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Abstract

Chiral effective field theory complements numerical simolad of quantum
chromodynamics on a spacetime lattice. It provides a modigpendent formal-
ism for connecting lattice simulation results at finite vok, and at a variety of
guark masses, to the physical region. Knowledge of the poaenting regime of
chiral effective field theory, where higher-order termslod expansion may be re-
garded as negligible, is as important as knowledge of tharmesipn. Through the
consideration of a variety of renormalization schemeg$)negies are established to
identify the power-counting regime. Within the power-cting regime, the results
of extrapolation are independent of the renormalizatidreste.

The nucleon mass is considered as a benchmark for illusgrétis approach.
Because the power-counting regime is small, the numerioallation results are
also examined to search for the possible presence of anaptgularization scale,
which may be used to describe lattice simulation resultsideof the power-counting
regime. Such an optimal regularization scale is found ferribcleon mass. The
identification of an optimal scale, with its associated eysitic uncertainty, mea-
sures the degree to which the lattice QCD simulation resuitisne beyond the
power-counting regime, thus quantifying the scheme-deégece of an extrapola-
tion.

The techniques developed for the nucleon mass renormahzate applied to
the quenched meson mass, which offers a unique test case for extrapoksdizemes.
In the absence of a known experimental value, it serves t@dstrate the ability of
the extrapolation scheme to make predictions without ifnomenological bias.
The robustness of the procedure for obtaining an optimallaegation scale and
performing a reliable chiral extrapolation is confirmed.

The procedure developed is then applied to the magnetic mtoamel the elec-
tric charge radius of the isovector nucleon, to obtain a isterst optimal regulariza-
tion scale. The consistency of the results for the value @oiptimal regularization
scale provides strong evidence for the existence of amsitrienergy scale for the

nucleon-pion interaction.
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