

THE UNIVERSITY OF ADELAIDE SCHOOL OF CHEMISTRY AND PHYSICS DISCIPLINE OF PHYSICS

Chiral Effective Field Theory Beyond the Power-Counting Regime

Jonathan Michael MacGillivray Hall

Supervisors: Prof. Derek B. Leinweber, Dr. Ross D. Young

Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide, Australia

June 2011

Abstract

Chiral effective field theory complements numerical simulations of quantum chromodynamics on a spacetime lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume, and at a variety of quark masses, to the physical region. Knowledge of the power-counting regime of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion. Through the consideration of a variety of renormalization schemes, techniques are established to identify the power-counting regime. Within the power-counting regime, the results of extrapolation are independent of the renormalization scheme.

The nucleon mass is considered as a benchmark for illustrating this approach. Because the power-counting regime is small, the numerical simulation results are also examined to search for the possible presence of an optimal regularization scale, which may be used to describe lattice simulation results outside of the power-counting regime. Such an optimal regularization scale is found for the nucleon mass. The identification of an optimal scale, with its associated systematic uncertainty, measures the degree to which the lattice QCD simulation results extend beyond the power-counting regime, thus quantifying the scheme-dependence of an extrapolation.

The techniques developed for the nucleon mass renormalization are applied to the quenched ρ meson mass, which offers a unique test case for extrapolation schemes. In the absence of a known experimental value, it serves to demonstrate the ability of the extrapolation scheme to make predictions without prior phenomenological bias. The robustness of the procedure for obtaining an optimal regularization scale and performing a reliable chiral extrapolation is confirmed.

The procedure developed is then applied to the magnetic moment and the electric charge radius of the isovector nucleon, to obtain a consistent optimal regularization scale. The consistency of the results for the value of the optimal regularization scale provides strong evidence for the existence of an intrinsic energy scale for the nucleon-pion interaction.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jonathan Hall and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Acknowledgments

Thank you to Professor Derek Leinweber, for his patient and intelligent supervision and his sense of humour expressed during our enjoyable discussions. Also thank you to Doctor Ross Young for his explanations of theory, his patience, and for our numerous, informative conversations. Ross' generosity with his time for me has been exemplary, and in many cases, an essential component of our successes.

I also thank Doctor Rod Crewther, who has been very informative in the fields of physics and education, and Doctor James Zanotti, who has helped marvellously with collaboration and support.

Thank you to the staff of the School of Chemistry and Physics for their general assistance, and more specifically to Professor Anthony Thomas and the staff of the Special Research Centre for the Subatomic Structure of Matter.

I give my thanks to my loving family for their support.

It is with hope and faith that we endeavour to extend our learning to reach new insights just beyond our present reach.

Contents

1	Intr		1
	1.1	0	1
	1.2	Overview and Aims	5
2	Latt	ice QCD	7
	2.1	Functional Methods	9
		2.1.1 Wilson Fermions	1
		2.1.2 Correlation Functions and the Effective Mass	2
		2.1.3 Quenching and Computational Alternatives	4
	2.2	Lattice QCD Applicability and Issues	5
3	Chi	al Effective Field Theory 1	7
	3.1	•	9
		3.1.1 Spontaneous Symmetry Breaking	1
		3.1.2 Partial Conservation of the Axial Current	3
		3.1.3 The Sigma Model	4
	3.2	Chiral Perturbation Theory	7
		3.2.1 Meson Sector	8
		3.2.2 Baryon Sector	2
		3.2.3 Electromagnetic Contributions	6
	3.3	Regularization and Renormalization	8
		3.3.1 Historical Overview	8
		3.3.2 The Power-Counting Regime	9
		3.3.3 Dimensional Regularization	1
		3.3.4 Finite-Range Regularization	2
4	The	Intrinsic Scale of the Nucleon 4	7
	4.1	Renormalization Issues for the Nucleon Mass	7
		4.1.1 Chiral Expansion of the Nucleon Mass	8
		4.1.2 Chiral Loop Integrals	0
		4.1.3 The Sigma Term	2
		4.1.4 Scheme-Independent Coefficients	4
		4.1.5 Finite-Volume Effects	5
	4.2	The Intrinsic Scale: An Example by Construction	7

		4.2.1 Lower Bounds for the Regularization Scale	63
5	Resu	ilts for the Mass of the Nucleon	67
	5.1	Evidence for an Intrinsic Scale in the Nucleon Mass	68
		5.1.1 Renormalization Flow Analysis	68
		5.1.2 Analysis of Systematic Uncertainties	69
		5.1.3 Effects at Higher Chiral Order	77
	5.2	Summary and Specific Issues for the Nucleon Mass	81
6	Resi	llts for the Mass of the Quenched ρ Meson	83
	6.1	Renormalization of the Quenched ρ Meson Mass $\ . \ . \ . \ . \ .$	86
		6.1.1 Chiral Expansion of the Quenched ρ Meson Mass	86
		6.1.2 Chiral Loop Integrals	87
		6.1.3 Scheme-Independent Coefficients	91
	6.2	Extrapolating the Quenched ρ Meson Mass $\ldots \ldots \ldots \ldots \ldots$	94
		6.2.1 Renormalization Flow Analysis	94
		6.2.2 Intrinsic Scale and Systematic Uncertainties	97
	_	6.2.3 Optimal Pion Mass Region and Systematic Uncertainties	103
	6.3	Summary and Specific Issues for the Quenched ρ Meson $\ . \ . \ .$	107
7	Elec	tromagnetic Properties of the Nucleon	111
	7.1	Renormalization of the Magnetic Moment	112
		7.1.1 Chiral Expansion of the Magnetic Moment	112
		7.1.2 Chiral Loop Integrals	114
	7.2	Evidence for an Intrinsic Scale in the Magnetic Moment	115
		7.2.1 Renormalization Flow Analysis	117
		7.2.2 Analysis of Systematic Uncertainties	118
		7.2.3 Chiral Extrapolation Results	119
	7.3	Finite-Volume Considerations for the Electric Charge Radius	121
		7.3.1 Chiral Loop Integrals	123
	7 4	7.3.2 Chiral Expansion of the Electric Charge Radius	126
	7.4	Evidence for an Intrinsic Scale in the Electric Charge Radius	127
		7.4.1 Renormalization Flow Analysis	127
		7.4.2 Analysis of Systematic Uncertainties	129
	75	7.4.3 Chiral Extrapolation Results	129
	7.5	Summary and Specific Issues for the Electromagnetic Properties of the Nucleon	131
c	a		
8		clusion	135
	8.1	Evaluation and Summary Analysis	135
	8.2	Future Studies and Further Developments	139
	8.3	Codetta	140

Α	Con	ventions	143		
	A.1	Dirac and Pauli Spin Matrices	143		
	A.2	SU(3) Gell-Mann Matrices	144		
	A.3	Spinor Fields	144		
	A.4	Meson and Baryon Field Definitions	145		
B	Integ	gration Techniques	147		
	B .1	Magnetic Quantities	147		
		B.1.1 Angular Components of Magnetic Moment Loop Integrals .	147		
		B.1.2 Combinatorial Simplification	149		
		B.1.3 Sachs Magnetic Form Factors at Finite Q^2	149		
	B.2	Electric Charge Radius Integral Expansions	150		
	B.3	Finite Volume Corrections to Tadpole Amplitudes	152		
С	Latt	ice Simulation Results	155		
Bi	Bibliography				

Appended Articles 1-6