
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Figure 7.7: Extrapolations ofµisov
n at different finite volumes and infinite volume, using a dipole

regulator, based on lattice QCD data from QCDSF, lattice sizes: 1.43− 3.04 fm. The provisional
constraintmπL > 3 is used. The physical value from experiment is marked. An estimate in the
uncertainty in the extrapolation due toΛscalehas been calculated from Figure 7.6, and is indicated at
the physical value ofm2

π. The curve corresponding to a lattice size of 10 fm is almost indistinguishable
from the infinite-volume curve.

Figure 7.8: Extrapolations ofµisov
n at different finite volumes and infinite volume, using a dipole

regulator, based on lattice QCD data from QCDSF, lattice sizes: 1.43− 3.04 fm. The provisional
constraintmπL > 3 is used. The infinite-volume corrected data points are shown. The physical value
from experiment is marked. An estimate in the uncertainty inthe extrapolation due toΛscalehas been
calculated from Figure 7.6, and is indicated at the physicalvalue ofm2

π. The curve corresponding to
a lattice size of 10 fm is almost indistinguishable from the infinite-volume curve.
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7.3 Finite-Volume Considerations for the Electric Charge

Radius

Reliable extrapolations take into account finite-volume effects, as well as leading-

order chiral loop corrections. In many cases, calculating the finite-volume correc-

tions to loop integrals poses no essential problems. Examples of χEFT analyses

accounting for finite-volume effects can be found in References [Bea04b, HLY10].

However, the treatment of the electric charge radius is morechallenging. Once

form factors have been extracted from the lattice simulation, they are typically con-

verted directly into charge radii, The essential difficultylies in the definition of the

charge ‘radius’ at finite volume. In order to define the radius, a derivative in the

momentum transferQ2 = ~q2−q2
0 (at Q2 = 0) must be applied to the electric form

factor. This approach breaks down on the lattice, where onlydiscrete momentum

values are allowed.

In this chapter, a method is outlined for handling finite-volume corrections to a

given lattice simulation result. It will be discovered thatthe finite-volume correc-

tions to the loop integrals must be applied before the conversion from form factor

to charge radius. By applying the finite-volume corrections directly to the electric

form factor, and ensuring that the procedure preserves the electric charge normal-

ization, an extrapolation inQ2 may be used to construct an infinite-volume charge

radius. The infinite-volume charge radius can be defined as normal. A finite-volume

charge radius may also be defined, as long as an allowed value of Q2 is used in the

conversion from infinite to finite volume.

The first challenge involves the definition of the electric charge radius in terms

of this derivative in Equation (3.82). Since only certain, discrete values of momenta

are allowed on the lattice, the derivative may only be constructed from these allowed

momenta when calculating finite-volume corrections. This crucial observation be-

comes apparent when a comparison is made between the loop integrals evaluated at

allowed, and unallowed, values of momentum transfer, respectively. The comparison

is shown in Figures 7.9 and 7.10, for momentumq= (2πn/L), on the lattice. Here,
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Figure 7.9:Finite-volume correction for the loop integral contributing toGE, with q= qmin. The
choice ofq/2= qmin/2 is not an allowed value on the lattice. The momentum translated and untrans-
lated behaviour of the finite-volume correction are inconsistent with each other.

Figure 7.10:Finite-volume correction for the loop integral contributing to GE, with q = 2qmin.
The choice ofq/2= qmin is an allowed value on the lattice. Therefore, the momentum translated and
untranslated behaviour of the finite-volume correction is identical.
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n is an integer. Note that, if there is a momentum-translationin the loop integrals,

k→ k− q/2, the choice ofq = qmin = (2π/L) (for box lengthL), means thatq/2

is no longer an allowed value on the lattice, and these finite-volume corrections will

be inconsistent with the untranslated result. Under such a momentum-translation,

external momenta ofq/2 flow through the loop integral, and one should choose at

least a value ofq = 2qmin to define a consistent discrete derivative for use in the

definition of the charge radius in Equation (3.82). However,choosing a momentum

transfer ofq = qmin for a moderate lattice size of 3 fm leads to a relatively large

value: Q2 ≈ 700 MeV2. In defining the charge radius, the necessary extrapolation

to Q2 = 0 will be made more reliable by choosing a value ofQ2 to be as small as

possible. This situation differs from the infinite-volume calculation of loop integrals,

where true momentum-translation invariance is restored, and a continuous derivative

may be used as normal.

7.3.1 Chiral Loop Integrals

Though loop integrals in the continuum limit are invariant under momentum trans-

lationsk→ k+cq, c∈ Z (for internal loop momentumk), a finite-volume loop sum

must not include any values ofq less thanqmin = (2π/L). Therefore, to obtain a

suitable charge radius one chooses a definition of the loop integrals such that no fac-

tors of~q/2 appear. In fact, as long as no fractions of~q appear in the integrand, the

finite-volume version will converge correctly to the infinite-volume version as the

box length is taken to infinity, forq= (2πn/L), n∈ Z:

T E
N (Q2) =

χE
N

3π

∫
d3k

(k2−~k ·~q)u(~k;Λ)u(~k−~q;Λ)
ω~kω~k−~q(ω~k+ω~k−~q)

, (7.13)

T E
∆ (Q2) =

χE
∆

3π

∫
d3k

(k2−~k ·~q)u(~k;Λ)u(~k−~q;Λ)
(ω~k+∆)(ω~k−~q+∆)(ω~k+ω~k−~q)

, (7.14)

T E
tad(Q

2) =
χE

t

π

∫
d3k

u2(~k;Λ)
ω~k+ω~k−~q

, (7.15)
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whereω~k =

√

~k2−m2
π, and∆ is the mass-splitting. The chiral coefficientsχE

N and

χE
∆ andχE

t are summarized by Wang [WLTY09a]:

χE,p
N =

5
16π2 f 2

π
(D+F)2 =−χE,n

N , (7.16)

χE,p
∆ =− 5

16π2 f 2
π

4C2

9
=−χE,n

∆ , (7.17)

χE,p
t =− 1

16π2 f 2
π
=−χE,n

t . (7.18)

The integrals which contribute to the electric charge radius, denoted (TE), are ex-

actly analogous to the integrals (T E) defined in Equations (7.13) through (7.15), that

correspond to the electric form factorGE. To obtain the integrals that contribute to

the charge radius, one simply takes the derivative with respect to momentum transfer

Q2 at vanishingly small values ofQ2. This is allowed in the infinite-volume limit:

TE = lim
Q2→0

−6
∂T E(Q2)

∂Q2 . (7.19)

Note that the ensuing procedure for calculating the finite-volume corrected electric

charge radius uses only the infinite-volume versions of the chiral loop integrals. Fit-

ting methods need only be applied at infinite volume. Thus, the external momentum

derivative in Equation (7.19) need not be discretized, but may remain a continuous

derivative.

To achieve a chiral extrapolation, it is convenient to subtract the coefficientsbΛ
0

from the respective loop integrals that contribute to the electric charge radius:

T̃E
N = TE

N −bΛ,N
0 , (7.20)

T̃E
∆ = TE

∆ −bΛ,∆
0 , (7.21)

T̃E
tad= TE

tad−bΛ,t
0 . (7.22)

This removes the regularization scale-dependence from thelowest-order fit parame-

ter of the chiral expansion. This technique provides an advantage in easily extracting

the low-energy coefficientc0 from the chiral expansion, described in Section 7.3.2.
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As emphasized already, Figures 7.9 and 7.10 show that the finite-volume correc-

tions to the loop integrals cannot be applied directly to thecharge radius itself. The

momentum discretization ruins the circular symmetry inq except at the values coin-

ciding with lattice momentum values(2πn/L), n∈Z. The finite-volume corrections

should be applied to the electric form factorGE(Q2) instead. A momentum conven-

tion in the loop integral is chosen such thatq may be chosen to beqmin = (2πn/L).

The procedure for achieving the correct finite-volume corrections is outlined below.

First, the lattice finite-volume charge radius〈r2〉LE must be converted into a finite-

volume form factorGL
E(Q

2), usingq= qmin = (2π/L). This is achieved through use

of an extrapolation inQ2. As an example, a dipole Ansatz yields the following

formula:

GL
E(Q

2
min) =

(

1+
Q2

min〈r2〉LE
12

)−2

, (7.23)

whereQ2
min = ~q2

min− (EN−MN)
2. In many cases, this simply reverses the steps

used to convert lattice results to charge radii. In this investigation, the electric form

factor was fortunately obtained directly from the preliminary lattice QCD data from

QCDSF. The next step is to transform the finite-volume form factor GL
E(Q

2
min) to

an infinite-volume form factorG∞
E(Q

2
min), so that the infinite-volume charge radius

can be calculated. This is achieved by subtracting the electric charge symmetry-

preserving finite-volume correction, defined by:

∆L(Q
2
min,0) = δL

[

T E(Q2
min)−T E(0)

]

. (7.24)

The second term of Equation (7.24) ensures that both infinite- and finite-volume

form factors are correctly normalized, that is,GL,∞
E (0) = 1. Thus, the infinite-volume

electric form factor can be calculated using the equation:

G∞
E(Q

2
min) = GL

E(Q
2
min)−∆L(Q

2
min,0). (7.25)
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7.3.2 Chiral Expansion of the Electric Charge Radius

The infinite-volume charge radius〈r2〉∞E can be recovered from the form factor by

using the extrapolation inQ2. Once the infinite-volume charge radius has been ob-

tained, a chiral extrapolation can be performed if needed. The chiral loop integrals

corresponding to the charge radius are those defined by Equation (7.19). Using the

dipole Ansatz:

〈r2〉∞E =
12

Q2
min

(√

1

G∞
E(Q

2
min)
−1

)

. (7.26)

This infinite-volume radius, calculated at multiple valuesof m2
π, can be used for

fitting and obtaining coefficients from the chiral expansion:

〈r2〉∞E = {c(µ)0 +aΛ
2 m2

π}+ T̃E
N (m2

π ;Λ)+ T̃E
∆ (m2

π ;Λ)+ T̃E
tad(m

2
π ;Λ)+O(m4

π), (7.27)

where the expansion has been renormalized in anticipation of the analysis of the

renormalization flow of the coefficientc0. This expansion contains an analytic poly-

nomial inm2
π plus the leading-order chiral loop integrals, from which non-analytic

behaviour arises.

By evaluating the loop integrals, the fully renormalized chiral expansion can be

written in terms of a polynomial inm2
π and non-analytic terms. To leading non-

analytic orderO(logmπ):

〈r2〉∞E = c(µ)0 +(χE
N +χE

t ) log
mπ
µ

+O(m2
π) . (7.28)

Since the chiral expansion of Equation (7.28) contains a logarithm, the value ofc0

can only be extracted relative to some mass scaleµ, which is chosen to be 1 GeV.

Finally, the finite-volume charge radius can be evaluated byadding the finite-

volume correction to the form factor at any box lengthL̃, and corresponding mo-

mentum transfer on the lattice,Q̃2
min:

GL̃
E(Q̃

2
min) = G∞

E(Q̃
2
min)+∆L̃(Q̃

2
min,0). (7.29)
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The finite-volume charge radii are obtained from the chosen extrapolation formula at

box sizeL̃. An electric charge radius may be calculated at any desired value of box

length, based on lattice QCD simulation results. Thus, the finite-volume behaviour

of the charge radius may be analyzed.

7.4 Evidence for an Intrinsic Scale in the Electric Charge

Radius

The preliminary QCDSF results for the electric charge radiusof the nucleon are

displayed, with the experimental value marked, in Figure 7.11. The set of data is

also listed in Appendix C, Table C.6. The lattice sizes of each data point vary from

1.92 to 3.25 fm usingNf = 2 andO(a)-improved Wilson quark action. A simple

linear fit is included in this plot, which does not take into account the non-analytic

behaviour of the chiral loop integrals, nor the finite-volume corrections to the data.

Just as for the case of the magnetic moment, the linear fit doesnot reach the ex-

perimental value of the electric charge radius at the physical pion mass. Since the

lattice QCD results extend outside the PCR, the result of an extrapolation will be

scale-dependent. However, this scale-dependence can be handled by obtaining an

optimal regularization scale using the aforementioned procedure.

7.4.1 Renormalization Flow Analysis

In order to obtain an optimal regularization scale, the low-energy coefficientc(µ)0

from Equation (7.27) will be calculated across a range of regularization scale values.

Multiple renormalization flow curves may be obtained by constraining the fit win-

dow by a maximum,m2
π,max, and sequentially adding data points to extend further

outside the PCR. The renormalization flow curves for a dipole regulator are plotted

on the same set of axes in Figure 7.12. Note that each data point plotted has an

associated error bar, but for the sake of clarity only a few points are selected to indi-
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Figure 7.11:Preliminary lattice QCD data for〈r2〉isov
E from QCDSF, with physical value from

experiment as marked.

Figure 7.12: The renormalization flow ofc0 for 〈r2〉isov
E obtained using a dipole regulator, based

on preliminary lattice QCD data from QCDSF.c0 is calculated relative to the energy scaleµ= 1 GeV.
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cate the general size of the statistical error bars. Note that, unlike the analysis of the

nucleon mass and the magnetic moment, there is no distinct intersection point in the

renormalization flow curves. In addition, the regularization scale-dependence of the

coefficientc(µ)0 is very slight, as long as the regularization scale is not toosmall, as

discussed in Section 4.2.1. This lack of scale-dependence is a natural consequence

of the logarithm in the chiral expansion of Equation (7.28),which is slowly-varying

with respect to the regularization scale.

7.4.2 Analysis of Systematic Uncertainties

An optimal regularization scale for a dipole form can nevertheless be extracted from

Figure 7.12 using the chi-square-style analysis. The analysis also provides a measure

of the systematic uncertainty in the optimal scale. By plottingχ2
do f against the regu-

larization scaleΛ, wheredo f equals the number of curvesn minus one, a measure of

the spread of the renormalization flow curves can be calculated, and the intersection

point obtained. The functionχ2
do f is constructed in the same way as Equations (5.2)

and (5.3). Theχ2
do f plot corresponding to Figure 7.12 is shown in Figure 7.13. Thus

the optimal dipole regularization scale for a dipole regulator is: Λscale= 1.67+0.66
−0.33

GeV. This value, though larger than optimal dipole regularization scale values ob-

tained from the previous analyses of the nucleon mass and themagnetic moment,

is nevertheless consistent, with one-standard-deviationagreement. Thus, strong ev-

idence is found that the optimal regularization scale indicates the existence of an

intrinsic scale, which characterizes the nucleon-pion interaction.

7.4.3 Chiral Extrapolation Results

Using the optimal regularization scale, a reliable chiral extrapolation can be per-

formed, with the systematic uncertainty in the optimal regularization scale taken

into account. Consider the behaviour of the electric charge radius as a function of

the quark mass as shown in Figure 7.14 (in physical units). Extrapolation curves

are plotted for infinite-volume, and a variety of finite-volumes at which current lat-

tice QCD results are produced. For each curve, only the valuesfor which mπL > 3
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Figure 7.13: χ2
do f for the renormalization flow ofc0 for 〈r2〉isov

E obtained using a dipole regulator,
based on preliminary lattice QCD data from QCDSF.c0 is calculated relative to the energy scaleµ= 1
GeV.

are plotted, provisionally, to avoid undesired effects of the ε-regime. The infinite-

volume extrapolation to the physical point differs from theexperimentally derived

value: 〈r2〉isov
E = 0.88 fm2, by merely 0.5%. The finite-volume extrapolations are

also useful for estimating the result of a lattice QCD calculation at certain box sizes.

This can also provide a benchmark for estimating the outcomeof a lattice QCD sim-

ulation at larger and untested box sizes. Note that the result of an extrapolation to the

physical point, using an optimistic 4 fm lattice box length,will differ significantly

from the experimental value. Since the data points in Figure7.14 are at differing fi-

nite volumes, the infinite-volume corrected data points aredisplayed in Figure 7.15.

To highlight the insensitivity of the extrapolation to the regularization scaleΛscale,

an estimate of the systematic uncertainty in the extrapolation to the physical point

solely due toΛscale is displayed in Figure 7.16. The size of the error bar at the

physical point is comparable to that due to statistical uncertainty, as shown in Figure

7.17. This indicates that, in the case of the electric chargeradius, the identification

of an intrinsic scale is borderline, due to the dominance of the logarithm in the chi-

ral expansion, and its slowly varying property in the largemπ regime. Therefore,

chiral extrapolations of the electric charge radius are more robust, in the sense that

the scale-dependence in the result is suppressed, and the identification of an intrinsic
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scale is not so vital as in the case of the nucleon mass or magnetic moment.

7.5 Summary and Specific Issues for the Electromag-

netic Properties of the Nucleon

It was discovered that finite-volume corrections for chargeradii are ill-defined on the

lattice. The use of continuous derivatives in constructingthe electric charge radius

leads to inconsistent results for the finite-volume corrections. It was discovered that

the finite-volume corrections must be applied to the electric form factors rather than

to the charge radii directly. Therefore, a procedure was developed to apply finite-

volume corrections to the electric form factor, strictly involving momenta available

on the lattice. The resultant finite-volume corrected form factor may then be con-

verted into a charge radius using an extrapolation in momentum transferQ2.

The technique for obtaining an optimal regularization scale from lattice QCD

data has been investigated in the context of the magnetic moment and the electric

charge radius of the isovector nucleon. By using recent, preliminary lattice QCD

results from QCDSF, an optimal regularization scale for a dipole regulator was ob-

tained. This was achieved, in each case, by analyzing the renormalization flow of the

low-energy coefficientc0 of the relevant chiral expansion with respect to the scale

Λ, whilst extending the data step-wise beyond the PCR. A regularization scale was

discovered, for both the magnetic moment and the electric charge radius, for which

the renormalization of eachc0 is least sensitive to the truncation of the lattice QCD

data. The values of the optimal regularization scale were consistent with each other,

as well as with the results from the nucleon mass analysis. Thus an intrinsic scale

has been uncovered, which characterizes the size of the nucleon, as probed by the

pion.

Using the value of the intrinsic scale, the extrapolation ofthe magnetic moment

and the electric charge radius to the physical pion mass and the infinite-volume limit

is consistent with experiment. The finite-volume extrapolations provide a bench-

mark for estimating the outcome of a lattice QCD simulation atrealistic or currently
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Figure 7.14: Extrapolations of〈r2〉isov
E at different finite volumes and infinite volume, using a

dipole regulator, based on preliminary lattice QCD data from QCDSF, lattice sizes: 1.92−3.25 fm.
The provisional constraintmπL > 3 is used. The physical value from experiment is marked. The
curve corresponding to a lattice size of 10 fm is almost indistinguishable from the infinite-volume
curve.

Figure 7.15: Extrapolations of〈r2〉isov
E at different finite volumes and infinite volume, using a

dipole regulator, based on preliminary lattice QCD data from QCDSF, lattice sizes: 1.92−3.25 fm.
The provisional constraintmπL > 3 is used. The infinite-volume corrected data points are shown.
The physical value from experiment is marked. The curve corresponding to a lattice size of 10 fm is
almost indistinguishable from the infinite-volume curve.
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Figure 7.16: Extrapolations of〈r2〉isov
E at different finite volumes and infinite volume, using a

dipole regulator, based on preliminary lattice QCD data from QCDSF, lattice sizes: 1.92−3.25 fm.
The provisional constraintmπL> 3 is used. The infinite-volume corrected data points are shown. The
physical value from experiment is marked. An estimate in theuncertainty in the extrapolation, due to
Λscale, has been calculated from Figure 7.13, and is indicated at the physical value ofm2

π. The curve
corresponding to a lattice size of 10 fm is almost indistinguishable from the infinite-volume curve.

Figure 7.17: Extrapolations of〈r2〉isov
E at different finite volumes and infinite volume, using a

dipole regulator, based on preliminary lattice QCD data from QCDSF, lattice sizes: 1.92−3.25 fm.
The provisional constraintmπL > 3 is used. The physical value from experiment is marked. An
estimate of the statistical uncertainty in the extrapolation is marked at the physical value ofm2

π. The
curve corresponding to a lattice size of 10 fm is almost indistinguishable from the infinite-volume
curve.
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optimistic lattice box sizes.

The results clearly demonstrate a successful procedure forusing lattice QCD

data to extrapolate an observable to the low-energy region of QCD.



Chapter 8

Conclusion

“Recall that in our theoretical construction those probabilities appeared simply as

a logical, or linguistic, tool. It is only at this stage that they finally acquire the em-

pirical significance they were lacking, and that chance enters the theoretical frame-

work.” (Omǹes, R. 2002.Quantum Philosophy: Understanding and Interpreting

Contemporary Sciencep.209) [Omn02]

8.1 Evaluation and Summary Analysis

Chiral effective field theory (χEFT) offers unique insights into the low-energy be-

haviour of hadrons. By usingχEFT in conjunction with lattice quantum chromody-

namics (lattice QCD) results, a deeper understanding of the underlying chiral inter-

actions may be derived. In particular, the mathematical behaviour of the chiral ex-

pansion of an observable, within a power-counting scheme (PCR), was investigated.

This led to the development of a method for identifying the PCR,where the renor-

malization of the low-energy coefficients of the chiral expansion are independent

of the regularization scale. Novel methods for identifyinga preferred renormaliza-

tion scheme allowed the extrapolation of an observable to the chiral regime, and to

infinite-volume lattice box sizes, without introducing a regularization scale in anad

hocfashion.

In this thesis, a procedure was established whereby an optimal regularization

135
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scale could be obtained from lattice QCD data. By constructingsome ideal pseudo-

data using a known functional form, and based on actual lattice simulation results,

the behaviour of the low-energy coefficients, with respect to the regularization scale,

indicated an optimal value for the scale. By considering pseudodata sets that ex-

tended increasingly beyond the PCR, there was a value of regularization scale at

which the renormalization was least sensitive to this extension. This optimal scale is

the value at which the correct values of the low-energy coefficients are recovered.

Actual lattice simulation results for the nucleon mass, magnetic moment and

electric charge radius were also analyzed using the same procedure. In each case,

the analysis led to a consistent value of optimal regularization scale. In cases where

multiple low-energy coefficients were analyzed, the optimal scale realized from each

matched exactly: a non-trivial result.

The analysis of lattice simulation results for the mass of the quenchedρ meson

was used to test the robustness of the method. A reliable technique for determining

an optimal regularization scale, and performing infinite-volume and chiral extrapo-

lations, was established.

Comparing the optimal scales obtained from the nucleon mass,magnetic mo-

ment and electric charge radius analyses, a consistent optimal regularization scale

was found. This indicates the existence of an intrinsic energy scale that character-

izes the nucleon-pion interaction: the size of the nucleon as probed by the pion.

In the analysis of the nucleon mass, as described in Chapter 5,it was demon-

strated that a preferred regularization scheme exists onlyfor data sets extending

outside the PCR. However, it is not always possible to identifythis scale. The scale-

dependence of an observable can be weakened by working to a higher chiral order.

The aforementioned procedure was used to calculate the nucleon mass at the phys-

ical point, the low-energy coefficientsc0 andc2, and their associated statistical and

systematic errors. Several different functional forms of regulator were considered,

and lattice QCD data from JLQCD, PACS-CS and CP-PACS were used in theanaly-

ses. By working to chiral orderO(m3
π), an optimal cut-off scaleΛscalefor each set of

lattice QCD data was obtained, and an estimate of the systematic error in the choice
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of renormalization scheme was calculated, using a chi-square-style analysis. A mean

value for the optimal regularization scale ofΛ̄scale
dip ≈ 1.3 GeV was obtained for the

dipole, Λ̄scale
doub≈ 1.0 GeV for the double-dipole and̄Λscale

trip ≈ 0.9 GeV for the triple-

dipole. An analysis of the lowest suitable value for a regularization scale allowed

the identification of a breakdown region of finite-range regularization (FRR). The

existence of a breakdown region indicates that the ultraviolet regularization scale is

low enough to remove or suppress the low-energy chiral behaviour being analyzed.

The robustness of the procedure for determining an optimal regularization scale

and performing chiral extrapolations was tested in Chapter 6. In order to estab-

lish the predictive power of the procedure, the quenchedρ meson mass was consid-

ered. Because an experimental value of this observable does not exist, its calculation

served to demonstrate the ability of the procedure to make predictions without prior

bias. Using lattice simulation results from the Kentucky Group, the procedure was

tested, and the interesting low-energy simulation resultswerepredicted correctly.

By restricting the procedure to use only higher energy simulation data points, the

low-energy coefficientsc0, c2 andc4 were considered and an optimal regularization

scale was identified:Λscale
ρ,trip = 0.67+0.09

−0.08 GeV. An optimal value of the maximum pion

mass used for fitting was also calculated, and was found to be ˆm2
π,max= 0.35 GeV2.

By using only the data contained in the optimal pion mass region, constrained by

m̂2
π,max, a valueΛscale

ρ,trip = 0.64 GeV is estimated for the optimal regularization scale,

with a wider systematic uncertainty corresponding to the entire range of suitable val-

ues ofΛ. These two estimates of the optimal regularization scale are consistent with

each other.

Upon revealing the omitted low-energy data, the extrapolations were compared

to the simulation results at each value of pion mass. The correct chiral curvature

was reproduced by the extrapolations, indicating the non-analytic chiral behaviour

of the loop integrals. The results of extrapolations usingχEFT, and the results of

lattice QCD simulations were demonstrated to be consistent.The extrapolation to the

physical point obtained for this quenched data set, usingΛscale
ρ,trip = 0.67+0.09

−0.08 GeV, is:

mext
ρ,Q(m

2
π,phys) = 0.925+0.053

−0.049 GeV, an uncertainty of less than 6%. The result of the
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extrapolation, usingΛscale
ρ,trip = 0.64 GeV, with the systematic uncertainty calculated

by varying Λ across all suitable values, is:mext
ρ,Q(m

2
π,phys) = 0.922+0.065

−0.060 GeV, an

uncertainty of only 7%.

In the case of the electromagnetic properties of the nucleon, preliminary results

from QCDSF were used. The magnetic moment of the isovector nucleon was an-

alyzed for a dipole regulator. A well-defined optimal regularization scale was ob-

tained:Λscale
µ,dip = 1.13+0.22

−0.20 GeV, for chiral orderO(m2
π logmπ), and a successful ex-

trapolation to the physical pion mass and infinite-volume was achieved, and com-

pared to the experimental value. The infinite-volume extrapolation to the physical

point was within 2% of the experimentally derived value.

When considering charge radii, there are subtleties in performing finite-volume

corrections. In defining the charge radius, the finite-volume corrections must be

applied before an extrapolation toQ2 = 0 is taken. Thus the finite-volume correc-

tions must be applied to the form factors directly. Using this method, the electric

charge radius of the isovector nucleon was analyzed for a dipole regulator. Assum-

ing the regularization scale is not within the breakdown region of FRR, the scale-

dependence of the low-energy coefficientcµ
0 (up to some scaleµ of the chiral log-

arithm) is weak. The leading-order non-analytic behaviourof the logarithm in the

chiral expansion is slowly varying with respect to the regularization scale. Neverthe-

less, an optimal regularization scale was obtained:Λscale
E,dip = 1.67+0.66

−0.33 GeV, working

to chiral orderO(m2
π logmπ). A successful extrapolation to the physical pion mass

and infinite-volume was achieved, and compared to the experimental value. The

infinite-volume extrapolation was merely 0.5% different from the experimentally

derived value.

Figure 8.1 collates the values of the intrinsic scale for a dipole regulator obtained

from each of the three sets of lattice results from the nucleon mass analysis, the mag-

netic moment analysis and the electric charge radius analysis. In summary, a method

for determining the existence of a well defined intrinsic scale has been discovered. It

has also been illustrated how its value can be determined from lattice QCD results.
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Figure 8.1:Collated values for the intrinsic scale obtained from each data set for the nucleon mass,
magnetic moment and electric charge radius, by analyzing a variety of low-energy coefficients. Each
point, with its associated systematic error bar, is labelled by the low-energy coefficient analyzed. The
results from the analyses of the nucleon mass are further denoted by the collaboration whose lattice

results are used.cµ
0 andc〈r

2〉
0 denote the intrinsic scale obtained from the analysis of thelow-energy

coefficient c0 corresponding to the magnetic moment, and the electric charge radius expansions,
respectively. A dipole regulator is used.

8.2 Future Studies and Further Developments

The research presented in this thesis encourages several avenues for further inves-

tigation. In the heavy-baryon formulation of chiral perturbation theory (χPT), pre-

sented first for the renormalization of the mass of the nucleon in Chapter 4, the

finite-volume corrections to the tadpole contribution are not evaluated. This is due

to a technical subtlety associated with the largemπ behaviour of the finite-volume

correction, due to them2
π coefficient occurring in Equations (4.16) through (4.18).

The tadpole finite-volume corrections diverge asm4
π. Since it is known that the

finite-volume corrections must converge [Bea04b], and lattice QCD simulations do

not exhibit any divergence associated with largemπ on a finite volume, higher-order

terms, for example, those occurring at orderO(m4
π), must act to reduce the estimated

value of the finite-volume correction.

In the analysis of the renormalization flow of the nucleon mass, it was discovered

that the scale dependence was weakened by working to a sufficiently high chiral

order. It was also found, however, that the residual scale-dependence persisted as a

significant component of the systematic uncertainty. For efficient propagation of this
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uncertainty, an interesting future direction would be to consider Bayesian methods

of marginalization over the scale-dependence [SP09].

More generally, this research provides a strong basis for the investigation of

baryon resonances by analysing lattice QCD simulations. Resonances of the nu-

cleon, such as the Roper Resonance, are not well understood in terms of effective

field theory. The structure and behaviour of the resonances lend themselves to a

fruitful future area of research. Indeed, it is not possibleto link the finite-volume re-

sults of lattice QCD to experiment without understanding their relation to the multi-

particle states that dress the resonances. FRRχEFT is particularly well-suited to

exploring this important area of research.

8.3 Codetta

“[T]he collective efforts of numerous physicists have revealed some of nature’s best-

kept secrets. And once revealed, these explanatory gems have opened vistas on

a world we thought we knew, but whose splendor we had not even come close to

imagining.” (Greene, B. 1999.The Elegant Universep.386) [Gre99]

The dynamics of quantum chromodynamics provide a rich framework for the

investigation of the properties of hadrons. In particular,low-energy effective field

theory allows one to glean insights into the physical behaviour of subatomic parti-

cles and the structure of matter. By incorporating the fundamental symmetries of

quantum chromodynamics into the action, chiral perturbation theory provides a ro-

bust method for the calculation of hadronic observables within the power-counting

regime. In this thesis, finite-range regularized chiral effective field theory was used

to develop a procedure for performing calculations beyond the power-counting regime,

and handling any subsequent finite-range regularization scale-dependence. Using

chiral effective field theory in conjunction with the non-perturbative approach of

lattice quantum chromodynamics, chiral extrapolations; finite-volume effects; the

consequences of dynamical chiral symmetry breaking on subatomic behaviour; the

importance of strangeness; vacuum polarizations; and manyother phenomena yield
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fruitful understanding into the inner workings of the universe.

Concluding Statement

Chiral effective field theory allows the identification of an intrinsic energy scale

in the nucleon-pion interaction from lattice simulation results. An optimal finite-

range regularization scale, obtained from analyzing the renormalization flow of the

low-energy coefficients of the chiral expansion, allows successful extrapolations to

be made to the chiral regime and to the infinite-volume limit.There is strong evi-

dence to suggest that the optimal scale characterizes the intrinsic energy scale of the

interaction between the pion and the nucleon.

The datum, the results and the rigorous theory integrate to form a strong ar-

gument. Chiral effective field theory extended beyond the power counting-regime

allows the identification of an intrinsic energy scale, and leads to a robust method

for chiral and infinite-volume extrapolations. This is the original contribution of this

thesis.

“We have thus achieved the point where the theory may finally becompared with

experience, and the road leading from formalism to concretereality is at last com-

plete.” (Omǹes, R. 2002.Quantum Philosophy: Understanding and Interpreting

Contemporary Sciencep.209) [Omn02]
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Appendix A

Conventions

A.1 Dirac and Pauli Spin Matrices

The Pauli matrices are usually chosen as such:

τ1 =





0 1

1 0



 (A.1)

τ2 =





0 −i

i 0



 (A.2)

τ3 =





1 0

0 −1



 (A.3)

There are several conventions for the definition of the Diracmatrices (such as Weyl/Chiral

or the Majorana Representation). Here is the Dirac Representation:

γ0 =





I 0

0 −I



 (A.4)

γi =





0 σi

−σi 0



 (A.5)

γ5 =





0 I

I 0



 = iγ0γ1γ2γ3 . (A.6)
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All representations of these matrices satisfy the requirement of Clifford Algebra due

to the conditions imposed in the derivation of the Dirac Equation [Pes95].

{γµ,γν}= 2gµν , (A.7)

{γµ,γ5}= 0. (A.8)

A.2 SU(3) Gell-Mann Matrices

The generators of the Lie Group SU(3) satisfy the commutator relations:

[λa,λb] = i f abcλc . (A.9)

This, combined with the relevant Jacobi Indentities for thegenerators, defines the

structure constants [Pes95]:

f adef bcd+ f bdef cad+ f cdef abd. (A.10)

A.3 Spinor Fields

The equal-time canonical anti-commutation relations for Dirac spinor fields are:

{ψ(x), ψ̄(y)}x0=y0 = ~δ3(~x−~y) , (A.11)

{ψ(x),ψ(y)}x0=y0 = 0. (A.12)

The fields take the form [Pes95]:

ψ(x) =
∫

d3p
(2π)3

1
√

2ω~p
∑
s

(

as
~pus(p)e−ip·x+bs†

~p vs(p)eip·x
)

, (A.13)

and the canonical anti-commutation relations expressed interms of the Pauli-Jordan

function:

{ψ(x), ψ̄(y)}= (i/∂x+m)i∆(x−y;m) . (A.14)
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The Grassmann algebra is defined by the anticommutation rulebetween Grass-

mann variablesψ and a commutation rule with non-Grassmann numbersc:

{ψi ,ψ j}= 0= [ψi ,c] . (A.15)

For Berezin integration over fermion spinor fieldsψ and ψ̄, the follow rules are

adopted:

•
∫

dψiψ j =
∫

dψ̄iψ̄ j = cδi j , (A.16)

•
∫

dψi
∂ f
∂ψ j

= 0, (A.17)

where the non-Grassmann constantc is chosen, by convention, to be equal to 1 and

the function f is defined on the Grassmann algebra. As a consequence of Equation

(A.17), the Berezin integral over unity vanishes:

∫
dψ =

∫
dψ̄ = 0. (A.18)

A.4 Meson and Baryon Field Definitions

The SU(3) mixed-symmetric meson octet fieldsπ(x) = πa(x)λa can be encoded in a

traceless 3×3 matrix of the form:

π(x) =
√

2











1√
2
π0+ 1√

6
η π+ K+

π− − 1√
2
π0+ 1√

6
η K0

K− K̄0 −2√
6
η











, (A.19)

In SU(2) the pions form the triplet representation(π−,π0,π+) which can be written

by summing over the Pauli spin matrices in Appendix (A.1):

π(x) = τaπa(x) =





π0
√

2π+

√
2 −π0



 , (A.20)
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Using the convention for Clebsch-Gordan coefficients from Wanget al. [WLTY09a],

the the mixed-symmetric baryon octet matrix has the form:

B(x) =











1√
2
Σ0+ 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0+ 1√

6
Λ n

Ξ− Ξ0 −2√
6
Λ











, (A.21)

The maximally symmetric decuplet tensor (suppressing Lorentz indices) has ele-

ments defined by:

T111= ∆++, T112=
1√
3

∆+, T122=
1√
3

∆0, T222= ∆−,

T113=
1√
3

Σ∗,+, T123=
1√
6

Σ∗,0, T223=
1√
3

Σ∗,−,

T133=
1√
3

Ξ∗,0, T233=
1√
3

Ξ∗,−, T333= Ω−. (A.22)
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Integration Techniques

B.1 Magnetic Quantities

B.1.1 Angular Components of Magnetic Moment Loop Integrals

In anticipation of applying finite-volume corrections to chiral loop integrals by com-

paring them to their respective summations on the lattice, the time-component of the

d4k integral is evaluated using Cauchy’s Integral Formula, and ad3k integral remains

for analysis, as in Chapters 4 through 6.

When calculating the magnetic moment in the heavy-baryon limit, without ex-

plicitly specifying a regularization scheme, the one-loopintegral (corresponding to

Figure 7.1) takes the following form:

T
µ

N =− χµ
N

2π2

∫
d3k

(q̂×~k)2

(k2+m2
π)

2 . (B.1)

It is useful to be able to simplify the angular part of the integral, formed by the

cross product of external momentum direction ˆq with the loop momentum~k, into

a numerical coefficient. In order for this to be valid in calculating finite-volume

corrections, the simplification must hold in both integral and sum forms of the loop

147
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diagram. Evaluating the angular part of Equation (B.1) yields:

T
µ

N =− χµ
N

2π2

∫ 2π

0
dϕ

∫ ∞

0
dk

∫ +1

−1
dx

k4(1−x2)

(k2+m2
π)

2 (B.2)

=−χµ
N

π

∫ ∞

0
dk

∫ 1

−1
dx

k4(1−x2)

(k2+m2
π)

2 (B.3)

=−4χµ
N

3π

∫ ∞

0
dk

k4

(k2+m2
π)

2 . (B.4)

Now, this one-dimensional integral can be transformed intoa three-dimensional

integral simply by adding in a naı̈ve solid angle component, using the identity:
1
4π

∫
dΩ = 1:

T
µ

N =−4χµ
N

3π
1
4π

∫
dΩ

∫ ∞

0
dk

k4

(k2+m2
π)

2 (B.5)

=− χµ
N

3π2

∫
d3k

k2

(k2+m2
π)

2 . (B.6)

Comparing Equations (B.1) and (B.6) shows that the objective has been achieved for

the integral case. For finite volume sums, the result may not hold in general, and so

must be checked independently. Define the following sum for box lengthL:

T
µ

N,L =− χµ
N

2π2

(

2π
L

)3

∑
~k

(q̂×~k)2

(k2+m2
π)

2 . (B.7)

Becausek2≡~k2 is symmetrical in directionŝkx,y,z, it follows that:

~k2 = k2
x +k2

y +k2
z = 3k2

i (i = x,y,z), (B.8)

and since (q̂×~k) = k2
⊥, (B.9)

it follows k2
⊥ = 2k2

i . (B.10)
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Thus:

T
µ

N,L =−χµ
N

π2

(

2π
L

)3

∑
~k

k2
i

(k2+m2
π)

2 (B.11)

=− χµ
N

3π2

(

2π
L

)3

∑
~k

k2

(k2+m2
π)

2 , (B.12)

which is the finite-volume equivalent of Equation (B.6).

B.1.2 Combinatorial Simplification

The calculation of the three-dimensional finite sum can be made more efficient com-

putationally, by transforming it to a one-dimensional sum in terms of the new vari-

ablen2 = k2(2π/L)2. It does, however, require calculation of the number of config-

urations of the squares ofkx, ky andkz to obtain each value ofn2, denotedC(3)(n2).

Thus, for an integrandI (~k):

(

2π
L

)3 kmax

∑
~k

I (~k) =

(

2π
L

)3 n2
max

∑
n2

C(3)I (n2) , (B.13)

wheren2
max= k2

max(2π/L)2.

B.1.3 Sachs Magnetic Form Factors at FiniteQ2

Consider calculations involving the leading-order pion loop contributions to the

magnetic form factorGM(Q2) at finite Q2, (allowing non-zero mass splitting∆).

The following integral can be made more easily calculable using spherical polar co-



Appendix B. Integration Techniques Hall 150

ordinates (usingω(~k) =
√

k2+m2
π):

T
µ

N (Q2) =−χµ
N

π2

∫
d3k
[

k2
y [ω(~k)+ω(~k+~q)+∆]

ω(~k)[ω(~k)+∆]ω(~k+~q)[ω(~k+~q)+∆] [ω(~k)+ω(~k+~q)]

]

(B.14)

=−χµ
N

π2

∫ 2π

0
dϕ

∫ π

0
dθ

∫ ∞

0
dk
[

k2
y k2sinθ [ω(k)+ω(k+q)+∆]

ω(k)[ω(k)+∆]ω(k+q)[ω(k+q)+∆] [ω(k)+ω(k+q)]

]

. (B.15)

The integral can be further altered to remove the infinite integral under the change

of variablesk→ k/(1−k). For arbitrary functionf :

∫ ∞

0
dk f(k) =

∫ 1

0
dk

f (k/(1−k))
(1−k)2 . (B.16)

Thus, defining (for convenience)p(k)≡ k/(1−k), Equation (B.15) becomes:

T
µ

N (Q2) =

− χµ
N

π2

∫ 2π

0
dϕ

∫ 1

−1
dx

∫ 1

0
dk
[

k2
y p2 [ω(p)+ω(p+q)+∆]

ω(p)[ω(p)+∆]ω(p+q)[ω(p+q)+∆] [ω(p)+ω(p+q)] (1−k)2

]

.

(B.17)

B.2 Electric Charge Radius Integral Expansions

For the infinite-volume electric charge radius, the chiral loop integrals must be calcu-

lated for use with the chiral expansion of Equation (7.27). Each loop integrand is ex-

panded out for smallQ2, and the derivative in the limit of vanishingQ2 is extracted.

Using the notation of Chapter 7, and a dipole regulator, the one-loop contribution
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takes the following form:

TE
N = lim

Q2→0
−6

∂T E
N (Q2)

∂Q2

=
6χE

N

5π

∫
d3k

∂
∂q2

[

(~k+~q/2) · (~k−~q/2)udip(~k+~q/2;Λ)udip(~k−~q/2;Λ)
ω(~k+~q/2)ω(~k−~q/2)[ω(~k+~q/2)+ω(~k−~q/2)]

]∣

∣

∣

∣

∣

q2=0

(B.18)

=
6χE

N

5π

∫
d3k
(

Λ8{−ω2(~k)(~k2+Λ2)(13~k4+2m2
πΛ2+5~k2(2m2

π +Λ2))

+~k4(21~k4+16m4
π +5Λ4+2~k2(16m2

π +5Λ2))cos2θ}
)(

16ω7(~k)(~k2+Λ2)6
)−1

.

(B.19)

If a mass-splitting is included:

TE
∆ =

6χE
∆

5π

∫
d3k

∂
∂q2

[

(~k+~q/2) · (~k−~q/2)udip(~k+~q/2;Λ)udip(~k−~q/2;Λ)
(ω(~k+~q/2)+∆)(ω(~k−~q/2)+∆)[ω(~k+~q/2)+ω(~k−~q/2)]

]∣

∣

∣

∣

∣

q2=0

(B.20)

=
6χE

∆
5π

∫
d3k
(

Λ8{−ω(~k)(~k2+Λ2)[13~k6+2m2
π(m

2
π +∆(2ω(~k)+∆))Λ2

+~k4(23m2
π +24ω(~k)∆+11∆2+5Λ2)

+~k2(10m4
π +∆(8ω(~k)+3∆)Λ2+m2

π(20ω(~k)∆+10∆2+7Λ2))]

+~k4[21~k6+16m6
π +16m4

π∆(2ω(~k)+∆)+5m2
πΛ4+∆(4ω(~k)+∆)Λ4

+~k4(53m2
π +36ω(~k)∆+17∆2+10Λ2)

+~k2(48m4
π +Λ2(8ω(~k)∆+2∆2+5Λ2)+2m2

π(32ω(~k)∆+16∆2+5Λ2))]cos2θ}
)

×
(

16ω5(~k)(ω(~k)+∆)4(~k2+Λ2)6
)−1

. (B.21)

Similarly, the tadpole contribution takes the following form:

TE
tad=

6χE
t

π

∫
d3k

∂
∂q2

[

u2
dip(

~k;Λ)

ω(~k+~q/2)+ω(~k−~q/2)

]∣

∣

∣

∣

∣

q2=0

(B.22)

=
6χE

t

π

∫
d3k

~k2cos2θ−ω2(~k)

16ω5(~k)
u2

dip(
~k;Λ). (B.23)
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B.3 Finite Volume Corrections to Tadpole Amplitudes

Finite-volume corrections should vanish asm2
π becomes large, as observed in lattice

quantum chromodynamics (lattice QCD) simpulations. This has also been observed,

in turn, for each of the finite-volume corrections involved in the extrapolation of the

nucleon mass to fourth-order. However, the tadpole finite-volume correction,δFVC
tad ,

is different in that it is multiplied by a factor ofm2
π, as evident in Equation (4.7).

The productc2m2
πδFVC

tad is not convergent for largemπ. Figures B.1 and B.2 show the

behaviour of the tadpole finite-volume correction for a 2.9 fm box and a 4.0 fm box,

respectively.

The finite-volume estimate ofc2, denotedcV
2 , is not in general the same value

as the infinite-volumec2. Thus the finite-volume correction of the tadpole cannot

be written as simply the difference between the finite volumesum and the infinite

volume integral, but must distinguish betweencV
2 andc2:

c2m2
πδFVC

tad = c2m2
π

(

cV
2

c2
ΣV

tad−Σtad

)

. (B.24)

Sincec2 is by definition the coefficient of them2
π term in the nucleon mass expan-

sion, the renormalization of the residual coefficienta2 by the contributions from the

integralsΣN, Σ∆ andΣtad, defined in Equations (4.3) through (4.8), can be written as

follows:

c2m2
π = (a2+bN

2 +b∆
2 +c2bt

2)m
2
π , (B.25)

⇒ c2 =
aΛ

2 +bN
2 +b∆

2

1−bt
2

. (B.26)

An analogous relation exists for the finite volumecV
2 :

cV
2 =

a2+bV,N
2 +bV,∆

2

1−bV,t
2

. (B.27)

By simultaneously solving fora2 andcV
2 , the ratiocV

2/c2 can be calculated in prin-

ciple, and the tadpole finite volume corrections are tractable. It should be noted
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Figure B.1: Behaviour of the finite-volume correctionsδFVC
tad vs. Λ on a 2.9 fm box

using a dipole regulator. Results for two different values ofm2
π are shown.

Figure B.2: Behaviour of finite-volume correctionsδFVC
tad vs.Λ on a 4.0 fm box using

a dipole regulator. Results for two different values ofm2
π are shown.

however, that this does not resolve the problem of divergentbehaviour for largemπ.



Appendix B. Integration Techniques Hall 154



Appendix C

Lattice Simulation Results

155



Appendix C. Lattice Simulation Results Hall 156

Table C.1:JLQCD [O+08] lattice QCD simulation results for the nucleon massMN at various pion
mass squared valuesm2

π. The lattice spacing is 0.118 fm and the spatial lattice length is 1.90 fm.

m2
π(GeV2) MN(GeV) mπL

0.567 1.615(6) 7.25
0.386 1.456(6) 5.98
0.273 1.350(6) 5.03
0.191 1.255(6) 4.20
0.135 1.164(8) 3.54
0.084 1.111(10) 2.78

Table C.2:PACS-CS [A+09] lattice QCD simulation results for the nucleon massMN at various
pion mass squared valuesm2

π. The lattice spacing is 0.0907 fm and the spatial lattice length is 2.90
fm.

m2
π(GeV2) MN(GeV) mπL

0.492 1.583(5) 10.32
0.325 1.411(12) 8.38
0.169 1.215(12) 6.05
0.087 1.093(19) 4.35
0.024 0.932(78) 2.29

Table C.3:CP-PACS [AK+02] lattice QCD simulation results for the nucleon massMN, the lattice
spacinga and the spatial lattice lengthL at various pion mass squared valuesm2

π.

m2
π(GeV2) MN(GeV) a(fm) L(fm) mπL

0.940 1.809(15) 0.102 2.45 12.03
0.913 1.798(4) 0.130 3.12 15.11
0.704 1.652(9) 0.099 2.38 10.10
0.689 1.643(5) 0.123 2.95 12.42
0.539 1.519(9) 0.095 2.28 8.49
0.502 1.497(6) 0.118 2.83 10.17
0.353 1.348(12) 0.092 2.21 6.65
0.272 1.275(7) 0.111 2.66 7.04
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Table C.4: Quenched lattice QCD data for theρ meson massmρ at various pion mass squared
valuesm2

π. The lattice size is 203×32, with a lattice spacing of 0.153 fm.

m2
π(GeV2) mρ(GeV) mπL

3.150 2.001(1) 27.53
2.187 1.700(2) 22.94
1.742 1.548(2) 20.47
1.329 1.399(2) 17.88
1.212 1.354(2) 17.08
1.062 1.294(2) 15.98
0.867 1.214(3) 14.44
0.743 1.162(4) 13.37
0.676 1.133(4) 12.75
0.610 1.103(5) 12.12
0.515 1.060(5) 11.13
0.422 1.016(6) 10.07
0.347 0.985(7) 9.13
0.288 0.960(8) 8.32
0.241 0.938(8) 7.62
0.204 0.926(9) 7.00
0.172 0.914(11) 6.43
0.143 0.908(14) 5.87
0.114 0.899(15) 5.24
0.094 0.899(16) 4.75
0.080 0.896(18) 4.38
0.068 0.898(20) 4.04
0.059 0.902(22) 3.77
0.053 0.903(26) 3.58
0.047 0.907(28) 3.37
0.041 0.913(32) 3.15
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Table C.5: Preliminary lattice QCD simulation results from QCDSF for the isovector nucleon
magnetic momentµv

n, the lattice spacinga and the spatial lattice lengthL at various pion mass squared
valuesm2

π.

m2
π(GeV2) µv

n(µN) a(fm) L(fm) mπL

0.863 2.394(69) 0.089 1.43 6.73
0.709 2.483(45) 0.073 1.76 7.50
0.688 2.548(159) 0.091 1.45 6.11
0.591 2.621(49) 0.084 2.01 7.85
0.392 2.863(86) 0.070 1.67 5.30
0.357 2.781(51) 0.084 2.03 6.13
0.290 2.840(121) 0.070 1.67 4.57
0.198 3.082(120) 0.081 1.96 4.42
0.159 3.006(118) 0.077 1.84 3.72
0.077 3.711(158) 0.076 3.04 4.26

Table C.6: Preliminary lattice QCD simulation results from QCDSF for the isovector nucleon
electric charge radius〈r2〉E, the lattice spacinga and the spatial lattice lengthL at various pion mass
squared valuesm2

π.

m2
π(GeV2) 〈r2〉E(fm2) a(fm) L(fm) mπL

0.591 0.303(8) 0.084 2.01 7.85
0.357 0.349(6) 0.084 2.03 6.13
0.349 0.340(5) 0.080 1.92 5.75
0.198 0.384(11) 0.081 1.96 4.42
0.188 0.392(12) 0.068 2.19 4.81
0.074 0.494(25) 0.076 3.04 4.18
0.053 0.586(24) 0.068 3.25 3.79
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Chiral effective field theory (�EFT) complements numerical simulations of quantum chromodynamics

(QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice

simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic

nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of

the power-counting regime (PCR) of �EFT, where higher-order terms of the expansion may be regarded

as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety

of renormalization schemes and associated parameters, techniques to identify the PCR where results are

independent of the renormalization scheme are established. The nucleon mass is considered as a

benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation

results are also examined to search for the possible presence of an intrinsic scale which may be used in a

nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that

improve on the current optimistic application of chiral perturbation theory (�PT) beyond the PCR are

reported.
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I. INTRODUCTION

The low energy chiral effective field theory (�EFT) of
quantum chromodynamics (QCD) provides a model-
independent approach for understanding the consequences
of dynamical chiral-symmetry breaking in the chiral prop-
erties of hadrons. Nonanalytic contributions in the quark
mass are generated by the pseudo-Goldstone meson dress-
ings of hadrons through meson-loop integrals. Chiral per-
turbation theory (�PT) provides a formal approach to
counting the powers of low-energy momenta and quark
masses such that an ordered expansion in powers of the
quark mass mq / m2

� is constructed. �PT indicates that, in

general, the most singular nonanalytic contributions to
hadron properties lie in the one-loop ‘‘meson cloud’’ of
the hadron. For example, the leading nonanalytic behavior

of a baryon mass is proportional to m3=2
q or m3

�. More
generally, baryon masses can be written as an ordered
expansion in quark mass or m2

�.
To establish a model-independent framework in �PT,

the expansion must display the properties of a convergent
series for the terms considered. There is a power-counting
regime (PCR) where the quark mass is small, and higher-
order terms in the expansion are negligible beyond the
order calculated. Within the PCR, the truncation of the
chiral expansion is reliable to a prescribed precision.

The asymptotic nature of the chiral expansion places the
focus on the first few terms of the expansion. A survey of
the literature for the baryon sector of �EFT illustrates the
rarity of calculations beyond one-loop [1–3], and there are
no two-loop calculations which incorporate the effects of
placing a baryon in a finite volume. With only a few terms

of the expansion known for certain, knowledge of the PCR
of �EFT is as important as knowledge of the expansion
itself. It is within the PCR that higher-order terms of the
expansion may be regarded as negligible.
Numerical simulations of QCD on a space-time lattice

are complemented by �EFT through the provision of a
model-independent formalism for connecting lattice simu-
lation results to the physical world. Simulations at finite
volume and a variety of quark masses are related to the
infinite volume and physical quark masses through this
formalism. However, the formalism is accurate only if
one works within the PCR of the truncated expansion.
Present practice in the field is best described as optimistic.
Truncated expansions are regularly applied to a wide range
of quark (or pion) masses with little regard to a rigorous
determination of the PCR.
When considering nucleons, there is some evidence that

the PCR may be quite small; constrained by m� &
200 MeV at 1% accuracy at the chiral order
Oðm4

� logm�Þ [4,5]. This estimate of the PCR of �PT
was identified using specific finite-range regularization
(FRR) techniques to analyze lattice QCD data. Using
FRR, the regime is manifest when the quark-mass depen-
dence of the nucleon mass is independent of the
renormalization-scheme parameter.
A chief focus of this paper is to establish a rigorous

approach to determining the PCR of a truncated chiral
expansion quantitatively. Through the consideration of a
variety of renormalization schemes and associated parame-
ters, new techniques to identify the PCR are established.
The PCR is the regime where results are scheme indepen-
dent. The nucleon mass is considered as a benchmark for
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illustrating this general approach. Here, the chiral expan-
sion is examined, focusing on the individual low-energy
coefficients of the chiral expansion. This approach pro-
vides a determination of the PCR for a truncated expansion
in �EFT. As discussed in detail in the following section,
the PCR is indeed small for the nucleon mass. Other
observables are expected to show a similar if not smaller
PCR. Thus most of today’s lattice simulation results lie
outside the PCR, and the truncated chiral expansions have
been used to extrapolate from outside the PCR. The low-
energy coefficients determined by applying the truncated
expansion outside the PCR will take on unphysical values,
as they accommodate important but otherwise missing
contributions from nonnegligible higher-order terms.

While continued advances in numerical simulations of
lattice QCD will be vital to some extent in resolving this
problem, the physical value of the strange-quark mass
presents a challenge that will not diminish with super-
computing advances. If one were to include the effects of
kaons, vital to understanding strangeness in the nucleon,
for example, then one must either calculate to significantly
higher order in the expansion of �PT or develop new
nonperturbative approaches which utilize the nonperturba-
tive information expressed in the lattice simulation results.
Since the former is likely to be compromised by the
asymptotic nature of the expansion, attention is given to
the latter approach.

Thus the second focus of this paper is to examine the
numerical simulation results, to identify the possible pres-
ence of an intrinsic scale. This may then be used to address
lattice simulation results outside of the PCR in a non-
perturbative manner. Of course, the nonperturbative for-
malism must incorporate the exact perturbative results of
�PT in the PCR. Positive results are reported that improve
on the current optimistic application of �PT outside of the
PCR.

The outline of the presentation is as follows. Section II
reviews chiral effective field theory and the process of
regularization and renormalization. The adoption of FRR
provides a wide range of schemes and scales, which over-
lap with the more popular massless renormalization
schemes as the finite-range regulator parameter is taken
to infinity. Section III investigates FRR in the context of a
particular model. By generating a set of pseudodata and
analyzing it with a variety of renormalization schemes, a
robust method for determining the PCR is obtained, along
with an optimal renormalization scale to use beyond the
PCR. Finally, Section IV includes the analysis of three sets
of lattice results for the nucleon mass, utilizing the tools
developed in the previous section. Conclusions are sum-
marized in Sec. V.

II. EFFECTIVE FIELD THEORY

This section begins by briefly reviewing the process of
regularization and renormalization in finite-range regular-

ized chiral effective field theory, providing a range of
renormalization schemes and scales. A central focus is to
search for the dependence of physical results on the
scheme and associated scales, as these will be an indication
that one is applying the chiral expansion outside the PCR.
The focus is to establish techniques that provide a quan-

titative test of whether a given range of m� lies within the
PCR. This is achieved through an examination of the flow
of the low-energy coefficients as a function of the renor-
malization scheme parameter(s). A negligible dependence
would confirm that the pion-mass range is within the PCR.
On the other hand, the properties of the flow will be used to
identify a preferred regularization scheme in a nonpertur-
bative sense that best describes the results beyond the PCR.

A. Renormalization in FRR �EFT

Using the standard Gell-Mann–Oakes–Renner relation
connecting quark and pion masses, mq / m2

� [6], the for-

mal chiral expansion of the nucleon can be written as a
polynomial expansion in m2

� plus the meson-loop integral
contributions:

MN ¼ fa0 þ a2m
2
� þ a4m

4
� þOðm6

�Þg þ �N þ��

þ�tad: (1)

The pion cloud corrections are considered in the heavy-
baryon limit, with loop integrals, �N , ��, and �tad, corre-
sponding to Figs. 1–3, respectively. The coefficients ai of
the analytic polynomial, contained in brackets f g in Eq. (1)

FIG. 1. The pion loop contribution to the self-energy of the
nucleon, providing the leading nonanalytic contribution to the
nucleon mass. All charge conserving transitions are implicit.

FIG. 3. Tadpole contributions to the nucleon self-energy.

FIG. 2. The pion loop contribution to the self-energy of the
nucleon allowing transitions to the nearby and strongly coupled
decuplet baryons.
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, are related to the low energy constants of �PT. In this
investigation, they will be determined by fitting to lattice
QCD data. These coefficients will be referred to as the
residual series coefficients. These bare coefficients
undergo renormalization due to contributions from the
loop integrals �N , ��, and �tad.

Under the most general considerations, each loop inte-
gral, when evaluated, produces an analytic polynomial in
m2

� and nonanalytic terms:

�N ¼ bN0 þ bN2 m
2
� þ �Nm

3
� þ bN4 m

4
� þOðm5

�Þ; (2)

�� ¼ b�0 þ b�2 m
2
� þ b�4 m

4
� þ 3

4��
��m

4
� log

m�

�

þOðm5
�Þ; (3)

�tad ¼ bt
0
2m

2
� þ bt

0
4m

4
� þ �0

tm
4
� log

m�

�
þOðm5

�Þ: (4)

Here � is the delta-nucleon mass splitting in the chiral
limit, taken to be 292 MeV. �N , ��, and �0

t denote the
model-independent chiral coefficients of the terms that are
nonanalytic in the quark mass. The bi coefficients are
renormalization-scheme dependent as are the ai coeffi-
cients. It can be noted that the tadpole loop contribution
�tad does not produce a bt0 term because it enters with a

leading factor of m2
�, as discussed in Sec. II B. The primes

on the coefficients bt
0
2 and �

0
t here simply indicate that they

will be used later in a slightly different form.
The process of renormalization in FRR �EFT proceeds

by combining the renormalization-scheme-dependent co-
efficients to provide the physical low-energy coefficients,
which are denoted as ci. Thus, the nucleon mass expansion
takes on the standard form:

MN ¼ c0 þ c2m
2
� þ �Nm

3
� þ c4m

4
�

þ
�
� 3

4��
�� þ c2�t

�
m4

� log
m�

�
þOðm5

�Þ: (5)

By comparing Eqs. (1) through (5), the following renor-
malization procedure is obtained:

c0 ¼ a0 þ bN0 þ b�0 ; (6)

c2 ¼ a2 þ bN2 þ b�2 þ bt
0
2 ; (7)

c4 ¼ a4 þ bN4 þ b�4 þ bt
0
4 ; etc: (8)

The coefficients ci are scheme-independent quantities, and
this property will be demonstrated when determined within
the PCR. The value of c0 is the nucleon mass in the chiral
limit (m2

� ¼ 0), and c2 is related to the so-called sigma
term of explicit chiral-symmetry breaking [7–9]. The non-
analytic terms m3

� and m4
� logm�=� have known coeffi-

cients denoted by �N , ��, and �t. The value of c4 is scale
dependent, such that the totalm4

� term in Eq. (5), including

the logarithm, is independent of the scale�. It can be noted
that the nucleon mass itself is completely independent of
the choice of �. For the numerical analysis, � is set equal
to 1 GeV.
Of course, EFT loop calculations are commonly diver-

gent without some regularization method. Since the effec-
tive field theory is only applicable for low energies, hard
momenta contributions to loop calculations may be elim-
inated. However, the traditional schemes including dimen-
sional regularization (DR) often do not involve an explicit
scale dependence when evaluating loop diagrams. Without
any momentum cutoff, the bi coefficients from each loop
integral become either infinite or vanish, and the ci coef-
ficients from Eq. (5) undergo an infinite renormalization or
none at all:

c0 ¼ a0 �1; (9)

c2 ¼ a2 þ1; (10)

c4 ¼ a4 þ 0; etc: (11)

Since the ci coefficients are finite after renormalization, the
ai coefficients must have been infinite, with the opposite
sign of the bi coefficients. As emphasized above, both the
ai and bi coefficients are scheme dependent. The infinities
are absorbed in constructing the ci coefficients and thus
subtracted from the chiral expansion. This minimal sub-
traction scheme with no explicit scale dependence makes
DR quite suitable for elementary fields, where the absence
of new degrees of freedom at higher energies is assumed.
However, for EFTs there is an energy scale beyond which
the effective fields are no longer the relevant degrees of
freedom. When one integrates loop contributions over this
high-energy domain, there is no guarantee that one can
efficiently subtract the model-dependent, ultraviolet phys-
ics with a finite number of counterterms (unless in the
PCR). As a result, the chiral expansion typically only
shows reliable convergence properties over a narrow range
of pion mass.
Indeed this problem of beginning with rapidly varying

loop contributions, which must then be removed with a
finite number of counterterms, can easily be overcome. The
hard momentum contributions to the meson-loop diagrams
can be suppressed via the introduction of a regulator. As
such, the coefficients of the residual expansion are likely to
be smaller, and the utility of the expansion has the potential
to apply to a broader range of quark or pion masses. The
introduction of a regulator acts to resum the chiral expan-
sion, with loop integrals having the general properties
described in Eqs. (2) through (4).
The resummation of the chiral series through the intro-

duction of a regulator (or similar variant) has been studied
in various instances [5,10–18]. The method consists of
inserting a regulator function uðk2Þ into the integrand of
the meson-loop integrals. The regulator can take any form,
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so long as it is normalized to 1, and approaches 0 suffi-
ciently fast to ensure convergence of the loop. Unlike DR,
this method involves an explicit momentum cutoff scale,
�. The chiral expansion can now be written in terms of this
cutoff scale:

MN ¼ fa�0 þ a�2 m
2
� þ a�4 m

4
� þOðm6

�Þg þ�Nðm2
�;�Þ

þ��ðm2
�;�Þ þ �tadðm2

�;�Þ: (12)

The superscript � denotes the scheme dependence of the
a�i coefficients. The loop integrals are functions of the
scale � and also m2

�.
Through the introduction of the regulator, the loop in-

tegrals are now low-energy contributions, significant for
small m2

� and becoming negligible as m2
� becomes large.

The scheme-dependent a�i coefficients undergo a renor-
malization, as before, via their combination with the b�i
coefficients, whose scheme dependence is now explicit,
reflecting the regularization of the loop integrals:

c0 ¼ a�0 þ b�;N
0 þ b�;�

0 ; (13)

c2 ¼ a�2 þ b�;N
2 þ b�;�

2 þ b�;t0
2 ; (14)

c4 ¼ a�4 þ b�;N
4 þ b�;�

4 þ b�;t0
4 ; etc: (15)

Dimensional analysis reveals that the coefficients bi are

proportional to �ð3�iÞ. Thus it can be realized that as the
cutoff scale � goes to infinity the FRR expansion reduces
to that of Eq. (5) via Eqs. (9) through (11). At any finite �,
a partial resummation of higher-order terms is introduced.

Previous studies indicate that extrapolation results show
very little sensitivity to the precise functional form of the
regulator [14]. In this investigation, the family of smoothly
attenuating dipole regulators will be considered. The gen-
eral n-tuple dipole function takes the following form, for a
cutoff scale of �:

unðk2Þ ¼
�
1þ k2n

�2n

��2
: (16)

The standard dipole is recovered for n ¼ 1. The cases n ¼
2, 3 are the ‘‘double-’’ and ‘‘triple-dipole’’ regulators,
respectively. In the following, uðk2Þ is used to denote one
of these regulators. This functional form allows one to
interpolate between the dipole regulator and the step func-
tion (which corresponds to n ! 1).

In a study by Bernard et al. [15], it was suggested that
only a sharp cutoff FRR scheme is consistent with chiral
symmetry. Djukanovic et al. [16] have demonstrated more
general functional forms can be generated by proposing a
scheme in which the regulator function is interpreted as a
modification to the propagators of the theory, obtained
from a new chiral-symmetry-preserving Lagrangian.
Higher-derivative coupling terms are built into the
Lagrangian in order to produce a regulator from the
Feynman rules in a symmetry-preserving manner.

The regulators used in the present investigation are
introduced in a less systematic fashion, such that chiral
symmetry is not automatically preserved to the order cal-
culated. The higher-derivative couplings of the regulator
induces scheme-dependent nonanalytic terms. To maintain
chiral symmetry, one must introduce the necessary vertex
corrections.
Alternatively, one can choose the regulator judiciously

such that any extra scheme-dependent nonanalytic terms
are removed to any chosen order. For example, the n-tuple
dipole regulators generate extra nonanalytic terms in the
chiral expansion of Eq. (5) at higher chiral orders. For a
dipole regulator, regulator-dependent nonanalytic terms
occur at odd powers of m�, beginning at Oðm5

�Þ.1 In the
case of the double dipole, the nonanalytic terms begin at
Oðm7

�Þ, and for the triple dipole the nonanalytic terms
begin only at Oðm9

�Þ.
In a final observation, it is essential to note that the

degrees of freedom present in the residual series coeffi-
cients, a�i , are sufficient to eliminate any dependence on
the regulator parameter, �, to the order of the chiral
expansion calculated: in this case Oðm4

�Þ. By definition,
higher-order terms in the FRR expansion are negligible in
the PCR, and therefore FRR �EFT is mathematically
equivalent to �PT in the PCR. Any differences observed
in results obtained at the same chiral order but with differ-
ent regularization schemes are a direct result of consider-
ing data that lie outside the PCR (provided that the
regulator � is not chosen too small such as to introduce
an unphysical low-energy scale).

B. Loop integrals and definitions

The leading order loop integral contributions to the
nucleon mass, corresponding to the diagrams in Figs. 1–3
can be simplified to a convenient form by taking the heavy-
baryon limit and performing the pole integration for k0.
Renormalization, as outlined above, is achieved by sub-
tracting the relevant terms in the Taylor expansion of the
loop integrals and absorbing them into the corresponding
low-energy constants, ci:

~� N ¼ �N

1

2�2

Z
d3k

k2u2ðk2Þ
!2ðkÞ � b�;N

0 � b�;N
2 m2

� (17)

¼ �Nm
3
� þ b�;N

4 m4
� þOðm5

�Þ; (18)

~�� ¼ ��

1

2�2

Z
d3k

k2u2ðk2Þ
!ðkÞð�þ!ðkÞÞ � b�;�

0 � b�;�
2 m2

�

(19)

1While scheme-dependent, it is significant to note that with a
dipole regulator, � ¼ 0:8 GeV, the coefficient of the induced
m5

� term compares favorably with the two-loop calculation [1–
3,5,14]

J.M.M. HALL, D. B. LEINWEBER, AND R.D. YOUNG PHYSICAL REVIEW D 82, 034010 (2010)

034010-4



¼ b�;�
4 m4

� � 3

4��
��m

4
� log

m�

�
þOðm5

�Þ; (20)

~� tad ¼ c2m
2
�

�
�t

1

4�

Z
d3k

2u2ðk2Þ
!ðkÞ � b�;t

2

�
(21)

¼ c2m
2
�

�
b�;t
4 m2

� þ �tm
2
� log

m�

�
þOðm5

�Þ
�

(22)

¼ c2m
2
� ~�tad: (23)

These integrals are expressed in terms of the pion energy,

!ðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p
. The tilde (~) denotes that the integrals

are written out in renormalized form to chiral orderOðm2
�Þ.

As the bi coefficients are regulator and scale dependent,
this subtraction removes this dependence. The coefficients
a0 and a2 of the analytic terms in the chiral expansion in
Eq. (5) are now automatically the renormalized coeffi-
cients c0 and c2. This is because the b0 and b2 terms in
Eqs. (13) and (14) are removed in the subtraction. Note
also that the tadpole amplitude in Eqs. (22) and (23)
contains the renormalized c2 in its coefficient. The inter-
action vertex in this diagram arises from expanding out the
pion field in the leading quark-mass insertion.

The constant coefficients �N , ��, and �t for each inte-
gral are defined in terms of the pion decay constant, which
is taken to be f� ¼ 93 MeV, and the axial coupling pa-
rameters D, F, and C which couple the baryons to the pion
field. The phenomenological values for these couplings are
used, applying the SU(6) flavor-symmetry relations
[19,20] to yield C ¼ �2D, F ¼ 2

3D and the value D ¼
0:76:

�N ¼ � 3

32�f2�
ðDþ FÞ2; (24)

�� ¼ � 3

32�f2�

8

9
C2; (25)

�t ¼ � 3

16�2f2�
: (26)

With the renormalized integrals specified, the FRR
modified version of the chiral expansion in Eq. (5) takes
the form:

MN ¼ c0 þ c2m
2
�ð1þ ~�tadÞ þ a�4 m

4
� þ ~�N þ ~��: (27)

The a�4 term is left in unrenormalized form for simplicity.
Indeed, the b4 can be evaluated by expanding out corre-
sponding loop integrals, such as in Ref. [12]. However, the
focus here is on the behavior of c0 and c2.

Since the results of lattice simulations reflect the pres-
ence of discrete momentum values associated with the
finite volume of the lattices, the formalism must also take
into account these finite-volume effects. In order to accom-

modate the effect of the finite volume, the continuous loop
integrals occurring in the meson-loop calculations in infi-
nite volume are transformed into a sum over discrete
momentum values. The difference between a loop sum
and its corresponding loop integral is the finite-volume
correction, which should vanish for all integrals as m�L
becomes large [21].
While Eq. (27) is useful in describing the pion-mass

evolution of the nucleon mass, for the consideration of
lattice QCD results, one also needs to incorporate correc-
tions to allow for the finite-volume nature of the numerical
simulations. As the pion is the lightest degree of freedom in
the system, it is the leading order pion loop effects that are
most sensitive to the periodic boundary conditions. The
corrections can be determined by considering the trans-
formation of each loop integral in Eqs. (17), (19), and (21),
into a discrete sum for lattice volume V ¼ LxLyLz [22]:

Z
d3k ! ð2�Þ3

LxLyLz

X
kx;ky;kz

: (28)

Each momentum component is quantized in units of 2�=L,
that is ki ¼ ni2�=L for integers ni. The finite-volume
correction �FVC can be written as the difference between
the finite sum and the integral:

�FVC
i ¼ �i

2�2

� ð2�Þ3
LxLyLz

X
kx;ky;kz

Iið ~k; m2
�;�Þ

�
Z

d3kIið ~k; m2
�;�Þ

�
; (29)

where i ¼ N, �, and the integrands are denoted

Iið ~k; m2
�;�Þ. By adding the relevant finite-volume correc-

tion (FVC) to each loop contribution, the finite-volume
nucleon mass can be parameterized:

MV
N ¼ c0 þ c2m

2
�ð1þ ~�tadÞ þ a�4 m

4
� þ ð~�N þ �FVC

N Þ
þ ð~�� þ �FVC

� Þ: (30)

It is also anticipated that the FVC are independent of the
regularization scale � in this domain. In Figs. 4 and 5, the
scale dependence of the finite-volume corrections is shown
for a dipole regulator and a 2.9 fm box (the same box size
used for the PACS-CS data [23]). It is notable that choosing
� too small suppresses the very infrared physics that one is
trying to describe, and therefore it is sensible to be cautious
by not selecting a � that is too low. Figures 6 and 7 show
the behavior of the FVC for a 4.0 fm box, and the correc-
tions are much smaller as expected.
For large � the results saturate to a fixed result. For the

light pion masses, provided � * 0:8 GeV, the estimated
finite-volume corrections are stable. The asymptotic result
is used, which has been demonstrated to be successful in
previous studies [24]. Numerically, this is achieved by
evaluating the finite-volume corrections with a parameter,
�0 ¼ 2:0 GeV, �FVC

i ¼ �FVC
i ð�0Þ. It should be noted that
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this is equivalent to the more algebraic approach outlined
in Ref. [21].

III. INTRINSIC SCALE: PSEUDODATA

This �EFT extrapolation scheme to order Oðm4
� logm�Þ

will be used in conjunction with lattice QCD data from
JLQCD [27], PACS-CS [23], and CP-PACS [28] collabo-
rations to predict the nucleon mass for any value of m2

�.
The lattice data used in this analysis can be used to ex-
trapolate MN to the physical point by taking into account
the relevant curvature from the loop integrals in Eqs. (18),
(20), and (22). As an example, a regulator value of � ¼
1:0 GeV was chosen for Figs. 8–10, where the finite-
volume corrected EFT appears concordant with previous
QCDSF-UKQCD collaboration results [24]. If the regula-
tor is changed away from the choice � ¼ 1:0 GeV, the
extrapolation curve also changes. This signifies a scheme
dependence in the result due to using lattice QCD data
beyond the PCR.

FIG. 5 (color online). Behavior of finite-volume corrections
�FVC
� vs � on a 2.9 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 6 (color online). Behavior of finite-volume corrections
�FVC
N vs � on a 4.0 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 7 (color online). Behavior of finite-volume corrections
�FVC
� vs � on a 4.0 fm box using a dipole regulator. Results for

two different values of m2
� are shown.

FIG. 4 (color online). Behavior of the finite-volume correc-
tions �FVC

N vs � on a 2.9 fm box using a dipole regulator. Results

for two different values of m2
� are shown.

FIG. 8 (color online). Example dipole extrapolation based on
JLQCD data [27], box size: 1.9 fm.
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To demonstrate this, consider the infinite volume ex-
trapolation of the CP-PACS data. The extrapolation is
achieved by subtracting the finite-volume loop integral
contributions defined in Eqs. (17), (19), and (21) from
each data point and then fitting the result to obtain the
coefficients c0, c2, and a�4 as shown in Eq. (27). The
infinite volume loop integrals are then added back at any
desired value of m2

�.
Figure 11 shows that the curves overlap exactly when

m2
� is large, where the lattice data reside. They diverge as

the chiral regime is approached. This section addresses this
problem in detail.

A particular regularization scale is selected and a dense
and precise data set is generated, which smoothly connects
with state of the art lattice simulation results. If all the data
considered lie within the PCR then the choice of regulator
parameter is irrelevant, and the FRR chiral expansion is
mathematically equivalent to scale-invariant renormalza-
tion schemes including DR. However, the purpose here is
to consider an insightful scenario, whereby a set of ideal

pseudodata with known low-energy coefficients is pro-
duced. This scenario will form the basis of the investiga-
tion of the PCR, and ultimately the possible existence of an
intrinsic scale hidden within the actual lattice QCD data.
The pseudodata are produced by performing a finite-

volume extrapolation such as that shown in Figs. 8–10. The
difference is that 100 infinite volume extrapolation points
are produced close to the chiral regime. The exercise is to
pretend that it is actual lattice QCD data. Clearly, a regu-
larization scheme must be chosen to produce the pseudo-
data. In this case, a dipole regulator was chosen and
pseudodata were created at �c � 1:0 GeV.
The regularization dependence of the extrapolation is

characterized by the scale dependence of the renormalized
constants ci. Consider how c0 and c2 behave when ana-
lyzed with a variety of regulator values in Figs. 12 and 13.

FIG. 10 (color online). Example dipole extrapolation based on
CP-PACS data [28], box size: 2.3–2.8 fm.

FIG. 9 (color online). Example dipole extrapolation based on
PACS-CS data [23], box size: 2.9 fm.

FIG. 11 (color online). Close zoom of the regulator depen-
dence for dipole extrapolation based on CP-PACS data. Only the
data point corresponding to the smallest m2

� value is shown at
this scale.

FIG. 12 (color online). Behavior of c0 vs regulator parameter
�, based on infinite volume pseudodata created with a dipole
regulator at �c ¼ 1:0 GeV (based on lightest four data points
from PACS-CS). Each curve uses pseudodata with a different
upper value of pion mass m2

�;max.
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By choosing to use pseudodata produced at infinite vol-
ume, one eliminates the concern that behavior of the low
energy constants across a range of regulators and pion
masses is a finite-volume artefact. The equivalents of
Figs. 12 and 13 for finite-volume pseudodata exhibit the
same features.

If three pseudodata sets are compared, each with differ-
ent upper bounds on the range of m2

� considered in the fit,
an increasing regulator dependence in c0 and c2 is seen
further from the PCR. A steep line indicates a strong
scheme dependence in the result, and naturally occurs for
data samples extending far outside the PCR. Scheme in-
dependence will appear as a completely horizontal graph.
The latter is what one expects for a value of m2

�;max <
0:04 GeV2, as shown in Figs. 12 and 13. Note that, for each
figure, all three curves (corresponding to different m2

�;max)

arrive at stable values for c0 and c2 on the right-hand side
of the graph (large �). To read off the values of c0 and c2
for large � is tempting but wrong. It is known that the
correct values of c0 and c2 are recovered at � ¼ 1:0 GeV,
because at that value the pseudodata were created.

The analysis of the pseudodata in Figs. 12 and 13 shows
that as the value of m2

�;max is changed, the correct value of

c0 is recovered at exactly � ¼ �c, where the curves inter-
sect. This is also the intersection point for c2 at � ¼ �c.
This suggests that when considering lattice QCD results
extending outside the PCR, there may be an optimal finite-
range cutoff. Physically, such a cutoff would be associated
with an intrinsic scale reflecting the finite size of the source
of the pion dressings. Mathematically, this optimal cutoff is
reflected by an independence of the fit parameters on
m2

�;max.

To illustrate the nontriviality of this scale of curve-
intersection, the pseudodata were analyzed with a different
regulator, e.g. a triple-dipole regulator. Figures 14 and 15

show that the scale of the intersection is no longer a clear
point but a cluster centered about 0.5 to 0.6 GeV. The triple
dipole will of course predict a different ‘‘best scale’’, since
the shape of the regulator is different from that of the
dipole used to create the pseudodata. The essential point
of this exercise is that clustering of curve intersections
identifies a preferred renormalization scale that allows
one to recover the correct low-energy coefficients. In this
case, the crossing of the dashed and dotted-dashed curves
(from fitting) clearly identifies �scale

trip ¼ 0:6 GeV as a pre-

ferred regulator, which reflects the intrinsic scale used to
create the data. Table I compares the values for c0 and c2
recovered in this analysis for two different regulators: the
preferred value �scale

trip ¼ 0:6 GeV, and a large value

�trip ¼ 2:4 GeV reflecting the asymptotic result recovered

FIG. 14 (color online). Behavior of c0 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV but subsequently analyzed using a triple-dipole regu-
lator.

FIG. 15 (color online). Behavior of c2 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV but subsequently analyzed using a triple-dipole regu-
lator.

FIG. 13 (color online). Behavior of c2 vs �, based on infinite
volume pseudodata created with a dipole regulator at �c ¼
1:0 GeV (based on lightest four data points from PACS-CS).
Each curve uses pseudodata with a different upper value of pion
mass m2

�;max.

J.M.M. HALL, D. B. LEINWEBER, AND R.D. YOUNG PHYSICAL REVIEW D 82, 034010 (2010)

034010-8



from DR. The input values of c0 and c2 used to create the
pseudodata are also indicated.

Note that the finite-range renormalization scheme
breaks down if the finite-range regulator is too small.
This is because � must be large enough to include the
chiral physics being studied. The exact value of a sensible
lower bound in the finite-range regulator will depend on
the functional form chosen as regulator. This is estimated
for three dipolelike regulators in Sec. IV.

Figure 13 shows that the renormalization for c2 breaks
down for small values of the regulator�. FRR breaks down
for a value of �dip much below 0.6 GeV, because the

coefficients bi of the loop integral expansion in Eqs. (18),

(20), and (22) are proportional to �ð3�iÞ. For high-order
terms with large i, the coefficients will become large when
� is small. This will adversely affect the convergence
properties of the chiral expansion. One obtains a residual
series expansion with good convergence properties only
when � reflects the intrinsic scale of the source of the pion
dressings of the hadron in question.

The pseudodata analysis provides a good indication of a
lower bound for � using a dipole regulator: �dip *

0:6 GeV. Similarly, Fig. 6 suggests a lower bound for the
triple-dipole regulator: �trip * 0:3 GeV. The same analy-

sis can be repeated for the double-dipole regulator to obtain
�doub * 0:4 GeV.

One may also constrain the lowest value that � can take
by considering phenomenological arguments. Based on the
physical values of the sigma commutator and the nucleon
mass, a pion mass of m� � 0:5 GeV bounds the radius of
convergence [13,25,26]. Therefore, in order to ensure the
inclusion of important contributions to the chiral physics,
one should choose an energy scale �sharp � 0:5 GeV for a

sharp cutoff (step function) regulator. To compare this
estimate for the sharp cutoff to that of dipolelike regulators,
one can calculate the regulator value required such that
u2nðk2Þ ¼ 1=2 when the momentum takes the energy scale
of �sharp. This results in a rough estimate for a sensible

value for the dipole, double dipole, and triple dipole. These
values are �dip � 1:1 GeV, �doub � 0:76 GeV, and

�trip � 0:66 GeV, respectively. In any event, a wide range

of regulator values will be considered, and the intersections
of the curves for the low-energy coefficients will be used in

order to construct fits outside the PCR. This will be done in
order to identify the presence of an intrinsic scale for the
pion source and an associated preferred regularization
scale.

IV. INTRINSIC SCALE: LATTICE RESULTS

A. Evidence for an intrinsic scale

In the example of the pseudodata, an optimal finite-
range cutoff was obtained from the data themselves.
Clearly, the pseudodata have an intrinsic scale: the renor-
malization scale �c at which they were created. This test
example leads the researcher to wonder if actual lattice
QCD data have an intrinsic cutoff scale embedded within
them. That is, by analyzing lattice QCD data in the same
way as the pseudodata, can a similar intersection point be
obtained from the renormalization scale flow of c0 and c2?
If so, this indicates that the lattice QCD data contain
information regarding an optimal finite-range regulariza-
tion scale, which can be calculated.
The results for the renormalization of c0 and c2 as a

function of � are now presented for JLQCD [27], PACS-
CS [23], and CP-PACS [28] lattice QCD data. The JLQCD
data use overlap fermions in two-flavor QCD, but the
lattice box size for each data point is �1:9 fm, smaller
than the other two data sets. The PACS-CS data use the
nonperturbativelyOðaÞ-improved Wilson quark action at a
lattice box size of �2:9 fm, but the data set only contains
five data points and a large statistical error in the smallest
m2

� point. The CP-PACS data use a mean field improved
clover quark action on lattice box sizes for each data point
varying from �2:2 fm to �2:8 fm.
The chiral expansion is first used to chiral order Oðm3

�Þ.
In this case, the fit parameters are c0 and c2 only. The
results for a dipole regulator are shown in Figs. 16–21, the
results for the double-dipole case are shown in Figs. 22–27,

TABLE I. A comparison of the parameters c0 (GeV) and c2
(GeV�1) at their input value (pseudodata created with a dipole at
�c ¼ 1:0 GeV) with the values when analyzed with a triple-
dipole regulator. Different values of �trip (GeV) and m2

�;max

(GeV2) are chosen to demonstrate the scheme dependence of
c0 and c2 for data extending outside the PCR.

Parameter Input �scale
trip ¼ 0:6 �trip ¼ 2:4 �trip ¼ 2:4

m2
�;max ¼ 0:25 m2

�;max ¼ 0:25 m2
�;max ¼ 0:5

c0 0.902 0.901 0.899 0.896

c2 3.00 3.07 3.17 3.23

FIG. 16 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ, and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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FIG. 20 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 17 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ, and a dipole
regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 18 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 19 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 21 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ, and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 22 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to orderOðm3

�Þ and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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and the results for the triple dipole are shown in Figs. 28–
33. To estimate the statistical error in the renormalized
constants �c, a bootstrap technique of 200 configurations
of nucleon mass data is used. The configurations differ by
the statistical error in the data, with values generated by a
Gaussian distribution. In each plot, the same configurations
are used for a variety of values of � considered. A few
points are selected in Figs. 16–33 to indicate the general
size of the statistical error bars.
It should be noted that none of these curves is flat to

within 1% accuracy. All fits have included data beyond the
commonly accepted PCR. Clearly, there is a well-defined
intersection point in the renormalization flow curves. Also,
the value of � at which the intersection point occurs is the
same even for different data sets, and for different ci. The
tight groupings of the curve crossings lend credence to the
ansatz of an intrinsic scale associated with the finite size of

FIG. 23 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to orderOðm3

�Þ and a double-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 25 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 26 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 24 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
double-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 27 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
doubledipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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the source of the pion dressings of the nucleon. This is a
central result of this analysis.
An intrinsic scale of �scale

dip � 1:3 GeV was obtained for

the dipole, �scale
doub � 1:0 GeV for the double dipole and

�scale
trip � 0:9 GeV for the triple dipole. These values differ

because the regulators have different shapes, and different
values of �scale are required to create a similar suppression
of large loop momenta.

B. Statistical errors

On each renormalization plot in Figs. 16–33 there are
many curves, each corresponding to different values of
m2

�;max. It is of primary interest to what extent these curves

match. Therefore, a �2
dof should be constructed, where dof

equals the number of curves on each plot minus one for the
best fit value of c0 or c2, denoted by cT in the following.

FIG. 28 (color online). Behavior of c0 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 29 (color online). Behavior of c2 vs �, based on JLQCD
data. The chiral expansion is taken to order Oðm3

�Þ and a triple-
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 31 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 30 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 32 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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This also serves to quantify the constraint on the intrinsic
scale �scale. The �2

dof is evaluated separately for each

renormalized constant c (with error �c) and regulator value
�:

�2
dof ¼

1

n� 1

Xn
i¼1

ðcið�Þ � cTð�ÞÞ2
ð�cið�ÞÞ2 ; (31)

for i corresponding to data sets with differing m2
�;max. The

theoretical value cT is given by the weighted mean:

cTð�Þ ¼
P

n
i¼1 cið�Þ=ð�cið�ÞÞ2P

n
j¼1 1=ð�cjð�ÞÞ2 : (32)

The �2
dof can be calculated as a function of the regulator

parameter � for each of the renormalization plots of
Figs. 16–33. In the case of the PACS-CS data, the mini-
mum of the �2

dof curve will be centered at the intersection

point. In the case of the JLQCD and CP-PACS data, there
appears to be a single intersection point on each plot, but in
fact there are multiple intersections over a very small
window of �. The results for �2

dof will indicate the

‘‘best’’ central value of �. This central value of � will
be taken to be the intrinsic scale. The �2

dof curves for a

dipole regulator are shown in Figs. 34–39, the �2
dof curves

for the double-dipole case are shown in Figs. 40–45, and
the �2

dof curves for the triple dipole are shown in Figs. 46–

51.

C. Higher chiral order

Consider the renormalization of c0 and c2 as a function
of �, for chiral orderOðm4

� logm�Þ. The results for PACS-
CS and CP-PACS data are shown in Figs. 52–55, as an
example. In this case, no clear intersection points in the
renormalization curves can be found, and so one is unable
to specify an intrinsic scale. This certainly should be the

FIG. 36 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 35 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a dipole regulator is used.

FIG. 34 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a dipole regulator is used.

FIG. 33 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion is taken to order Oðm3

�Þ and a
triple-dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.
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FIG. 37 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 38 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 39 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a dipole regulator is used.

FIG. 41 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a double-dipole regulator is used.

FIG. 40 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a double-dipole regulator is used.

FIG. 42 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.
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FIG. 45 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 44 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 43 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a double-dipole regulator is used.

FIG. 46 (color online). Behavior of �2
dof for c0 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a triple-dipole regulator is used.

FIG. 48 (color online). Behavior of �2
dof for c0 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 47 (color online). Behavior of �2
dof for c2 vs �, based on

JLQCD data. The chiral expansion is taken to order Oðm3
�Þ, and

a triple-dipole regulator is used.
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FIG. 50 (color online). Behavior of �2
dof for c0 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 49 (color online). Behavior of �2
dof for c2 vs �, based on

PACS-CS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 51 (color online). Behavior of �2
dof for c2 vs �, based on

CP-PACS data. The chiral expansion is taken to order Oðm3
�Þ,

and a triple-dipole regulator is used.

FIG. 53 (color online). Behavior of c2 vs �, based on PACS-
CS data. The chiral expansion taken to orderOðm4

� logm�Þ and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.

FIG. 54 (color online). Behavior of c0 vs �, based on CP-
PACS data. The chiral expansion taken to order Oðm4

� logm�Þ
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 52 (color online). Behavior of c0 vs �, based on PACS-
CS data. The chiral expansion taken to orderOðm4

� logm�Þ and a
dipole regulator is used. A few points are selected to indicate the
general size of the statistical error bars.
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case when working with data entirely within the PCR,
because all renormalization procedures would be equiva-
lent (to a prescribed level of accuracy) and so there would
be no optimal regulator parameter. It is known that this is
not the case for the data sets used in this study. This is
verified by considering the evident scale dependence of c0
and c2 in Figs. 52–55. The fact that c0 and c2 change over
the range of � values indicates that the data are not inside
the PCR. Further, since no preferred scale is revealed, any
choice of � appears equivalent at this order. While this is
encouraging that the scheme dependence is being weak-
ened by working to higher order, it must be recognized that
there is a systematic error associated with the choice of �.
In the case of the CP-PACS results shown in Figs. 54 and
55, it can be seen that the statistical errors are substantially
smaller than the systematic error associated with a charac-
teristic range, �lower <�<1, where �lower is the lowest
reasonable value of �.

Since it is difficult to identify the intrinsic scale at this
chiral order, the results for chiral order Oðm3

�Þ will be
chosen to demonstrate the process of handling the exis-
tence of an optimal regulator scale in lattice QCD data. The
results for the calculation of the intrinsic scales �scale for
different data sets and regulators are given in Table II. This
table simply summarizes the central values from Figs. 34–
51. Such excellent agreement between the c0 analysis and
the c2 analysis is remarkable, and indicative of the exis-
tence of an instrinsic scale in the data. There is also
consistency among independent data sets. It is important
to realize that the value of �scale is always the order of
�1 GeV, not 10 GeV, nor 100 GeV; nor is it infinity.

In calculating the systematic uncertainty in the observ-
ables c0, c2 and the nucleon mass at the physical point due
to the intrinsic scale at order Oðm4

� logm�Þ, two methods
are provided. First, the upper and lower bounds from the
�2
dof analysis at order Oðm3

�Þ will be used to constrain �,

and taken to be an accurate estimate of the systematic
uncertainty in the contributions of higher-order terms.
Second, variation of the observables across the character-
istic range of scale values, �lower <�<1 will be used,
where�lower takes the value of 0.6, 0.4, and 0.3 GeV for the
dipole, double-dipole, and triple-dipole regulator, respec-
tively. The results from both of these methods are dis-
played in Table III.
The final results for the calculation of the renormalized

constants c0, c2 and the nucleon mass extrapolated to the
physical point (m�;phys ¼ 140 MeV) are summarized in

Table IV. The lightest four data points from each of
JLQCD, PACS-CS, and CP-PACS lattice QCD data are
used. The nucleon mass is calculated at the scale deter-
mined by the data.

FIG. 55 (color online). Behavior of c2 vs �, based on CP-
PACS data. The chiral expansion taken to order Oðm4

� logm�Þ
and a dipole regulator is used. A few points are selected to
indicate the general size of the statistical error bars.

TABLE II. Values of the central � value in GeV, taken from
the �2

dof analysis for c0 and c2, based on JLQCD, PACS-CS, and

CP-PACS data.

Regulator form

Optimal scale Dipole Double Triple

�scale
c0 ;JLQCD

1.44 1.08 0.96

�scale
c2 ;JLQCD

1.40 1.05 0.94

�scale
c0 ;PACS-CS 1.21 0.93 0.83

�scale
c2 ;PACS-CS 1.21 0.93 0.83

�scale
c0 ;CP-PACS 1.20 0.98 0.88

�scale
c2 ;CP-PACS 1.19 0.97 0.87

TABLE III. Results at Oðm4
� logm�Þ for the systematic error

due to the intrinsic scale, calculated using two methods, for the
values of c0 (GeV), c2 (GeV�1), and the nucleon mass MN

(GeV) extrapolated to the physical point (m�;phys ¼ 140 MeV).

The first number in each column is the systematic error due to
the intrinsic scale using the upper and lower bound from the �2

dof

analysis at order Oðm3
�Þ. The second number is the systematic

error due to the instrinsic scale across the whole range of �
values from the lowest reasonable value (� ¼ �lower) obtained
from the pseudodata analysis, to the asymptotic value (� ¼ 1).

Regulator form

Sys. err. Dipole Double Triple

��cJLQCD0 0.001, 0.009 0.001, 0.013 0.001, 0.016

��cPACS-CS0 0.005, 0.006 0.005, 0.010 0.006, 0.012

��cCP-PACS0 0.002, 0.024 0.002, 0.037 0.002, 0.045

��cJLQCD2 0.02, 0.31 0.03, 0.38 0.01, 0.48

��cPACS-CS2 0.18, 0.25 0.16, 0.33 0.14, 0.43

��cCP-PACS2 0.02, 0.40 0.02, 0.58 0.02, 0.73

��MJLQCD
N;phys 0.0004, 0.0051 0.0003, 0.0073 0.0003, 0.0090

��MPACS-CS
N;phys 0.0022, 0.0030 0.0025, 0.0046 0.0025, 0.0058

��MCP-PACS
N;phys 0.0012, 0.0175 0.0013, 0.0270 0.0014, 0.0326
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V. CONCLUSION

In conclusion, it has been demonstrated that chiral ef-
fective field theory is an important tool for investigating the
chiral properties of hadrons, and for extrapolating lattice
QCD results. Because the chiral expansion is only conver-
gent within a PCR, a renormalization scheme such as
finite-range regularization should be used for current lat-
tice QCD results, and into the foreseeable future.
Renormalization-scheme dependence occurs when lattice
QCD data extending outside the PCR are used in the
extrapolation. This provides a new quantitative test for
determining when lattice QCD data lie within the PCR.
As most lattice data extend beyond the PCR, a formalism
was developed to determine if there is an optimal regulari-
zation scale �scale in the finite-range regulator, and to
calculate it if it exists. It was concluded that such an
optimal scale can be obtained from the data itself by
analyzing the renormalization flow curves of the low-
energy coefficients in the chiral expansion. The optimal
scale is selected by the value for which the renormalized
constants are independent of the upper bound of the fit
domain. This also means that the renormalized constants
are not to be identified with their asymptotic values at large
�.

It was revealed that a preferred regularization scheme
exists only for data sets extending outside the PCR. Such
a preferred regularization scheme is associated with an
intrinsic scale for the size of the pion dressings of the
nucleon. By working to sufficiently high chiral order, it
was discovered that the scale dependence was weakened.
Nevertheless, the residual scale dependence persists as
a significant component of the systematic uncertainty.
For efficient propagation of this uncertainty, an interest-
ing future direction would be to consider marginali-
zation over the scale dependence [29]. The described pro-
cedure was used to calculate the nucleon mass at the
physical point, the low-energy coefficients c0 and c2
and their associated statistical and systematic errors.
Several different functional forms of regulator were con-
sidered, and lattice QCD data from JLQCD, PACS-CS, and
CP-PACS were used. An optimal cutoff scale �scale for
each set of lattice QCD data was obtained, and the system-
atic error in the choice of renormalization scheme was
calculated.
In summary, the existence of a well-defined intrin-

sic scale has been discovered. It has also been illus-
trated how its value can be determined from lattice QCD
results.

TABLE IV. Results at Oðm4
� logm�Þ for the values of c0 (GeV), c2 (GeV�1), and the nucleon mass MN (GeV) extrapolated to the

physical point (m�;phys ¼ 140 MeV). WM is the weighted mean of each row. The nucleon mass is calculated at the optimal scale�scale,

which is the average of �scale
c0 and �scale

c2 for each data set. The extrapolations are performed at box sizes relevant to each data set:

LJLQCD
extrap ¼ 1:9 fm, LPACS-CS

extrap ¼ 2:9 fm, and LCP-PACS
extrap ¼ 2:8 fm. The errors are quoted as the estimate of the statistical error first (based

on random bootstrap configurations), and the systematic error obtained from the number of m2
� values used second. Two seperate

weighted means are calculated for each row. WM(1) incorporates the systematic error in the intrinsic scale using the upper and lower
bound from the �2

dof analysis at order Oðm3
�Þ. The WM(2) incorporates the systematic error due to the intrinsic scale across the whole

range of � values from the lowest reasonable value (� ¼ �lower) obtained from the pseudodata analysis, to the asymptotic value
(� ¼ 1). The weighted means also include an estimate of the systematic error in the choice of regulator. All errors are added in
quadrature. Note that any order OðaÞ errors have not been incorporated into the total error analysis.

Regulator form

Parameter Dipole Double Triple WM(1) WM(2)

cJLQCD0 0.873(18)(16) 0.875(17)(16) 0.891(17)(16) 0.880(29) 0.879(32)

cPACS-CS0 0.900(51)(15) 0.899(51)(14) 0.898(51)(14) 0.899(53) 0.899(55)

cCP-PACS0 0.924(3)(8) 0.914(3)(7) 0.918(3)(7) 0.918(13) 0.920(37)

cJLQCD2 3.09(9)(11) 3.18(9)(12) 3.20(9)(11) 3.16(18) 3.14(43)

cPACS-CS2 3.06(32)(15) 3.15(31)(14) 3.17(31)(14) 3.13(39) 3.12(49)

cCP-PACS2 2.54(5)(4) 2.70(5)(2) 2.71(5)(3) 2.66(18) 2.61(60)

MJLQCD
N;phys 1.02(2)(9) 1.02(2)(9) 1.02(2)(9) 1.02(9) 1.02(9)

MPACS-CS
N;phys 0.967(45)(43) 0.966(45)(43) 0.966(45)(43) 0.966(62) 0.966(62)

MCP-PACS
N;phys 0.982(2)(40) 0.975(2)(43) 0.978(2)(42) 0.979(43) 0.979(50)
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Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when
used in conjunction with non-perturbative schemes such as lattice quantum chromodynamics (QCD).
In this discourse, the attention is focused on extrapolating the mass of the ρ meson to the physical
pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves
to demonstrate the ability of the extrapolation scheme to make predictions without prior bias.
By using extended effective field theory developed previously, an extrapolation is performed using
quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The
method involves an analysis of the renormalization flow curves of the low-energy coefficients in a
finite-range regularized effective field theory. The analysis identifies an optimal regularization scale,
which is embedded in the lattice QCD data themselves. This optimal scale is the value of the
regularization scale at which the renormalization of the low-energy coefficients is approximately
independent of the range of quark masses considered. By using recent precision, quenched lattice
results, the extrapolation is tested directly by truncating the analysis to a set of points above 380
MeV, while temporarily disregarding the simulation results closer to the chiral regime. This tests
the ability of the method to make predictions of the simulation results, without phenomenologically
motivated bias. The result is a successful extrapolation to the chiral regime.

PACS numbers: 12.39.Fe 11.10.Jj 12.38.Aw 12.38.Gc

I. INTRODUCTION

In lattice quantum chromodynamics (QCD), the cal-
culation of observables with light dynamical quarks is
computationally intensive, and only in recent times have
there been successful attempts to perform calculations of
any observable at the physical point (mπ = 140 MeV) [1–
3]. Usually, some extrapolation scheme is needed if one is
to compare theoretical calculations with the correspond-
ing physical observables. Utilizing lattice QCD results
spread over a larger range of quark masses naturally en-
ables greater statistical precision in the extrapolation.

Quenched QCD (QQCD) was introduced as a way to
ameliorate the computational difficulty of simulating dy-
namical fermions on the lattice. Quenched simulations
typically have been superseded by the wide availability
of dynamical configurations. Nevertheless, it can still be
used as an efficient testing ground. This is particularly
true of the chiral extrapolation problem, where the ex-
perimentally known values may introduce a prejudice on
a chosen form. In QQCD, the physical target point does
not exist, and an extrapolation of moderate-mass points
to the chiral regime provides an unbiased test of the pro-
cedure.

In order to discuss the chiral behaviour of the ρ meson
in QQCD, one first constructs an effective field theory
describing the relevant low-energy degrees of freedom.
The mass of the ρ meson is described by a chiral ex-
pansion in the quark mass (mq), which includes analytic
terms that are polynomial in mq, and non-analytic terms

arising from chiral loop integrals. These loop integrals
are commonly divergent, and thus it is necessary to in-
troduce a regularization procedure. Finite-range regu-
larization (FRR) is selected as a regularization scheme,
which introduces a momentum cutoff scale Λ into the
loop integrals. The properties of FRR allow it to be used
with data extending outside the power-counting regime
(PCR), at the expense of complete scheme-independence.
As has been demonstrated, an optimal choice of regular-
ization scale, Λscale, can be extracted from the lattice
simulation results [4]. A systematic uncertainty in Λscale

can also be estimated, which provides a range of suitable
values for the scale obtained from the data [5]. Thus the
scheme-dependence in using data extending outside the
PCR can be quantified in an unbiased fashion.

II. EXTENDED EFFECTIVE FIELD THEORY

In chiral effective field theory (χEFT), the diagram-
matic formulation can be used to identify the major
contributions to the ρ meson mass in QQCD [6, 7].
The leading-order diagrams are the double and single
η′ hairpin diagrams as shown in Figures 1 and 2, re-
spectively. The constant coefficients of these loop inte-
grals are endowed with an uncertainty to encompass the
possible effects of smaller contributions to order O(m4

π).
Interactions with the flavour-singlet η′ are the most im-
portant contributions to the ρ meson mass in QQCD.
This is an artifact of the quenched approximation, where
the η′ also behaves as a pseudo-Goldstone boson, having
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FIG. 1. Double hairpin η
′ diagram.

FIG. 2. Single hairpin η
′ diagram.

FIG. 3. Double hairpin quark flow diagram.

FIG. 4. Alternative double hairpin quark flow diagram.

FIG. 5. Single hairpin quark flow diagram.

a “mass” that is degenerate with the pion. The dressing
of the ρ meson by the η′ field is illustrated in Figures
3 through 5. Since the hairpin vertex must be a flavor-
singlet, the mesons that can contribute are the η′ meson,
and the ω meson. The contributions from the ω meson
are insignificant due to OZI suppression and the small
ρ-ω mass splitting. However, in QQCD, the η′ loop be-
haves much as a pion loop, yet with a slightly modified
propagator.
In full QCD however, the η′ does not play any role

in the low-energy dynamics. The physical η′ acquires a
finite mass — which survives in the chiral limit — by
resumming the chain of vacuum insertions as depicted in
Figure 6. As a “heavy” degree of freedom, the η′ can

FIG. 6. Diagrammatic representation of η′ propagator terms.

then be integrated out of the of the effective field theory.

A. Loop integrals and definitions

Using the Gell-Mann−Oakes−Renner Relation con-
necting quark and pion masses, mq ∝ m2

π [8], the ρmeson
mass extrapolation formula in QQCD can be expressed
in a form that contains an analytic polynomial in m2

π

plus the chiral loop integrals (ΣQ):

m2
ρ,Q = a0 + a2m

2
π + a4m

4
π

+ΣQ
η′η′(m

2
π,Λ) + ΣQ

η′(m
2
π,Λ) +O(m5

π). (1)

The coefficients ai are the ‘residual series’ coefficients,
which correspond to direct quark-mass insertions in
the underlying Lagrangian of chiral perturbation theory.
However, the non-analytic behaviour of the expansion
arises from the chiral loop integrals. Upon renormaliza-
tion of the divergent loop integrals, these will correspond
with low-energy constants of the quenched χEFT. The
extraction of these parameters from lattice QCD results
will now be demonstrated.
By convention, the non-analytic terms from the dou-

ble and single hairpin integrals are χ1mπ and χ3m
3
π, re-

spectively. The coefficients χ1 and χ3 of the leading-
order non-analytic terms are scheme-independent con-
stants that can be estimated from phenomenology. The
low-order expansion of the loop contributions takes the
following form:

ΣQ
η′η′ = bη

′η′

0 + χ1mπ + bη
′η′

2 m2
π + χη′η′

3 m3
π + bη

′η′

4 m4
π

+O(m6
π), (2)

ΣQ
η′ = bη

′

0 + bη
′

2 m2
π + χη′

3 m3
π + bη

′

4 m4
π +O(m6

π), (3)

The coefficient χ3 is obtained by adding the contribu-

tions from both integrals, χ3 = χη′η′

3 +χη′

3 . Each integral
has a solution in the form of a polynomial expansion ana-
lytic in m2

π plus non-analytic terms, of which the leading-
order term is of greatest interest. The coefficients bi are
scale-dependent and therefore scheme-dependent. In or-
der to achieve an extrapolation based on an optimal FRR
scale, first the scale-dependence of the low-energy ex-
pansion must be removed through renormalization. The
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renormalization program of FRR combines the scheme-
dependent bi coefficients from the chiral loops with the
scheme-dependent ai coefficients from the residual series
at each chiral order i. The result is a scheme-independent
coefficient ci:

c0 = a0 + bη
′η′

0 + bη
′

0 , (4)

c2 = a2 + bη
′η′

2 + bη
′

2 , (5)

c4 = a4 + bη
′η′

4 + bη
′

4 , etc. (6)

That is, the underlying ai coefficients undergo a renor-
malization from the chiral loop integrals. The renormal-
ized coefficients ci are an important part of the extrap-
olation technique. A stable and robust determination of
these parameters forms the core of determining an opti-
mal scale Λscale.
The loop integrals can be expressed in a convenient

form by taking the non-relativistic limit and performing
the pole integration for k0. Renormalization is achieved
by subtracting the relevant terms in the Taylor expan-
sion of the loop integrals and absorbing them into the
corresponding low-energy coefficients, ci:

Σ̃Q
η′η′(m

2
π; Λ) =

−χη′η′

3π2

∫

d3k
(M2

0 k
2 + 5

2A0k
4)u2(k; Λ)

(k2 +m2
π)

2

− bη
′η′

0 − bη
′η′

2 m2
π − bη

′η′

4 m4
π, (7)

Σ̃Q
η′(m

2
π; Λ) =

χη′

2π2

∫

d3k
k2u2(k; Λ)

k2 +m2
π

− bη
′

0 − bη
′

2 m2
π

− bη
′

4 m4
π. (8)

The tilde (˜) denotes that the integrals are written out
in renormalized form to chiral order O(m4

π). The coeffi-
cients χη′η′ and χη′ are related to the coefficients of the
leading-order non-analytic terms by:

χ1 = M2
0 χη′η′ , (9)

χ3 = χη′η′

3 + χη′

3 = A0 χη′η′ + χη′ . (10)

These couplings are discussed in detail below. The func-
tion u(k; Λ) is a finite-range regulator with cutoff scale
Λ, which must be normalized to 1 at k2 = 0, and must
approach 0 sufficiently fast to ensure convergence of the
loop. Different functional forms of u(k; Λ) are equivalent
within the PCR [9, 10]. Different choices of u(k; Λ) for
this investigation are discussed in Sec. II B.
With the loop integrals specified, Eq. (1) can be rewrit-

ten in terms of the renormalized coefficients ci:

m2
ρ,Q = c0 + c2m

2
π + c4m

4
π + Σ̃Q

η′η′(m
2
π; Λ)

+ Σ̃Q
η′ (m

2
π; Λ) +O(m5

π) (11)

≈ c0 + χ1mπ + c2m
2
π + χ3m

3
π + c4m

4
π

+O(m5
π). (12)

Eq. (11) will be used as the extrapolation formula for
mρ,Q at infinite lattice volume. The fit coefficients are

c0, c2 and c4, and mρ,Q is obtained by taking the square
root of Eqs.(11). It is important to note that the formula
in Eq. (12) holds only in the chiral regime. At larger pion
masses, the higher order terms encoded in the integrals
of Eq. (11) cannot be neglected. Therefore, beyond the
PCR, the formula in Eq. (12) is not equivalent to that of
Eq. (11), and is included only to indicate the ordering of
the terms in the chiral expansion.
Since lattice simulations are necessarily carried out

on a discrete spacetime, any extrapolations performed
should take into account finite-volume effects. The low-
energy effective field theory is ideally suited for charac-
terising the leading infrared effects associated with the
finite volume. In order to achieve this, each of the three-
dimensional integrals can be transformed to its form on
the lattice using a finite sum of discretized momenta, fol-
lowing Armour et al. [7], for instance:

∫

d3k → (2π)
3

LxLyLz

∑

kx,ky,kz

. (13)

Each momentum component is quantized in units of
2π/L, that is ki = ni2π/L for integers ni. Finite-volume
corrections δFVC can be written simply as the difference
between the finite sum and the corresponding integral.
It is known that the finite-volume corrections saturate to
a fixed result for large values of the regularization scale
[4]. Following the example set by this article, the value
Λ′ = 2.0 GeV is chosen to evaluate all finite-volume cor-
rections independent of the FRR cutoff scale Λ in Eqs.(7)
and (8). The finite-volume version of Eq. (11) can thus
be expressed:

m2
ρ,Q = c0 + c2m

2
π + c4m

4
π + (Σ̃Q

η′η′(m
2
π; Λ)

+ δFVC
η′η′ (m2

π; Λ
′)) + (Σ̃Q

η′ (m
2
π; Λ) + δFVC

η′ (m2
π; Λ

′))

+O(m5
π). (14)

The convention used for defining the values of χ1, χ3,
and the various coupling constants that occur in each,
follows Booth [11]. For the possible different values that
coupling constants can take, definitions by Chow & Rey
[6], Armour et al. [7] and Sharpe [12] are used. The
types of vertices available are shown in Figure 7, where
g2 and g4 occur explicitly in the two diagrams considered
here. Booth suggests naturalness for g2 ∼ 1, and that
g4 ∼ 1/Nc. These quenched coupling constants can be
connected with the experimental value of gωρπ as per
Lublinsky [13] by the relation:

g2 =
1

2
gωρπfπ, (15)

where gωρπ = 14± 2 GeV−1 and the pion decay constant
takes the value fπ = 0.0924 GeV. Thus g2 is chosen to
be 0.65± 0.09 GeV and g4 is chosen to be approximately
g2/3. The coupling between the separate legs of the dou-
ble hairpin diagram are approximated by the massive
constant M2

0 ∝ m2
η′ . The next-order correction to M0
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FIG. 7. Coupling types following convention introduced by Booth
[11].

in momentum k defines the coupling to be −M2
0 +A0k

2.
These constants can be connected to the full QCD η′

meson mass mη′ by considering the geometric series of
terms as previously illustrated in Figure 6. As a result,
M2

0 is taken to be 0.6± 0.2 GeV2 and A0 is taken to be
0± 0.2.
The coefficients χη′η′ and χη′ can be specified in terms

of the relevant coupling constants:

χη′η′ = −2
◦
mρ

g22
4πf2

π

,

χη′ = −2
◦
mρ

g2g4
6πf2

π

, (16)

where the couplings are defined relative to
◦
mρ represent-

ing the ρ meson mass in the chiral limit, which is taken
to be 770 MeV.

B. Finite-range regularization

In FRR, regulator functions u(k; Λ) with characteristic
scale Λ are inserted into the loop integrals to control the
ultraviolet divergences that occur in the loop integrals en-
countered. For some choices of regulator, extra regulator-
dependent non-analytic terms arise in the chiral expan-
sion of Eq. (12). Since the correct non-analytic terms of
the chiral expansion are regularization scale-independent
terms, the extra non-analytic terms within working chi-
ral order must be removed. All scale-dependence should
be absorbed into the analytic fit parameters ai. For ex-
ample, if a dipole regulator is chosen, the extra terms

b
(1)
3 m3

π, (b
(1)
5 + b

(3)
5 )m5

π and higher-order terms occur-
ring at odd powers of mπ feature in Eq. (12). One can
avoid this by choosing a regulator that does not gener-
ate these extra terms, up to working-order O(m4

π). Since
the step function u2(k; Λ) = θ(Λ−k) introduces inconve-
nient finite-volume artifacts, a ‘triple-dipole’ form factor
will be chosen, defined by:

u(k; Λ) =

(

1 +

[

k2

Λ2

]3
)−2

. (17)

III. LATTICE SIMULATION DETAILS

The calculation is performed on a 203 × 32 lattice
with 197 gauge configurations generated with the Iwasaki
gauge action [14] at β = 2.264, and the quark propagators
are calculated with overlap fermions and a wall-source
technique. The lattice spacing is 0.153 fm, as determined
from the Sommer scale parameter.
The massive overlap Dirac operator is defined [15] in

the following way so that at tree-level there is no mass
or wavefunction renormalization [16]:

D(m) = ρ+
m

2
+ (ρ− m

2
)γ5ǫ(H), (18)

where ǫ(H) is the matrix sign function of an Hermitian

operator H. ǫ(H) ≡ HW /|HW | = HW /(H†
WHW )1/2 is

chosen, where HW (x, y) = γ5DW (x, y). Here DW is the
usual Wilson-Dirac operator on the lattice, except with
a negative mass parameter −ρ = 1/2κ− 4 in which κc <
κ < 0.25. Taking κ = 0.19 in the calculation corresponds
to ρ = 1.368 [17, 18].
In Figure 8 the simulation results for the vector meson

mass are shown for a range of quark masses.
The data displayed in Figure 8 are split into two parts.

All the data left of the solid vertical line is unused for ex-
trapolation and kept in reserve. Indeed, the authors per-
forming the extrapolation were blind to these data. This
is so that the extrapolation can be checked against these
known data points once the extrapolation is established.
In other words, the results of the chiral extrapolation are
genuine predictions of the hidden lattice results. Only
the data points to the right of the solid vertical line are
used for extrapolation. The full set of data is also listed
in Table I.
To estimate finite-volume effects using overlap

fermions, quenched lattices of volumes 163 × 28 and
123 × 28 with a = 0.2 fm are used. For a pion mass
of 180 MeV, mPSL ≈ 3, and the finite-volume correction
is approximately 2.7 MeV: about 1.5% of the pion mass
[17]. The current 203 × 32 lattice with a = 0.153 fm is
about the same physical size as that of a 163 × 28 lattice
and a similar finite-volume correction is expected. To es-
timate the finite-volume correction of the lowest ρ meson
mass at mπ ≈ 200 MeV, the same percentage of error
is used, and a shift of δLmρ ≈ 13 MeV to the ρ mass
is calculated for the ρ meson mass of mρ ≈ 917 MeV.
This is about half of the statistical error of the lattice
data. It should be noted that the data that will be used
in chiral extrapolations are those with pion mass greater
than 400 MeV, with mPSL > 6.2. The predictions are
extended to the region with pion mass less than 400 MeV
and compared with the lattice data.
The enhancement of zero modes effects in QQCD pri-

marily affects the pseodoscalar and scalar mesons. Since
all the zero modes appear in one chiral sector in each
gauge configuration, the pseodoscalar and scalar mesons
will have a leading 1/m2 singularity from the zero modes.
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TABLE I. Quenched lattice QCD data for the ρ meson mass mρ at
various pion mass squared values m

2
π . The lattice size is 203 × 32,

with a lattice spacing of 0.153 fm. Entries below the line (under-
neath m

2
π = 0.143 GeV2) remained hidden until the extrapolation

was determined.

m2
π(GeV2) mρ(GeV) mπL

1.329 1.399(2) 17.88

1.212 1.354(2) 17.08

1.062 1.294(2) 15.98

0.867 1.214(3) 14.44

0.743 1.162(4) 13.37

0.676 1.133(4) 12.75

0.610 1.103(5) 12.12

0.515 1.060(5) 11.13

0.422 1.016(6) 10.07

0.347 0.985(7) 9.13

0.288 0.960(8) 8.32

0.241 0.938(8) 7.62

0.204 0.926(9) 7.00

0.172 0.914(11) 6.43

0.143 0.908(14) 5.87

0.114 0.899(15) 5.24

0.094 0.899(16) 4.75

0.080 0.896(18) 4.38

0.068 0.898(20) 4.04

0.059 0.902(22) 3.77

0.053 0.903(26) 3.58

0.047 0.907(28) 3.37

0.041 0.913(32) 3.15

These appear in both the quark and antiquark propaga-
tors in the meson correlator [16]. Nevertheless, the vec-
tor and axial vector mesons have only a 1/m sigularity,
which is a less dramatic effect. In either case, the quan-
tity that determines the size of the zero mode effects is
mΣV in the p-regime [19]. It has been demonstrated that
when mΣV & 5, the zero mode effect is hardly detectable
[17, 20]. For the present lattice with pion mass greater
than 400 MeV, mΣV > 6. Therefore, there is no reason
to suggest that there is a zero mode contribution to the
ρ meson correlators being studied.

IV. EXTRAPOLATION RESULTS

A. Renormalization flow curves

In order to produce an extrapolation to each test value
of m2

π, a finite-range regularization scale Λ must be se-
lected. As an example, one can choose a triple-dipole
regulator at Λ = 1.0 GeV. By using Eq.(14), finite-
and infinite-volume extrapolations are shown in Figure
9. Note that the m2

π values selected for the finite-volume

FIG. 8. (color online). Quenched lattice QCD data for the ρ

meson mass. The dashed vertical line indicates the physical pion
mass and the solid vertical line shows how the data set is split into
two parts. The lower-mass portion of the data was not known at
the time of extrapolation.

FIG. 9. (color online). A test extrapolation based on the four light-
est original data points (excluding the low-energy set) as shown.
Both the finite- and infinite-volume results are shown for a triple-
dipole regulator at Λ = 1.0 GeV. The dashed vertical line indicates
the physical pion mass.

extrapolations exactly correspond to the ‘missing’ low-
energy data points set aside earlier. The physical point
m2

π = 0.0196 GeV2 is included as well.

Now the regularization scale-dependence of low-energy
coefficients c0, c2 and c4 is investigated for various upper
limits of the range of pion masses. The renormalization of
these low-energy coefficients is considered for a series of Λ
values. The aim is to obtain renormalization flow curves,
each corresponding to a different value of maximum pion
mass, m2

π,max. Thus the behaviour of the renormalization
of the low-energy coefficients can be examined as lattice
data extend further outside the PCR. Figures 10 through
12 show the renormalization flow curves for each of c0,
c2 and c4. Note that each data point plotted has an
associated error bar, but for the sake of clarity only a
few points are selected to indicate the general size of the
statistical error bars. Using the procedure described in
Ref. [4], the optimal regularization scale is identified by
the value of Λ that minimizes the discrepancies among
the renormalization flow curves. This indicates the value
of regularization scale at which the renormalization of
c0, c2 and c4 is least sensitive to the truncation of the
data. Physically, this value of Λ can be associated with
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FIG. 10. (color online). Behaviour of c0 vs. Λ. A few points are
selected to indicate the general size of the statistical error bars.

FIG. 11. (color online). Behaviour of c2 vs. Λ. A few points are
selected to indicate the general size of the statistical error bars.

FIG. 12. (color online). Behaviour of c4 vs. Λ. A few points are
selected to indicate the general size of the statistical error bars.

an intrinsic scale related to the size of the source of the
pion cloud.

By examining Figures 10 through 12, increasing
m2

π,max leads to greater scheme-dependence in the renor-
malization, since the data sample lies further from the
PCR. Complete scheme-independence would be indicated
by a horizontal line at the physical point. Since the ef-
fective field theory is calculated to a finite chiral order,
complete scheme-independence across all possible values
of Λ will not occur in practice. Note that an asymptotic
value is usually observed in the renormalization flow as Λ
becomes large, indicating that the higher-order terms of

the chiral expansion are effectively zero. However, these
asymptotic values of the low-energy coefficients are poor
estimates of their correct values, as previously demon-
strated in a pseudodata model [4]. Instead, the best
estimates of the low-energy coefficients lie in the iden-
tification of the intersection point of the renormalization
flow of the low-energy coefficients. It is also of note that,
for small values of Λ, FRR schemes break down. The reg-
ularization scale must be at least large enough to include
the chiral physics being studied.

B. Optimal regularization scale

The optimal regularization scale Λscale can be obtained
from the renormalization flow curves using a chi-square
analysis described below. In addition, the analysis will
allow the extraction of a range for Λscale. Knowing how
the data are correlated, the systematic uncertainties from
the coupling constants and Λscale will be combined to ob-
tain an error bar for each extrapolation point. Of partic-
ular interest are the values of mρ,Q at the values of m2

π

explored in the lattice simulations but excluded in the
chiral extrapolation.
To obtain a measure of the uncertainty associated with

an optimal regularization scale, a χ2
dof function is con-

structed. This function should allow easy identification of
the intersection points in the renormalization flow curves,
and a range associated with this central regularization
scale. The first step is to plot χ2

dof against a series of Λ
values. The relevant data are the extracted low-energy
coefficients with differing values of m2

π,max. A plot of

χ2
dof is constructed separately for each renormalized co-

efficient c (with uncertainty δc):

χ2
dof =

1

n− 1

n
∑

i=1

(c(i ; Λ)− cT (Λ))
2

(δc(i ; Λ))
2 , (19)

for i corresponding to fits with differing values of m2
π,max

(n = 8). The theoretical value cT is given by the weighted
mean:

cT (Λ) =

∑n
i=1 c(i ; Λ)/(δc(i ; Λ))

2

∑n
j=1 1/(δc(j ; Λ))

2 . (20)

The χ2
dof plots using a triple-dipole regulator are shown

in Figures 13 through 15. The optimal regularization
scale Λscale is taken to be the central value Λcentral of
each plot. The upper and lower bounds obey the condi-
tion χ2

dof < χ2
dof,min +1/(dof). The results for the opti-

mal regularization scale and the upper and lower bounds
are shown in Table II. It is remarkable that each low-
energy coefficient leads to the same optimal value of Λ,
i.e. Λcentral = 0.67 GeV. By averaging the results among
c0, c2, and c4, the optimal regularization scale Λscale for
the quenched ρ meson mass can be calculated for this
data set: Λscale = 0.67+0.09

−0.08 GeV.
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FIG. 13. (color online). χ
2
dof

for c0 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 10.

FIG. 14. (color online). χ
2
dof

for c2 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 11.

FIG. 15. (color online). χ
2
dof

for c4 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 12.

The result of the final extrapolation, using the estimate
of the optimal regularization scale Λscale = 0.67+0.09

−0.08

GeV, and using the initial data set to predict the low-
energy data points, is shown in Figure 16. The extrap-
olation to the physical point obtained for this quenched
data set is: mext

ρ,Q(m
2
π,phys) = 0.925+0.053

−0.049 GeV, an uncer-

tainty of less than 6%.

Note that each extrapolation point displays two error
bars. The inner error bar corresponds to the systematic
uncertainty in the parameters only, and the outer error
bar corresponds to the systematic and statistical uncer-
tainties of each point added in quadrature. Also, the
infinite-volume extrapolation curve is displayed in order
to illustrate the effect of finite-volume corrections to the

TABLE II. Values of the central, upper and lower regularization
scales, in GeV, obtained from the χ

2
dof

analysis of c0, c2 and c4,

displayed in Figures 13 through 15.

scale (GeV) c0 (Fig.13) c2 (Fig.14) c4 (Fig.15)

Λcentral 0.67 0.67 0.67

Λupper 0.78 0.75 0.75

Λlower 0.58 0.59 0.60

loop integrals.
In Figure 17, the extrapolation predictions are com-

pared against the actual simulation results, which were
not included in the fit. Note that both the extrapolations
and the simulation results display the same non-analytic
curvature near the physical point. Figure 18 shows the
data plotted with error bars correlated relative to the
lightest data point in the original set, m2

π = 0.143 GeV2.
To highlight the importance of this application of an ex-
tended χEFT, a simple linear fit is included in Figure
18. By ignoring low-energy chiral physics, the linear fit
is statistically incorrect at the physical point. Note also
that all of the missing original data points are consis-
tent within the extrapolations’ systematic uncertainties.
After statistical correlations are subtracted, the extrap-
olated points correspond to an error bar almost half the
size of that of the lattice data points. In order to match
this precision at low energies, the time required in lattice
simulations would increase by approximately four times.
In order to check if scheme-independence is recovered

using data within the PCR, the low-energy data that
were initially excluded from analysis can now be treated
in the same way. That is, renormalization flow curves can
be constructed as a function of Λ for sequentially increas-
ing m2

π,max. The results are shown in Figures 19 through
21. Clearly, the renormalization flow curves for each plot
corresponding to c0, c2 and c4 are flatter than those of
the initial analysis, indicating a reduction in the regular-
ization scale-dependence due to the use of data closer to
the PCR. One is not able to extract an optimal regular-
ization scale from these plots, as shown in the behaviour
of χ2

dof , displayed in Figures 22 through 24. However,

each χ2
dof curve provides a lower bound for the regular-

ization scale, where FRR breaks down [4], as discussed
in Section IVA. These lower bounds are: Λc0

lower = 0.39
GeV, Λc2

lower = 0.52 GeV and Λc4
lower = 0.59 GeV.

The statistical error bars of the low-energy coefficients
corresponding to a small number of data points in Fig-
ures 19 through 21 is large, and a statistical difference
among the curves does not appear until m2

π,max ≈ 0.11

GeV2. Thus the identification of an optimal regulariza-
tion scale will be aided by incorporating data correspond-
ing to even larger values of m2

π,max. By considering all

of the available data, the behaviour of χ2
dof , as displayed

in Figures 25 through 27, resolve precise optimal regular-
ization scales: Λc0

central = 0.72 GeV, Λc2
central = 0.71 GeV
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FIG. 16. (color online). Extrapolation at Λscale = 0.67+0.09
−0.08 GeV

based on Kentucky Group data, and using the optimal number of
data points, corresponding to m̂

2
π,max = 0.35 GeV2. The inner

error bar on the extrapolation points represents purely the sys-
tematic error from parameters. The outer error bar represents the
systematic and statistical error estimates added in quadrature.

FIG. 17. (color online). Comparison of chiral extrapolation predic-
tions (blue diamond) with Kentucky Group data (red cross). Ex-
trapolation is performed at Λscale = 0.67+0.09

−0.08 GeV, and using the

optimal number of data points, corresponding to m̂
2
π,max = 0.35

GeV2. The inner error bar on the extrapolation points represents
purely the systematic error from parameters. The outer error bar
represents the systematic and statistical error estimates added in
quadrature.

FIG. 18. (color online). Comparison of chiral extrapolation predic-
tions (blue diamond) with Kentucky Group data (red cross), with
errors correlated relative to the point at m

2
π = 0.143 GeV2. Ex-

trapolation is performed at Λscale = 0.67+0.09
−0.08 GeV, and using the

optimal number of data points, corresponding to m̂
2
π,max = 0.35

GeV2. The error bar on the extrapolation points represents the sys-
tematic error only. A simple linear fit, on the optimal pion mass
region, is included for comparison.

FIG. 19. (color online). Behaviour of c0 vs. Λ including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

FIG. 20. (color online). Behaviour of c2 vs. Λ including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

FIG. 21. (color online). Behaviour of c4 vs. Λ including the ini-
tially excluded low-energy data. A few points are selected to indi-
cate the general size of the statistical error bars.

and Λc4
central = 0.71 GeV. The systematic errors obtained

from each χ2
dof curve seem arbitrarily constrained as a

consequence of including more data points, which extend
well outside the chiral regime, and possibly outside the
applicable region of FRR techniques. This issue is ad-
dressed in the ensuing section.



9

FIG. 22. (color online). χ
2
dof

, for c0 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 19. A lower
bound for the regularization scale is found: Λc0

lower
= 0.39 GeV.

FIG. 23. (color online). χ
2
dof

, for c2 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 20. A lower
bound for the regularization scale is found: Λc2

lower
= 0.52 GeV.

FIG. 24. (color online). χ
2
dof

, for c4 versus Λ, corresponding to

the renormalization flow curves displayed in Figure 21. A lower
bound for the regularization scale is found: Λc4

lower
= 0.59 GeV.

C. Optimal pion mass region

In this section, a robust method for determining an
optimal range of pion masses is presented. This range
corresponds to an optimal number of simulation results
to be used for fitting. First, consider the extrapolation
of the quenched ρ meson mass, which can now be com-
pleted. The statistical uncertainties in the values of c0,
c2, c4 are dependent on m2

π,max. As a consequence, the

uncertainty in the extrapolated ρ meson mass mext
ρ must

also be dependent on m2
π,max. Since the estimate of the

FIG. 25. (color online). χ
2
dof

, for c0 versus Λ, corresponding to

all available data, including the low-energy set.

FIG. 26. (color online). χ
2
dof

, for c2 versus Λ, corresponding to

all available data, including the low-energy set.

FIG. 27. (color online). χ
2
dof

, for c4 versus Λ, corresponding to

all available data, including the low-energy set.

statistical uncertainty in an extrapolated point will tend
to decrease as more data are included in the fit, one might
näıvely choose to use the largest m2

π,max value possible

in the data set. However, at some large value of m2
π,max,

FRR χEFT will not provide a valid model for obtaining
a suitable fit. At this upper bound of applicability for
FRR χEFT, the uncertainty in an extrapolated point is
dominated by the systematic error in the underlying pa-
rameters. This is due to a greater scheme-dependence
in extrapolations using data extending outside the PCR,
meaning that the extrapolations are more sensitive to
changes in the parameters of the loop integrals. Thus
there is a balance point m2

π,max= m̂2
π,max, where the sta-

tistical and systematic uncertainties (added in quadra-
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ture) in an extrapolation are minimized.
In order to obtain this value m̂2

π,max, consider the be-
haviour of the extrapolation of the ρ meson mass to the
physical point mext

ρ,Q(m
2
π,phys), as a function of m2

π,max.

Treating the parameters g2, g4, M2
0 , A0 and Λscale as

independent, their systematic uncertainties from these
sources are added in quadrature. In addition, the sys-
tematic uncertainty due to the choice of the regulator
functional form is roughly estimated by comparing the
results using the double-dipole and the step function.
These functional forms are the two most different forms
of the various regulators considered, since the dipole was
excluded due to the extra non-analytic contributions it
introduces. The results for the initial and complete data
sets are shown in Figures 28 and 29, respectively. Fig-
ure 28 indicates an optimal value m̂2

π,max = 0.35 GeV2,
which will be used in the final extrapolations, in order
to check the results of this method with the low-energy
data. By using only the data contained in the optimal
pion mass region, constrained by m̂2

π,max, an estimate of
the optimal regularization scale may be calculated with
a more generous corresponding systematic uncertainty.
The value Λscale = 0.64 GeV is the average of Λscale

c0 ,

Λscale
c2 and Λscale

c4 using this method. The χ2
dof analysis

does not provide an upper or lower bound at this value
of m̂2

π,max. Note that these two estimates of the optimal
regularization scale are consistent with each other. Both
shall be used and compared in the final analysis. Figure
29 indicates an optimal value m̂2

π,max = 0.20 GeV2 for the
complete data set, which includes the low-energy data. A
higher density of data in the low-energy region serves to
decrease the statistical error estimate of extrapolations to
the low-energy region. The corresponding value of Λscale

is unconstrained in this case, since the data lie close to
the PCR.
The values of c0, c2 and c4 for both the original data

set and the complete data set are shown in Table III,
with statistical error estimate quoted first and system-
atic uncertainty due to the parameters g2, g4, M

2
0 , A0,

Λscale and the regulator functional form quoted second.
In the case of the original data set, the value of c4 is not
well-determined, due to the small number of data points
used. In the case of the complete data set, the results
are dominated by statistical uncertainty and also results
in an almost unconstrained value of c4. The coefficients
of the complete set are less well-determined due to the
fact that m̂2

π,max = 0.20 GeV2, leaving only low-energy
results with large statistical uncertainties for fitting.
The result using the estimate of the optimal regular-

ization scale Λscale = 0.64 GeV, with the systematic un-
certainty calculated by varying Λ across all suitable val-
ues, and using the initial data set, is shown in Figure 30.
The extrapolation to the physical point obtained for this
quenched data set is: mext

ρ,Q(m
2
π,phys) = 0.922+0.065

−0.060 GeV,

an uncertainty of approximately 7%. Figure 31 shows
the data plotted with error bars correlated relative to
the lightest data point in the original set, m2

π = 0.143
GeV2, using Λscale = 0.64 GeV, and varying Λ across its

FIG. 28. (color online). Behaviour of the extrapolation of the
quenched ρ meson mass to the physical point m

ext
ρ,Q(m2

π,phys
) vs.

m
2
π,max using the initial data set, which excludes the lowest mass

data points. In each case, c0 is obtained using the scale Λcentral (for
a triple-dipole regulator) as obtained from the χ

2
dof

analysis. The

error bars include the statistical and systematic uncertainties in c0

added in quadrature. The optimal value m̂
2
π,max = 0.35 GeV2.

FIG. 29. (color online). Behaviour of the extrapolation of the
quenched ρ meson mass to the physical point m

ext
ρ,Q(m2

π,phys
) vs.

m
2
π,max using the complete data set, which includes the lowest mass

data points. In each case, c0 is obtained using the scale Λcentral (for
a triple-dipole regulator) as obtained from the χ

2
dof

analysis. The

error bars include the statistical and systematic uncertainties in c0

added in quadrature. The optimal value m̂
2
π,max = 0.20 GeV2.

full range of values. This naturally increases the estimate
of the systematic uncertainty of the extrapolations, but
also serves to demonstrate how closely the results from
lattice QCD and χEFT match.

V. CONCLUSION

A technique for isolating an optimal regularization
scale, established in Ref. [4], was tested in quenched
QCD through an examination of the quenched ρ meson
mass. The result is a successful extrapolation based on
an extended effective field theory procedure. By using
quenched lattice QCD results that extended beyond the
power-counting regime, an optimal regularization scale
was obtained from the renormalization flow of the low-
energy coefficients.
An optimal value of the maximum pion mass to be

used for fitting was also calculated, and this resulted in
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TABLE III. The values of c0, c2 and c4 as obtained from both
the original data set and the complete set, which includes the low-
energy data. In each case, the coefficients are evaluated using the
scale Λcentral (for a triple-dipole regulator) as obtained from the
χ
2
dof

analysis. The value of m2
π,max used is that which yields the

smallest error bar in adding statistical and systematic uncertain-
ties in quadrature. For the initial data set, m̂2

π,max = 0.35 GeV2.

For the complete data set, m̂2
π,max = 0.20 GeV2. The statistical

uncertainty is quoted in the first pair of parentheses, and the sys-
tematic uncertainty is quoted in the second pair of parentheses.
For the original data set, c4 is not well-determined, with only a
small number of data. For the complete data set, large statistical
uncertainties result in an almost unconstrained value of c4. The
coefficients of the complete set are less well-determined due to the
fact that m̂

2
π,max = 0.20 GeV2, leaving only low-energy results

with large statistical uncertainties for fitting.

c0(GeV2) c2 c4(GeV−2)

original set 1.31(5)(17) 7.9(4)(26) −16.2(8)(382)

complete set 1.35(4)(241) 6.8(5)(31) −3.3(17)(361)

an alternative estimate of the value of the optimal regu-
larization scale, which was consistent with the first result.
The mass of the ρmeson was calculated in the low-energy
region, including the physical point, using each estimate
of the optimal regularization scale, and both results were
compared. The results of extrapolations using χEFT,
and the results of lattice QCD simulations, were demon-

strated to be consistent. The extrapolation correctly pre-
dicts the low-energy curvature that was observed when
the low-energy lattice simulation results were revealed.
In full QCD, using dynamical fermions, the process

ρ → ππ contributes to the ρ meson mass. This means
that the pion energy increases as the chiral limit is ap-
proached, and therefore is not amenable to the methods
of low-energy expansions, as entailed by χPT. Therefore,
one needs to resort to alternative techniques, such as
FRR.
However, since there exists no experimental value for

the mass of a particle in the quenched approximation,
this analysis demonstrates the ability of the technique to
make predictions without phenomenologically motivated
bias. The results clearly indicate a successful procedure
for using lattice QCD data outside the power-counting
regime to extrapolate an observable to the chiral regime.
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FIG. 30. (color online). Comparison of chiral extrapolation pre-
dictions (blue diamond) with Kentucky Group data (red cross).
Extrapolation is performed at Λscale = 0.64 GeV, varied across
the whole range of Λ values, and using the optimal number of data
points, corresponding to m̂

2
π,max = 0.35 GeV2. The inner error bar

on the extrapolation points represents purely the systematic error
from parameters. The outer error bar represents the systematic
and statistical error estimates added in quadrature.

FIG. 31. (color online). Comparison of chiral extrapolation pre-
dictions (blue diamond) with Kentucky Group data (red cross),
with errors correlated relative to the point at m

2
π = 0.143 GeV2.

Extrapolation is performed at Λscale = 0.64 GeV, varied across the
whole range of Λ values, and using the optimal number of data
points, corresponding to m̂

2
π,max = 0.35 GeV2. The error bar on

the extrapolation points represents the systematic error only. A
simple linear fit, on the optimal pion mass region, is included for
comparison.
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Chiral effective field theory is a model-independent approach to connecting lattice quantum chro-
modynamics (QCD) results with experiment. Within the power-counting regime (PCR) of the chiral
expansion, the result of a chiral effective field theory calculation is independent of the regularization
scheme. However, since few lattice QCD results in the literature are constrained entirely within the
PCR, it is useful to extend effective field theory in a model-independent way to take full advantage
of the lattice QCD results available. By considering the magnetic moment of the isovector nucleon
using a finite-range regularization scheme and using lattice QCD results that may extend outside
the PCR, any emerging scheme-dependence can be quantified and handled by the identification of
an intrinsic scale. By analyzing the renormalization flow of the low-energy coefficients, the intrinsic
scale can be obtained from the lattice QCD results themselves, which provide guidance on the selec-
tion of an optimal regularization scale. This optimal scale, for a given functional form, is consistent
with the result from the nucleon mass, and thus provides evidence for the existence of an intrinsic
scale in the nucleon.

PACS numbers: 12.39.Fe 12.38.Aw 12.38.Gc 13.40.Em

I. INTRODUCTION

The analysis of the magnetic moment of the nucleon
provides an excellent check for the identification of an in-
trinsic scale in the nucleon-pion interaction. Using chiral
effective field theory (χEFT), it has been demonstrated
that lattice quantum chromodynamics (QCD) results for
the nucleon mass have an energy scale embedded within
them [1]. This property is a consequence of the small
size of the power-counting regime (PCR), where the ex-
pansion formulae of chiral perturbation theory (χPT)
formally hold. Since a selection of lattice QCD results
reasonable for fitting an extrapolation invariably extend
outside the restrictive PCR [2], the validity of a formal
scheme for extrapolation, and for identifying the leading-
order terms in the chiral expansion, is compromised.
Fortunately, a finite-range regularization (FRR) scheme,
in conjunction with χEFT, provides a robust method
for achieving an extrapolation to physical quark masses,
and identifying an intrinsic scale embedded within lattice
QCD results.

This extended effective field theory proceeds by analyz-
ing the behaviour of the renormalization of one or more
low-energy coefficients of the chiral expansion as a func-
tion of the FRR scale. Ideally, that is, with lattice QCD
results constrained entirely within the PCR, the renor-
malized coefficients should be independent of regulariza-
tion scale. However, in practice, a scale-dependence is
observed; particularly for data sets including data points
corresponding to large quark masses. By truncating the
lattice QCD results at different points corresponding to
an m2

π,max, an optimal FRR scale can be identified. This
optimal scale is the value of Λ at which the low-energy
coefficient is least senstive to the truncation of the lat-
tice results. Due to consistent results among the analysis
of the magnetic moment and the various analyses of the
nucleon mass using the same technique [1], this provides

evidence for an intrinsic scale in the nucleon.
The magnetic moment is of interest because of the

physical significance of its anomalous component, ob-
tained from the Pauli form factor. Because electrically
charged pions with non-zero angular momentum dress

the bare nucleon, they contribute non-trivially to its mag-
netic moment, altering the value from its semi-classical
Dirac value.
In lattice QCD, the isovector combination of the nu-

cleon (p − n) is often calculated. Feynman diagrams in-
cluding any photons coupling to sea-quark loops cancel
in the case of the isovector. This is fortunate, since the
calculation of the disconnected loops is computationally
expensive. As a result, the lattice QCD data analyzed
from the QCDSF Collaboration will be isovector nucleon
data for two-flavor O(a)-improved Wilson quark action.

II. CHIRAL EFFECTIVE FIELD THEORY

In an effective field theory of the electromagnetic prop-
erties of baryons such as the nucleon, the matrix element
for the baryon-photon interaction can be parameterized
by the Dirac and Pauli form factors, F1 and F2, respec-
tively. In the non-relativistic limit, this can be written
as:

〈B(p′)|Jµ|B(p)〉 =

ūs′(p′)

{

γµ F1(Q
2) +

iσµνq
ν

2mB
F2(Q

2)

}

us(p) . (1)

Q2 is a positive momentum transfer Q2 = −(p′−p)2. The
Sachs electromagnetic form factors GE,M are the linear
combinations of F1 and F2 defined by:

GE(Q
2) = F1(Q

2)− Q2

4m2
B

F2(Q
2) , (2)

GM (Q2) = F1(Q
2) + F2(Q

2) . (3)
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By considering the behavior of the Sachs magnetic
form factor of the nucleon at zero momentum transfer,
GM (Q2 = 0), one obtains the magnetic moment as two
separate pieces: an anomalous component due to the
finite-size of hadron interactions, and unity due to charge
conservation:

µn = Gv
M (Q2 = 0) (4)

= 1 + κn. (5)

For the leading-order contributions to the magnetic
moment, the standard first-order interaction Lagrangian
from heavy-baryon chiral perturbation theory is used [3–
8]:

L(1)
χPT = 2DTr [B̄vS

µ
v {Aµ, Bv} ] + 2F Tr [B̄vS

µ
v [Aµ, Bv] ]

+ C (T̄µ
v AµBv + B̄vAµT

µ
v ), (6)

(Sµ
v =

i

2
γ5σ

µνvν), (7)

where the pion fields are encoded as the adjoint represen-
tation of SU(3)L ⊗ SU(3)R, and forming an axial vector
combination Aµ:

ξ ≡ exp

{

i

fπ
τaπa

}

, (8)

Aµ =
1

2
(ξ ∂µ ξ

† − ξ† ∂µ ξ). (9)

By the convention presented here, fπ = 92.4 MeV. The
values for the couplings in the interaction Lagrangian
are obtained from the SU(6) flavor-symmetry relations
[5, 9] and from phenomenology: D = 0.76, F = 2

3D and
C = −2D.
From the full Lagrangian, the chiral behaviour of the

magnetic moment can be written in terms of an ordered
expansion in pion mass squared, through use of the Gell-
Mann−Oakes−Renner Relation, mq ∝ m2

π [10]:

µn = aΛ0 + aΛ2 m2
π + TN (m2

π ; Λ) + T∆(m2
π ; Λ) +O(m4

π) .
(10)

This expansion contains an analytic polynomial in m2
π

plus the leading-order chiral loop integrals (Ta,b), from
which non-analytic behaviour arises. The coefficients ai
are the ‘residual series’ coefficients, which correspond to
direct quark-mass insertions in the full Lagrangian. Upon
renormalization of the divergent loop integrals, these will
correspond with low-energy coefficients of χEFT. In this
instance, only two free parameters are chosen in the resid-
ual series, since the non-analytic contributions are in-
cluded only to order O(m4

π logmπ). The leading-order
included in this investigation are simply the 1-pion loops,
in Nf = 2 QCD, as shown in Figures 1 and 2.

A. Finite-range regularization

A finite-range regularized effective field theory handles
divergences in the ultraviolet region of the loop integrals

FIG. 1. The pion/kaon loop contributions to the magnetic mo-
ment of an octet baryon B, allowing a transition to a baryon B

′,
with photon attachment, which provides the leading non-analytic
contribution. All charge conserving transitions are implicit.

FIG. 2. The pion/kaon loop contribution to the magnetic moment
of an octet baryon B, with photon attachment, allowing transitions
to the nearby and strongly-coupled decuplet baryons T .

by introducing a regulator function as part of the cou-
pling to each vertex of the diagram. The regulator func-
tion u(k ; Λ) introduces a cutoff scale Λ, and should sat-
isfy u|k=0 = 1 and u|k→∞ = 0. The exact functional form
chosen for the regulator should be independent of the re-
sult of calculation, so long as the lattice QCD results
are constrained within the PCR. In order to avoid ob-
fuscating the calculation with inconvenient finite-volume
artifacts, a smooth attenuating dipole form is chosen for
this investigation:

u(k ; Λ) =

(

1 +
k2

Λ2

)−2

, (11)

though, detailed analyses exist for a range of alternative
forms [1, 2].

It has been suggested that a sharp cutoff FRR scheme
should be chosen to ensure the preservation of the chiral
Ward Identities [11]. In this investigation, chiral symme-
try may be maintained by including the necessary vertex
corrections at higher-order, in order to suppress any ex-
tra scheme-dependent non-analytic terms induced by the
regulator [12]. However, since the renormalization of a
single observable at any time is considered in this analy-
sis, the issue is not so urgent.

B. Loop integrals and definitions

Each loop integral has a solution in the form of a
polynomial expansion analytic in m2

π plus a non-analytic
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term:

TN (m2
π ; Λ) = bN0 + χN mπ + bN2 m2

π +O(m3
π) , (12)

T∆(m2
π ; Λ) = b∆0 + b∆2 m2

π + χ∆ m2
π logmπ/µ+O(m3

π) ,
(13)

where µ is an implicit mass scale, chosen here to be 1

GeV. The coefficients of the polynomial, bN,∆
i are entirely

regulator-dependent and therefore scheme-dependent. In
order to achieve an extrapolation based on some opti-
mal FRR scale, first the scale-dependence of the low-
energy expansion must be removed through renormal-
ization. The renormalization program of FRR combines
the scheme-dependent bi coefficients from the chiral loops
with the scheme-dependent ai coefficients from the resid-
ual series at each chiral order i. The result is a scheme-
independent coefficient ci:

c0 = aΛ0 + bN0 + b∆0 , (14)

c2 = aΛ2 + bN2 + b∆2 , etc. (15)

This means the underlying ai coefficients undergo a
renormalization from the chiral loop integrals. The renor-
malized coefficients ci are an important part of the ex-
trapolation technique. A stable and robust determina-
tion of these parameters forms the heart of determining
an optimal scale Λscale.
The loop integrals can be expressed in a convenient

form by taking the non-relativistic limit and performing
the pole integration for k0. Renormalization is achieved
by subtracting the relevant bΛ0 term from the integral,
effectively absorbing it into the corresponding renormal-
ized coefficient c0. The integrals take the form [8, 13]:

T̃N (m2
π ; Λ) =

−χN

3π2

∫

d3k
k2u2(k ; Λ)

(k2 +m2
π)

2 − bN0 , (16)

T̃∆(m2
π ; Λ) =

−χ∆

3π2

∫

d3k
k2(2ω(k) + ∆)u2(k ; Λ)

2ω3(k) [ω(k) + ∆]2
− b∆0 ,

(17)

where q̂ is the direction of the external momentum intro-
duced by the incoming photon. The chiral coefficients χN

and χ∆ are constants in terms of the chiral Lagrangian
of Eq.(6) and the relevant Clebsch-Gordan coefficients:

χp
N = − mN

8πf2
π

(D + F )2 = −χn
N , (18)

χp
∆ = − mN

8πf2
π

2C2

9
= −χn

∆. (19)

Since lattice simulations are necessarily carried out on a
discrete spacetime, any extrapolations performed should
take into account finite volume effects. The low-energy
EFT is ideally suited for characterising the leading in-
frared effects associated with the finite volume. In order
to achieve this, each of the 3-dimensional integrals can
be transformed to its form on the lattice using a finite-
sum of discretized momenta, see Allton et al. [14] for

instance:

∫

d3k → (2π)
3

LxLyLz

∑

kx,ky,kz

. (20)

On the finite-volume lattice, each momentum component
is quantized in units of 2π/L, that is ki = 2π ni/L for in-
tegers ni. Finite volume corrections δFVC can be written
simply as the difference between the finite sum and the
corresponding integral. It is known that the finite volume
corrections saturate to a fixed result for large values of
regularization scale [1]. The value Λ′ = 2.0 GeV is cho-
sen to evaluate all finite volume corrections independent
of the integral cutoff scale Λ in Eqs.(16) and (17). The
finite-volume version of Eq.(10) can thus be expressed:

µn = c0 + aΛ2 m2
π + (T̃N (m2

π ; Λ) + δFVC
N (m2

π; Λ
′))

+ (T̃∆(m2
π ; Λ) + δFVC

∆ (m2
π; Λ

′)) +O(m4
π) . (21)

III. RESULTS

The QCDSF results for the isovector magnetic moment
at a variety of m2

π values are displayed in Figure 3. The
lattice sizes of each data point vary from 1.43 to 3.04
fm using Nf = 2 and O(a)-improved Wilson quark ac-
tion. A simple linear fit is included in this plot, which
does not take into account the chiral loop integrals, nor
the finite-volume corrections to the data. Therefore, it
is not surprising that the linear fit does not reach the
experimental value of the magnetic moment at the phys-
ical pion mass. Since the lattice QCD results extend
outside the PCR, the result of an extrapolation will be
regulator-dependent. However, scheme-dependence can
be handled by obtaining an optimal regularization scale
in the extrapolations, as described in Ref. [1].

A. Renormalization flow analysis

In order to obtain the optimal regularization scale, the
low-energy coefficient c0 from Eq.(21) will be calculated
across a range of Λ values. Thus the renormalization
flow can be constructed. Multiple renormalization flow
curves may be obtained by constraining the fit window by
a maximum, m2

π,max, and sequentially adding data points
to extend further outside the PCR. The renormalization
flow curves for a dipole regulator are plotted on the same
set of axes in Figure 4. As more data are included in the
fit, a greater degree of regulator-dependence is observed.
Note that there is a reasonably well-defined Λ value at
which the renormalization of c0 is least sensitive to the
truncation of the data. This indicates that there exists
an optimal regularization scale embedded in the lattice
QCD results themselves.
The optimal regularization scale for a dipole form can

be extracted from Figure 4 using a χ2
dof analysis. Such an
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FIG. 3. (color online). Lattice QCD data for µ
isov from QCDSF,

with physical value from experiment as marked.

analysis will also provide a measure of the systematic un-
certainty in the optimal regularization scale. By plotting
χ2
dof against Λ, where dof equals the number of curves

n minus one, a measure of the spread of the renormaliza-
tion flow curves can be calculated, and the intersection
point obtained. A plot of χ2

dof is constructed at each

value of Λ for c0 (with uncertainty δc0):

χ2
dof =

1

n− 1

n
∑

i=1

(ci0(Λ)− c̄0(Λ))
2

(δci0(Λ))
2 , (22)

c̄0(Λ) =

∑n
i=1 c

i
0(Λ)/(δc

i
0(Λ))

2

∑n
j=1 1/(δc

j
0(Λ))

2 . (23)

The indices i and j correspond to data sets with differ-
ing m2

π,max. The χ2
dof plot corresponding to Figure 4

is shown in Figure 5. The optimal regularization scale
Λscale is taken to be the central value Λcentral of the
plot, and the upper and lower bounds obey the condi-
tion χ2

dof < χ2
dof,min + 1/(dof). Thus the optimal reg-

ularization scale for a dipole form is Λscale = 1.13+0.22
−0.20

GeV. This value is consistent with the optimal regular-
ization scale obtained for the nucleon mass using a dipole
form [1], based on lattice QCD results from JLQCD [15],
PACS-CS [16] and CP-PACS [17]. This is strong evidence
that, for a given functional form, the optimal regular-
ization scale is associated with an intrinsic scale, which
characterizes the size of the nucleon, as probed by the
pion.

IV. CHIRAL EXTRAPOLATIONS

Using the optimal regularization scale, extrapolations
can be made to any quark mass. Consider the behaviour
of the magnetic moment as a function of the quark mass
as shown in Figure 6 (in physical units). Here, the finite-
volume expansion of Eq.(21) is constrained by the lat-
tice results from several different volumes. Extrapolation

FIG. 4. (color online). The renormalization flow of c0 for µ
isov

obtained using a dipole regulator, based on lattice QCD data from
QCDSF.

FIG. 5. (color online). χ
2

dof
for the renormalization flow of c0 for

µ
isov obtained using a dipole regulator, based on lattice QCD data

from QCDSF.

curves are then plotted for infinite-volume and a variety
of finite-volumes at which current lattice QCD results
are produced. For each curve, only the values for which
mπL > 3 are plotted, provisionally, to avoid undesired ef-
fects of the ǫ-regime. The infinite-volume extrapolation
to the physical point is within 2% of the experimentally
derived value. The finite-volume extrapolations are also
useful for estimating the result of a lattice QCD calcula-
tion at certain box sizes. This can also provide a bench-
mark for estimating the outcome of a lattice QCD sim-
ulation at larger and untested box sizes. Note that even
a relatively standard 3 fm lattice box length will differ
significantly from the experimental value at the physical
point. Since the data points in Figure 6 are at differing
finite volumes, the infinite-volume corrected data points
are displayed in Figure 7.
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FIG. 6. (color online). Extrapolations of µisov at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.43− 3.04 fm. The
provisional constraint mπL > 3 is used. The physical value from
experiment is marked. An estimate in the uncertainty in the ex-
trapolation due to Λscale has been calculated from Figure 5, and is
indicated at the physical value of m2

π .

V. CONCLUSION

The technique for obtaining an optimal regularization
scale from lattice QCD data has been investigated in
the context of the magnetic moment of the isovector nu-
cleon. By using recent precision lattice QCD results from
QCDSF, an optimal regularization scale for a dipole form
was obtained. This was achieved by analyzing the renor-
malization flow of the low-energy coefficient c0 with re-
spect to the scale Λ, whilst extending the data beyond
the power-counting regime. A regularization scale was
discovered where the renormalization of c0 is least sen-

FIG. 7. (color online). Extrapolations of µisov at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.43− 3.04 fm. The
provisional constraint mπL > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked. An estimate in the uncertainty in the extrapolation due
to Λscale has been calculated from Figure 5, and is indicated at the
physical value of m2

π .

sitive to the truncation of the lattice QCD data. The
value of the optimal regularization scale was consistent
with results from the nucleon mass. Thus an intrinsic
scale has been uncovered, which characterizes the energy
scale of the nucleon-pion interaction.
Using the value of the intrinsic scale, the extrapolation

of the magnetic moment to the physical pion mass and
infinite-volume lattice box size is consistent with experi-
ment. The finite-volume extrapolations provide a bench-
mark for estimating the outcome of a lattice QCD simu-
lation at realistic or optimistic box sizes.
The results clearly indicate a successful procedure for

using lattice QCD data to extrapolate an observable to
the chiral regime.
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Finite volume corrections to charge radii
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Abstract

Lattice quantum chromodynamics (QCD) provides important non-perturbative
techniques for the analysis of observables. Nevertheless,in order to compare
lattice simulation results with experiment, an extrapolation to infinite volume is
required. The electric charge radius is of particular interest when considering
the implementation of finite-volume corrections. It is standard practice in the
literature to transform electric form factors on the lattice into charge radii prior
to analysis. However, there is a fundamental difficulty with using these charge
radii results in a finite-volume extrapolation. The subtleties are a consequence of
the absence of a well-defined continuous derivative, which is required to define
the charge radius. In this discourse, a procedure is outlined for handling finite-
volume corrections, which should be applied directly to theelectric form factors
rather than to the charge radii themselves.

Keywords:
electric charge radii, effective field theory, finite-volume corrections, chiral
extrapolation, lattice QCD

1. Introduction

Extrapolations of lattice QCD simulation results are a useful tool in examining
the chiral properties of observables. Reliable extrapolations take into account
leading-order chiral loop corrections and account for finite-volume effects. In
many cases, calculating the finite-volume corrections poses no essential problems.
Examples of chiral effective field theory analyses accounting for finite-volume
effects are in Refs. [1, 2].

However, the treatment of the electric charge radius is morechallenging. Once
form factors have been extracted from the lattice simulation, they are typically
converted directly into charge radii, The essential difficulty lies in the definition
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of the charge ‘radius’ at finite volume (more precisely, the slope of the electric
form factor). In order to define the radius, aQ2 derivative must be applied to the
electric form factor, for small momentum transferQ2 = ~q2 − q2

0. This approach
breaks down on the lattice, where only discrete momentum values are allowed.

In this discourse, a method is outlined for handling finite-volume corrections
to a given lattice simulation result. It will be shown that the finite-volume cor-
rections to the loop integrals must be applied before the conversion from form
factor to charge radius. By applying the finite-volume corrections directly to the
electric form factor, and ensuring that the procedure preserves the electric charge
normalization, an extrapolation inQ2 may be used to construct an infinite-volume
charge radius. The infinite-volume charge radius can be defined as normal. A
finite-volume charge radius may also be defined, so long as an allowed value of
momentumq is used in the conversion from infinite to finite volume.

2. Effective field theory

In electromagnetic chiral perturbation theory (χPT), it is usual to define the
Sachs electromagnetic form factorsGE,M, which parameterize the matrix element
for the quark currentJµ:

〈B(p′)|Jµ|B(p)〉 =

ūs′(p′)















vµGE(Q2) +
iǫµνρσvρ S βv qν

mB
GM(Q2)















us(p), (1)

whereQ2 is the positive momentum transferQ2 = −q2 = −(p′− p)2. Lattice QCD
results are often constructed from an alternative representation, using the form
factorsF1 andF2, which are called the Dirac and Pauli form factors, respectively.
The Sachs form factors are simply linear combinations ofF1 andF2:

GE(Q2) = F1(Q
2) −

Q2

4m2
B

F2(Q
2) , (2)

GM(Q2) = F1(Q
2) + F2(Q

2) . (3)

In the heavy-baryon formulation of Eq.(1), the covariant spin operatorS µv =
−1

8γ5[γµ, γν]vν has the useful properties that its commutation and anti-commutation
rules depend only on the 4-velocity vµ.

The external-momentum-dependent electric form factorGE(Q2) allows a charge
radius, or (strictly speaking) the slope of the form factor,to be defined in the usual
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manner:

〈r2〉E = lim
Q2→0
−6
∂GE(Q2)
∂Q2

. (4)

The first challenge involves the definition of the electric charge radius in terms
of this derivative in Eq.(4). Since only certain, discrete values of momenta are al-
lowed on the lattice, the derivative may only be constructedfrom these allowed
momenta when calculating finite-volume corrections. This crucial observation be-
comes apparent when a comparison is made beween the loop integrals evaluated at
allowed, and unallowed, values of momentum transferq, respectively. The com-
parision is shown in Figures 1 and 2. Note that, if there is a momentum-translation
in the loop integralsk → k − q/2, the choice ofq = qmin = (2π/L) is no longer an
allowed value on the lattice, and the finite-volume corrections will be inconsistent
with the untranslated result. Under such a momentum-translation, external mo-
mentaqi/2 flow through the loop integral, and one must choose at least avalue of
q = 2qmin if one is to define a consistent discrete derivative for use inEq.(4). This
situation differs from the infinite-volume calculation of loop integrals,where true
momentum-translation invariance is restored, and a continuous derivative may be
used as normal.

3. Loop integral definitions

Though loop integrals in the continuum limit are invariant under momentum
translationsk → k + c q, c ∈ Z (for internal loop momentumk), a finite volume
loop sum must not include any values ofq less thanqmin = (2π/L). Therefore,
to obtain a sensible definition of the charge radius one chooses a definition of the
loop integrals such that no factors of~q/2 appear. In fact, as long as no fractions of
~q appear in the integrand, the finite-volume version will converge correctly to the
infinite-volume version asL → ∞, for q = (2π n/L), n ∈ Z. The loop integrals in
the heavy-baryon approximation that correspond to the leading-order diagrams in
Figures 3 through 5 are:

TN(Q2) =
χN

3π

∫

d3k
(k2 − ~k · ~q)

ω~kω~k−~q(ω~k + ω~k−~q)
, (5)

T∆(Q
2) =
χ∆

3π

∫

d3k
(k2 − ~k · ~q)

(ω~k + ∆)(ω~k−~q + ∆)(ω~k + ω~k−~q)
, (6)

Ttad(Q
2) =
χt

π

∫

d3k
1

ω~k + ω~k−~q
, (7)
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Figure 1: (color online). Finite-volume correction for theloop integral contributing toGE , with
q = qmin. The choice ofq/2 = qmin/2 is not an allowed value on the lattice. The momentum
translated and untranslated behaviour of the finite-volumecorrection are inconsistent with each
other.

Figure 2: (color online). Finite-volume correction for theloop integral contributing toGE , with
q = 2qmin. The choice ofq/2 = qmin is an allowed value on the lattice. Therefore, the momentum
translated and untranslated behaviour of the finite-volumecorrection is identical.
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whereω~k =
√

~k2 − m2
φ, mφ is the pion or kaon mass, and∆ is the baryon mass

splitting. The finite-volume correction is defined through the convention:

δL[T ] = χ



















(2π)3

LxLyLz

∑

kx,ky,kz

−

∫

d3k



















I , (8)

for integrandI. The integrals which contribute to the electric charge radius, de-
noted (T ), are exactly analogous to the integrals (T ) defined in Eqs.(5) and (7),
that correspond to the electric form factorGE. To obtain the integrals that con-
tribute to the charge radius, one simply takes the derivative with respect to mo-
mentum transferQ2 at vanishingly small values ofQ2. This is allowed in the
infinite-volume limit:

T = lim
Q2→0
−6
∂T (Q2)
∂Q2

. (9)

Note that the ensuing procedure for calculating the finite-volume corrected electric
charge radius uses only the infinite-volume versions of the integrals (T ). Fitting
methods need only be applied at infinite volume. Thus, the external momentum
derivative in Eq.(9) need not be discretized, but may remaina continuous deriva-
tive.

4. Procedure for obtaining the charge radius at finite volume

As emphasized already, Figures 1 and 2 show that the finite-volume correc-
tions cannot be applied directly to the charge radius itself. The momentum dis-
cretization ruins the circular symmetry inq except at the values coinciding with
lattice momentum values (2π n/L), n ∈ Z. The finite-volume corrections should
be applied to the electric form factorGE(Q2) instead. A momentum convention in
the loop integral is chosen such thatq may be chosen to beqmin = (2π n/L). The
procedure for achieving the correct finite-volume corrections is outlined below.

First, the lattice finite-volume charge radius〈r2〉LE is converted into a finite-
volume form factorGL

E(Q2), usingq = qmin = (2π/L). This is achieved through
use of an extrapolation inQ2. As an example, a dipole Ansatz yields the following
formula:

GL
E(Q2

min) =

(

1+
Q2

min〈r
2〉LE

12

)−2

, (10)

respectively, whereQ2
min = ~q

2
min− (EN −MN)2. In many cases, this simply reverses

the steps used to convert lattice results to charge radii. Ideally, one should start
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Figure 3: The pion/kaon loop contributions to the self energy of an octet baryonB, allowing a
transition to a baryonB′, with photon attachment, providing the leading nonanalytic contribution
to the electric charge radius. All charge conserving transitions are implicit.

Figure 4: The pion/kaon loop contribution to the self-energy of an octet baryonB, with photon
attachment, allowing transitions to the nearby and strongly-coupled decuplet baryonsT .

Figure 5: Tadpole contributions atO(mq) to the octet baryon self energy, with photon attachment.
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with the form factors as extracted from the lattice, and onlyconvert them into radii
using an Ansatz after correcting for lattice finite-volume effects. The next step is
to transform the finite-volume form factorGL

E(Q2
min) to an infinite-volume form

factorG∞E (Q2
min), so that the infinite-volume charge radius can be calculated. This

is achieved by subtracting the electric charge symmetry-preserving finite-volume
correction, defined by:

∆L(Q2
min,0) = δL

[

T (Q2
min) − T (0)

]

. (11)

The second term of Eq.(11) ensures that both infinite- and finite-volume form
factors are correctly normalized, i.e.GL,∞

E (0) = 1. Thus, the infinite-volume
electric form factor can be calculated using the equation:

G∞E (Q2
min) = GL

E(Q2
min) − ∆L(Q2

min,0). (12)

The infinite-volume charge radius〈r2〉∞E can be recovered from the form factor by
using the extrapolation inQ2. Once the infinite-volume charge radius has been ob-
tained, a chiral extrapolation can be performed if needed. The chiral loop integrals
corresponding to the charge radius are those defined by Eq.(9).

Finally, the finite-volume charge radius can be evaluated byadding the finite-
volume correction to the form factor at any box lengthL̃, and corresponding mo-
mentum transfer on the lattice,Q̃2

min:

GL̃
E(Q̃2

min) = G∞E (Q̃2
min) + ∆L̃(Q̃2

min,0). (13)

The finite-volume charge radii are obtained from the chosen extrapolation for-
mula at box sizeL̃. Thus, an electric charge radius may be calculated at any
desired value of box length, based on lattice QCD simulation results. In doing so,
the finite-volume behaviour of the charge radius may be analyzed.

5. Conclusion

It was discovered that finite-volume corrections for chargeradii are not well
defined on the lattice. The use of continuous derivatives in constructing the elec-
tric charge radius leads to inconsistent results in the finite-volume corrections.
Furthermore, finite-volume corrections must be applied to the electric form fac-
tors rather than to the charge radii directly. Therefore, a procedure was developed
to apply finite-volume corrections to the electric form factor, strictly involving
momenta available on the lattice. The resultant finite-volume-corrected form fac-
tor may then be converted into a charge radius using an extrapolation inQ2.
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Chiral extrapolations for nucleon electric charge radii

J.M.M. Hall, D.B. Leinweber, and R.D. Young
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Department of Physics, University of Adelaide 5005, Australia

Chiral effective field theory allows the extrapolation of lattice quantum chromodynamics (QCD)
simulation results to the infinite-volume limit and the chiral regime. The electric charge radius
of the nucleon affords an opportunity to explore the subtleties of both these extrapolations. To
achieve an extrapolation to infinite-volume electric charge radii, the finite-volume corrections must
be applied directly to the electric form factors. Additionally, since lattice QCD results typically
reside outside the chiral power-counting regime of chiral effective field theory, care must be taken in
performing a chiral extrapolation. Using finite-range regularized chiral effective field theory, one can
obtain an optimal regularization scale by analyzing the scale-flow of the renormalization of the chiral
coefficients. Thus, effective field theory is extended beyond the PCR. This optimal regularization
scale is retrieved from the lattice QCD results themselves. A comparison of this optimal scale with
previous analyses of the mass and magnetic moment of the nucleon demonstrates consistency in the
value of the optimal scale. This provides evidence for the existence of an intrinsic energy scale in
the nucleon-pion interaction, as calculated from lattice QCD results. Using the optimal scale, chiral
extrapolations and infinite-volume corrections are presented. Extrapolations to a variety of finite
lattice box sizes are also included, which are useful for predicting the outcome of lattice simulations
in a finite volume.

PACS numbers: 12.39.Fe 12.38.Aw 12.38.Gc 13.40.Em

I. INTRODUCTION

The analysis of the electric charge radius of the nu-
cleon provides an important test case for extrapolations
to the infinite-volume limit and the physical point. Since
the finite box size of the lattice entails undesirable finite-
volume effects in the simulated behaviour of the hadrons,
it is important to be able to quantify these effects with
a reliable infinite-volume extrapolation. In order to
avoid model-dependence in the result, one should ideally
use lattice simulations that lie within the chiral power-
counting regime (PCR). The PCR is defined by the range
of quark or pion masses at which a χEFT calculation is
independent of regularization scheme, up to some toler-
ance [2]. Within the PCR, the chiral expansion of an ob-
servable converges, and the result is independent of any
resummation of the higher-order terms of the expansion.

In finite-range regularization (FRR), a regulator is in-
troduced into the chiral loop integrals, which serves to
suppress the ultraviolet divergences of the effective field
theory. The selection of the momentum cutoff scale Λ
is arbitrary within the PCR, but outside the PCR the
results of χEFT calculations are scale-dependent. Since
lattice QCD results typically extend outside the PCR,
one is restricted by the available data when performing
an extrapolation. However, using the techniques devel-
oped in Refs. [1], the extent of scale-dependence in chiral
exptrapolations can be quantified. This is achieved by
identifying an optimal regularization scale Λscale embed-
ded within the lattice data themselves. The optimal scale
is realized by analyzing the renormalization scale-flow of
the coefficients of the chiral expansion.

This optimal scale can be compared with previous re-
sults for an optimal scale derived from lattice QCD data

for the nucleon mass and the magnetic moment. If the
values of the optimal scales are consistent, this lends cre-
dence to the notion that one can obtain an intrinsic scale
for the nucleon-pion interaction from lattice QCD simu-
lations. Moreover, the resultant scale Λscale can be used
to perform chiral extrapolations in which any scheme-
dependence in the result has been handled, and incor-
porated into the systematic uncertainty in the choice of
Λscale.
In lattice QCD, the isovector combination of the nu-

cleon (p − n) is often calculated to avoid the computa-
tionally expensive disconnected loops that occur in full
QCD. Quark-flow diagrams including any photons cou-
pling to sea-quark loops cancel in the case of the isovec-
tor. Isovector nucleon data for two-flavor O(a)-improved
Wilson quark action from the QCDSF Collaboration is
used in this analysis, which is displayed in Figure 1.

II. CHIRAL EFFECTIVE FIELD THEORY

In electromagnetic chiral perturbation theory (χPT), it
is usual to define the Sachs electromagnetic form factors
GE,M , which parameterize the matrix element for the
quark current Jµ. In the non-relativistic limit, this can
be written as:

〈B(p′)|Jµ|B(p)〉 =

ūs′(p′)

{

vµ GE(Q
2) +

iǫµνρσv
ρ Sβ

v qν

mB
GM (Q2)

}

us(p).

(1)

Q2 is defined as positive momentum transfer Q2 = −q2 =
−(p′ − p)2. Lattice QCD results are often constructed
from an alternative representation, using the form factors
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FIG. 1. (color online). Lattice QCD data for 〈r2〉E from QCDSF,
with physical value from experiment as marked.

F1 and F2, which are called the Dirac and Pauli form
factors, respectively. The Sachs form factors are simply
linear combinations of F1 and F2:

GE(Q
2) = F1(Q

2)− Q2

4m2
B

F2(Q
2) , (2)

GM (Q2) = F1(Q
2) + F2(Q

2) . (3)

In the heavy-baryon formulation of Eq.(1), the covari-
ant spin operator Sµ

v = − 1
8γ5[γ

µ, γν ]vν has the useful
properties that its commutation and anti-commutation
rules depend only on the 4-velocity vµ. The external-
momentum-dependent electric form factor GE(Q

2) al-
lows a charge radius (more precisely, the slope of the
electric form factor) to be defined in the usual manner:

〈r2〉E = lim
Q2→0

−6
∂GE(Q

2)

∂Q2
. (4)

For the leading-order contributions to the electric form
factor, the standard first-order interaction Lagrangian
from heavy-baryon chiral perturbation theory is used [3–
8]:

L(1)
χPT = 2DTr [B̄vS

µ
v {Aµ, Bv} ] + 2F Tr [B̄vS

µ
v [Aµ, Bv] ]

+ C (T̄µ
v AµBv + B̄vAµT

µ
v ), (5)

where the pion fields are encoded as the adjoint represen-
tation of SU(3)L ⊗ SU(3)R, and forming an axial vector
combination Aµ:

ξ ≡ exp

{

i

fπ
τaπa

}

, (6)

Aµ =
1

2
(ξ ∂µ ξ

† − ξ† ∂µ ξ). (7)

By the convention presented here, fπ = 92.4 MeV. The
values for the couplings in the interaction Lagrangian
are obtained from the SU(6) flavor-symmetry relations
[5, 9] and from phenomenology: D = 0.76, F = 2

3D and
C = −2D.

FIG. 2. The pion/kaon loop contributions to the electric charge
radius of an octet baryon B, allowing a transition to a baryon
B

′, with photon attachment. All charge conserving transitions are
implicit.

FIG. 3. The pion/kaon loop contribution to the electric charge
radius of an octet baryon B, with photon attachment, allowing
transitions to the nearby and strongly-coupled decuplet baryons T .

FIG. 4. The tadpole contribution at O(mq) to the electric charge
radius of an octet baryon B, with photon attachment.

A. Finite-range regularization

In finite-range regularized effective field theory, regu-
lator functions u(k ; Λ), with characteristic momentum
scale Λ, are inserted into the loop integrals. The regu-
lators should be chosen such that they satisfy u|k=0 = 1
and u|k→∞ = 0. The exact functional form chosen for the
regulator should be independent of the result of calcula-
tion, so long as the lattice QCD results are constrained
within the PCR. In order to avoid obfuscating the calcu-
lation with inconvenient finite-volume artifacts, a smooth
attenuating dipole form is chosen for this investigation:

u(k ; Λ) =

(

1 +
k2

Λ2

)−2

, (8)

though detailed analyses exist for a range of alternative
forms [1, 2]. Further discussion of the subtleties involved
in choosing a regulator can be found in Refs. [10, 11].

B. Loop integrals and definitions

The leading-order loop integral contributions to the
electric form factor, corresponding to the diagrams in
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Figures 2 through 4, can be simplified to a convenient
form by taking the heavy-baryon limit, and performing
the pole integration for k0:

T E
N (Q2) =

χE
N

5π

∫

d3k
(k2 − ~k · ~q)u(~k ; Λ)u(~k − ~q ; Λ)

ω~kω~k−~q(ω~k + ω~k−~q)
,

(9)

T E
∆ (Q2) =

χE
∆

5π

∫

d3k
(k2 − ~k · ~q)u(~k ; Λ)u(~k − ~q ; Λ)

(ω~k +∆)(ω~k−~q +∆)(ω~k + ω~k−~q)
,

(10)

T E
tad(Q

2) = −χE
t

π

∫

d3k
u2(~k ; Λ)

ω~k + ω~k−~q

, (11)

where ω~k =
√

~k2 −m2
φ, mφ is the pion or kaon mass, and

∆ is the baryon mass splitting.
The chiral coefficients χE

N , χE
∆ and χE

t are constants in
terms of the chiral Lagrangian of Eq.(5) and the relevant
Clebsch-Gordan coefficients, as summarized by Wang
[12]:

χE,p
N =

5

16π2f2
π

(D + F )2 = −χE,n
N , (12)

χE,p
∆ = − 5

16π2f2
π

4C2

9
= −χE,n

∆ , (13)

χE,p
t = − 1

16π2f2
π

= −χE,n
t . (14)

C. Finite-volume corrections

Finite-volume corrections cannot be applied directly
to the charge radius itself. Instead, the electric form fac-
tors GE(Q

2) are corrected to infinite-volume using an
extrapolation in Q2, such as a dipole Ansatz. The inte-
grals which contribute to the electric charge radius, de-
noted (TE), are exactly analogous to the integrals (T E),
defined in Eqs.(9) through (11), that correspond to the
electric form factor GE . To obtain the integrals that con-
tribute to the charge radius, one simply takes the deriva-
tive with respect to momentum transfer Q2 at vanish-
ingly small values of Q2. This is allowed in the infinite-
volume limit:

TE = lim
Q2→0

−6
∂T E(Q2)

∂Q2
. (15)

Note that the ensuing procedure for calculating the finite-
volume corrected electric charge radius uses only the
infinite-volume versions of the chiral loop integrals.
The finite-volume correction to the electric form

factors is achieved by subtracting the electric charge
symmetry-preserving finite-volume correction, defined
by:

∆L(Q
2
min, 0) = δL

[

T E(Q2
min)− T E(0)

]

, (16)

where the functional δL is defined through the conven-
tion:

δL[T E ] = χ





(2π)
3

LxLyLz

∑

kx,ky,kz

−
∫

d3k



 I , (17)

for integrand I. The second term of Eq.(16) ensures
that both infinite- and finite-volume electric form fac-
tors are correctly normalized, ie. GL,∞

E (0) = 1. Thus,
the infinite-volume electric form factor can be calculated
using the equation:

G∞
E (Q2

min) = GL
E(Q

2
min)−∆L(Q

2
min, 0). (18)

The infinite-volume charge radius 〈r2〉∞E can be recovered
from the form factor by using the extrapolation in Q2.
Once the lattice data have been converted into infinite-

volume charge radii, the chiral behaviour of the electric
charge radius can be written in terms of an ordered ex-
pansion in pion mass squared, through use of the Gell-
Mann−Oakes−Renner Relation, mq ∝ m2

π [13]:

〈r2〉∞E = {aΛ0 + aΛ2m
2
π}+ TE

N ++TE
∆

+ TE
tad +O(m3

π). (19)

This expansion contains an analytic polynomial in m2
π

plus the leading-order chiral loop integrals, from which
non-analytic behaviour arises. The scale-dependent co-
efficients aΛi are the ‘residual series’ coefficients, which
correspond to direct quark-mass insertions in the full La-
grangian. Since the residual coefficients (ai) are expected
to be volume-independent quantities, fitting methods
need only be applied at infinite volume. Upon renor-
malization of the divergent loop integrals, these will cor-
respond with low-energy coefficients of χEFT. In this in-
stance, only two free parameters are chosen in the resid-
ual series, since the non-analytic contributions are in-
cluded only to order O(m3

π).

D. Renormalization

In order to obtain the renormalized chiral coefficients
c0 and c2, one must add the terms from each of the loop
integrals in Eqs.(9) through (11) to the residual coeffi-
cients aΛ0 and aΛ2 :

c0 = aΛ0 + bΛ,N
0 + bΛ,∆

0 + bΛ,t
0 , (20)

c2 = aΛ2 + bΛ,N
2 + bΛ,∆

2 + bΛ,t
2 . (21)

The coefficients bΛi are the coefficients of the polynomial
terms obtained from calculating the relevant loop inte-
grals. The resultant c0 is Λ-independent within the PCR,
where the chiral series converges and the renormalization
scheme is successful. By evaluating the loop integrals,
the fully-renormalized chiral expansion can be written in
terms of a polynomial in m2

π and non-analytic terms:

〈r2〉∞E = c
(µ)
0 + (χE

N + χE
t ) log

mπ

µ
+O(m2

π) . (22)
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Since the chiral expansion of Eq.(22) contains a loga-
rithm, the value of c0 can only be extracted relative to
some mass scale µ, which is chosen to be 1 GeV. To
achieve a chiral extrapolation, it is convenient to subtract
the coefficients bΛ0 from the respective loop integrals:

T̃E
N = TE

N − bΛ,N
0 , (23)

T̃E
∆ = TE

∆ − bΛ,∆
0 , (24)

T̃E
tad = TE

tad − bΛ,t
0 . (25)

This removes the Λ-dependence from the lowest-order fit
parameter of the chiral expansion. Thus, in renormalized
form, the chiral expansion used for fitting may be written:

〈r2〉∞E = {c(µ)0 + aΛ2m
2
π}+ T̃E

N + T̃E
∆

+ T̃E
tad +O(m3

π), (26)

and the renormalization flow of the coefficient c0 will be
considered.

III. RESULTS

The QCDSF results for the electric charge radius of
the isovector nucleon are displayed, with the experimen-
tal value marked, in Figure 1. The lattice sizes of each
data point vary from 1.92 to 3.25 fm using Nf = 2 and
O(a)-improved Wilson quark action. A simple linear fit
is included in this plot, which does not take into account
the non-analytic behaviour of the chiral loop integrals,
nor the finite-volume corrections to the data. Therefore,
it is not surprising that the linear fit does not reach the
experimental value of the electric charge radius at the
physical pion mass. Since the lattice QCD results extend
outside the PCR, the result of an extrapolation will be
scale-dependent. However, the scheme-dependence may
be ameliorated using a procedure that obtains an opti-
mal regularization scale and an estimate of its systematic
uncertainty, constrained by the lattice results.

A. Renormalization flow analysis

In order to obtain an optimal regularization scale, the
low-energy coefficient c0 from Eq.(26) will be calculated
across a range of regularization scale values. Multiple
renormalization flow curves may be obtained by con-
straining the fit window by a maximum, m2

π,max, and se-
quentially adding data points to extend further outside
the PCR. The renormalization flow curves for a dipole
regulator are plotted on the same set of axes in Figure
5. Note that, unlike the analysis of the nucleon mass
[1] and the magnetic moment, there is no distinct inter-
section point in the renormalization flow curves. In ad-
dition, the scale-dependence of the coefficient c0 is very
slight, so long as the regularization scale is not too small.
(A discussion of the best estimate for a lower bound on

the regularization scale can be found in Ref. [1].) This
lack of scale-dependence is a natural consequence of the
logarithm in the chiral expansion of Eq.(22), which is
slowly-varying with respect to the regularization scale.
The optimal dipole regularization scale can be ex-

tracted from Figure 5 using a χ2
dof analysis. Such an

analysis will also provide a measure of the systematic un-
certainty in the optimal scale. By plotting χ2

dof against
the regularization scale Λ, where dof equals the num-
ber of curves n minus one, a measure of the spread of the
renormalization flow curves can be calculated, and the in-
tersection point obtained. A plot of χ2

dof is constructed

at each value of Λ for c0 (with uncertainty δc0):

χ2
dof =

1

n− 1

n
∑

i=1

(ci0(Λ)− c̄0(Λ))
2

(δci0(Λ))
2 , (27)

c̄0(Λ) =

∑n
i=1 c

i
0(Λ)/(δc

i
0(Λ))

2

∑n
j=1 1/(δc

j
0(Λ))

2 . (28)

The indices i and j correspond to data sets with differ-
ing values of m2

π,max. The χ2
dof plot corresponding to

Figure 5 is shown in Figure 6. The value of the optimal
regularization scale Λscale is taken to be the central value
Λcentral of the plot, and the upper and lower bounds obey
the condition χ2

dof < χ2
dof,min + 1/(dof). Thus the op-

timal dipole scale is Λscale = 1.67+0.66
−0.33 GeV. This value

is consistent with the optimal dipole regularization scale
values obtained for the nucleon mass, using lattice QCD
data from JLQCD [14], PACS-CS [15] and CP-PACS[16],
and the magnetic moment, using lattice QCD data from
QCDSF. This is strong evidence that, for a given func-
tional form, the optimal regularization scale is associated
with an intrinsic scale, which characterizes the size of the
nucleon, as probed by the pion.

IV. CHIRAL EXTRAPOLATIONS

Using the optimal regularization scale, a reliable chi-
ral extrapolation can be performed, with the systematic
uncertainty in the optimal scale taken into account. Con-
sider the behaviour of the electric charge radius as a func-
tion of the quark mass as shown in Figure 7 (in physical
units). Extrapolation curves are then plotted for infinite-
volume and a variety of finite-volumes at which current
lattice QCD results are produced. For each curve, only
the values for which mπL > 3 are plotted, provisionally,
to avoid undesired effects of the ǫ-regime. The infinite-
volume extrapolation to the physical point differs from
the experimentally derived value: 〈r2〉isovE = 0.88 fm2, by
merely 0.5%. The finite-volume extrapolations are also
useful for estimating the result of a lattice QCD calcula-
tion at certain box sizes. This can also provide a bench-
mark for estimating the outcome of a lattice QCD sim-
ulation at larger and untested box sizes. Note that even
a relatively standard 3 fm lattice box length will differ
significantly from the experimental value at the physical
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FIG. 5. (color online). The renormalization flow of c0 for 〈r
2
〉E

obtained using a dipole regulator, based on lattice QCD data from
QCDSF. c0 is calculated relative to the energy scale µ = 1 GeV.

FIG. 6. (color online). χ
2

dof
for the renormalization flow of c0 for

〈r
2
〉E obtained using a dipole regulator, based on lattice QCD data

from QCDSF. c0 is calculated relative to the energy scale µ = 1
GeV.

point. Since the data points in Figure 7 are at differing
finite volumes, the infinite-volume corrected data points
are displayed in Figure 8.

To highlight the insensitivity of the extrapolation to
the regularization scale Λscale, an estimate of the sys-
tematic uncertainty in the extrapolation to the physical
point solely due to Λscale is displayed in Figure 9. The
size of the error bar at the physical point is compara-
ble to that due to statistical uncertainty, as shown in
Figure 10. This indicates that, in the case of the elec-
tric charge radius, the identification of an intrinsic scale
is borderline, due to the dominance of the logarithm in
the chiral expansion, and its slowly varying property in
the large mπ regime. Thus, chiral extrapolations of the
electric charge radius are more robust, in the sense that
the scale-dependence in the result is suppressed, and the
identification of an intrinsic scale is not so vital as in the
case of the nucleon mass or magnetic moment.

FIG. 7. (color online). Extrapolations of 〈r2〉E at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92− 3.25 fm. The
provisional constraint mπL > 3 is used. The physical value from
experiment is marked.

FIG. 8. (color online). Extrapolations of 〈r2〉E at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92− 3.25 fm. The
provisional constraint mπL > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked.

V. CONCLUSION

The technique for obtaining an optimal regularization
scale from lattice QCD data has been investigated in the
context of the electric charge radius of the isovector nu-
cleon. By using recent precision lattice QCD results from
QCDSF, an optimal regularization scale for a dipole form
was obtained. This was achieved by analyzing the renor-
malization flow of the low-energy coefficient c0 with re-
spect to the scale Λ, whilst extending the data beyond
the power-counting regime. A regularization scale was
discovered where the renormalization of c0 is least sensi-
tive to the truncation of the lattice QCD data. The value
of the optimal regularization scale was consistent with re-
sults from the nucleon mass and the magnetic moment
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FIG. 9. (color online). Extrapolations of 〈r2〉E at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92− 3.25 fm. The
provisional constraint mπL > 3 is used. The infinite-volume cor-
rected data points are shown. The physical value from experiment
is marked. An estimate in the uncertainty in the extrapolation,
due to Λscale, has been calculated from Figure 6, and is indicated
at the physical value of m2

π .

of the isovector nucleon. Thus an intrinsic scale has been
uncovered, which characterizes the size of the nucleon, as
probed by the pion.

Using the value of the intrinsic scale, the extrapolation
of the electric charge radius to the physical pion mass and

infinite-volume lattice box size is consistent with experi-
ment. The finite-volume extrapolations provide a bench-
mark for estimating the outcome of a lattice QCD simu-
lation at realistic or currently optimistic lattice sizes.
The results also demonstrates a successful procedure

for using lattice QCD data to extrapolate an observable
to the low-energy region of QCD.

FIG. 10. (color online). Extrapolations of 〈r2〉E at different finite
volumes and infinite volume, using a dipole regulator, based on
lattice QCD data from QCDSF, lattice sizes: 1.92− 3.25 fm. The
provisional constraint mπL > 3 is used. The physical value from
experiment is marked. An estimate of the statistical uncertainty in
the extrapolation is marked at the physical value of m2

π .
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