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Chapter 10: Glial cell changes

Chapter 10: IMMUNOHISTOCHEMICAL CHANGES IN

MICROGLIAL AND ASTROCYTIC CELL MARKERS

10.1 Introduction

Numerous glial cells support the retinal neurons and optic nerve axons. Main glial cells in the
retina consists of microglia and two types of macroglial cells, astrocytes and specialized Mdller
cells.[674] The small oval-shaped retinal microglial cells are distributed mainly in the INFL, IPL
and OPL of the retina. Astrocytes are limited to the inner retinal surface, mainly located within
the INFL and GCL. Mller cells, on the other hand, have wider distribution and they extend
radially between the inner and outer limiting membranes. As all retinal neurons including the
RGC neurons in INFL are unmyelinated, no oligodendroglia are seen in the retina. As Mller
cells are restricted only to the retina, the glial cell population in optic nerve consists of
astrocytes, microglia and oligodendrocytes which are distributed between the axons along the

whole length.

Microglia, the smallest glial cells representing the innate immune system, are derived from
myeloid progenitor cells. They are the immunocompetent cells, related to the macrophage-
phagocytic system. They act as phagocytes and protect the brain from the invading micro-
organisms. They provide first line of defense in response to any form of neuronal injury and
play an important role in neuroprotection. Astrocytes have the classical morphology, with part
of the cell in contact with a blood vessel, and many fine processes interwoven around
neuronal cell bodies and processes. They play a vital role in neuronal signaling by maintaining
ionic equilibrium, as well as by protecting the retina by contributing to the blood-retinal
barrier.[675] Besides regulating the neuronal metabolism and maintaining neuronal function,

astrocytes in the optic nerve provide mechanical support to the axons.[676, 677] They protect
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axons against various sources of damage by forming a protective blood nerve barrier and
once damaged, they participate in the scarring and repair of the nervous system.[677]
Similarly, mller cells in the retina provide structural support to the retinal neurons and

regulate their function through various mechanisms.[101]

In neural injury, microglia and astrocytes transform into their ‘activated’ phenotypes. This
process of activation of glial cells is termed as ‘reactive gliosis’.[124] Under pathological
conditions, such as trauma, stroke or any inflammation-mediated degeneration of the central
nervous system, the resting microglia proliferate and change their shape to become rod-
shaped ‘activated microglia’, which possess numerous lysosomes and phagosomes and
release pro-inflammatory and neurotoxins such as cytokines, eicosanoids, ROS and NO.[123]
This microglia-driven neuroinflammatory response has been identified in conditions such as
Alzheimer’'s disease.[678] multiple sclerosis [679] and stroke and NMDA induced
neurotoxicity.[680] Astroglial cells undergo proliferation and differentiation to support axons in
CNS injury as seen in various inflammatory and demyelinating autoimmune diseases.[681,

682] Their proliferation results in the formation of a scar in distal stump following axotomy.[512]

Detection of glial activation provides diagnostically useful information on the site and
progression of the disease or neurodegeneration.[683] Besides relevance to clinicians,
markers of glial activation are important for researchers. Imaging tools using positron emission
tomography with relative selectivity for activated microglia, are under development to study
and diagnose in vivo neuropathology.[683] Although, nerve degeneration is classically
evaluated using histopathological techniques, gliosis can be assessed using specific antigenic

biomarkers.
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There are only a few specific microglial antigens. Therefore, most of the antibodies used for
the detection are raised against macrophage-cell line. Common molecular biomarkers in
immunological detection of microglia use antibodies OX-42 [684], MAC-1 [685] and ED-1
(CD68). ED-1 is a monoclonal antibody (mAb) that recognizes a single chain glycoprotein of
90-110kDa expressed predominantly on the lysosomal membranes of the fixed and wandering
macrophages including microglia in the nervous system and expression of this antigen in cells
increases during phagocytic activity.[686] Similarly, one of the best known markers for the
altered macroglial cell activity is GFAP.[113, 687] GFAP is a 51-kDa intermediate filament
protein found in the astrocyte and Miller cell end feet and processes. Although, Muller glial
cells in normal rat retinas express little or no GFAP,[688] they show increased expression in

retinal injuries including ischemia,[689] glaucoma [690] and kainite induced neurotoxicity.[469]

Based on the results obtained in the present and previous studies, it is obvious that the
injection of NMDA into the rat vitreous humor causes degeneration of the inner retinal neurons
as well as optic nerve axons. Although gliosis is a common phenomenon seen in neural injury,
whether this is primary or secondary factor contributing to the axon damage remains to be
determined. In order to solve the mystery, the current part of the study focused on these glial
cell changes secondary to axon damage as a result of NMDA induced retinal insult. These
glial cell changes will be studied using immunolabelling with ED-1 for microglia and GFAP for
astrocytes and miiller cells. This immunohistological study focused on the temporal changes
in the expression profile of these two molecular markers so as to better understand the role of

astrocytes and microglial cells in the excitotoxin-induced somagenic optic nerve degeneration.
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10.2 Results

10.2.1 ED-1 immunostaining in the retina

No ED-1 immunostaining was observed in the saline-treated retinas at all the time intervals
examined.[See Figure 52] Negative and positive controls showed no damage at any time

point.

Saline control, 24 hrs
INFL
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Saline control, 7 days

Figure 52. ED-1 immunoreactivity of saline-injected retinas of rat. Soon after injection no
immunoreactivity was detected (A). X200 magnification. Bar= 50um
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No ED-1 immunostaining was seen in the retina immediately after the NMDA injection. At 1
day after NMDA injection, punctate ED-1 immunoreactive products were seen confined to the
INFL, GCL and inner IPL. ED-1 positive cells with round profile were also noticed in the
vitreous. At 3 days post NMDA injection, amoeboid or pleomorphic ED-1 immunoreactive
cells, with many of them showing thin and stout processes, were seen distributed in the INFL,
GCL and IPL. The immunoreactivity increased further at 7 days, when ED-1 positive cells

became more numerous in these layers as well as the vitreous. [See Figure 53]
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Figure 53. ED-1 immunoreactivity in the retinas of NMDA-injected rats. Soon after injection no
immunoreactivity was detected (A). Punctate ED-1 expression is seen 24hrs post-injection (B,
arrows). Pleomorphic microglia sending thin processes are seen in INFL, GCL and IPL 72hrs
after NMDA injection (C, arrows). ED-1 expression is more pronounced at 7days with labelled
(D, arrows) microglial processes seen in INFL, GCL, IPL as well as OPL. X200 magnification.
Bar=50pum
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10.2.2 ED-1 immunostaining in the optic nerve

Saline control optic nerves did not show immunoreactivity in proximal as well as distal
segments at any time points examined. [See Figure 54] Negative and positive controls

showed no damage at any time point.

Figure 54. ED-1 immunoreactivity in the longitudinal sections of saline-injected optic nerves.
No immunoreactivity is seen at any time points. X200 magnification. Bar=50pum

No ED-1 immunostaining was seen upto 24hrs in the NMDA-injected nerves. Occasional
punctate staining appeared at 72hrs. The ED-1 immunostaining increased enormously at 7
days where large number of cells showed ED-1 immunoreactivity. At this stage, punctate

immunoreactive material was clearly evident in the thin processes of microglial cells. Careful
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observation of the optic nerve sections did not reveal any difference in the ED-1

immunostaining between the proximal and distal optic nerve segments. [See Figure 55]

\

: '
L
' - ’ 4
%
\

: A
Ohrs NMDA, Distal

Al Ohrs NMDA, Proximal ~ | A2
4 ‘ ) /} y : ,’ 4"
l:» .’ - !‘t ’ [} H .- ”
. .' P 4 ' : .
< v > § ’
! 'R J
E ) . ) /
S q / ’ '.
. 1] " '
S i : 4 M
\ , ! A Al W i
B1 + 24hrs NMDAy Proximal | )3? ."8 24hrs NMDA, Distal
“ . £ : a i 1 .:' . 1
B
* <
Vel Vs
3 3 1 . 4 & . “ (P
C1l . 72hrs NMDA, Proximal ‘ c2' ’ 72hrs NMDA, Distal
A ,“ ik . N\ % 2 : ¥
\‘ >~ '.:‘. ' \.‘ : ‘ ) A& e
'\ % - SRR " s b
i .“: ‘ " ¥ | 4 /
| R A R ‘ VP v - ’ :
: ’; ' ’ fr ,' f v M ' H
hg - A ol 2 5
: "5 ; o b e ot
L . oy i oy i
A s > . _.—D" Y 3 !‘ > L ] '
\" ’ #. kj Ay b ° > ) L ° . 3 X
‘D1 » B 7days NMDA, Proximal 'Qi &’ 7daystNMDA, Distalt
2’8 » e 3 . . 80 5 R ; :

i N

Figure 55. ED-1 immunoreactivity in the longitudinal sections of NMDA-injected optic nerves.
No ED-1 immunoreactivity is seen in NMDA injected optic nerves at Ohrs (A1, A2) and 24hrs
(B1, B2) after injection. Slight immunostaining in seen at 72hrs (C1, C2, arrows), which
becomes very intense at 7days (D1, D2 arrows). Note- no difference is observed in ED-1
immunostaining between the proximal and distal optic nerve segments at each time point.
X200 magnification. Bar=50pm
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10.2.3 GFAP immunostaining in the retina

Negative controls showed no damage at any time point. In the control saline-injected retinas,
astrocytes and Miller glial cells showed a moderate level of GFAP immunoreactivity. Thin
GFAP-labelled processes of the Miller cells ran perpendicular to the surface extending into
the outer part of the IPL. No change was observed in the saline-treated animals at any time

point. [See Figure 56]

Saline control, 72 hrs R

Figure 56. GFAP immunoreactivity in the saline-injected rat retinas. In the saline-injected
retinas, GFAP immunoreactivity was restricted primarily to the INFL and GCL (arrowhead).
X200 magnification. Bar= 50um
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Although, the intensity of GFAP immunostaining remained unaffected at 1 day after NMDA
injection, the pattern of staining was affected mildly. Thin GFAP-labelled processes extended
deeper into the IPL, INL and OPL. At day 3 post-NMDA exposure, GFAP immunoreactivity
increased further. The number of GFAP-labelled processes in the INFL increased. The
intensely labelled processes of the Muller cells became thick and were seen extending into the
IPL, INL and OPL. GFAP immunostaining increased markedly at day 7 after NMDA injection,
when the intensely stained cells and processes increased further in the INFL. The thickness of
the retina reduced and the heavily labelled thick Mller cell processes were seen in parallel
arrays now extending across the entire width of the retina. Throughout the process of analysis,
the somata of the Muller glial cells within the INL did not show a well-defined GFAP staining at

any of the time points studied. [See Figure 57]

179



Chapter 10: Glial cell changes

Figure 57. GFAP immunoreactivity in NMDA injected rat retinas. GFAP expression is mildly
increased 24hrs post NMDA injection where thin Mller cell processes are seen extending into
the IPL, INL and OPL (B, arrows). The expression is noticeably enhanced at 72hrs after
NMDA injection during which increased GFAP immunoreactivity is seen in the INFL (C,
arrowhead) and thick Miiller cell processes are seen extending into the IPL, INL and OPL (C,
arrows). GFAP expression is more pronounced in INFL at 7days (D, arrowhead) and heavily
labelled processes extend across the entire width of retina (D, arrows). X200 magnification.
Bar=50pum

10.2.4 GFAP immunostaining in the optic nerve

Transverse sections of the paraffin-embedded saline-injected control optic nerves stained with
GFAP showed numerous immunopositive star-shaped astrocytes spreading their

immunostained processes uniformly across the whole section of the optic nerve to form an
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astrocytic web in the optic nerve. The saline-injected retinas showed similar level and pattern
of GFAP immunostaining at all time points observed. [See Figure 58] Negative controls also

showed no damage at any time point.

Figure 58. GFAP immunoreactivity in the transverse sections of saline-injected rat optic nerve.
GFAP immunoreactivity is observed in star-shaped astrocytes (arrowhead) which send out
multiple thin immunoreactive processes (arrows) to form an astrocytic web in the optic nerve.
No difference in immunostaining is seen at any time points after saline injection. X400
magnification. Bar= 25um

No change in immunoreactivity was seen at 0 and 24 hrs of NMDA exposure. Although a
similar distribution pattern was observed in all experimental (NMDA-injected) and control optic
nerves, some of the GFAP-immunoreactive astrocytes were characterized by hypertrophy of
the cell bodies, with a few showing thick and intensely labelled processes after 72hrs of

NMDA injection. GFAP immunostaining at 7 days showed more numerous GFAP
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immunoreactive processes from enlarged reactive astrocytes, which seemed to nearly fill the
whole optic nerve specimen. No apparent difference was observed in the GFAP
immunoreactivity between the proximal and distal segments of the saline or the NMDA-

injected optic nerve segements. [See Figure 59]
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Figure 59. GFAP immunoreactivity in the transverse sections of NMDA-injected rat optic

nerve. Normal profile and GFAP staining is seen immediately (A1, A2)

and 24hrs (B1, B2)

after NMDA injection. GFAP reactive astrocyte distribution is same at 72hs (C1, C2) post-

with hypertrophied cell bodies

, C2, arrows)

C1
typical of reactive astrocytes. At 7days, increased number of astrocytic

(

injection but note the thick fibrillary process

arrowheads)

C2
process form a dense network through the nerve cross-section (D1

(C1,

, D2). Large-sized

arrow) are still clearly

arrowheads) with thick processes (D1,

(D1, D2,

seen. No difference in immunoreactivity is seen between the proximal

distal optic nerve segments (A2, B2, C2,

astrocytic cell bodies
25um

(A1, B1, C1, D1) and

D2) at any time points. X400 magnification. Bar
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10.3 Discussion

This section of the study recorded the temporal sequence of microglial and astroglial changes
in the retina and optic nerve of the eyes exposed to 20nM NMDA for up to7 days. Microglial
response in the form of increased ED-1 immunoreactivity and macroglial response in the form
of enhanced GFAP expression in astrocytes and Mdller cell end feet processes was detected
in the retina as early as 24hrs followed by a steady increase in the expression of both at 3 and
7 days after NMDA injection. Optic nerve showed a late response with a moderate but gradual
increase in the GFAP and ED-1 immunoreactivity beginning after 72hrs of NMDA injection. No
observable difference was seen in the GFAP and ED-1 immunostaining between the proximal
and distal optic nerve segments. Further studies need to be conducted, where minor
differences in the astroglial and microglial response between these two segments, if present,

can be quantified by quantitative immunoblot using an image analyser.

NMDA induced excitotoxic RGC death is a very useful model to study the role of glial cells in
neuronal degeneration and protection. Inward Ca2* current due to NMDA receptor stimulation
releases intracellular glutamate, which in turns stimulate glutamate transporters and establish
a positive feedback loop to maintain chronic or delayed excitotoxicity.[264, 265] Studies have
shown that the localization of the glutamate transporter, GLAST, determines the glutamate
clearance ablility of astrocytes and the expression of this glutamate transport protein is
modulated by the GFAP distribution in the cytoskeleton of astrocytes.[691] The current study
showing increased expression of GFAP indicates that the astrocytes become proactive in the
uptake of extracellular glutamate when exposed to NMDA. Also, increasingly accumulated
glutamate in the extracellular milieu, activates the surrounding microglia via direct or indirect
T-cell mediated protective immune response in an attempt to limit further excitotoxic damage

[692, 693] Astrocytes have a limited clearance ability in comparison to microglial cells due to
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the arachidonic acid and ROS released by the injured cells via incompletely defined molecular
mechanisms,[694] Progressive microglial and astrocytic activation as is seen in the current
study represent the CNS immune response against neuronal degeneration and play a major

role in the defence against excitotoxic nerve damage.

Microglial cells, the sensors of even minor pathological changes in the nervous system, are
the key cells in the T-cell mediated immune response against the antigens of injured cells.
Cytokines and growth factors released from the activated T cells regulate the sentinel
microglia and recruited macrophages.[692] Once activated, microglial cells prevent
excitotoxin-mediated neurodegeneration by phagocytosis and removal of neuronal debris and
reuptake of the excessive glutamate.[695] Also, the release of interferon-gamma from
activated microglial cells improves glutamate uptake by astrocytes and other microglial cells
and as antigen presenting cells, activated microglia expressing Major Histocompatibility
Complex Il (MHC-II) and B7.2 proteins bind to T cell receptors to activate them further.[692,
696] Although, the neuroprotective role of microglial cells is under surveillance, evidences are
emerging for its controversial role in neurodegeneration. It is believed that the activated
microglial cells, which do not express MHC-II proteins, secrete neurotoxins such as PGE2, NO
and TNF-0.[692] NO and TNF-a are directly neurotoxic and prevent glutamate reuptake, [697]
whereas, PGE, stimulate glial cells to release more glutamate which results in further

neurotoxicity.[698]

Following axotomy-induced cell death of retinal ganglion cells, intact blood-retinal barrier
prevents recruitment of new ED-1+ wandering macrophages into the retina, whereas
proliferation and activation of the resident microglia (OX42+ and 5D4+ cells) causes increased

immunological expression of lysosomal ED-1 protein in the retina.[699, 700] Increasing
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recruitment of large, round ED-1+ cells derived from circulating monocytes/ macrophages due
to disruption of the blood-retinal barrier causes increased ED-1 immunolabelling seen with
ischemic retinal injury.[701] Results are available to show steadily increasing ED-1 expression
following kainite-induced retinal excitotoxicity.[702] NMDA induced retinal injury produced in
this experiment produces progressively increasing ED-1 immunoreactivity at day 1, 3 and 7
post-injection. The study suggests increased microglial activation in response to excitotoxic
retinal injury, however, it is difficult to say whether the increased ED-1 immunolabelling is due
to activation of resident microglia or appearance of blood-derived macrophages or both,
especially when evidence is available that NMDA can cause disruption of blood-brain

barrier.[703]

Microglial cells derived from the precursor cells prior to the development of retinal vasculature
lack macrophage specific markers.[687] However, microglia originating from blood-derived
monocytes after establishment of the retinal vascularity, express markers for
macrophage/monocyte lineage such as OX41, OX42, 0X3, OX6, OX18, ED-1, Mac-1, F4/80,
5D4 anti-keratan sulfate, and lectins.[687] Most commonly used markers to study retinal
microglia are OX42, 5D4, ED-1 and OX6. OX42 recognizes the complement receptor;[704]
5D4, a cell surface keratan sulphate;[705] ED-1, a lysosomal protein [686] and OX6 binds to
the major histocompatibilty complex Il. Three major types of resident microglial cells seen in
the normal rat retina are OX42+/5D4-, OX42-/5D4+ and OX42+/5D4+.[701] Studies have
shown that during post-natal phase of development, OX42+ and ED-1+ large, round amoeboid
microglia derived from blood monocytes appear transiently in the retina, to be transformed
later into small, ramified OX42+ and ED-1- resting microglial cells.[704] However, few weekly
staining ED-1+ microglial cells encountered in the normal adult rat retina,[700, 701] may

represent blood-borne macrophages recently infiltrating the retina as a part of normal turnover
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process.[704] However, the present study found no ED-1 immunoreactivity in the saline-

injected control retinas.

Increase in the GFAP immunoreactivity in the astroglial cells could indicate the increased
synthesis of new protein or enhanced expression of this protein due to conformational
changes. After retinal photocoagulation, Humphrey et al detected a prolonged increase in
retinal GFAP immmunorectivity upto 45 days following a transient rise in retinal GFAP mRNA
which returned back to normal within 7 days.[706] The study suggested the increased
synthesis of GFAP as the cause of enhanced expression of this protein. Following intravitreal
injection of NMDA, increased production of CNTF in the retinal Mlller cells [469] via the Jak-
STAT (Signal transducers and activators of transcription) pathway [707] increases the
transcription of GFAP protein in these cells resulting in increased retinal GFAP expression as

is observed in this study.

As already explained that this is the first study to focus on nerve degeneration following
isolated somal injury, astroglial and microglial changes observed in the optic nerve are
discussed in comparison to glial reaction following direct axonal injury. Axonal damage
produced striking changes in the astrocytic and microglial cells seen as increased GFAP and
ED-1 immunoreactivity in the optic nerve, respectively. Similar to axotomy or crush injury,[708]
optic nerve degeneration secondary to excitotoxic perikaryal death provided no evidence of
astrocytic proliferation. Although, the number of astrocytes remained same after injury,
astroglial cells developed filament rich processes which became markedly hypertrophic and
stained intensely with antibodies to GFAP.[605, 709, 710] Valat J et al also observed a stable
astrocytic population after enucleation, which, according to them, was due to equilibrium

between increased differentiation of glioblasts and increased death.[711]
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Generally, glial cell in the CNS respond much slower to injury than in PNS.[369] Macrophage
response and clearance of myelin occur more slowly than astrocytic activation.[605, 711] In
the optic nerve post NMDA intravitreal injection, astrocytic reaction was observed at 72hrs and
intense ED-1 labelling of microglial cells appeared at day 7. Delayed mononuclear
macrophage response, as observed in the present and previous studies,[711, 712] suggests
the intactness of the blood-nerve barrier for a long time after axonal damage preventing the
recruitment of circulating macrophages.[349] Before any damage to the blood-nerve barrier,
the activated microglia may originate either from resident microglia [349] or transformed from
glioblasts and oligodendrocytes.[711] However, once the protective barrier formed by
astrocytic end feet processes is damaged, increased number of circulating macrophages enter

into the CNS at the site of damage.

Astrocytic and microglial activation, besides playing role in neurodegeneration, play a role in
nerve regeneration. [713] Various growth factors released from these cells may cause
neuronal regrowth. A study by Barouch et al has shown that the major source of neurotrophic
factors in excitotoxin injured retina are macrophages/microglia, expressing NGF and NT-3 and

astrocytes which secrete NT-3 and T-cells releasing BDNF and NT-3.[714]

In conlusion, an increase in the retinal and optic nerve GFAP and ED-1 reactivity was
detected after intravitreal NMDA injection in rats. Delayed immunolabelling of GFAP and ED-
1 in the optic nerve indicates that the optic nerve degeneration is secondary to the retinal
response to NMDA. This immunohistochemistry study using GFAP and ED-1 markers may be
useful for understanding the optic nerve damage in other acquired causes of optic

neuropathies including glaucoma.
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Chapter 11: CONCLUSION AND FUTURE DIRECTIONS

Animal models have been widely used in neuropathologic and ophthalmic research to
advance the knowledge of pathophysiology of many chronic neurodegenerative and blinding
conditions. The current study is aimed to explore various aspects of optic nerve pathology
after NMDA-induced excitotoxic injury to the rat retina. In this study, the spatiotemporal pattern
of light microscopic and ultrastructural changes, impairment of axon transport system and glial
cell response are examined in the retina and optic nerve following intravitreal injection of 20nM
NMDA in the rat eyeball. Retinal exposure to NMDA induces progressive thinning of the inner
retina, RGC loss, Wallerian-like dying-back optic nerve degeneration, slow and fast axon
transport impairment, and astrocytic and microglial activation in the inner retina and optic

nerve.

As early as 24hrs after NMDA injection, RGCs show reversible pathological changes in the
form of somatodendritic swellings without nuclear damage. Immunoperoxidase staining at the
same time for GFAP and ED-1 demonstrate trivial macroglial and microglial cell activation
concomitant with inner retinal stress. While the RGCs undergo reversible injury, the optic
nerve axons and glial cells remain virtually unaffected. This indicates that early sublethal
pathological events in RGCs preceed the axonopathy in somagenic degeneration. Although
these retinal changes remain unidentified under a light microscope, they can be detected
using other methods such as EM, histochemistry and genetic studies. This study provides
grounds for the development of more accurate and sensitive diagnostic techniques to identify
early subtle retinal damage. Such methods can also serve as good screening tools for
recognizing glaucoma and possibly other neurodegenerative conditions in high-risk

populations.
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Retina at 72 hrs show severe necrotic RGC death with significant loss of approximately half of
the cells. Retinal injury is associated with progressive increase in inflammatory response of
microglial, Muller and astroglial cells in the form of enhanced GFAP and ED-1
immunoreactivity. Optic nerve at this stage start to show pathological changes which are more
prominent distally (optic tract > distal optic nerve > proximal optic nerve) suggesting ‘dying-
back’ nature of pathology. Nerve fibres are seen in various stages of degeneration. Fibres in
the early stages show exclusive nodal changes in the absence of disturbed paranodal axo-
glial relationships. Nerve fibres in the late stages of degeneration, which express features of
watery degeneration, dark degeneration and demyelination, reflect that the final pathway of
cytoskeletal breakdown is similar to classical Wallerian degeneration. The most prominent
finding at this stage is‘'watery’ degeneration’, where the axonal swellings show features of
cytoskeletal disintegration, complete loss of cytoskeletal elements or abnormal accumulation
of organelles and neurofilaments. Only a few fibres undergoing ‘dark degeneration’ show
features of demyelination. Excitotoxic retinal injury causes impairment of slow axonal transport
resulting in decrease anterograde transport of NF-L to the axon terminal and hence their
accumulation in proximal neuron (seen as NF-L rich spheroids). Absence of [B-APP
immunoreactivity in the axons suggests that fast axon transport is still functional. These optic
nerve changes are associated with mild microglial and astrocytic activation reflecting the
inflammatory reaction in response to the axonal injury seen as increased ED-1 and GFAP
immunoreactivity. Activation of these cells results in their enhanced interaxonal B-APP
immunouptake. The current study provides evidence in support of the theory that the impaired
axonal transport play an important role in the structural damage to axons in dying-back

degeneration of somagenic aetiology.
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At day 7 of NMDA injection, necrotic cell death in GCL reduces the RGC population to 30%.
Optic nerve degeneration progresses further with additional axonal loss. Impairment of slow
axonal transport causes more shrinkage of remaining optic nerve axons. At this stage,
impaired fast axonal transport results in increased axonal [(-APP accumulation. These
degenerative changes enhance the microglial and macroglial inflammatory response in the
retina and optic nerve seen as more pronounced ED-1 and GFAP immunostaining. The inner
retina now shows features of dendritic sprouting with the dendrites occupying the empty
spaces created by the dead RGCs. This astonishing finding challenges the view that the
neurons have limited ability to regenerate with necrotic type of cell death. Though it may be
difficult to achieve control over the process of necrosis, this study provides a hope in the field
of nerve regeneration after acute neuronal loss. Although the study does not intend to identify
the source of origin of the regenerating dendrites, it opens the doors for future studies in which
the growth potential of various retinal cells can be assessed, in order to replace the damaged

neurons. This may keep our hopes alive in the field of optic nerve regeneration.

Future Directions

This unique non-traumatic optic neuropathy model provides details of the major pathological
events in somagenic nerve degeneration, where axonal changes indirectly result from somal
injury. This pathological study explains the sequential changes in neurons and glial cells after
excitotoxic perikaryal death and also suggests the role of axonal transport system in

somagenic degeneration.

This fundamental research revealed a pathological picture of Wallerian-like degeneration after
perikaryal excitotoxic injury in the CNS. This novel finding is consistent with recent evidence of

a labile axonal "survival" factor, nicotinamide mononucleotide adenylyltransferase 2,(Nmnat2)
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produced by the neuronal cell body. Further study is required to test the hypothesis that a
lack of Nmnat2 is the mechanism by which axons degenerate after excitotoxic perikaryal

injury.
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Chapter 12 APPENDICES

12.1 Appendix 1: Ethics Approval

~ ey
/ INsTITUTE OF MEDICAL AND VETERINARY SCIENCE %

Frome Road, Adelaide, South Australia PO Box 14, Rundle Mall, South Australia 5000

I M v S Telephone (08) 8222 3000 Fax (08) 5222 3538

Veterinary Services Division
101 Blacks Road Gilles Plains SA 5086 Phone (08) 8261 1033 Fax (08)-8261 2280
Email: vet.services@imvs.sa.gov.au

13th June, 2006

Dr R Casson
Ophthalmology and Visual Sciences
ROYAL ADELAIDE HOSPITAL

Dear Dr Casson,

Re:  Project No. 53/06
‘Retina and axon-myelin relationships in the optic nerve in normal and

pathological conditions’

Thank you for forwarding the additional information as requested by the IMVS Animal Ethics
Commiftee. The information was considered at the meeting held on 1st June, 2006 and

accepted.

Yours sincerely,

Carol Hewitt
Secretary
IMVS/Central Northern Adelaide Health Service

Animal Ethics Committee
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INsTITUTE OF MEDICAL AND VETERINARY SCIENCE

Frome Road, Adelaide, South Australia PO Box 14, Rundle Mall, South Australia 5000
Telephone (08} 8222 3000 Pax (08) 8222 3538

Veterinary Services Division
101 Blacks Road Gilles Plains SA 5086 Phone (08) 8261 1033 Fax (08)-8261 2280
Email: carolhewitt@imvs.sa.gov.au

28th April, 2006

Dr R Casson
Ophthalmology and Visual Sciences
ROYAL ADELAIDE HOSPITAL

APPLICATION FOR ANIDMAT, ETHICS APPROVAL

Wiz,
e )

E

I am pleased to advise that your Project entitled ‘Refina and axon-myelin relationships in the optic nerve in normal and
pathological conditions” has been given approval by the LM.V.S./Central Northern Adelaide Health Service, Animal
Ethics Committee for the period 20/04/06 to 30/04/09 subject to you providing the Secretary with the following details;-

1)

2)

3)

4)

In Q13 you refer to 5-6 rats, If you really do mean 35-6 rats, how are you going to decide? It is
preferable to nominate a number with appropriate justification. Clarification is required as to the exact
number of rats to be used,

CO, or cardiac perfusion? The committee understands that you may kill rats with cardiac perfusion of
the anaesthetised rat, or by CO; inhalation if perfusion is not needed. The description of your project
did not make il clear which groups were likely to get what method of killing and tissue collection.
Fulure applications will be easier to understand and make decisions about if they are more self
explanatory.

Q11 —“Use of sterile equipment will be considered”, What is meant by this statement and how do you
decide on how to implement an aseptic technique?

The AEC understood and accepts your comment about the lack of need for analgesia after small volume
intrapccular injections, but reference to your personal experience of what you do for human patients for
similar procedures or processes would have been helpful,

Project number 53/06 has been assigned to this application and should be used on all correspondence, animal orders and
cage identification associated with this Project. Your animal user’s permit number should also be quoted when ordering
animals for this study,

It will be necessary for you to complete annually a brief progress report form for the purpose of review by the
Committee and collation of statistical data for the responsible Minister.

Tam obliged to point out that if it becomes apparent that the Project will continue for a longer period than is covered by
this approval it will be necessary for you to seck a time extension from the AEC. Furthermore, if experience gained by
yourself or others during your project demonstrates that the pain category or any other aspect of animal welfare is in fact
different {rom that anticipated in your application form, the AEC must be informed at the earliest possible time.

I have enclosed a copy of the application, signed by the Chairman of the Animal Ethics Committee for your records.

Yours sincerely, .

Carol Hewitt

Secretary
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Government of South Australia
ROYAL ADELAIDE

Central Northern Adelaide HOSPITAL
Healith Service North Terrace
Adelalde SA 5000

Tel: +61 8 8222 4000
Fax: +51 B 8222 5539

ABN 80 230 154 545
Www_rah, $a.gov.au

guulh Australlan Ingtitute
: phthalmoiggy
5™ May, 2006 _ Level 8, East Wing

Tel, +51 88222 2729
Fax: +51 8 8222 2741

. Etnall;
Carol Hewitt eyei@health.sa gov.ay
Secretary Ghaltman

IMVS/CNAHS Animal Ethics Committee - Prof Dinech Selva
Clinical Dirggtor

Dr Henry Newland

Unit Ditgctors
AfProf R Casson

Dr M Goggln
Dear Carol,

f would like to thank the committee for their careful consideration of project 53/08,
In answer to the queries;

1) 6 rats will be used in each group. (5 rats achieve borderline significance;
hence 6 will be used to try and obtain definitive results.)

2) rats that undergo histological analysis will be killed by cardiac perfusion under
deep anaesthesia. Rats that undergo other forms of analysis are not perfused
and are killed by CO2 overdose.

3) sterlle equipment for intraccular surgery will be used.

4) humans undergoing intravitreal injection have tapical local anaesthetic only and
do not generally need any subsequent anaigesia. Retinal Ischaemia is painless
and eye socket surgery either requires no past operative analgesia or mild oral
pain Killers only, -

Sincerely,

Robert Casson
Associate Professor
Ophthalmology & Visual Seiences
Royal Adelaide Hospital
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12.2 Appendix 2: Publication 1

Saggu, S.K., Chotaliya, H.P., Cai, Z., Blumbergs, P., Casson, R.J. (2008) The spatiotemporal pattern of
somal and axonal pathology after perikaryal excitotoxic injury to retinal ganglion cells: A histological
and morphometric study.

Experimental Neurology, v. 211 (1), pp. 52-58

NOTE:
This publication is included on pages 196-202 in the print copy
of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1016/j.expneurol.2007.12.022
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Wallerian-like axonal degeneration in the optic
nerve after excitotoxic retinal insult:

an ultrastructural study

Sarabjit K Saggu', Hiren P Chotaliya', Peter C Blumbergs®, Robert J Casson'”

Abstract

by transmission electron tomography (TEM).

and demyelination.

Background: Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and
axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological
disease, an excitotoxin delivered to the central nervous system (CNS), could trigger neurcnal death not only in the
somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA) receptors.
The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to
investigate the “downstream” effect of isolated excitotoxic perikaryal injury on central nervous system (CNS) axons,
potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders.
Herein, we provide ultrastructural information about the retinal ganglion cell (RGC) somata and their axons, both
unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at O h,

24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group).
Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining,
ultrathin sections of eyes and proximal (intraorbital) and distal (intracranial) optic nerve segments were evaluated

Results: TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling,

disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural
damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances
were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration

Conclusion: NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like
degeneration of the optic nerve. Since axonal degeneration associated with perikaryal excitotoxic injury is an
active, regulated process, it may be amenable to therapeutic intervention.

Background

Excitotoxicity, the mechanism involved in the pathogen-
esis of neurological diseases, including stroke, motor
neuron disease (MND), Alzheimer’s disease (AD), retinal
ischemia and glaucoma [1-12], is classically considered
as a somatodendritic insult due to prolonged or exces-
sive activation of excitatory amino acid receptors. Stu-
dies have also indicated axonopathy as an early feature
in neurodegenerative diseases associated with

* Correspondence: robert.casson@adel aide.eduau

"Ophthalmic Research Laboratories, Hansan Institute, and The University of
Adelaide, SA 5000, Australia

Full list of author information is available at the end of the article

( BioMed Central

excitotoxicity [13-16]. It is unclear whether the nerve
degeneration associated with excitotoxicity is due to pri-
mary insult at the perikaryal level in the grey matter or
a primary excitotoxic injury in the white matter.

An excitotoxin delivered to the central nervous system
(CNS), could trigger injury not only in the somatodendri-
tic region, but simultaneously, in the axonal region. As
retinal ganglion cells (RGCs) axons have a relatively long
projection within the eye before reaching the optic nerve,
intravitreal excitotoxic injury, which is physically isolated
from the retro-orbital axons, may be the result of toxic
insult to RGCs and/or intraocular axonal compartment.
Studies have confirmed perisynaptic localisation of

© 2010 Saggu et al; licensee BioMead Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Artribution License (hrtp://creativecommons.org/licanses/by/2.0), which permits unrestricted use, distribution, and repredudion in
any medium, provided the original work is properly cited
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N-methyl-D-aspartate (NMDA) receptors in RGCs [17].
Although there is evidence for the presence of non-
NMDA glutaminergic receptors for alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and kainite in the postsynaptic myelinated axons in the
central neurons [18] and the expression of NMDA recep-
tors on oligodendrocyte processes in white matter [19],
there is no direct evidence of presence of functional
NMDA receptors on axons [20]. Therefore, retro-orbital
optic nerve axonal degeneration observed in NMDA-
induced retinal insult is logically a consequence of pri-
mary damage to RGCs; however, damage to intraorbital
axons can also be considered a primary site of insult, if
future studies provide direct evidence for the presence of
functional NMDA receptors over axons.

The retina and optic nerve, as approachable regions of
the CNS, provide a unique substrate to investigate the
effect of NMDA induced excitotoxic RGC injury on the
optic nerve axons. We previously noted that NMDA
induced retinal injury produced an axonopathy which
was synchronous with the somal degeneration of RGCs
and which was most prominent in the more distal por-
tions (closer to the midbrain) of the axon [21]. To our
knowledge, despite numerous reports about excitotoxic
neuronal death in the retina, the “downstream” ultra-
structural changes in the optic nerve (the RGC myeli-
nated axons) have never been reported. In the current
study, we provide ultrastructural information about the
RGC somata and their axons, after NMDA-induced
retinal injury.

Methods

Experimental model

Male Sprague-Dawley rats (n = 8) weighing 300-350 g
[Institute of Medical and Veterinary Sciences (IMVS),
Adelaide, South Australia] were kept at room tempera-
ture, with food and water available ad libitum. Adequate
care was taken to minimise pain and discomfort for the
animals used in this study and the experiments were
conducted in accordance with the Australian and inter-
national standards on animal welfare. All experiments
were approved and monitored by the IMVS, Animal
Ethics Committee (Approval No. 53/06).

The excitotoxic RGC injury model was prepared in a
manner similar to that previously described [22,23].
After anaesthetising the rats with isoflurane (2.5 L/min
isoflurane in 2.5 L/min oxygen), instilling topical 0.4%
benoxinate drops in both eyes and applying a sterile
loop around the globes, a single dose of 5 pl of 4 mM
NMDA (20 nmol, source- Sigma Aldrich, USA) was
injected slowly over 30 seconds into the vitreous space
of the left eye using a microsyringe fitted with a 30-
gauge needle. Right eyes received 5 pl of the NMDA
vehicle (sterile 0.9% saline) to serve as controls.
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Sets of animals (n = 8 per group) were killed huma-
nely by cardiac perfusion at various time intervals:
immediately, 24 hrs, 72 hrs and 7 days after injection.
Under deep anaesthesia, animals were killed by intracar-
diac perfusion with a solution of 2.5% glutaraldehyde
with 4% paraformaldehyde in 0.1 M phosphate buffer
pH 7.4. To minimise stretch injury to the optic nerve
caused by direct enucleation of the globe, the eye, optic
nerves and tracts were dissected via a craniotomy. Eyes
were separated by cutting the optic nerve 1 mm behind
the globe. The optic nerve was divided into proximal
(nearer to the globe) and the distal segment (nearer to
the midbrain).

Tissue preparation

Tissues perfused with 2.5% glutaraldehyde were trans-
ferred into polypropylene vials and post-fixed in the
same fixative overnight at room temperature. The speci-
mens were then rotator-rinsed in sodium cacodylate
buffer (with sucrose, pH 7.4) for 30 minutes, and post-
fixed in 1% osmium tetroxide (OsO,) overnight at room
temperature. The specimens were the re-rinsed in
sodium cacodylate buffer three times for 30 minutes
each, and then dehydrated in a graded alcohol series
(70%, 95% and 100%). Dehydrated tissues were then
infiltrated and later embedded in fresh TAAB-Epoxy
resin with propylene oxide (2-epoxypropane) used as a
clearing agent.

Sectioning and staining

Polymerised resin blocks containing tissue specimens
were trimmed and semi-thin sections (0.5 pm) were cut
on a mechanical ultramicrotome using a glass knife.
Floating each section onto a water bath, sections were
collected on labelled polysine slides, dried on the hot
plate for 1 hour and stained with toluidine blue. Finally,
sections were mounted and cover-slipped. Ultrathin sec-
tions (60-80 nm) were cut in the same manner as semi-
thin sections, but using a diamond knife. Sections
picked on 150 mesh acetone-washed copper grids and
dried overnight were stained with Uranyl acetate and
Lead citrate stains.

Results

RGCs in control retinas

The ultrastructure of retina was interpreted in conjunction
with the light microscopy (LM) by an experienced neuro-
pathologist (PCB). In the ganglion cell layer (GCL) of sal-
ine injected control eyes, most numerous large-sized cells
containing pale nuclei with one or two nucleoli were iden-
tified as RGCs, in comparison to amacrine cells, which
were smaller and had dark staining nuclei [24,25]. Micro-
glial cells were identified as occasional small-sized cells,
with short processes and elongated nuclei. The inner
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Figure 1 LM appearance of resin-embedded semi-thin section
of saline control normal inner retina stained with Toluidine
blue stain. INFL: inner nerve fibre layer, GCL: ganglion cell layer, IPL:
inner plexiform layer. Ganglion cell layer shows prominent nuclei of
RGCs (white stars) and amacrine cell (red stars). Bar = 10 pm.

\

plexiform layer (IPL) showed sections of dendritic
processes of RGCs. (Figure 1)

Under transmission electron microscopy (TEM), control
RGCs had a well-defined continuous plasma membrane,
and a non-uniform distribution of organelles in the cyto-
plasm, with maximum concentration in the perinuclear
region. RGCs contained tubular sacs of rough endoplasmic
reticulum (rER) surrounded by large numbers of ribosomes
(Nissl bodies). Mitochondria were identified as round or
oval double- membrane structures with characteristic cris-
tae. In addition, the cytoplasm contained elements of Golgi
apparatus (GA), free ribosomes and microtubules sectioned
at various angles. A large round nucleus, surrounded by a
double layered nuclear membrane, contained homoge-
neously dispersed karyoplasm (chromatin material) and
one or two electron dense nucleoli. RGCs from the control
saline-injected eyes showed a similar normal profile at all
time points. (Figure 2)

Ultrastructural changes in RGCs

Intravitreal administration of NMDA resulted in excito-
toxic damage to RGCs which began as early as 24 hrs.
At 24 hrs, 10-20% RGCs showed cytoplasmic engorge-
ment with swelling of numerous dendritic processes giv-
ing a spongiform appearance to the IPL. Cytoplasm of
swollen RGCs appeared dense and uniformly granular
due to scattered ribosomes. Some mitochondria
appeared swollen and the rER appeared slightly vacuo-
lated. The cell membrane appeared intact and no
nuclear changes were seen at this stage. (Figure 3)

At 72 hrs, the dendritic swelling persisted and the
ganglion cell density decreased. RGCs displayed a necro-
tic form of cell death with features of degeneration seen
in a continuum of changes. Most abnormal RGCs had
an intact cell membrane with their cytoplasmic matrix
containing free monomeric ribosomes, vesicles and
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dilated cisterns of ER as well as GA. In conjunction
with the disaggregation of polyribosomes and disintegra-
tion of vacuolated ER, most mitochondria were irregu-
larly oedematous. Some morphologically normal
mitochondria were still evident in affected cells. Some
cells showed early features of nuclear damage, such as
hyperconvoluted nuclei and chromatin condensation
into small clumps abutting the nuclear envelope.
Nucleoli, however, were morphologically normal. Some
RGCs displayed extreme cytolysis and loss of architec-
ture in the form of disrupted cytoplasmic organelles.
Their nuclear envelope and organelle membranes were
fragmented. Damage was so severe that demarcation
between nucleus and cytoplasm was impossible in some
cells. Electron-dense clumped nuclear remnants were
dispersed into the cytoplasm, which contained vacuo-
lated and rupturing organelles and onion-like multi-
laminated ‘myelin figures’. (Figure 4)

At 7 days, the IPL appeared markedly thinned, with
dendrites becoming shrunken and dense. As the purpose
of this study was to explore ultrastructural changes, no
quantification of IPL thickness was attempted here.
However, statistical analysis of retinal thinning was done
using light microscopy and results published previously
[21]. The GCL showed sparse distribution of RGCs, but
preservation of most amacrine cells. At this time point,
damaged RGCs showed electron-dense neuronal debris
remaining in contact with clusters of reactive microglial
cells and astrocytic processes. Numerous dendritic pro-
cesses, recognised by their higher microtubule composi-
tion in comparison to axons, were seen distributed in
the GCL. These dendrites were packed in the form of
clusters, which occupied the empty spaces created by
necrotic RGCs. Compared to the dendrites in the IPL,
these processes appeared normal in terms of filamentous
and organelle composition, with many displaying mito-
chondria of normal morphology. (Figure 5)

Ultrastructure of normal optic nerve

The parallel-cut intraocular portion of optic nerve axons
seen in retinal sections from saline injected control eyes
showed 0.25 to 1 pm thick unmyelinated axons running
longitudinally in the INFL with axoplasm showing uni-
formly distributed longitudinal cytoskeletal filaments and
organelles. In some axons with a substantial length of
axon visible, mitochondria-rich varicosities were separated
by narrowed portion of filament rich axons. (Figure 6)

The retro-orbital optic nerve from saline injected animals
atall time points displayed ultrastructural features similar
to those previously described in the normal adult rat
[26-29]. In transverse sections, well-fixed myelinated axons
of various diameters maintained round to ovoid sectional
profiles (Figure 7a) with numerous microtubules and neu-
rofilaments dispersed evenly in the axoplasm. Microtubules
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(B, Bar = 2 pm), endoplasmic reticulum (C, Bar = 1.7 pm) and mitochondrion (D, Bar = 20 nm).

were seen as hollow round cross-sections and neurofila-
ments as small electron-dense dots with no central clear-
ing. Also seen in the axoplasm were mitochondria with
normal morphology and intact cristae. Surrounding the
axons, myelin remained compact with a normal periodicity
with no intramyelinic lacunae or vacuoles. In longitudinal
sections (Figure 7b), axons ensheathed by darkly stained
myelin contained filamentous structures (neurofilaments
and microtubules) which showed linear orientation, parallel
to the length of the axons. The nodes of Ranvier displayed
a normal morphology with well preserved paranodal term-
inal loops contacting axolemma and a non-myelinated
nodal gap measuring less than or approximately equal to 1
pm. Various glial cells surrounded the axons. Oligodendro-
glial cells had an electron-dense cytoplasm and heterochro-
matic nuclei. Astrocytes were identified by the electron-
lucent cytoplasm and processes which contained bundles
of intermediate filaments. Microglia had heterochromatic
nuclei similar to oligodendroglia, but their cytoplasm
appeared less dense.

Ultrastructural changes in NMDA-injected optic nerve
axons

Optic nerves from NMDA-injected eyes, examined
immediately and 24 hrs after injection were similar to

the optic nerve of saline-injected eyes. At 72 hrs post-
NMDA insult, unmyelinated fibres running in the
INFL maintained normal morphology; however, pathol-
ogy was identified in the retro-orbital optic nerve.
After careful observation of cross sections of proximal
and distal segments, three distinct abnormalities were
identified with changes appearing more pronounced in
the distal as compared to the proximal optic nerve
(data not quantified). These ultrastructural changes
had similar spatiotemporal and pathological features to
that described in classical Wallerian degeneration
[30,31].

1) Axonal swellings

Swollen axons appeared pale and enlarged with axolem-
mal expansion and cytoskeletal disintegration, character-
izing ‘watery degeneration’. The axoplasm was partially
or completely devoid of organelles and cytoskeletal ele-
ments. Loss of microtubules with relative preservation
of neurofilaments was observed in some axons. Many
fibres contained dense accumulations of neurofilaments,
altered tubulo-vesicular membranous organelles, mito-
chondria and multilayered whorled masses, which
appeared to be arising from the inner layers of myelin.
The myelin sheath surrounding these axons remained
compact and unaltered at most places. (Figure 8)
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Figure 3 Ultrastructural appearance of RGCs 24 hrs after NMDA injection shows (A, Bar = 5 um) early dense appearance of the cell
(rgc) cytoplasm with dendritic swelling (d) and normal euchromatic nucleus with a prominent nucleolus (B, Bar = 2 pm). Notice the
dilatation of mitochondrion (m) and endoplasmic reticulum (ER) as well as some scattered ribosomes (r) in the cytoplasm (C, Bar = 2 pym).

2) Dense axons

Some small to medium sized axons, which appeared dark
under lower magnification, had their axoplasm filled with
an amorphous, granular and dark material, thus portray-
ing what is described as ‘dark degeneration’. Although,
organelles were visible in some fibres, it was difficult to
define the composition of dense axoplasmic material
even at very high magnifications. The myelin of dark
axons did not show significant alterations. (Figure 9)

3) Demyelination

Occasional fibres showed features of demyelination
which included vacuolation and splitting of the myelin
sheath. These demyelinating changes were mainly seen
around abnormally dense/dark axons. Partial or com-
plete loss of axon transformed the myelin into collapsed
structures which appeared as ‘myelin bodies’ in the

extracellular space. Few normal axons also showed mye-
lin changes such as lamellar separation or widening
which made the myelin look abnormally thick and dark.
(Figure 10A &10B)

Longitudinal sections displayed abnormal focal swel-
lings and dense axons scattered between numerous nor-
mal fibres. Magnified images revealed some pathological
changes even in fibres which appeared healthy under
lower magnifications. The main abnormal features were
abnormal accumulation of tubulo-vesicular structures
including organelles in the nodal and paranodal region,
formation of nodal blebs, and intermittent myelin prolif-
eration where the fibres showed splitting and prolifera-
tion of inner layers of myelin in the internode. The
myelin proliferations formed whorls and loops, which
protruded into the axon carrying the axolemmal
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Figure 4 Ultrastructure appearance of RGCs 72 hrs after NMDA injection. Neurons are found at different stages of degeneration and the
neuronal death is morphologically ‘necrotic’. Figure A shows the hyperconvoluted nucleus and cytoplasm filled with multiple vacuoles,
ribosomes and swollen organelle. Figure B shows severe necrotic cell death where the cell has lost its architecture and converted into debris.
There is no demarcation between cytoplasm and electron-dense bodies. The cytoplasm is studded with the multi-laminated myelin figures and
damaged organelles (Bars = 2 um); Nu = nucleus, ER = endoplasmic reticulum, ga = golgi apparatus, m = mitochondria, v = vesicles, r =
ribosomes.
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surrounding the dendritic sprouts. (Bars = 2 pm).

Figure 5 NMDA-induced ultrastructural changes in RGCs at 7 days where necrotic cell in the form of highly electron-dense neuronal
debris (Red star, A & B, Bar = 2 pm) is seen lying adjacent to numerous membrane-bound microtubule-rich neuritic processes (C, red
triangle, Bar = 2 um) identified as dendrites under high power (D, red triangle, Bar = 500 nm); Figure E and F show reactive microglia

covering around them. In some places, the proliferation
was so pronounced that the mesaxonal loops occupied
the entire diameter of axon. The axoplasm around the
myelin whorls looked normal. The later finding was
strictly restricted to the distal segments. No disturbance
in the axon-myelin relationship was observed in the
paranodal regions and the myelin terminal loops main-
tained normal relationships to the axons. No myelin
debris was seen inside the astrocytic and microglial
cells. (Figure 10)

The degenerative changes at 7 days were clearly more
intense than the previous stage. Extensive invasion
by the filamentous astrocytic processes completely

disorganized the nerve structure. Almost all fibres were
altered and only a few scattered fibres showed a normal
appearance. A remarkable feature at this stage was the
predominance of dark fibres, as compared to watery
fibres. These dark axons appeared shrunken on longitu-
dinal sections to create a gap between the atrophic axon
and the inner layers of myelin. Moreover, demyelinating
changes such as myelin breakdown, detached and
vacuolated lamellae and formation of myelin bodies
were frequently seen. Phagocytosing cells including
microglia, astrocytes and oligodendroglial cells were
present throughout, and myelin debris was mostly an
extracellular feature. The most striking finding on
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the intraorbital axons in saline injected control retina
immediately after the injection. A few fibres cut to a substantial
length showed varicosities (red star) and intervaricosity regions
simultaneously (Bar = 1 um).

Chapter 12: Appendices

Page 8 of 14

longitudinal sections, where a substantial length of axon
was seen, was that the same axon showed features of
watery degeneration (axonal swelling) and dark degen-
eration (hyperdense axoplasm). (Figure 11)

Discussion

Most of the information about the pathology of axonal
degeneration is derived from the experimental nerve
transection model which causes classic Wallerian degen-
eration of axons [32] and a reactive gliosis [30,31].
Under the light microscope, NMDA induced excitotoxic
injury to the retina causes significant reduction in thick-
ness of inner retina at 72 hrs (posterior retina, p = 0.002
and peripheral retina, p = 0.012) with thickness reducing
further to 68% and 76% in both regions compared to the
control eyes at 7 days (p < 0.05) [21]. This implies loss
of RGCs and their dendrites. Damage to RGC somata is
characterized by a well-ordered sequence of organelle
changes along with a dying-back-like degeneration of
the axons (the optic nerve fibres) [21].

There is paucity of literature regarding degenerative
changes in the optic nerve at the ultrastructural level.
To our knowledge, this is the first study to report the
pathological changes in the optic nerve at ultrastructural

of the node.

Figure 7 EM of the retro-orbital distal segment of rat optic nerve of the saline injected control animal immediately after the injection.
Axoplasm of the myelinated axons contain numerous neurcofilaments, microtubules, mitochondria and various other organelles. The transverse
sections (A, Bar = 5 pm and B, Bar = 2 pm) show compact arrangement of the myelin lamellae around the axons in the intemodal regions. The
longitudinal sections show parallel running myelinated axons (C, Bar = 5 um). Axon-myelin relationship in the nodal-paranodal region is better
appreciated at very high magnification (D, Bar = 1 pm) Here, myelin terminal loops are seen attached to the paranodal axolemma on either side
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Figure 8 Ultrastructural appearances of axonal swellings in the transverse sections of distal segment of rat optic nerve after 72 hrs of
NMDA injection. The major change observed is the appearance of swollen axons (A, Bar = 10 pm). The axoplasm of these axonal swellings
show abnormal collection of altered tubulovesicular structures (B-D, Bars = 2 um), cytoskeletal disintegration (C-F, Bars = 2 ym), and multilayered
whorled masses (C & F, Bars = 2 pm), which are seen to be arising from the inner layers of the myelin (F, Bar = 2 pm).

level after excitototxic retinal damage. To characterize
the events leading to neuronal cell death after isolated
injury to the perikaryon, this morphologic study in rats
describes the time-dependent pathological sequelae in
the RGCs and optic nerve after NMDA-induced retinal
damage. TEM analysis showed that the effects of excito-
toxic stimuli begin in the retina within 24 hrs where
RGCs undergo progressive necrosis, and the optic nerve
degeneration mimics classic Wallerian degeneration.
Studies have shown that Wallerian degeneration muta-
tion rescues axons but not cell bodies in a rat model of
glaucoma and that axonal degeneration can be delayed

for weeks in the presence of the slow Wallerian degen-
eration gene (W1dS), suggesting that Wallerian degen-
eration is an active, regulated process [33]. Recent
research suggests that the more long-lived, functionally
related W1dS protein, a variant of Nmnatl, substitutes
for endogenous Nmnat2 loss after axon injury, which is
actually considered to prevent spontaneous degeneration
of healthy axon [34].

NMDA-induced retinal changes

Previous studies have shown that the excitotoxic injury
could lead to apoptotic, autophagic or necrotic cell
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Figure 9 Ultrastructural appearance of hyperdense axons in distal optic nerves seen 72 hrs after NMDA injection (Bars = 2 um). Note
that despite the extent of the changes, some adjacent axons still appear normal

death [35-42]. Evidence is also available that the excito-
toxic injury can produce hybrid forms of cell death,
existing on a continuum between the classically defined
apoptosis and necrosis [38,39,43], and is likely to depend
on the degree of insult and the sensitivity of the exposed
neurones. Time-dependent studies of glutamate expo-
sure to cultured neuronal populations showed that the
excitotoxins induce early necrosis and delayed apoptosis
[36,44]. There is also evidence that the necrotic neurons
may completely recover to undergo apoptotic transfor-
mation later [44]. The current study is consistent with
previously reported pathology [45,46].

Cell death, seen 72 hrs after excitotoxic insult, exhib-
ited the essential features of necrosis characterized by
progressive organelle swelling, cytolysis and karyolysis.
RGCs showed mitochondrial swelling, dilated ER, disso-
lution of ribosomes in early stages and disintegration of
cytoplasmic organelles, change in nuclear morphology
and mild chromatin aggregation in advanced stages
[43,47-50]. Because apoptosis requires functional mito-
chondria [51], the presence of swollen and disrupting
mitochondria suggested that the event was non-apopto-
tic. In the presence of whorl-like multi-laminated ‘mye-
lin figures’ or ‘myelin-like bodies’ [52] in severely
damaged RGCs, and in the absence of highly specific
features of apoptosis (heterochromatin segregation,
nucleolar disintegration or apoptotic bodies) as well as
autophagocytosis (presence of typical autophagosomes)
[52-55], cellular events were labelled as necrotic.

NMDA-induced optic nerve changes

In comparison to the popular models of immediate
(axotomy) or delayed (stretch) disruptive injuries, where
the axons and myelin are simultaneously and directly
damaged at the site of lesion, optic nerve fibres in the
current model do not suffer any form of direct injury.
Because the optic nerve is physically isolated from the

eyeball, retro-orbital axonal changes seen in the present
study are most likely the result of direct injury to RGCs
or indirect damage to the intraretinal axons. Several
physiological studies suggest that the axons lack excita-
tory amino acid receptors and they respond to excita-
tory amino acids indirectly by the change in
extracellular ion composition associated with neuronal
depolarization [56-58].

The initial sequence of events resulting in axonal
degeneration depends upon the type of injury. During
early Wallerian degeneration, asymmetric paranodal
myelin retraction was seen as the initial event after axot-
omy in frog optic nerve followed by the formation of
nodal blebs and accumulation of abnormal organelles in
nodal axolemma [59]. In response to excitotoxic peri-
karyal injury, this study found nodal changes in the
form of bleb formation and abnormal accumulation of
organelles in the paranodal region with no obvious mye-
lin terminal loop retraction as early changes. These
changes resembled the response observed after non-dis-
ruptive stretch injury, where accumulation of membra-
nous organelles in the paranodal and internodal regions
preceeded the nodal bleb formation related with loss of
axolemmal undercoating [60].

Nodal changes seen in the present study indicate the
role of disrupted ionic equilibrium in initiating axonal
damage following excitotoxic perikaryal injury. It has been
proposed that the decreased ATP and mitochondrial for-
mation, usually seen with necrotic cell death, results in
energy-dependent pump failure at active nodal sites caus-
ing ionic imbalance, focal cytoskeletal dissolution and neu-
rofilament compaction; loss of membranous Ca**-ATPase
pump causing Ca>* influx induce calpain-mediated pro-
teolysis of the subaxolemmal proteins which results in the
formation of nodal blebs [61,62]. This proteolytic activity
spreads to involve the entire nodal axoplasm [63] results
in focal axonal swellings with variable amount of
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myelin whorls appears normal at this stage (E & F). Bars = 2 ym.

Figure 10 Ultrastructure appearances of distal segment of rat optic nerve after 72 hrs of NMDA injection. Transverse sections show
separation and vacuolation of myelin sheath (A & B). Longitudinal sections display nodal blebs (C, arrows), abnormal accumulation of altered
organelles (D, arrow), myelin whorls (E, arrow) arising from the inner myelin and forming mesaxon (F, arrow). The cytoskeleton surrounding the

cytoskeletal disruption. Studies have also shown that pro-
teolyic degradation of sidearms of neurofilaments results
in their axoplasmic aggregation [64]. These cytoskeletal
changes are likely to affect the axonal transport system
leading to the accumulation of transport material includ-
ing vesicles, organelles, proteins and enzymes in the para-
nodal and internodal regions [65].

Similar to the study using optic nerve crush injury, the
current study also identified watery and dark degenera-
tion in the axons [66]. Both patterns were observed at
72 hrs and 7 days of injury. Although there was no

apparent predominant form at 72 hrs, there was a clear
increment of fibres undergoing dark degeneration and
demyelination at 7 days. It is unclear whether the same
axon displays different type of axoplasmic degeneration
at variable distance from RGC at the same time or indi-
vidual axons undergoes a specific type of degeneration
throughout its length. It is possible there is a cause and
effect relationship between both types of degeneration,
but evidence is circumstantial. Unlike the stretch injury
model, axons form the only link between the myelin
and the cell body in the current study. It was presumed
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Figure 11 TEM of distal segment of rat optic nerve after 7 days of NMDA injection. Transverse (A, Bar = 20 um & B, Bar = 5 um) and
longitudinal sections (C, Bar = 20 pm & D = Bar = 5 pm) show the fibres undergoing dark degeneration with most axons showing hyperdense
axoplasm (red arrows). Longitudinal profile show the focal axonal swelling and hyperdense axoplasm in the same axon (D, arrows). Axon
towards the end stage of degeneration (E, Bar = 1 pm) show nearly collapsed axon structure and the myelin debris phagocytosed by the
astrocytes (F, Bar = 5 um). Last series of photographs (G1, G2, G3, Bar = 2 pm) represent axoplasm in various stages of dissolution.

that perikaryal insult is unlikely to damage myelin with-
out producing axonal changes. However, myelin showed
proliferation and intermittent separation at internodes
in the absence of cytoskeletal damage.

Glial cells in the optic nerve also reacted to excito-
toxic-induced axonal degeneration in a manner similar
to that seen during Wallerian degeneration [67].
Although, there are evidences for the expression of

NMDA receptors on oligodendrocyte processes in white
matter [19], oligodendrocytes in retro-orbital optic
nerve axons remained normal. But astrocytes underwent
reactive changes with the development of extensive fila-
ment-rich processes. Studies have shown that astrocytes
and microglial cells invade the myelin sheath at the
intraperiod line and phagocytose the peeled off outer
lamellae [68]. No such glial invasion was seen in this
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study. Myelin debris was seen scattered in the extracel-
lular space. Phagocytosed myelin which is initially in the
form of the paired electron-dense curvilinear lines
decompose and form a homogeneous or heterogeneous
osmophilic layered structure, the myelin body, which, in
the final stages, disintegrate and transform into globoid
lipid droplets and needle shaped cholesterol crystal [68].

Conclusion

In conclusion, selective perikaryal excitotoxic injury
causes a predominantly necrotic form of somal death
with simultaneous nodal-paranodal changes in axons
culminating later to Wallerian-like degeneration in the
form of dark and watery degeneration with demyelina-
tion. The Wallerian-like degeneration noted in this
model, after primary perikaryal injury, raises the possibi-
lity that excitotoxicity-induced axonopathy is an active,
regulated event. This hypothesis could be tested by
using the current model and comparing the axonal
degeneration in slow Wallerian degeneration (W1dS)
rats with the degeneration in control rats.
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