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Abstract

Early researchers attempting to simulate complex quantum mechanical interactions on dig-
ital computers discovered that they very quickly consumed the computers’ available memory
resources, because the state space of a quantum system typically grows exponentially with
problem size. Consequently, Richard Feynman proposed in 1982 that perhaps the only way to
simulate complex quantum mechanical situations was by simulating them on some quantum
mechanical system. Quantum computers attempt to exploit this idea incorporating the spe-
cial properties of quantum mechanics, such as the superposition of states and entanglement,
into a computing device. Two key algorithms have been discovered which would run on this
new type of computer, Shor’s factorization algorithm discovered in 1994, which provides an
exponential speedup over classical algorithms and Grover’s search algorithm in 1996, which
provides a quadratic speedup. Following this in 1999 Meyer initiated the field of quantum
game theory by introducing quantum mechanical states into the framework of classical game
theory.

In this thesis, we firstly investigate the phase estimation procedure, due to its importance
as the basis for Shor’s factorization algorithm, for which a new error formula is found using
an improved symmetrical definition of the error. Unlike other existing error formulas which
require approximations in their derivation, our result is obtained analytically. The work on
the phase estimation procedure then motivates the development of computer software written
in the Java programming language, which can simulate the common algorithms and visually
display their behavior on a circuit board type layout. The software is found useful in verifying
the new error formula described above and to test ideas for new algorithms. Being written in
Java, it is envisaged that it could be placed online and used as a learning tool for new students
to the field.

We then investigate the second key algorithm of quantum computing, the Grover search
algorithm. It is already known that the Grover search is an SU(2) rotation but the idea is
extended by deriving the three generators in terms of the two non-orthogonal basis vectors,
representing the solution and initial states. We then demonstrate that the Grover search is
equivalent to the precession of the polarization axis of a spin-12 particle in a magnetic field.

At this point we introduce geometric algebra (GA), because of its efficient implementation
of rotations and its associated visual representation, and hence ideal to describe the Grover
search process. It was found to provide a simple algebraic solution to the exact Grover
search problem as well providing a simple visual picture describing the general solution to
Meyer’s quantum penny flip game, which is a simple two-player quantum game based on the
manipulation of a single qubit and hence closely analogous to the Grover search process.

We then extend the work on quantum games developing two-player, three-player and N-
player quantum games in the context of an EPR type experiment, which has the advantage of
providing a sound physical basis to quantum games avoiding the common criticism of other
quantum game frameworks regarding the proper embedding of the classical game. Using the
algebraic approach of GA, we solve the general N player game, without requiring the use
of matrices which become unworkable for large N . Games based on non-factorisable joint
probabilities were then also developed which provided a more general framework for both
classical and quantum games, and allows the field of quantum games to be accessible to non-
physicists, as it does not employ Dirac’s bra-ket notation.

In summary, several new results in the field of Quantum computing were produced, in-
cluding an improved error formula for phase estimation [JMCL11b], a general solution to
Meyer’s quantum penny flip game [CILVS09] and a paper producing quantum games from
non-factorisable joint probabilities [CIA10], as well as an EPR framework for quantum games
[JMCL11a], refer attached papers.
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1

Introduction

The field of quantum computing was initiated in 1982 by Richard Feynman, when he proposed
that perhaps the only way to solve complex quantum mechanical problems was by simulating
them on some quantum mechanical system [Fey82], [Fey86], [RHA96]. This led to the idea
by Deutsch of expanding the classical model of the Turing machine [Tur36] to a quantum
Turing machine [Deu85] which could utilize the special properties of quantummechanics during
processing. Classical computers use binary states represented by a 0 and 1 as their basis,
whereas quantum computers are typically based on two orthogonal states represented by |0〉
and |1〉. This allows non-classical quantum mechanical interactions to become part of this new
processing paradigm. Following this, two key quantum algorithms were discovered that could
run on this new quantum Turing machine and which appeared to conclusively demonstrate
the inherent superiority of a quantum computer over a classical machine, Shor’s algorithm for
factorizing large numbers in 1994 [Sho94], which provided an exponential speedup over the best
known classical algorithms and Grover’s search algorithm in 1996 [Gro98a], which provided a
quadratic speedup over classical search algorithms. From the initial Grover search algorithm,
partial search algorithms were also developed [GR05], [KX07], [KL06], [KG06], which allowed
an approximate solution to the search problem, as well as attempts at more general search
algorithms [Gro98b], [LL01], [BBB+00], [LLHL02], [LLZN99], [Joz99], [LLH05], [Pat98]. Since
these early developments, a variety of other quantum algorithms have been developed [CvD10].
Other approaches to harnessing the quantum nature of particles, in a computational sense
have also been developed, such as quantum walks, which incorporate quantum effects into
classical random walks [FG98b] and the process of adiabatic evolution of quantum systems
[FGGS00]. It should also be mentioned however, that the use of quantum qubits in place of
classical bits does introduce some new difficulties into a computational device, such as the
inability to copy quantum registers (the no-cloning theorem [WZ82]) and the extreme care
required to shield qubits from any disturbances from the environment (decoherence) [Joh01],
[YS99]. On the positive side, quantum computers appear to be a genuine superset of classical
computers and so do indeed represent a genuine enhanced computing paradigm [LSP98],
[Gru99], [BJ]. There is a large amount of experimental effort [VSS+00], [VSB+01] in the field,
due to the formidable technical challenges in building a full scale working quantum computer
and simple algorithms have been verified, with a few qubits implemented with several different
quantum systems, such as cavity QED [THL+95], [HMN+97], ion traps [CZ95,MHT05] and
nuclear magnetic resonance [VSB+01], as well as the implementation of simple quantum games
[DLX+02a]. Even though quantum systems with only a small number of qubits have been
successfully implemented, the development of quantum error correction [Sho95], [Ste96] and
fault tolerant quantum computation may indicate that reliable quantum computing is indeed
possible [BBBV97] [Sho].

In 1999, Meyer extended classical game theory with the inclusion of quantum mechanical
interactions [Mey99]. Quantum game theory has been found useful in developing quantum-
mechanical protocols against eavesdropping [GH97], as well as an alternate way to formulate
quantum algorithms, as games between classical and quantum players [Mey02], and can also be
used to investigate fundamental questions about quantum mechanics through games against
nature [Mil51]. We introduce the mathematical formalism of Geometric algebra into quantum
games [CILVS09,JMCL11a] which allows a visual description of the general solution to Meyer’s
penny flip game, as well as the solution of N -player games. Several different game frameworks
have been proposed [EWL99, ITC08, Iqb05], but we use the approach based on an EPR ex-
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periment [EPR35,Iqb05], which properly embeds the underlying classical game, thus avoiding
a common criticism of quantum games, as being simply different classical games [vEP02].
Many useful applications for quantum game theory have been proposed, such as the devel-
opment of new quantum algorithms, quantum communication protocols, as well as strategic
interactions in the fields of economics and biology. We also describe Grover’s search algorithm
using GA, as well as some simple quantum gates, indicating that GA is a suitable formalism
for the field of quantum computing. Geometric algebra(GA) was first developed by William
Clifford [Cli78] in the nineteenth century, but largely sidelined by other mathematical systems
until popularized in modern times by David Hestenes [Hes99].

1.1 Overview of thesis

We begin by introducing the theoretical underpinnings of the field of quantum computing, such
as qubits and associated operations, followed by a description of the mathematical formalism
of geometric algebra (GA), which we show can replace the more conventional formalism of
Dirac bra-ket notation and matrices. GA is particularly efficient at representing rotations in
any number of dimensions and so naturally implements quantum unitary rotations on qubits
and we find, as expected, to be a very efficient formalism with which to describe the Grover
search algorithm which can be described by rotation in an abstract space, as developed in
Chapters 3 and 4.

In order to develop quantum algorithms, the circuit model of quantum computing is em-
ployed, which seeks to model a quantum computer, by extending the classical circuit model
approach. This may appear somewhat restrictive, however, it has been shown that this ap-
proach is actually equivalent to other approaches to quantum computing, such as a Hamil-
tonian based approach. Basic circuit elements are therefore firstly introduced, the one qubit
and two qubit gates, along with some simple circuits as shown in Chapters 1 and 2. Their
representation in GA is also described, thus demonstrating the suitability of GA for the basic
building blocks of quantum computing.

A key algorithm of quantum computing, the quantum Fourier transform in Chapter 2,
is then presented, which leads to a new result for the error formula used in phase estima-
tion [JMCL11b]. One significance of this result is that errors obtained during simulation
of the phase estimation procedure can now be compared with precise bounds as opposed to
approximate values. The Java circuit model program was extended to model the phase esti-
mation procedure, and by observing the maximum errors from a series of simulations, close
convergence to the bound predicted by the new error formula was observed, whereas the
previous error formulas showed large discrepancies.

We then investigate the Grover search algorithm, the second main class of quantum al-
gorithms, firstly by developing an approach using SU(2) generators (Chapter 3) and then by
using GA (Chapter 4). This was the first use of geometric algebra in analyzing the Grover
search algorithm and we were able to demonstrate that it is a suitable formalism for this key
algorithm.

The research then naturally extended to quantum games, with Meyer’s penny flip game,
because this game is also based on the manipulation of a single qubit like the Grover search and
we were able to generate the most general solution using GA [CILVS09] (attached). The work
on this quantum game was then naturally extended to two-player (Chapter 6), three-player
(Chapter 7) [JMCL11a] (attached), and N -player games (Chapter 8) using GA. The quantum
game setting used, is based on a general EPR (Einstein-Podolsky-Rosen) type experiment, and
has the advantage that we regain the classical game at zero entanglement, which demonstrates
that the quantum game is a true generalization of the corresponding classical game. The N -
player game is intractable with matrices but we find that it becomes tractable and solvable
in GA. We then cast quantum games as a table of non-factorisable joint probabilities [CIA10]



1.2 Basic principles of quantum computers 3

(attached), which allows the presentation of quantum games inside a general framework using
the language of classical probabilities, without reference to quantum mechanics, which thus
allows quantum game theory to become more accessible to non-physicists. This completed the
body of research and the results were then summarized in a final conclusion in Chapter 9.

Along with the above theoretical developments, a Java application was also developed to
simulate the action of all the common gates and circuits, and in the text there is reference
to the relevant Java simulation to demonstrate the theoretical concept. A basic Pentium
workstation with 3 Gigabytes of RAM allowed simulations to handle up to 19 qubits.

1.2 Basic principles of quantum computers

Classical computers operate on the principle of manipulating two state physical devices rep-
resented by the logical bits 0 and 1, using logic gates such as NOT, OR, AND, NOR, XOR,
NAND etc. The quantum computing circuit representation which we are using proceeds sim-
ilarly, except that the classical bits become two-state quantum bits or qubits.

The Stern-Gerlach experiment [Mac83] demonstrates that the property of spin has the
right properties to represent a two state quantum bit. A measurement always returns an up
or a down spin represented by |0〉 (parallel to the field) and |1〉 (anti-parallel), where we call the
up and down orientations our basis states. We also know, however, that before measurement
the dipole exists in a superposition of these states. If we have the ground state represented as
|0〉 and the excited state as |1〉, then we can write the wave function of the qubit as

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α, β ∈ C, the complex numbers, with the normalization condition

|α|2 + |β|2 = 1. (1.2)

Operations on qubits can now become general unitary transformations.

Definition 1.2.1 A quantum bit is a two-level quantum system, represented by the two-

dimensional Hilbert space H2. Space H2 is equipped with a fixed basis B = {|0〉, |1〉}, a so-called

computational basis. States |0〉 and |1〉 are called basis states.

The basis B is an orthonormal basis such that 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0.
A key issue in quantum computing, is, extracting information from quantum states, be-

cause even though there is theoretically an infinite amount of information held in α and β,
after measurement this information is lost and we can only obtain a |0〉 and |1〉 quantum state
measured with probability |α|2 and |β|2, respectively. After measurement α and β are reset
to either 0 or 1. This behavior is, in fact, one of five key properties that distinguish quantum
computing from classical computing:

1. Superposition:
A quantum system unlike a classical system can be in a superposition of |0〉 and |1〉 basis
states, see Eq. (1.1).

2. Entanglement [B+64]:
Given two qubits in the state |ψ〉 = |0〉|0〉+ |1〉|1〉, there is no way this can be written
in the form |φ〉|χ〉 , so the two states are intimately entangled.

3. Reversible unitary evolution:
Schrödinger’s equation tells us Ĥ|ψ〉 = i~ ∂|ψ〉/∂t. Formally, this can be integrated to
give |ψ(t)〉 = Û(t)|ψ(0)〉, where Û(t) is a unitary operator given by
Û(t) = P̂ exp[(i/~)

∫ t
0 dt

′Ĥ(t′)], where P̂ is the path ordering operator. Clearly such an

evolution can be reversed by and application of Û †.
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4. Irreversibility, measurement and decoherence [PZ93]:
All interactions with the environment are irreversible whether they be measurements
or the system coming to thermal equilibrium with its environment. These interactions
disturb the quantum system, a process called decoherence and destroy the quantum
properties of the system.

5. No-cloning:
The irreversibility of measurement also leads us to our inability to copy a state without
disturbing it in some way and, in fact, it can be proven that any general copying routine
is impossible.

The last two properties are certainly restrictive and create operational and manufacturing
limitations for quantum computers, but these are simply the difficulties that must be overcome,
in order to harness the computational power of quantum states.

1.2.1 Tensor product notation

If we allow N qubits to interact, the state generated has a possible 2N basis states. We form a
combined Hilbert space, with the tensor product HN = H2 ⊗H2 ⊗ ...⊗H2, where the order
of each term is important. The following notations are all equivalent for the given state

|0〉1 ⊗ |1〉2 ⊗ |0〉3 ⊗ ...|0〉N ≡ |0〉1|1〉2|0〉3...|0〉N ≡ |
1
0,

2
1,

3
0, ...,

N
0〉 ≡ |010...0〉, (1.3)

where |010...0〉 means qubit ‘1’ is in state |0〉, qubit ‘2’ is in state|1〉 and qubit ‘3’ is in state
|0〉 etc.

We will choose the ordering of the N-qubit basis states |x〉 where x ∈ {0, 1}N representing
a string of 0 and 1’s of length N, such that when x is viewed as a binary number, this number
orders the basis. For example, a system of two quantum bits is a four-dimensional Hilbert
space H4 = H2 ⊗H2, having an orthonormal basis {|00〉, |01〉, |10〉, |11〉} .

1.3 Geometric algebra (GA)

In 1843, Sir William Hamilton, inspired by the usefulness of complex numbers in describing
the geometry of the two dimensional plane, sought a generalized system for the physical three
dimensions of space. He found correctly that trying to expand the two dimensional complex
numbers to a three dimensional structure was not possible, but by jumping to four dimensions,
discovered the quaternions defined by

q = a+ bi+ cj + dk, (1.4)

where each of i, j, k now square to minus one, with ij = k and a, b, c, d ∈ ℜ. He succeeded
in successfully duplicating the role of complex numbers for three dimensions, however, in
doing so, he had to sacrifice commutivity, requiring ij = −ji. To understand Hamilton’s
generalization we can write a quaternion as

q = f + ~rg, (1.5)

where ~r2 = ~r.~r = −1 and f, g ∈ ℜ. Viewed in this way, we see that effectively Hamilton
replaced the single complex plane, with an infinity of complex planes, oriented in 3-space
according to the unit vector ~r, which thus allows us to do rotations in the full three dimensions
of space. It is conventional to call Im(H) the vector quaternions and we find that as a vector
space Im(H) is isomorphic to R

3. This led Hamilton to postulate, many years ahead of his
time, that the quaternion provided a natural unification of time and the three dimensions of
space.
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To produce proper three dimensional rotations using the vector quaternions, however,
Hamilton also found that he had to proceed slightly differently than for the complex plane, in
that the quaternion i, for example, must now act by conjugation(a bi-linear transformation),
that is to rotate a vector u ∈ Im(H), we use

u
′
= iui−1, (1.6)

which now completes a proper 3-dimensional rotation about a plane perpendicular to i,
although, now by π, rather than π

2 . In fact, for a rotation of θ about a plane perpendic-
ular to i, we require

u
′
= e

iθ
2 ue

−iθ
2 . (1.7)

1.3.1 The vector cross product and quaternions

Working in the subspace of the vector quaternions with u, v ∈ Im(H), we have

uv = −u.v + u× v, (1.8)

where u× v is the conventional cross product of two vectors and we also have

vu = −u.v − u× v. (1.9)

Adding and subtracting these equations we find

u.v = −1

2
(uv + vu) (1.10)

u× v =
1

2
(uv − vu), (1.11)

(1.12)

which shows that the vector algebra of R3 can be interpreted in terms of quaternions.
Gibbs popularized a form of vector algebra based on the dot and cross product in the

1880s, which sidelined quaternions, due to their perceived unusual approach to rotations and
their anti-commutivity [AR10], [Sze04].

1.3.2 Generalizations beyond quaternions

We might naturally expect higher dimensional generalizations beyond quaternions, however,
Frobenius proved in 1878 that a finite dimensional associative division algebra over R, must
be isomorphic to R,C or H. This shows the important position held by the quaternions, which
also are associative, so we can always represent this algebra with matrices. If we are willing
to sacrifice associativity, then we can go one more step to the eight dimensional octonions.

1.3.3 Clifford’s geometric algebra

William Clifford, just a few years after Hamilton, incorporated the quaternions into a unified
framework he called geometric algebra (GA). Clifford found that by using a wedge product
(developed earlier by Grassman), as opposed to the vector cross product, he was able to pro-
duce an algebraic structure, which automatically incorporated the properties of both complex
numbers and quaternions. Clifford defined the geometric product for two vectors a, b [DL03],
as

ab = a · b+ a ∧ b, (1.13)

where a.b is the conventional dot or inner product and a ∧ b is the wedge or outer product,
which represents a signed area in the plane of the two vectors. In three dimensions, we have
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the simple relationship with the conventional vector product of a∧ b = ιa× b, where ι will be
defined shortly, with properties identical to the unit imaginary number i =

√
−1. The outer

product inherits the anti-symmetric nature of the cross product, so we see that the geometric
product splits naturally into symmetric and anti-symmetric components.

The big advantage of the outer product is that it represents a directed area (spinning
clockwise or anti-clockwise) in the plane of the two vectors a and b, whereas the vector cross
product produces a vector perpendicular to the plane of a and b. In four dimensions, for
example, a plane has an infinity of perpendicular vectors, so is ambiguously defined, whereas
the outer product stays within the defined plane and therefore more easily generalizes to
higher dimensions. For researchers unfamiliar with GA, the Cambridge University hosts an
educational website at http://www.mrao.cam.ac.uk.

1.3.4 Geometric algebra (GA) in 3 dimensions

If we define a right-handed set of orthonormal basis vectors σ1, σ2, σ3, that is

σi.σj = δij , (1.14)

then expanding the geometric product for distinct basis vectors, we have

σiσj = σi.σj + σi ∧ σj = σi ∧ σj = −σj ∧ σi = −σjσi. (1.15)

This can be summarized by

σiσj = σi.σj + σi ∧ σj = δij + ιǫijkσk. (1.16)

Thus, we have an isomorphism between the basis vectors σ1, σ2, σ3 and the Pauli matrices
through the use of the geometric product, which justifies using the same symbols for both,
where we have defined the trivector

ι = σ1σ2σ3, (1.17)

which represents a signed unit volume. We find that

ι2 = σ1σ2σ3σ1σ2σ3 = −1 (1.18)

and we find that ι commutes with all other elements of the algebra and so acts equivalently to
the complex number i. We could replace ι with i in our case with three dimensions, however, in
even dimensions, ι is actually anti-commuting, so it is preferable to define a different symbol.
The bivectors also square to -1, that is

(σiσj)
2 = (σiσj)(σiσj) = −σiσjσjσi = −1 (1.19)

and we use these to define the isomorphism with quaternions identifying i, j, k with σ2σ3 =
ισ1, σ1σ3 = −ισ2, σ1σ2 = ισ3 respectively, and hence the Pauli algebra iσ1,−iσ2, iσ3.

Summary of Clifford’s algebra in 3 dimensions

Thus, we have at our disposal in 3-space:

a {σ1, σ2, σ3} {σ1σ2, σ2σ3, σ3σ1} σ1σ2σ3
1 scalar 3 vectors 3 bivectors 1 trivector

area elements volume element

We will use the vectors σ1, σ2, σ3, to define a coordinate system equivalent to a typical real
Cartesian co-ordinate system, the bivectors will be used to represent spinors or rotations in
this space and the trivector takes the place of the complex number i.
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A general multivector can be written

M = a+ ~v + ι ~w + ιb, (1.20)

which shows in sequence, scalar, vector, bivector and trivector terms, where a vector would
be represented ~v = v1σ1 + v2σ2 + v3σ3, where vi are scalars. This multivector, can be used to
represent many mathematical objects, such as scalars (a), complex numbers (a+ ιb), quater-
nions (a + ι ~w), vectors (polar) (~v), four-vectors (a + ~v), pseudovectors (ι ~w), pseudoscalars (
ιb), the electromagnetic anti-symmetric tensor (~v + ι ~w) and spinors (a + ι ~w), with the four
complex component Dirac spinor represented by the full multivector M . This illustrates how
GA can replace a diverse range of mathematical formalisms. The spinor mapping defined
in Eq. (1.24), for example, employed in chapters 4 to 8 in order to represent qubit spinors
and their associated rotations. GA is the largest possible associative algebra that integrates
all these algebraic systems into a coherent mathematical framework. It has been claimed
that GA, in fact, provides a unified language to physics and engineering and can be used to
develop all branches of theoretical physics [DL03], [HS84], [Hes99], [Hes03], [DL03], [HD02a]
bringing geometrical meaning to all operations and physical interpretation to mathematical
elements [DSD07] . Clifford algebra variables have also been proposed as a solution to the
EPR paradox [EPR35], [Chr07].

1.3.5 Rotations in 3-space with GA

To rotate an arbitrary vector by an angle |~v| about an axis given by the vector ~v, we define a
Rotor which acts by conjugation similar to quaternions

R = e−ι~v/2 = cos(|~v|/2)− ι ~v|~v| sin(|~v|/2), (1.21)

which can also be written in terms of Euler angles

e−ισ3φ/2e−ισ2θ/2e−ισ3χ/2, (1.22)

so that, we have

~v ′ = R~vR†. (1.23)

The † is also called the Reversion operation, which acts the same as the conventional conjugate
operation for complex numbers, flipping the order of the terms and the sign of ι.

The bilinear transformation needed to calculate rotations does appear a little more com-
plicated than the left sided action of rotation matrices, however, the formula does apply
completely generally, being able to rotate not only vectors but also any component of the
algebra, such as bivectors and trivectors and in any number of dimensions besides three.

1.3.6 Representing quantum states in GA

Spinors can be identified with the scalars and bivectors of 3-dimensional GA and we find a
simple 1 : 1 mapping to GA as follows [DL03,DSD07,PD01]

|ψ〉 = α|0〉+ β|1〉 =
[
a0 + ia3
−a2 + ia1

]

↔ ψ = a0 + a1ισ1 + a2ισ2 + a3ισ3. (1.24)

Hence, we are mapping spinors to the even subalgebra, which is also closed under multiplica-
tion.
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1.3.7 Measurement probabilities in GA

The overlap probability between two states ψ and φ in the N -particle case is given by Doran,
[DL03]

P (ψ, φ) = 2N−2〈ψEψ†φEφ†〉0 − 2N−2〈ψJψ†φJφ†〉0, (1.25)

where the angle brackets 〈〉0 mean to retain only the scalar part of the expression, that is, to
disregard all vectors, bivectors and higher elements. We have the two observables ψJψ† and
ψEψ†, where

E =
N∏

b=2

1

2
(1− ισ13ισb3) (1.26)

=
1

2N−1



1 +

⌈N−1
2

⌉
∑

n=1

(−)nCN2n
(
ισi3
)





and where CNr (ισi3) represents all possible combinations of N items taken r at a time, acting
on the objects inside its bracket. For example C3

2 (ισ
i
3) = ισ13ισ

2
3+ισ

1
3ισ

3
3+ισ

2
3ισ

3
3. The number

of terms given by the well known formula

CNr =
N !

r!(N − r)! . (1.27)

For the second observable, we have

J = Eισ13 =
1

2N−1

⌊N+1
2

⌋
∑

n=1

(−)n+1CN2n−1(ισ
i
3). (1.28)

For the case N = 2, for example, we find

J =
1

2

(
ισ13 + ισ23

)
(1.29)

E =
1

2

(
1− ισ13ισ23

)
.

In order to implement this formula on a given N -particle state ψ, we encode the measurement
directions we intend to use into an auxiliary state φ, and then calculate the overlap probability
according to Eq. (1.25).

1.4 Java software development

In order to develop an intuitive feel for the behavior of quantum circuits, a Java simulation
program was developed. Initially, the program modeled basic gate elements, such as the
Hadamard gate and the Controlled-Not gate, but then expanded to model simple circuits such
as the circuit to create Bell states, Deutsch’s algorithm and the Deutsch-Jozsa algorithm. It
was then expanded further to allow construction of the Fourier transform and to allow the
inclusion of black-box elements circuit elements, as used in the Grover search algorithm.

Following conventional programming practice, a user interface using a menu system to
hold the available operations is provided, along with a drag and drop mouse driven interface,
with the use of the right-click button as a property editor for the component being clicked on,
or a way of adding new components depending on the context. A screen in the form of a grid
is presented upon which quantum circuit elements can be placed. Additionally, the progress
of the wave function is displayed underneath the circuit and for some circuits some technical
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readout is also provided. The simulator can be run either as a standalone Java application or
online embedded in a web page.

In the circuit above, we see the use of the single qubit Hadamard gates(H) and the two-
qubit Ctrl-S and Ctrl-T gates, where the control line is the filled in black circle, followed at
the end by swap gate. The gates with a Ctrl- line means that the associated gate is activated
only if the control line is set to 1, otherwise an identity operation is performed. The action of
these gates is further described in the next section. The circuits are read left to right, where
the lines do not necessarily represent a physical wire but can represent the movement of a
particle such as a photon through space, or alternatively to the passage of time.

In the example above, the first three qubits on the canvas are activated and the progress
of these three qubits is shown written at each step of the circuit. Underneath the circuit, we
also see visually the progress of the wave function, shown for each basis state 0 . . . 7, starting
from |0〉 ⊗ |0〉 ⊗ |0〉, which is the first basis vector. Underneath each wave function reads
the number 1.0, which shows that each wave function is normalized correctly and on each
probability amplitude the actual numerical values are displayed in gray. After the last wave
function, the wave function in black indicates actual probabilities. We can see that the circuit
has correctly created a uniform superposition wave function. Some of the modifications we
can easily now implement on the circuit include: clicking on the small gray square to the top
right of the box representing each gate in order to raise the gate to higher and higher powers,
or we can right-click on a gate to select a different gate or modify the gate in some way from a
pull down list, or alternatively we can select a completely different circuit from the main menu
provided. We can also toggle the starting qubits between the |0〉 and |1〉 states by clicking on
them.

The circuit model of quantum computing implements the unitary transformation describing
a particular circuit. An alternative approach is to directly implement the Hamiltonian for some
required unitary evolution. This approach has also been modeled in a Java simulator, allowing
various Hamiltonian operators to visually evolve a starting wave function. A variant of the
Hamiltonian approach, adiabatic computing, is also modeled in this program, which involves
adiabatically evolving a Hamiltonian, from some simple starting Hamiltonian to a solution
Hamiltonian.
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The adiabatic search program is shown, searching for a single target item out of 16 ele-
ments. The left hand screens show the interpolating functions from the starting Hamiltonian
to the solution Hamiltonian, followed by the adiabicity of the evolution process shown by the
graph of 〈0|dH/dt|1〉 and, finally, a readout on the eigenvalues of the Hamiltonian and their
separation distance. The three right hand screens show the initial wave function, followed by
the current wave function, showing the dominance of the target probability amplitudes after
time t/T = 2.14, and the final screen shows the location of the target item in the database.
So, the probability amplitude is 0.57 showing the evolution is succeeding in amplifying the
probability amplitude of the solution.



1.5 Quantum Gates

Following the circuit model approach to quantum computing, we create a quantum analog of
classical circuit design, constructed from a set of elementary gates. As mentioned, this may
appear overly restrictive because, in general, for a set of n qubits we have a 2n dimensional
Hamiltonian evolving a set of quantum states, however, it has been shown that the Hamiltonian
and circuit models are equivalent to each other. With N qubits, we also need to apply an
2N × 2N unitary transformation matrix acting on the N qubits, however, it has been proven
that any general unitary transformation on N qubits can be decomposed into just one type
of two qubit gate (the controlled-NOT) and single qubit gates [NC02]. So, without loss of
generality, we can investigate quantum algorithms based on a quantum circuit using primitive
quantum circuit components. The only N -qubit gate we use is a black box oracle which
returns a 0 or 1, depending on the input state, as used in the Grover search algorithm.

While looking at single qubit and two qubit gates it is helpful to keep the following points
in mind:

1. Gates must be unitary, if a gate is not unitary, then the probability is not conserved
through the gate. Unitary gates also immediately imply reversibility because the inverse
of a unitary transformation is also unitary from the unitary condition: U †U = I . In
fact any unitary operation is a valid gate.

2. We can characterize an arbitrary quantum gate by specifying its action on the basis
states, since superposition holds, that is |ψ〉 =∑N

i=1 ci|ψi〉. This means, for example, for
single qubit gates, we only need to define their effect on the |0〉 and |1〉 basis states to
completely define the gate.

For quantum circuits, which have a classical digital electronic analog, the circuit connects
basis states to basis states. However, many quantum gates do not have a classical analogue
because, while they input a set of basis states, they output superposition states intermediate
between 0 and 1, and so have no classical analogue.

1.5.1 Single qubit gates

Any unitary matrix acting on a single qubit is a valid quantum operation, so we have the
following definition:

Definition 1.5.1 An operation on a qubit, called a unary quantum gate, is a unitary mapping

U : H2 → H2, where H2 represents a two-dimensional Hilbert space. [Hir01]

Note: A unary quantum gate acts on a single qubit, as opposed to a binary quantum gate
acting on two qubits.

A single qubit may appear to be a fairly elementary component, however a single qubit is
sufficient to model the Grover search algorithm (Chapters 3 and 4), and also Meyers’ penny
flip game (Chapter 5).

The Bloch sphere

Because any single qubit can be represented by (ignoring the global phase):

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (1.30)

we have an isomorphism between single qubit operations and solid body rotations, that is we
have the isomorphism SO3 ≈ SU2. Thus, the Bloch sphere is a useful visual representation
for a qubit.
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Figure 1.1: The Bloch sphere.

The Pauli gates

The three Pauli operators σ1, σ2, σ3 are useful as single qubit gates, and for ease of depiction
on circuit diagrams are represented by the symbols X,Y, Z, respectively.

The X gate

The X gate or NOT gate, is given by the action of the Pauli σ1 matrix, that is X =

[
0 1
1 0

]

.

Looking at the actions on the basis states:

X|0〉 |1〉

X|1〉 |0〉

This shows that the quantum NOT gate is akin to the classical NOT gate, switching the value
of a bit from 0 to 1. We can also write the NOT gate as a unitary operator ÛNOT = |1〉〈0|+ |0〉〈1|.

The Y gate

In matrix form, Y =

[
0 −i
i 0

]

, and as a unitary operator we have ÛY = i|1〉〈0| − i|0〉〈1|.

The Z gate

In matrix form, Z =

[
1 0
0 −1

]

, and as a unitary operator we have ÛZ = |0〉〈0| − |1〉〈1|.

1.5.2 Single qubit gates in geometric algebra

The three basis vectors σ1, σ2, σ3, used in GA are isomorphic with the Pauli matrices. So
that, for example, the action of the NOT gate in GA is simply eιπσ1/2 = ισ1, which acts on a
general vector ~v through conjugation, such that

~v′ = iσ1~v(−iσ1) = v1σ1 − v2σ2 − v3σ3, (1.31)

which is the correct action of the NOT gate if represented on the Bloch sphere. For the

Hadamard gate we have H = 1√
2

[
1 1
1 −1

]

= 1√
2
(X + Z) then we can see in GA the gate is
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simply ι√
2
(σ1 + σ3). The T or π

8 gate can be written as

T =

[
1 0

0 eiπ/4

]

≡ e−ιπσ3/8, (1.32)

which in this case is more obvious than the matrix form which has a π
4 coefficient. Thus, GA

gives a simple and efficient representation for single qubit gates.

Java simulator

Single qubit gates - Hadamard gate

The action of the Hadamard gate is demonstrated in the Java
simulator. We can now see written alongside the gate a calcu-
lation of how it transforms the |0〉 state into the 1√

2
(|0〉+ |1〉)

state. At the bottom of the screen, we also see the behavior
of the probability amplitudes of the wave function before and
after the action of the Hadamard gate.
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1.5.3 Two qubit gates

A system of two quantum bits is a four-dimensional Hilbert space H4 = H2 ⊗H2, having an
orthonormal basis {|00〉, |01〉, |10〉, |11〉} . For a two qubit state we can then write

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 , (1.33)

with the normalization condition
∑

x∈{0,1}2
|αx|2 = 1, (1.34)

where {0, 1}2 represents a string of 0’s and 1’s of length 2.

Definition 1.5.1 A binary quantum gate is a unitary mapping H4 → H4.

The Controlled-NOT or CNOT gate

A two qubit version of the NOT gate is the Controlled-NOT or CNOT gate and is represented
in circuits by:

e

u|A〉 |A〉

|B〉 |B A〉+f

The top line of the circuit is the control line for the gate, represented by the filled in circle.
The open circle indicates the qubit that will be flipped if the control line is set to one. The
|A〉 line on the control line continues through the CNOT gate unchanged, however, a phase
can be ‘kicked back’ from the other line. The |B〉 line is the data qubit line, which combines
with the first qubit and produces the target qubit. The notation |B ⊕A〉 represents addition
modulo 2 or the XOR gate. This is meaningfully defined here because the input states are
assumed to be basis states represented as 0 or 1 in this case. The XOR operation is 1, if one
of the input bits is 1 and the other one is 0, otherwise the XOR operation gives zero.

Similarly to single qubits, two qubit gates can be represented by transformation matrices,
see definition (1.5.1), specifically for the CNOT gate:

UCN =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (1.35)

Thus,

ψ′ = UCNψ =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0













α00

α01

α10

α11






=







α00

α01

α11

α10






.

This can also be written as a unitary operator |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|. For
example, if |ψ〉 = |10〉 the CNOT produces the state |ψ〉 = |11〉.
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Universality

We have now reached an important point in the development of quantum gates, because it
can be shown that any multiple qubit gate can be composed from just controlled-NOT and
single qubit gates [NC02]. It is found that any k-qubit unitary operation can be simulated
with O(4kk) such gates. Of course, the set of possible single qubit gates is infinite, because
this is the set of all possible unitary transformations. Other combinations of gates can be
found as a basis if we only require it to be universal in an approximate sense, for example
the controlled-NOT, along with the Hadamard gate and the π/8 gate, can be considered a
universal set of gates in an approximate sense.

So, with these two types of gates (CNOT and single qubit), we now have all the gates
we need to develop any quantum algorithm. This theorem is the quantum equivalent of the
universality of the NAND gate in classical computing.

Other useful two qubit gates

The swap gate is used to swap the position of two qubits given by the matrix







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.

The Ctrl-Phase gate gate applies the phase gate operation if the control line is set,

Ctrl− phase =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ






. If we set φ = π then we form the Ctrl− Z gate.

1.5.4 Three qubit gates

Three qubit gates are not required to develop a universal quantum computer but they are
of theoretical interest. For example, the three qubit Toffoli gate can implement a reversible
NAND gate and the universality of the NAND gate in classical computing means we can
therefore duplicate any classical algorithm on a quantum computer.

The other property of classical computers is Fanout, which can also be implemented with
this gate, though only on basis states. Another process of classical computers is random
number generation and, because the Hadamard gate creates an equal superposition of two
states, upon measurement it gives a random choice of basis states, and so can be used to
introduce indeterminism into a quantum computer.

1.5.5 Measurements

Even though measurement is not a unitary transformation it can be useful in circuits, because
it creates the operation of collapsing the quantum state to one of the basis values.

Given a state |ψ〉 = α |0〉+ β |1〉 a measurement is represented by:

where M represents the classical bits 0,1. Or for a 2 qubit state, given by (1.33), if we measure

the first qubit to be 0, we know we are left with the state: |ψ〉 = α00|00〉+α01|01〉√
|α00|2+|α01|2

.
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1.6 General quantum circuits

The rows and columns of the unitary transforms are labeled from left to right and top to
bottom as 00...0,00...1, to 11...1, with the bottom-most wire being the least significant bit. A
wire carrying n qubits is represented by:

��
n

Quantum circuits must satisfy:

1. No loops: a loop or some sort of feedback would make the circuit non-reversible and so
is not permitted. Also, the circuit would become non-linear.

2. No fan-in: in a classical circuit this is achieved by joining two wires together to form a
single wire (a bitwise or) but this operation is not reversible and therefore not unitary
and so not allowed.

3. No fan-out: it can be shown that quantum mechanics does not allow qubits to be copied,
thus making general fan-out impossible. This result is also known as the no-cloning
theorem.

1.6.1 Copying circuit

The no-cloning theorem states that we cannot create a circuit to duplicate a general quantum
state, so it might appear that any form of copying is impossible, however we demonstrate that
we can copy orthogonal states using the CNOT gate as shown below. The data qubit is passed
straight through, and the target qubit holds the result of the gate operation. If we set the
input target qubit to |0〉, then we can copy the set of orthogonal states |0〉 and |1〉 as shown.

e

u|0〉 |0〉

|0〉 0〉 e

u|1〉 |1〉

|0〉 1〉

So, in the two cases above, the data bit is copied.
We can prove this algebraically, with a general basis state |ψxy〉 = |x, 0〉, where x ∈ {0, 1} and
y = 0, we have for the final state

ψ′ = [CNOT ]

[[
1− x
x

]

⊗
[
1
0

]]

.

If we expand the tensor product and act with the CNOT gate we find

ψ′ =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0













1− x
0
x
0






=







1− x
0
0
x






= (1− x)







1
0
0
0






+ x







0
0
0
1






,

which can be written conveniently in Dirac notation as

|ψ′〉 = (1− x)|0, 0〉+ x|1, 1〉).
We notice this can be combined into a single term |ψ′〉 = |x, x〉, which implies we have the
mapping |x, 0〉 → |x, x〉, thus showing that we are successfully copying the input basis state
|x〉, where x ∈ {0, 1}.
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1.6.2 Creating a Bell state or an EPR pair

The Bell state is a maximally entangled two qubit state, and is useful in modeling two-player
games, see Chapter 6. Consider the following circuit with 2 qubits:

e

uH|A〉

|B〉
|ψ〉

Assuming |A〉 and |B〉 are basis states, we have an initial state |ψxy〉 = |x, y〉 where {x, y} ∈ {0, 1}.
We can construct the final state

ψ′ = [CNOT ]

[

[H]

[
1− x
x

]

⊗
[
1− y
y

]]

.

Expanding the Hadamard gate and the tensor product:

ψ′ = [CNOT ]

[

1√
2

[
1

1− 2x

]

⊗
[
1− y
y

]]

= [CNOT ] 1√
2







1− y
y

(1− 2x)(1− y)
(1− 2x)y






.

Allowing the CNOT gate to act we obtain the final state

ψ′ =
1√
2







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0













1− y
y

(1− 2x)(1− y)
(1− 2x)y






=

1√
2







1− y
y

(1− 2x)y
(1− 2x)(1− y)







and writing as a sum of basis vectors

ψ′ =
1− y√

2







1
0
0
0






+

y√
2







0
1
0
0






+

(1− 2x)y√
2







0
0
1
0






+

(1− 2x)(1− y)√
2







0
0
0
1






.

This can be written conveniently as states: |ψ′〉 = 1√
2
(|0, y〉+ (−1)x|1, 1− y〉).

So, can we find a single unitary matrix applied to the input state in H4, such that

Ubell







(1− x)(1− y)
(1− x)y
x(1− y)
xy






=

1√
2







1− y
y

(1− 2x)y
(1− 2x)(1− y)






?

With some simple algebra, looking at the four possible input states, we find

Ubell =
1√
2







1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0






,

where we can fairly easily see that Ubell is unitary.

So, we can find ψ′ = Ubellψ, which can be used to switch to the Bell basis.
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Entanglement

Definition 1.6.1 A state z ∈ H4 of a two-qubit system is decomposable if z can be written as

a product of states in H2, z = x⊗ y. A state that is not decomposable is entangled.

So, for the Bell state, we require
|00〉+ |11〉√

2
= (a0|0〉+ a1|1〉)(b0|0〉+ b1|1〉) = a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉 (1.36)

for some complex numbers a0, a1, b0, b1 ∈ C. However a0b0 =
1√
2
, a0b1 = 0, a1b0 = 0 and

a1b1 =
1√
2
, which is impossible, and so the state is entangled. It has been shown that correla-

tions as strong as entanglement cannot exist in classical physics, and it is one of the resources
available to quantum computers unavailable on classical machines.

Given a general two qubit state

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉,

if it is not entangled, then we can split the state into two qubits, that is |ψ〉 = |φ〉|χ〉. If
all four terms are present, then to be able to factorize the state we must have b/a = d/c or
ad− bc = 0. Hence, ad− bc = 0 implies no entanglement.

1.6.3 Quantum parallelism

Because of the property of the superposition of states, a quantum computer can be constructed
to be massively parallel, for example, a quantum computer can evaluate a function f(x) for
many different values of x simultaneously. Suppose we have a function from a binary state to
a binary state f(x) : 0, 1→ 0, 1 . This can be conveniently computed with a 2 qubit quantum
computer using the unitary transformation

|x, y〉 Uf−→ |x, y ⊕ f(x)〉 .

We know that given, say, a classical circuit for computing f(x), we can always mimic it with
a quantum circuit of comparable efficiency. So, we will call this black box circuit Uf .

This can be also represented as a unitary matrix:

Uf =







1− f(0) f(0) 0 0
f(0) 1− f(0) 0 0
0 0 1− f(1) f(1)
0 0 f(1) 1− f(1)






. (1.37)

The initial state |ψ〉 can be obtained by passing |0〉 through a Hadamard gate. Now, we can
see from the final state that a measurement on |φ〉 gives either |0, f(0)〉 or |1, f(1)〉 . So, if
the first qubit measures the state |0〉, then the second qubit will be |f(0)〉, if the first qubit
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measures |1〉 then the second qubit will be |f(1)〉. So, the final quantum state appears to have
evaluated the function f(x) for two different values of x simultaneously.

If we now had two data bits x1 and x2 instead of just x, and each initially passing through
Hadamard gates, we would create an input state:

|ψ0〉 =
|0〉+ |1〉√

2
.
|0〉+ |1〉√

2
|0〉 = |00〉+ |01〉+ |10〉+ |11〉

2
|0〉 . (1.38)

We can write H⊗2 to denote the action of two Hadamard gates on two qubits. Similarly for n
Hadamard gates acting on n qubits we can write H⊗n. For H⊗n acting on n |0〉 state qubits
we will obtain:

1√
2n

∑

x∈{0,1}n
|x〉 , (1.39)

which produces an equal superposition of all basis states. This equal superposition of the basis
states is in fact a convenient starting state for many algorithms.

We can now extend the concept to quantum parallel evaluation of a function with an n
bit input x and 1 bit out, f(x), which can be performed in the following manner:

1. |0〉⊗n |0〉 : prepare an n+ 1 qubit state

2.
H⊗n

−→ 1√
2n

∑

x∈{0,1}n |x〉 |0〉 : apply Hadamard transformation

3.
Uf−→ 1√

2n

∑

x∈{0,1}n |x〉 |f(x)〉 : apply Uf

4.
M−→ (x, f(x)) : measure the state.

So, all possible values of f are available even though we only evaluated the algorithm once.
However, measurement of the final state only gives f(x) for a single value of x at a time.
We could fairly straightforwardly extend the function f(x) to output several bits, that is
f(x) : {0, 1}n → {0, 1}m where m,n ∈ Z

+.
Even though the function has been evaluated at several values of x simultaneously and is

held in the quantum qubits, we have no way of accessing this information, because after a single
measurement the wave function collapses and we lose all other amplitudes. We need some way
to extract the extra information, in order to take full advantage of quantum parallelism. This
is implemented in Grover’s algorithm where a black box oracle is used and the results of
many parallel operations are interfered with each other to allow a measurement to return the
solution state.

1.7 Summary of quantum algorithms

Currently, two main classes of problems are known, where it appears a quantum computer
will outperform a classical one. Firstly, Shor’s quantum algorithm which factorizes large
numbers exponentially faster than a classical computer and which is based on the quantum
Fourier transform. Classically, the Fourier transform takes roughly N log(N) = n2n steps to
transform N = 2n numbers, whereas a quantum computer takes about log2(N) = n2 steps, an
exponential saving. The second main class of quantum algorithms, allowing a speedup over
classical computers although not an exponential speedup, is the quantum search algorithms.
Given a search space of size N , and no prior knowledge of its structure, we want to find
an element satisfying a known property. Classically, this problem requires N operations,
but the quantum search algorithm allows it to be solved in

√
N operations. Combining

these two algorithms, we find the quantum counting algorithm which can count the number
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of solutions in a database (without actually finding their identities). The main classes of
quantum algorithms are illustrated in Fig. 1.2.

Quantumalgorithms

Fourier transform Searches

Grover Search√
N speedup

QFT

2n speedup

PhaseEstimation

U |u〉 = e2πiφ|u〉
Quant.Counting

No. solutions

Factorization

N = pα1
1 ...pαm

m

Speedup of some

NP problems

Figure 1.2: The main quantum algorithms.
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The Fourier Transform and the Phase

Estimation Algorithm

Initially, we describe the quantum Fourier transform (QFT) followed by a review of the phase
estimation algorithm which is based on the QFT. This algorithm is important because it
forms the basis for Shor’s factorization algorithm which provides an exponential speedup over
equivalent classical algorithms. This investigation firstly produces a new result of an exact
error formula for the phase estimation algorithm and secondly we develop, in the following
chapter, an alternative approach to the Grover search process using the phase estimation
procedure.

2.1 Quantum Fourier transform (QFT)

2.1.1 Definition of the Fourier transform

The discrete Fourier transform (DFT), takes as input a vector of N complex numbers,
x0, . . . , xN−1 and outputs the transformed data as a vector of complex numbers y0, . . . , yN−1

defined by

yk =
1√
N

N−1∑

j=0

xje
2πijk/N . (2.1)

The quantum Fourier transform acting on a set of basis states |0〉, . . . , |N − 1〉 is defined to
be a linear operator with the following action on an arbitrary state:

N−1∑

j=0

xj |j〉 →
N−1∑

k=0

yk|k〉. (2.2)

We, of course, can presume that the initial state is normalized to one, that is:

N−1∑

j=0

x∗jxj =
N−1∑

j=0

|xj |2 = 1.

So, for the transformed state we have:

N−1∑

k=0

|yk|2 =
N−1∑

k=0

1

N

N−1∑

j=0

x∗je
−2πijk/Nxje

2πijk/N =
N−1∑

k=0

1

N
=
N

N
= 1.

So, we can see that the Fourier transform acting on a general state is unitary, and thus can
be implemented as the dynamics for a quantum computer.

2.1.2 Definition of binary expansion

In the following analysis we takeN = 2n , where n is some integer and the basis |0〉, . . . , |2n − 1〉
is the computational basis for an n qubit quantum computer. We will also represent the state
|j〉n or |j〉⊗n using a binary expansion written as j = j1j2 . . . jn, where

j = j12
n−1 + j22

n−2 + ...+ jn2
0. (2.3)
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We will also use the notation 0.jℓjℓ+1 . . . jn to represent a related binary fraction. That is, if
we divide Eq. (2.3) by 2k and we find the fractional part

frac

(
j

2k

)

= jℓ/2 + jℓ+1/2
2 + ...+ jn/2

k = 0.jℓjℓ+1 . . . jn =

n∑

i=ℓ

ji/2
i, (2.4)

where ℓ = n+ 1− k, then we will find typically that we can drop the integer part of many
expressions because when we find terms such ei2πj , obviously any integer part will contribute
an extra 2π, and so will not affect its numerical value.

2.1.3 Rearranging the Fourier transform formula

It can be shown that the Fourier transform can now be written in the form

|j〉 → 1

2n/2
[(
|0〉+ e2πi0.jn |1〉

) (
|0〉+ e2πi0.jn−1jn |1〉

)
. . .
(
|0〉+ e2πi0.j1j2...jn |1〉

)]
. (2.5)

This product representation makes it easy to derive an efficient circuit for the quantum Fourier
transform. The final swap operations to invert the order of the bits and the normalization is
omitted from the right hand side of the diagram below for clarity.

H R2 Rn−1 Rn

u

u

u

|j1〉 |0〉+ e2πi0.j1..jn |1〉

H Rn−2 Rn−1

u

u

|j2〉 |0〉+ e2πi0.j2..jn |1〉

.

.

.
.
.
.

H R2

u

|jn−1〉 |0〉+ e2πi0.jn−1jn |1〉

H|jn〉 |0〉+ e2πi0.jn |1〉

Figure 2.1: Fourier transform.

The gate Rk is defined as: Rk =

[
1 0

0 e2πi/2
k

]

. So the control-Rk on a pair of qubits will be

[
I2 02
02 [Rk]

]

=







1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k






.

The Fourier transform in geometric algebra

The Fourier transform was represented in a product representation Eq. (2.5), so knowing
the mapping to geometric algebra for a single qubit Eq. (1.24), we can write down the same
expression in GA as

|j〉 → 1

2n/2
(
1− e−2π0.jnισ3ισ2

) (
1− e−2π0.jn−1jnισ3ισ2

)
. . .
(
1− e−2π0.j1j2...jnισ3ισ2

)
. (2.6)
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2.2 Phase estimation

The Fourier transform is the key to the phase estimation algorithm, which is the eigenvalue
determination of a unitary matrix. That is we have:

U |u〉 = e2πiφ|u〉. (2.7)

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue e2πiφ, where the value of
φ ∈ ℜ is unknown. The goal of the phase estimation algorithm is to estimate φ. To perform
the estimation, we assume that we have available black boxes, sometimes known as oracles,
capable of performing the controlled-U2j operation, for selected non-negative integers j.

U2j |u〉 = U . . . U
︸ ︷︷ ︸

2j terms

|u〉 = e2πi(2
jφ)|u〉 (2.8)

The algorithm uses two registers. The first register contains t qubits initially in the state |0〉.
How we choose t depends on two things, the number of digits of accuracy we wish to have
in our estimate of φ, and with what probability we wish the phase estimation procedure to
be successful. The second register begins in the state |u〉 and contains as many qubits as
necessary to store |u〉. Phase estimation is performed in two stages. The first stage is shown
below, where we have omitted the normalization for simplicity.

H

u

|0〉 |0〉+ e2πi(2
t−1φ)|1〉

H

u

|0〉 |0〉+ e2πi(2
t−2φ)|1〉

First register t qubits

.

.

.

.
.
.
.

H

u

|0〉 |0〉+ e2πi(2
1φ)|1〉

H

u

|0〉 |0〉+ e2πi(2
0φ)|1〉

U20 U21 U2t−2
U2t−1|u〉 |u〉

Second register

Figure 2.2: Phase Estimation.

This circuit begins by applying a Hadamard transform to the first register, followed by
application of controlled-U operations on the second register, with U raised to successive
powers of two. The final stage of the first register is seen to be therefore

1

2t/2

(

|0〉+ e2πi2
t−1φ|1〉

)(

|0〉+ e2πi2
t−2φ|1〉

)

. . .
(

|0〉+ e2πi2
0φ|1〉

)

(2.9)

and by multiplying out the brackets, this can be seen to equal

1

2t/2

2t−1∑

k=0

e2πiφk|k〉. (2.10)
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We omit a description of the second register because it stays in the state |u〉 throughout the
computation. We can describe the transformation by:

(
If ⊗ U j

)
(|t〉 ⊗ |u〉) = |t〉 ⊗ U j |u〉 = e2πijφ|t〉|u〉. (2.11)

Suppose now that φ can be expressed exactly in t bits, as φ = 0.φ1φ2 . . . φt, then the first
register can be written:

1

2n/2

(

|0〉+ e2πi0.φn |1〉
)(

|0〉+ e2πi0.φn−1φn |1〉
)

. . .
(

|0〉+ e2πi0.φ1φ2...φn |1〉
)

. (2.12)

Comparing with (2.5), we see this is exactly the QFT of the state |φ1φ2 . . . φn〉. So, applying
the inverse quantum Fourier transform to the first register will give us φ. That is

1

2t/2

2t−1∑

j=0

e2πiφj |j〉|u〉 F†
=⇒ |φ〉|u〉. (2.13)

So, a measurement on the first register in the computational basis gives us φ exactly (assuming
it can be exactly represented in the available t qubits).

2.3 Reliability of Estimate

Generally speaking, the phase φ may not be representable in a fraction containing n terms and
so only an approximation will typically be obtained. However, if we choose t ≥ n qubits in the
first register, we obtain φ accurate to n qubits with probability of success = 1− ǫ. Currently,
only approximate formulas are known for this relationship, such as the one given by Nielsen
and Chuang:

t− n ≤
⌈

log2

(
1

2ǫ
+

1

2

)⌉

. (2.14)

However, this approximate formula was found to lack usefulness when actual simulations were
carried out because it was desired to compare actual errors obtained with a reliable estimate,
so that convergence to an exact answer could be observed. Because of this, we now derive an
exact formula for the maximum roundoff error from first principles.

If the phase φ, used in phase estimation, cannot be expressed exactly in t bits, then the
algorithm will only form an estimate for the value of φ. However, to calculate φ accurate to
n bits with probability of success 1− ǫ, we need to find a t = t(n, ǫ). An exact formula was
obtained using p = t− n as:

ǫmax =
2

π2
ψ′
(
1 + 2p

2

)

, (2.15)

where ψ′(z) = dψ
dz is the trigamma function, ψ(z) = Γ′(z)

Γ(z) is the digamma function and Γ(z) =
∫∞
0 tz−1e−tdt is the standard gamma function.

We have written ǫmax, because for a complete range of possible φ angles, this will be the
worst possible error. So, if we run the phase estimation procedure many times with random
values of φ, the worst error will converge to ǫmax.

Expressions are also developed in the limit as the number of qubits t → ∞ and in the
limit as the added qubits p→∞. The exact formula is useful in confirming classical programs
simulating quantum phase estimation.

2.3.1 Introduction

Phase estimation is an integral part of Shor’s algorithm [Sho97], so an exact expression for
the maximum probability of error is valuable in order to precisely achieve a predetermined
accuracy.
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Given the eigenvalue equation U |u〉 = e2πiφ|u〉 for a unitary operator U , we can find an
approximation to the phase φ ∈ [0, 1) using the quantum phase estimation procedure [Mos99].
The first stage in phase estimation produces, in the measurement register with a t qubit basis
{|k〉}, the state [NC02]

|φ̃〉Stage1 =
1

2t/2

2t−1∑

k=0

e2πiφk |k〉. (2.16)

If φ = b/2t for some integer b = 0, 1 , . . . 2t − 1, then

|φ̃〉Stage1 =
2t−1∑

k=0

yk|k〉 , with yk =
e2πibk/2

t

2t/2
(2.17)

is the discrete Fourier transform of the basis state |b〉, that is, the state with amplitudes
xk = δkb. We then read off the exact phase φ = b/2t, from the inverse Fourier transform, as
|b〉 = F†|φ̃〉.

In general, however, when φ cannot be written in an exact t bit binary expansion, the
inverse Fourier transform, in the final stage of the phase estimation procedure, yields a state

|φ〉 ≡ F†|φ̃〉Stage1 , (2.18)

from which we only obtain an estimate for φ. That is, the coefficients xk of the state |φ〉 in
the t qubit basis {|k〉}, will yield probabilities which peak at the values of k closest to φ.

Given a desired accuracy s with an associated probability of success 1− ǫ, however, we can
determine the number of extra qubits p necessary to be added to the register for φ. Previously,
Cleve, Ekert, Macchiavello and Mosca [CEMM98] determined the following upper bound:

p ≤ pCEM =

⌈

log2

(
1

2ǫ
+

1

2

)⌉

. (2.19)

A similar derivation is given in Nielsen and Chuang [NC02] using similar approximations (for
example the derivation of equation 5.28). More recently in [IB02] another upper bound was
developed which also still used approximations.

Our goal now is to derive an upper bound which avoids the approximations used in the
above formulas and, hence, obtain a precise result.

2.3.2 Accuracy formula

Initially we follow the procedure given in [CEMM98]. Let b be the integer in the range 0 to
2t − 1 such that b/2t = 0.b1 . . . bt is the best t bit approximation to φ, which is less than φ,
then we define

δ = φ− b/2t,
which is the difference between φ and b/2t and where clearly 0 ≤ δ < 2−t. The first stage of
the phase estimation procedure produces the state given by Eq. (2.16). Applying the inverse
quantum Fourier transform to this state produces

|φ〉 =
2t−1∑

k=0

xk |k〉 , (2.20)

where

xk =
1

2t

2t−1∑

ℓ=0

e2πi(φ−k/2
t)ℓ =

1

2t
1− e2πi 2

tδ

1− e2πi(δ−
k−b
2t

)
. (2.21)

Assuming the outcome of the final measurement is m, we can bound the probability of obtain-
ing a value of m such that |m− b| ≤ e, where e is a positive integer characterizing our desired
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tolerance to error and where m and b are integers such that 0 ≤ m < 2t and 0 ≤ b < 2t. The
probability of observing such an m is given by

p(|m− b| ≤ e) =
e∑

ℓ=−e
|xb+ℓ|2 (2.22)

which is simply the sum of the probabilities of the states within e of b, where

xb+ℓ =
1

2t
1− e2πi 2

tδ

1− e2πi(δ−ℓ/2t)
, (2.23)

which is the standard result obtained from Eq. (2.21), (in particular see equation 5.26 in
[NC02]). Typically, at this point approximations are now made to simplify xℓ, however, we
proceed without approximations. We have

|xb+ℓ|2 =
1

22t
1− cos(2π2tδ)

1− cos(2π(δ − ℓ/2t)) . (2.24)

If we wish to approximate φ to an accuracy of 2−s, we choose e = 2t−s−1 = 2p−1 1, using
t = s+ p, and if we denote the probability of failure

ǫ = p(|m− b| > e), (2.25)

then we have

ǫ = 1− 1− cos 2π2tδ

22t

2p−1
∑

ℓ=−2p−1

1

1− cos 2π(δ − ℓ/2t) . (2.26)

This formula assumes that for a measurement m, we have a successful result if we measure a
state either side of b within a distance of e, which is the conventional assumption.

This definition of error, however, is asymmetric because there will be unequal numbers of
states summed about the phase angle φ in order to give the probability of a successful result,
because an odd number of states is being summed. We now present a definition of the error
which is symmetric about φ.

Modified definition of error

Given an actual angle φ that we are seeking to approximate in the phase estimation procedure,
a measurement is called successful if it lies within a certain tolerance e of the true value φ.
That is, for a measurement of state m out of a possible 2t states, the probability of failure will
be

ǫ = p

(∣
∣
∣2π

m

2t
− φ

∣
∣
∣ >

1

2

2π

2s

)

. (2.27)

Thus, we consider the angle to be successfully measured accurate to s bits, if the estimated φ
lies in the range φ± 1

2
2π
2s . Considering our previous definition Eq. (2.25), due to the fact that

b is defined to be always less than φ, then compared to the previous definition of ǫ, we lose
the outermost state at the lower end of the summation in Eq. (2.26) as shown in Fig. (2.3).
For example, for p = 1, the upper bracket in Fig. (2.3) (representing the error bound) can
only cover two states instead of three, and so the sum in Eq. (2.26) will now sum from 0 to 1,
instead of −1 to 1, for this case.

1Nielsen and Chuang [NC02] in the preliminary to Eq. 5.35, appear to have written incorrectly 2p
−1 instead

of 2p−1.
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An optimal bound

Based on this new definition then for all cases we need to add 1 to the lower end of the
summation giving

ǫ = 1− 1− cos 2π2tδ

22t

2p−1
∑

ℓ=−2p−1+1

1

1− cos 2π(δ − ℓ/2t) (2.28)

and if we define a = 2tδ and rearrange the cosine term in the summation, we find

ǫ = 1− 1− cos 2πa

22t+1

2p−1
∑

ℓ=−2p−1+1

csc2
π

2t
(a− ℓ). (2.29)

6
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∑1

0
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︷︸︸︷
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Limits of summation, Eq. (2.28)

Figure 2.3: Analysis of phase estimation accuracy.

Next, we demonstrate that the right hand side of Eq. (2.29) takes its maximum value at
a = 1

2 . Since we know 0 ≤ a < 1, and since we expect the maximum value of ǫ = ǫ(a, t, p)
to lie about midway between the two nearest states to generate the largest error, that is at
a = 1/2, we will substitute a = 1

2 +∆, where ∆≪ 1
2 . To maximize ǫ we need to minimize

cos 2π

(
1

2
+ ∆

) 2p−1
∑

ℓ=−2p−1+1

csc2
π

2t

(
1

2
− ℓ+∆

)

, (2.30)

as a function of ∆. Expanding to quadratic order with a Taylor series, we seek to minimize
(
1− π2∆2 +O(∆4)

) (
c0 + c1∆+ c2∆

2 + c3∆
3 +O(∆4)

)
, (2.31)

where ci are the coefficients of the Taylor expansion of cosecant2 in ∆. We find by the odd
symmetry of the cotangent about ℓ = 1

2 that

c1 =
2π

2t

2p−1
∑

ℓ=−2p−1+1

cot
π

2t
(
1

2
− ℓ) csc2 π

2t
(
1

2
− ℓ) = 0, (2.32)

and so we just need to minimize

c0 + (c2 − c0π2)∆2 +O(∆3). (2.33)

Differentiating, we see we have an extremum at ∆ = 0 and, therefore, ǫ(a, t, p) has a maximum
at a = 1/2. Substituting a = 1

2 we obtain

ǫ ≤ 1− 2

22t

2p−1
∑

ℓ=−2p−1+1

1

1− cos 2π
2t (

1
2 − ℓ)

. (2.34)
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We note that the summation is symmetrical about ℓ = 1/2, and substituting t = p + s, we
obtain for our final result

ǫ(s, p) = 1− 1

22(p+s)−2

2p−1
∑

ℓ=1

1

1− cos π(2ℓ−1)

2(p+s)

. (2.35)

That is, given a desired accuracy of s bits, then if we add p more bits, we have a probability
of success given by 1− ǫ, of obtaining a measurement to at least s bits of accuracy. Thus, we
have succeeded in deriving a best possible bound for the failure rate ǫ = ǫ(s, p).

2.3.3 Special cases

Numerical calculations show that ǫ(t, p) quickly approaches its asymptotic value as t → ∞,
and this limit gives a fairly accurate upper bound for ǫ, for t greater than about 10 qubits.
Using cosx ≥ 1− x2

2 which is valid for all x, and is accurate for x = O(1/2t) as t→∞

ǫ ≤ 1− 4

22t

2p−1
∑

ℓ=1

1

1− (1− 1
2(

π
2t (2ℓ− 1))2)

= 1− 8

π2

2p−1
∑

ℓ=1

1

(2ℓ− 1)2
. (2.36)

An exact form for this can be found in terms of the trigamma function, being a special case
of the polygamma function as shown in Abramowitz and Stegun [AS64], Eq. 6.4.5

ǫ ≤ 2

π2
ψ′
(
1 + 2p

2

)

, (2.37)

where ψ′(z) = dψ
dz is the trigamma function, ψ(z) = Γ′(z)

Γ(z) is the digamma function and Γ(z) =
∫∞
0 tz−1e−tdt is the standard gamma function.

Now, considering the p→∞ limit, which also includes the t→∞ limit because t = p+ s,
we can find an asymptotic form in the limit of large p also from [AS64], see Eq 6.4.12, namely

ǫ =
4

π2
2−p, (2.38)

which shows that the error rate drops off exponentially with the extra qubits p. It is found
numerically that the p =∞ limit is approached closely for small p, namely p ≈ 5. The formula
Eq. (2.38) can be re-arranged to give

p∞ =

⌈

log2
2
√
2

π2ǫ

⌉

, (2.39)

which compares with the previous approximate formula shown in Eq. (2.19).

We have confirmed these formulas through a simulation by running the phase estimation
algorithm on the 2-dimensional rotation matrix, and undertaking a numerical search for the
rotation angle which maximizes the error ǫ. For the case p = 1 at the limit of large t using
Eq. (2.36), we can calculate the maximum expected error to ǫ = 1− 8

π2 = 18.9430531%.

We can see from Table I, that even for a relatively small number of qubits such as t =
s+ p = 15, the upper bound formula at t→∞ is accurate to seven decimal places.
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s simulation ǫ(∞, 1) = 1− 8
π2 ǫ(s, 1), Eq. (2.35)

1 14.013022 18.9430531 14.644661
2 17.86115 18.9430531 17.893305
3 18.680222 18.9430531 18.682134
4 18.877800 18.9430531 18.877918
5 18.926767 18.9430531 18.9267751
6 18.9389835 18.9430531 18.9389840
7 18.9420358 18.9430531 18.9420358
8 18.9427988 18.9430531 18.9427988
9 18.9429895 18.9430531 18.9429895
10 18.9430373 18.9430531 18.9430372
11 18.9430491 18.9430531 18.9430491
12 18.9430521 18.9430531 18.9430521
13 18.9430526 18.9430531 18.9430528
14 18.943052 18.9430531 18.9430530

Table 2.1: Simulation results, p = 1

ǫ % pEq.[2.37] pCEM p∞
100.00 0 0 -1
18.943 1 2 1
9.937 2 3 2
5.040 3 4 3
2.530 4 5 4
1.266 5 6 5
0.632 6 7 6
0.3166 7 8 7
0.1583 8 9 8
0.07916 9 10 9
0.03958 10 11 10
0.019789 11 12 11
0.0098946 12 13 12
0.0049473 13 14 13
0.0024737 14 15 14
0.0012368 15 16 15
0.0006184 16 17 16
0.0003092 17 18 17
0.00015460 18 19 18
0.00007730 19 20 19
0.000038651 20 21 20

Table 2.2: Comparison of the t→∞ bounds formulas.

2.3.4 Summary

To calculate φ accurate to a specified s bits with a given probability of success 1− ǫ we add
p extra qubits, where p is given by Eq. (2.35). If we have a large number of qubits, then we
can use the formula Eq. (2.37) valid at the t→∞ limit. In the p→∞ limit the asymptote is
found as a simple exponential form Eq. (2.38). We see that the previous upper bound formula
pCEM overshoots by 1 for each choice of ǫ in Table II, so the newly derived formulas are a
significant improvement. We have found this formula to be useful in confirming the operation
of classical algorithms, since it enables us to equate simulation outputs with exact numbers
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from Eq. (2.35).

The improved error formula in Eq. (2.35) was published in Public Library of Science,
Volume 6(5). [JMCL11b] (attached).

Authors: J. M. Chappell(Adelaide University), M. A. Lohe(Adelaide University), Lorenz
von Smekal(Adelaide University), A. Iqbal(Adelaide University) and D. Abbott(Adelaide Uni-
versity).

Statement of contributions: J. Chappell modified the conventional error formula by in-
creasing its symmetry to allow an exact solution. J. Chappell, M. A. Lohe, Lorenz von
Smekal and A. Iqbal prepared the paper for publication, with checking by D. Abbott, M. A.
Lohe and Lorenz von Smekal.

Signed:

J. M. Chappell Dr M.A. Lohe Dr L. von Smekal Dr A. Iqbal

Prof. D.Abbott
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Grover’s Algorithm

Grover’s search algorithm [Gro98a] is a general search routine to retrieve a set of required items
from an unstructured data set. Given an unsorted database of size N , we would classically
expect that it will take N/2 queries, on average, to find a specific entry, Grover’s quantum
algorithm, on the other hand, allows a specific entry to be found in just O(

√
N) queries.

The speedup that this algorithm provides is a result of quantum parallelism. The database
is effectively put into a uniform superposition of all possible search outcomes and then the
results interfered with each other to produce a probability distribution concentrated at the
solutions. In this section, after reviewing the Grover search procedure, we look at ways to
speedup the search and we find a different type of search based on the phase estimation
procedure, developed from the previous chapter (Chapter 2). We then proceed to model the
search as the precession of a spin-12 particle. Generalizing the Hamiltonian based search, we
find SU(2) generators for the Grover search space, which can be modeled as the precession of
a single spin-12 particle. In the following chapter, because GA is known to be a very efficient
formalism for handling rotations and hence precession, we extend this analysis using GA,
which shows the efficiency of the formalism and also confirms the optimality of the standard
Grover search [BBB+00], [Høy00].

3.1 Grover’s search algorithm

Suppose we have a search space of N elements, indexed by a number in the range 0 to N − 1.
For convenience we assume N = 2n, so that the index can be stored in n bits. We assume we
have M solutions to the search query, with 1 ≤M ≤ N . A particular instance of the solution
set can be flagged by a function f , which takes as input an integer x in the range 0 to N − 1.
We define f(x) = 1 if x is a solution to the search problem, and f(x) = 0 otherwise. We
assume we have an oracle which can recognize solutions to the search problem, defined as a
unitary operator

|x〉|q〉 O−→ |x〉|q ⊕ f(x)〉, (3.1)

where | x〉 is the index register, ⊕ denotes addition modulo 2 and an extra bit called the
oracle qubit |q〉 is a single qubit which is flipped if f(x) = 1, and is unchanged otherwise.
For example we can check to see if x is a solution by preparing the state |x〉|0〉, applying the
oracle, and checking to see if the oracle qubit has been flipped to |1〉. However, in practice, it
is preferable to initialize the oracle qubit to (|0〉 − |1〉)/

√

(2), so that in this case the action
of the oracle will simply be to the flip the sign of the qubit, that is

|x〉 |0〉 − |1〉√
2

O−→ (−1)f(x)|x〉 |0〉 − |1〉√
2

. (3.2)

However, we notice in this case that the state of oracle qubit is not changed and so can be
omitted from further analysis, hence the action of the oracle can now be written

|x〉 O−→ (−1)f(x)|x〉. (3.3)

We say that the oracle marks the solution to the search problem by shifting the phase of the
solution.
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The oracle makes use of n qubits along with extra work bits. Initially, the algorithm begins
with a Hadamard transform to put the computer in an equal superposition state

|ψ〉 = 1

N1/2

N−1∑

x=0

|x〉. (3.4)

The main algorithm then consists of repeated applications of the Grover iteration G, which
will be shown to only be needed to be called O(

√
N) times. The two main components of a

Grover iteration are the oracle and a phase shift operation.
The phase shift operation, in which all states except |0〉⊗n receive a phase shift of -1, can be
written:

|x〉 −→ −(−1)δx0 |x〉. (3.5)

Clearly, this could also be written as 2|0〉〈0| − IN×N . That is








1 0 0 . . . 0
0 −1 0 . . . 0
...
0 0 0 . . . −1







= 2








1 0 . . . 0
0 0 . . . 0
...
0 0 . . . 0







−








1 0 . . . 0
0 1 . . . 0
...
0 0 . . . 1







= 2|0〉〈0| − IN×N . (3.6)

Combining steps 2, 3 and 4 gives

H⊗n(2|0〉〈0| − I)H⊗n = 2H⊗n|0〉〈0|H⊗n −H⊗nH⊗n = 2|ψ〉〈ψ| − I, (3.7)

where ψ is the equal superposition of states defined in Eq. (3.4) and we know H2 = I. Thus,
the full Grover iteration may be written:

G = (2|ψ〉〈ψ| − I)O. (3.8)

We will now show that the Grover iteration can be regarded as a rotation in the the two-
dimensional space spanned by the starting vector |ψ〉 and the state consisting of a uniform

superposition of solutions to the search problem. To demonstrate this we define
∑

x

′
to

indicate a sum over all x which are solutions to the search problem and
∑

x

′′
to indicate a sum

G G G

H⊗n

oracle
workspace

n
qubits |0〉

⊗n

. . .

measure
O(
√
N)

Figure 3.1: The search algorithm.

Oracle

|x〉 → −|x〉
if f(x) = 1

Phase :

|x〉 → −|x〉
if x > 0

H⊗n H⊗n

Oracle
workspace

n
qubits

Figure 3.2: One Grover iteration.
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over all x which are not solutions to the search problem. We can then define the normalized
states

|m⊥〉 ≡ 1√
N −M

∑

x

′′
|x〉 (3.9)

|m〉 ≡ 1√
M

∑

x

′
|x〉.

It is then easy to see that

|ψ〉 =
√

N −M
N

|m⊥〉+
√

M

N
|m〉, (3.10)

and so the initial state |ψ〉 of the quantum computer is in the space spanned by |m⊥〉 and
|m〉. Now, the effect of G operating on the state |ψ〉 can be seen as simply a rotation in
the plane of |m⊥〉 and |m〉. Referring to the Grover iteration defined in Eq.(3.8), initially
we apply the oracle O. We have in the general case O(a|m⊥〉+ b|m〉) = a|m⊥〉 − b|m〉, so O
creates a reflection about the vector |m⊥〉. Next, applying 2|ψ〉〈ψ| − I, we notice it also forms
a reflection in the plane defined by |m⊥〉 and |m〉, about the vector |ψ〉 and the product of
two reflections is a rotation. Thus, Gk|ψ〉 remains in the space defined by |m⊥〉 and |m〉 for
all k. The angle of rotation is given by

cos θ/2 =
√

(N −M)/N (3.11)

and clearly then also

sin θ/2 =
√

M/N. (3.12)

Hence, we have |ψ〉 = cos θ2 |m⊥〉+ sin θ
2 |m〉. Looking at Fig. 3.3 we can say

G|ψ〉 = cos
3θ

2
|m⊥〉+ sin

3θ

2
|m〉, (3.13)

so this implies a rotation angle of θ.

Hence, it follows that the continued application of G takes the state to

Gk|ψ〉 = cos
(2k + 1)θ

2
|m⊥〉+ sin

(2k + 1)θ

2
|m〉. (3.14)

Repeated applications of Grover’s iteration thus rotates the state vector by θ, closer and
closer to |m〉. When this occurs, an observation in the computational basis produces with
high probability one of the outcomes superposed in |m〉, which is a solution to the search
problem. Clearly, therefore, we could also write the Grover iteration in |m〉, |m⊥〉 space in
matrix form as

G =

[
cos θ − sin θ
sin θ cos θ

]

. (3.15)
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3.1.1 Performance

The initial state of the system is |ψ〉 =
√

N−M
N |m⊥〉+

√
M
N |m〉, so clearly rotating through

arccos
√

M/N radians takes the system to |m〉. Then, repeating the Grover iteration

f =
arccos

√

M/N

θ

=
π/2− θ/2

θ

=
π

2θ
− 1

2

=
π

4

1

sin−1
√

M
N

− 1

2
(3.16)

times rotates |ψ〉 to within an angle θ/2 of |m〉. We notice the number of iterations f may not
turn out to be an integer which indicates that in this case that we cannot find the solution
exactly. However, we will discover in the next section that we can modify the phases in
the Grover iteration to adjust θ so that f is an integer and hence reduce this error to zero.
Assuming that M ≤ N/2, from Eq. (3.12) we have θ/2 ≥ sin θ/2 =

√

M/N , and for large N,
we can approximate the number of iterations required to

f ≈ π

4

√

N

M
− 1

2
. (3.17)

That is, f = O(
√

N/M) Grover iterations (and thus oracle calls) must be performed in order
to obtain a solution to the search problem with high probability, a quadratic improvement
over the O(N/M) oracle calls required classically.

-

6

����������������:

�
�
�
�
�
�
�
�
�
�

�
��

XXXXXXXXXXXXXXXXz

|m〉

|m⊥〉

|ψ〉

O|ψ〉

G|ψ〉

θ

θ/2

θ/2

Figure 3.3: The Grover iteration as a rotation. The action of the oracle O is to flip the
starting state about |m⊥〉, followed by a reflection about the starting state |ψ〉, giving G|ψ〉
an anticlockwise rotation of the starting state by θ.
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3.1.2 Quantum counting

It might appear from this result that any knowledge at all about the solution is going to require
O(
√
N) queries of the oracle, for example, to find out if even a solution exists. However, there is

a shortcut procedure called quantum counting, which applies the phase estimation procedure
to the Grover iterate matrix directly, which in this case will return the eigenvalues of the
Grover iterate matrix, from which we can calculate the number of solutions.

So, suppose |a〉 and |b〉 are the two eigenvectors of the Grover iteration in the space spanned
by |m〉 and |m⊥〉 and let θ be the rotation angle determined by the Grover iteration. In this
space the corresponding eigenvalues are eiθ and ei(2π−θ), seen clearly by inspecting the Grover
iteration in matrix form Eq.(3.15).

The function of the phase estimation circuit is to estimate θ to s bits of accuracy, with a
probability of success at least 1 − ǫ. The first register contains t qubits to give the desired
accuracy, as per the phase estimation algorithm and the second register contains n qubits
sufficient to represent the database and to run the Grover iteration. The state of the second
register is initialized to an equal superposition of all possible inputs

∑

x |x〉 by a Hadamard
transform, which can be shown to be an equal superposition of the the two eigenstates |a〉 and
|b〉. So, phase estimation will give us an estimate of θ or 2π−θ accurate to within |∆θ| ≤ 2−s,
with probability at least 1− ǫ. Quantum counting then uses the formula sin2 θ = M/N( Eq.
(3.12)), and because we know N the size of the search space, we can calculate M , the number
of solutions.

However, once we know the number of solutions, by running the quantum counting al-
gorithm, we now have redundant information, because we can now calculate the number of
iterations required either from quantum counting or from the Grover formula, found in Eq.
(3.16). Writing out these two formulas we have

fgrover =
π

4

1

sin−1(a)
− 1

2
, (3.18)

where a is the overlap amplitude of the starting wave function with the solution states and
from quantum counting after finding θ, we can also find the number of iterations as

fqc =
π

2θ
− 1

2
. (3.19)

Therefore, if we equate these two equations, we find

π

4

1

sin−1(a)
− 1

2
=

π

2θ
− 1

2

1

2

1

sin−1(a)
=

1

θ

2 sin−1(a) = θ.

From which we obtain the formula (which is related to Eq.(3.12))

a = sin
θ

2
. (3.20)

Hence, we can calculate the starting probability overlap amplitude, with the solution state
from the measured θ obtained from phase estimation. Using Hadamard gates to generate the
starting probability distribution, this amplitude is fixed by the size of the search problem, if,
however, we use a two-step starting probability distribution then, depending on which half
of the search space the solution lies in, we will obtain two different values of θ from phase
estimation.

For example using Hadamard gates to generate the initial probability distribution, we have
a = 1/

√
N . So, if we take N = 16 we have a = 1/4, and so fopt =

π
4

1
sin−1(1/4)

− 1
2 = 2.6083.

Using the phase estimation algorithm in the Java simulator with 7 qubits of accuracy we
obtain fqc = 2.70± 0.135, which agrees within the uncertainty limits.
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3.1.3 Two-step starting probability distributions

-

6
Probability amplitude

N

a1
a2

1√
N

Figure 3.4: Starting probability distribution. The first part of the Grover operator flips the
starting state |ψ〉 about the |m⊥〉 axis given by O|ψ〉, followed by a reflection about the starting
state axis |ψ〉, resulting in the state G|ψ〉, a rotation of the starting state by θ towards the
solution |m〉.

So, if we assume we have a two step probability distribution as shown in Fig. (3.4), then
looking again at our previous result:

a = sin
θ

2
, (3.21)

we have 0 < θ < π/2, hence we have a 1:1 map between θ and a. For large databases, we
have a ∼

1√
N
→ 0 hence θ ≈ 2a. That is, the rotation angle for each Grover iteration is

approximately twice the probability amplitude at the solution state.
If the solution lies in the left half of the probability distribution, then the angle corre-

sponding to this probability will be measured or 2 sin−1(a1), otherwise the angle θ based on
the other probability amplitude 2 sin−1(a2) will be measured. Hence, by running the phase
estimation procedure on the Grover matrix for the two level probability distribution, we can
determine which half of the search space the solution lies in. However, we could then repeat
this process on the half where the solution lies, partitioning this half into two parts, and then
continuing the process until we are left with just one element in the search space, which must
be the solution. So, if we have a search space of size N = 2n, then after n = logN applications
of the phase estimation procedure, we will be left with a single entry and we will have thus
found the solution state. As an example a search space of size 64, will need to be split six
times (32,16,8,4,2,1) to reduce to a single entry which equals log2 64. The phase estimation
procedure requires O(log3(N)) operations, hence, overall, this search procedure will require
O(log4(N)) operations and therefore apparently exponentially faster then Grover’s algorithm
of O(

√
N).

The only change we have made to the phase estimation procedure is to include a two-step
probability amplitude, which reduces one half of the probability distribution to zero and
increases the other half by the square root of two. So, in the phase estimation we will either
measure zero or θ = 2 sin−1(a). The two-step distribution is actually easily formed from a
uniform superposition of Hadamard gates with the first qubit left at zero, that is I⊗H⊗(n−1),
which will replace the conventional H⊗n to form the uniform starting probability distribution.

This means the first half of the probability distribution will have amplitude
√
2√
N

and the
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Figure 3.5: First pass.

second half will have probability amplitude zero and will actually simplify the Grover iterate
somewhat. Instead of modifying the unitary transformation to form a narrower and narrower
step, we could also just slide the first two step distribution across half a division. This will
also enable the location of the solution state to be continually refined with a much smaller
change to the unitary transformation, which will basically just require row swaps.

-

6
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N

2√
N

1√
N

Figure 3.6: Second pass.

Incidentally, the two-step unitary matrix will be of the form













√
2√
N
. . . −

√
2√
N

0 . . . 0
...

...√
2√
N
. . .

√
2√
N

0 . . . 0

0 . . . 0 1 . . . 0
...

...
0 . . . 0 0 . . . 1














.

The two-step probability distributions can be demonstrated in the Java simulator, in the
Distributions option under the Modules menu. To see the change in θ depending on the
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location of the solution in the search space select Modules: Quantum Counting: Quantum

Counting 32 two-Step.

3.1.4 A single pass search using phase estimation

If we recall that we have a 1:1 correspondence between θ and a from Eq.(3.20), then if we can
create a one to one correspondence between a and the solution state τ , then by measuring θ
we can then immediately calculate τ , that is θ → a → τ . If this is possible, then this would
enable us to solve the search problem with a single pass of the phase estimation procedure.

To do this we create a linear starting probability distribution, which simply requires us
to derive an appropriate unitary transformation acting on |0〉⊗n to generate this distribution,
that is we require

[
U
]








1
0
...
0







=








a1
a2
...
aN







, (3.22)

where
∑
|ai|2 = 1, and therefore U must be of the form








a1 u12 . . . u1N
a2 u22 . . . u2N
...
aN uN2 . . . uNN







. (3.23)

That is, the first column must simply be the probability distribution we have selected and using
the property of orthonormal matrices, the remaining columns must be all orthonormal, so we
can easily obtain them using the Gramm-Schmidt procedure. For example, the next column
can be obtained by creating an arbitrary column of N numbers y and then the next column
obtained by uj1 = (yj − (y.a)aj)/Z, where Z is a normalization factor. The Gramm-Schmidt
procedure is then continued for the remaining columns.

-

6Prob. amp.

N

τ

aτ

1√
N

Figure 3.7: Linear starting probability amplitude.

A possible starting linear starting probability distribution would be of the form

aj =
j

Z
, (3.24)
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where j = 0...N − 1 and the normalization factor Z would need to be defined as Z2 =
N3

3 − N2

2 + N
6 . We remember for large N that θ ≈ 2a = 2j

Z , therefore the angular distance we
need to be able to discriminate between successive states is

δθ =
2(j + 1)

Z
− 2j

Z
=

2

Z
. (3.25)

So, the error in the θ measurement 1
2s due to truncation of bits is δθ

2π and so using Eq. (3.25)
we have

1

2s
<

2/Z

2π
,

which we can simplify to

2s > πZ (3.26)

s > logZ + log π (3.27)

but N3

3 > N3

3 − N2

2 + N
6 , which approaches an equality for large N , so therefore we have

log

√

N3

3
− N2

2
+
N

6
+ log π < log

√

N3

3
+ log π =

3

2
logN + log

π√
3
<

3

2
logN + 1

and N = 2n, hence, conservatively, we require

s >
3

2
logN + 1 =

3

2
n+ 1. (3.28)

Hence, for a search space of size 16, that is n = 4, we require s = 7 bits in accuracy to
measure θ sufficiently accurately to distinguish between adjacent states. Importantly, though,
the number of bits required only scales as logN .

For the inverse Fourier transform we require O(t2) operations, however, we also require t
ctrl-Grover operations and to raise matrices to a power requires O(log2N) operations, where
N is the size of the search space. However, we need to repeat this procedure t−1 times, hence
this gives us O(log3N) operations.

If we have have multiple solutions, then the linear probability distribution method will
fail because the phase estimation will return the angle based on the root mean square of the
contributing amplitudes, as discussed earlier, that is aeff =

√

a21 + a22 + ...+ a2m, and so the
target solutions will be ambiguously defined. Fortunately, we can do a quantum counting
procedure with the standard Grover to confirm that there is only a single solution.

The circuit to calculate the eigenvalues of the Grover matrix given by

G|u〉 = e2πiθ|u〉, (3.29)

where u is an eigenvector and we have t qubits required for measurement.

From the phase estimation procedure, we obtain θ and inverting Eq.(3.20) and Eq.(3.24),
we find the final result which enables us to calculate the solution state from the measured θ,
from phase estimation:

τ = Z sin
θ

2
, (3.30)

where Z =
√

N3

3 − N2

2 + N
6 and we round τ to the nearest integer, which will be the index of

the solution state

τ = ⌈Z sin
θ

2
− 1

2
⌉. (3.31)

Hence it appears possible to undertake a search process via an alternate process of using the
phase estimation procedure on the Grover search matrix. This approach may have computa-
tional advantages, however it will only be successful if there is a single target item within the
search space.
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H

u

|0〉 |0〉+ e2πi(2
t−1θ)|1〉

H

u

|0〉 |0〉+ e2πi(2
t−2θ)|1〉

First register t qubits

.

.

.

.
.
.
.
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u

|0〉 |0〉+ e2πi(2
1θ)|1〉

H

u

|0〉 |0〉+ e2πi(2
0θ)|1〉

G20 G21 G2t−2
G2t−1|u〉 |u〉

Second register

Figure 3.8: Phase estimation of the Grover matrix

Java simulation

We can simulate a search over a database of 16 elements with, say, seven bits of precision
as shown in Table (3.1) by selecting Modules: Quantum Counting: Quantum Counting-16

U=Linear. We note that to achieve a result accurate to n qubits enabling us to calculate a
solution with 81.1% reliability (18.9 % failure rate), we add one extra qubit. The matching
first and last columns in Table (3.1) indicate 100 percent reliability in finding the solution,
using phase estimation.

3.2 Quantum search using a Hamiltonian

Following the discovery of the Grover search algorithm, which is designed to run in the circuit
model form of quantum computing, Fenner [Fen00] discovered the equivalent Hamiltonian,
which is a continuous time version of the Grover search [BK02a], [RC08]. This showed the
equivalence between the two approaches and we also use the Hamiltonian form of the search
given here to find the SU(2) generators, as another alternative way to describe the Grover
search. The Hamiltonian form can also be run adiabatically [VDMV01], [EF02], [FGGS00],
[RC02].

This type of search involves finding a Hamiltonian, which evolves the starting state, H|0〉
onto the solution state |m〉. The Hamiltonian shown below achieves this and, in fact, can be
shown to be equivalent to the standard Grover iteration G, if the Hamiltonian evolution is
observed at some constant time increment t0.

Assuming we have a search problem with exactly one solution, labeled m, we desire a
Hamiltonian H which when evolving over time changes some initial state, say |ψ0〉 into |m〉.
As usual, we select our initial state |ψ0〉 to be |σ〉 = H|0〉. We use the Hamiltonian as shown
in [Fen00]

H =
2i√
N

(|m〉〈σ| − |σ〉〈m|) , (3.32)

which can be shown for the appropriate time step t0, that e
−iHt0 = G. We can, in fact, find

t0 =
N(π−2 arccos 1√

N
)

2
√
N−1

≈ 1. This shows that 1 time unit will equate to approximately 1 Grover



3.2 Quantum search using a Hamiltonian 41

τ a θ = 2 sin−1 a 7 bit τcalc =
Z
2 sin θ

2 − 1
2 τ ′ = ⌈τcalc − 1

2⌉
0 0.0135 1.55 0 -0.5 0
1 0.0406 4.66 5.6 1.3 1
2 0.0677 7.76 8.4 2.2 2
3 0.0948 10.9 11.2 3.1 3
4 0.1218 14.0 14.0 4.0 4
5 0.1489 17.1 16.8 4.89 5
6 0.1760 20.3 19.6 5.79 6
7 0.2031 23.4 22.5 6.7 7
8 0.2302 26.6 25.3,28.1 7.59,8.47 8
9 0.2572 29.8 30.9 9.3 9
10 0.2843 33.0 33.7 10.2 10
11 0.3114 36.3 36.5 11.1 11
12 0.3385 39.6 39.3 11.92 12
13 0.3655 42.9 42.1 12.8 13
14 0.3926 46.2 45.0,47.8 13.6,14.46 14
15 0.4197 49.6 50.6 15.28 15

Table 3.1: Phase estimation search simulation.

iteration in the circuit model. For analysis, we can restrict our analysis to the plane defined
by |m〉 and |σ〉 as previously. Using |σ〉 = α|m〉+ β|y〉, in Eq. (3.32), we have

H =
2i√
N

(|m〉 (α〈m|+ β〈y|)− (α|m〉+ β|y〉) 〈m|) (3.33)

=
2i√
N

[
0 β
−β 0

]

=
2iβ√
N
ZX. (3.34)

So,

e−iHt = e
−i( 2iβ√

N
ZX)t

= e
2βt√
N
ZX

.

We find

e
2βt√
N
ZX ≡ I + 2β√

N
ZXt+ (

2β√
N
ZX)2t2/2! + (

2β√
N
ZX)3t3/3! + . . .

but (ZX)2 = ZXZX = −ZXXZ = −I using [X,Z]+ = 0, so we find

e
2βt√
N
ZX

= I +
2β√
N
tZX − (

2β√
N

)2t2/2!− (
2β√
N

)3t3/3!ZX + . . .

hence

e
2βt√
N
ZX

= I cos
2βt√
N

+ ZX sin
2βt√
N

and so

e−iHt|σ〉 = cos
2βt√
N
|σ〉+ sin

2βt√
N
ZX|σ〉.

We note

ZX|σ〉 = ZX(α|m〉+ β|y〉) = β|m〉 − α|y〉.
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Hence, the state of the system after time t is

e−iHt|σ〉 = cos
2βt√
N
|σ〉+ sin

2βt√
N

(β|m〉 − α|y) (3.35)

= cos
2βt√
N
|σ〉+ sin

2βt√
N

α

β

(
β2

α
|m〉+ α|m〉 − |σ〉

)

=

(

cos
2βt√
N
− α

β
sin

2βt√
N

)

|σ〉+ sin
2βt√
N

α

β

(
β2

α
+ α

)

|m〉 (3.36)

=

(

cos
2βt√
N
− α

β
sin

2βt√
N

)

|σ〉+ 1

β
sin

2βt√
N
|m〉. (3.37)

So, we require sin 2βt√
N

= β, or t =
√
N

2β arcsinβ, where clearly all coefficients are real. For the

uniform superposition state |σ〉, we know α = 1√
N
, hence an observation of the system at time

t =
N

2
√
N − 1

arcsin

√

1− 1

N
≈ π

4

√
N (3.38)

yields the solution m with probability one. This agrees with the complexity of the Grover

circuit search of π
√
N

4 − 1
2 . (These two can be equated because t0 ≈ 1.) Hence, the state of the

system at solution time T is
e−iHT |σ〉 = |m〉.

Hypothetically, if we could start with a Hamiltonian of higher energy E,

H =
2Ei√
N

(|m〉〈σ| − |σ〉〈m|) , (3.39)

then the state of the system after time t will be

e−iHt|σ〉 =
(

cos
2Eβt√
N
− α

β
sin

2Eβt√
N

)

|σ〉+ 1

β
sin

2Eβt√
N
|m〉, (3.40)

which gives us

t =
N

2E
√
N − 1

arcsin

√

1− 1

N
. (3.41)

For E = N√
N−1

arcsin
√

1− 1
N ≈

√
N, we have

T =
1

2
(3.42)

searching in constant time and the state at this time will be

e−iHT |σ〉 = |m〉.

So if it is possible to increase the energy of the Hamiltonian within the abstract Grover search
space, then this will allow a speedup of the search process.

3.3 The Grover Search using SU(2) rotations

The conventional Grover search algorithm [Gro97] involves evolving a wave function, from a
uniform superposition starting state |ψ〉 = |σ〉, onto the solution state |ψ〉 = |m〉, where |m〉 is
the set of all solutions and where, upon measurement, it will yield one element from this set.
In order to analyze this evolution efficiently, typically an orthonormal basis |m〉 and |m⊥〉 is
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defined, as shown on Fig. (3.9). We now identify an improved basis for analyzing the search
process, which allows a simple mapping to the Bloch sphere. From this, we are able to identify
the Grover search evolution as equivalent to the precession of the polarization axis of spin-12
particle in a magnetic field, that is, precessing from the |σ〉 direction to the |m〉 direction.

In the field of adiabatic quantum computing [FG98a], it has been proposed that the Grover
search time can be reduced to unity [WY04], by simply increasing the energy of the search
Hamiltonian, thus reducing the time. Using the precession analogy, this would be equivalent to
increasing the strength of the magnetic field, which would indeed reduce the precession time,
thus appearing to speedup the search process. However, these ideas need to be reconciled
with proofs that Grover’s quantum search algorithm has been shown to be the optimal search
strategy on a quantum computer [BBHT98], [Zal99], [SSB05], with complexity of O(

√
N). We

will find that the answer to this dilemma lies in the oracle and, in fact, a circuit can indeed
be constructed to search in unit time provided the Oracle is enhanced. However as stated
in [CvD10], there are still unresolved issues regarding the Hamiltonian search.

To analyze the Grover search algorithm, an SU(2) approach has been used previously
[HL02], which found the conditions to find a search solution with a probability of one, whereas
with the conventional Grover operator, only an approximation to the solution state is ever
found (except in the special case with just four states). An SO(3) picture has also been
employed [LTL+01] to plot the path of the state vector during each application of the Grover
operator, which we will also find useful in plotting the path of the polarization axis in 3-space.

In this chapter, we will firstly define the three generators for the SU(2) search space. From
these, we can derive a general rotation in this search space and the standard Grover search
will then be identified as simply a special case of this. We will show that raising the energy of
a search Hamiltonian in the adiabatic setting is equivalent to raising the Grover operator to a
power in the circuit model representation and, as a by-product, we will give a formula for the
Grover matrix raised to any non-integer power. The general search formula will also enable
us to easily derive the phase matching condition for an exact search along with its matrix
evolution. We will then use one of the generators to produce a quantum circuit for searching
in unit time, but which will require, unfortunately, an enhanced oracle in order to succeed.

3.3.1 The Grover search space

-

6

����������������:

|m〉

|m⊥〉

α =
√

M
N

|σ〉

θ
2

1

β =
√
1− α2

Figure 3.9: Geometry of starting state |σ〉. The starting state |σ〉 represented in the basis of
|m〉 and |m⊥〉, with M solution states in a space of size N .

Our goal in the search procedure is to rotate the starting vector |σ〉 in the space spanned
by |m〉 and |m⊥〉 onto the vector |m〉 so that, upon measurement, a solution to the search
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problem will be achieved.
Grover’s solution to this involves iteratively applying an operator G defined by

G = − (I − 2|σ〉〈σ|) (I − 2|m〉〈m|) . (3.43)

This operator applied to the n = logN qubits representing the search space, rotates the state
vector an angle θ at each application, with the number of iterations given by

R ≈ π

4

√

N

M
. (3.44)

3.3.2 SU(2) generators for the Grover search space

Working from the two-dimensional complex space shown in Fig. (3.9), and restricting ourselves
to the well defined states |m〉 and |σ〉, we have four possible operators: |m〉〈σ|, |σ〉〈m|, |m〉〈m|
and |σ〉〈σ|. From these we define

K = −β
2

2
P (3.45)

J1 =
P − |σ〉〈σ| − |m〉〈m|

2|α|

J2 =
−i (α∗|m〉〈σ| − α|σ〉〈m|)

2|α|β

J3 =
|σ〉〈σ| − |m〉〈m|

2β
,

where α = 〈σ|m〉, in general, a complex number, and β =
√

1− |α|2. With

P =
(|σ〉〈σ| − |m〉〈m|)2

β2
, (3.46)

we find

[Ji, Jj ] = iǫijkJk (3.47)

[Ji, Jj ]+ = δij
P

2
[K, Ji] = 0,

confirming that we have an SU(2) algebra. Squaring the generators we find

J2
1 = J2

2 = J2
3 =

1

4β2
(|σ〉〈σ| − |m〉〈m|)2 = 1

4
P. (3.48)

We can easily check P |σ〉 = |σ〉 and P |m〉 = |m〉, with P 2 = P and the Casimir invariant

C = J2
1 + J2

2 + J2
3 =

3

4
P,

which corresponds to a spin 1
2 system. We have raising and lowering operators

J± = J1 ± iJ2

and requiring

J+| ↑〉 = 0 (3.49)

J−| ↓〉 = 0,



3.3 The Grover Search using SU(2) rotations 45

we find the states of highest and lowest weight

| ↑〉 = sec
θ

2

(

sin
θ

4
|m〉 − eiδ cos

θ

4
|σ〉
)

| ↓〉 = sec
θ

2

(

cos
θ

4
|m〉 − eiδ sin

θ

4
|σ〉
)

,

which is a rotation of the |m〉 and |m⊥〉 axes by θ
4 , where we have defined

sin
θ

2
= |α| (3.50)

and

α = |α|eiδ. (3.51)

We can then find

J3| ↑〉 = +
1

2
| ↑〉 (3.52)

J3| ↓〉 = −1

2
| ↓〉,

as expected for a spin−1
2 system. Writing |σ〉 and |m〉 in this new basis, we obtain

|σ〉 = e−iδ

(

− cos
θ

4
| ↑〉+ sin

θ

4
| ↓〉
)

(3.53)

and

|m〉 = − sin
θ

4
| ↑〉+ cos

θ

4
| ↓〉, (3.54)

with

|m⊥〉 = 1

β
(|σ〉 − α∗|m〉) = cos

θ

4
| ↑〉+ sin

θ

4
| ↓〉. (3.55)

Using these results for |σ〉 and |m〉, and substituting into the Grover iteration Eq.(3.43), we
find

G = −I + 2 cos2
θ

2
| ↑〉〈↑ |+ sin θ| ↑〉〈↓ | − sin θ| ↓〉〈↑ |+ 2 cos2

θ

2
| ↓〉〈↓ | (3.56)

and because we have an orthonormal basis for G, we can find a matrix form for the standard
Grover iteration as

G =

[
cos θ sin θ
− sin θ cos θ

]

, (3.57)

where the starting state is

|σ〉 = e−iδ

[
− cos θ4
sin θ

4

]

. (3.58)

This matrix form can be used to calculate the Grover iterations, which can then be transformed
back to the |σ〉, |m〉 basis when required. The matrix form for the exact Grover search is
developed in a later section.

General rotation

Applying a rotation ~φ = (φ1, φ2, φ3), where each φ1, φ2, φ3 apply to the generators J1, J2, J3
respectively, so that we can define
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Q = e2i
~φ. ~J (3.59)

= I + 2i~φ. ~J − |φ|
2P

2!
− |φ|

22~φ. ~J

3!
+
|φ|4P
4!

. . .

= I + 2i
~φ. ~J

|φ| sin |φ| − P (1− cos |φ|),

where we have used
(
2~φ. ~J

)2
= 4

(
φ21J

2
1 + φ22J

2
2 + φ23J

2
3

)
= |φ|2P. (3.60)

Special case 1: ~φ = {0, φ2, 0}
In this case we are restricting ourselves to the generator, J2, so we have

Q2 = I + 2iJ2 sinφ2 − P (1− cosφ2)

and for φ2 = θ we find
Q2|ψ〉 = G|ψ〉, (3.61)

that is, we have a direct relationship

e2iθJ2 |ψ〉 = G|ψ〉. (3.62)

Fenner [Fen00] found previously, as shown in section 5.2, that a Hamiltonian equivalent to
J2 up to a scale factor, can be equated to the standard Grover iteration, provided the wave
function is measured at specified time intervals. This time step can simply be equated to θ and
the conventional Grover operator G is, therefore, just rotating an angle 2θ with the generator
J2.

From this, we now investigate the possibility of raising G to any power, including non-
integer powers.

Raising the Grover matrix to an arbitrary power

From the previous section, we can deduce the relationship

Gk|ψ〉 = e2ikθJ2 |ψ〉. (3.63)

= (I + 2iJ2 sin(kθ)− P (1− cos(kθ))) |ψ〉.

This formula which can be seen as a generalization of the Grover search iteration Gk for real
k. We also see that raising the Grover operator to a power in this context is equivalent to
increasing the energy of the Hamiltonian, 2J2, [DKK03]. We have included the state |ψ〉
because the equality applies to the effect of the operation on a particular state in the Grover
subspace. To match the operators themselves, we would have

Gk = eikπe−2ki(π−θ)J2 . (3.64)

Of course, we know that Grover rotates the starting vector |σ〉, an angle π
2− θ

2 onto the solution
state, as shown in Fig.(3.9). Hence, a completed Grover search in a single operation will be

Q2 = e2i(
π
2
− θ

2)J2 (3.65)

= I + 2iJ2 sin

(
π

2
− θ

2

)

− 4J2
2

(

1− cos

(
π

2
− θ

2

))

= I + 2iJ2 cos
θ

2
− P

(

1− sin
θ

2

)

.
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Incidentally, we can write this in terms of the Grover matrix as

Q2 =
1 + 2α

2(1 + α)
I +

1

4α(1 + α)
G− 1 + 2α

4α(1 + α)
G†, (3.66)

but the difficulty is to represent this as a circuit. To check this result, we multiply Q2 by the
starting state |σ〉, to find

Q2|σ〉 =
α∗

|α| |m〉,

which is the solution as required up to a global phase.

Searching using J1

We know we can complete a search using J2, being equivalent to the standard Grover search,
however, we can also complete a search using J1. In terms of J1, we have

Q1 = I + 2iJ1 sinφ− P (1− cosφ) . (3.67)

We find that the generator J1 rotates in the complex plane and so we need a rotation of
φ = −π

2 to complete the search, hence

Q1 = I − 2iJ1 − P (3.68)

= I − P
(

1 +
i

|α|

)

+ i
|σ〉〈σ|+ |m〉〈m|

|α| .

In this case we find

Q1|σ〉 = i|m〉,

thus successfully completing the search. We notice that P commutes with the other operators
so we can simplify the exponential, as follows:

e2ikθJ1 = eikθ(P−|σ〉〈σ|−|m〉〈m)/|α| (3.69)

= e
ikθ
|α| e

− ikθ
|α| (|σ〉〈σ|+|m〉〈m|)

.

However, this is precisely the form that can be used in quantum simulation [NC02], where to
allow simulation, we alternatively apply each Hamiltonian, as follows

ei∆te−i|σ〉〈σ|∆te−i|m〉〈m|∆t +O(∆t2) (3.70)

with a circuit shown in [NC02], with complexity O(
√
N), to implement this. Hence, J1 is

more suitable to be used as a quantum simulation, whereas J2 is more suitable for a quantum
circuit.

3.3.3 Analogy to spin precession

We can view the rotation of the starting vector |σ〉 as an analogy to the precession of the
quantization axis of a spin half particle in a magnetic field. The evolution of a magnetic
dipole in a magnetic field ~B is given by

e−iγ ~B.~σ/2, (3.71)

where γ is the gyromagnetic ratio. We have the Larmor frequency for a magnetic field ~B = B0ẑ

ω = γB0. (3.72)
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Comparing this with the Grover search, and taking γ = 2, we can equate ~σ = ~H and B0 =

φ = θ ≈ 2
√
M√
N

. So, we have for one Grover iteration

ω = γB0 ≈
4
√
M√
N

. (3.73)

So, the time taken will be for a half period, which is the time for the maximum deviation of
the precession axis

T =
π

ω
=
π

4

√
N√
M
, (3.74)

which agrees with the expected time taken for a Grover search Eq. (3.44). Viewing the search
problem in this context, we could clearly reduce the time of the search to unity by scaling the
magnetic field in the ẑ direction, by

√
N .

Viewing the rotation of the |σ〉 vector onto the |m〉 vector as precession in a magnetic field,
the case with the magnetic field in the z direction is shown.

Figure 3.10: Grover search visualization. The starting state |σ〉 will lie on the upper cone, and
with a precession axis chosen to lie approximately on the plane of x and y, with a rotation of
approximately π, will rotate this vector onto the solution state vector |m〉.

The starting angle of |σ〉 and |m〉 with the z-axis is always exactly θ
2 . Each rotation

of the starting vector |σ〉 is 2θ for the Grover iteration but slightly less for exact Grover
searches. We can see from Fig. 3.10 that the Grover search, which is equivalent to using the
generator J2, will rotate the starting vector |σ〉 about the y axis, in the plane of x-z onto
|m〉, clearly taking the shortest route. The other alternative would be to use the generator
J1, rotating about the x axis, in the plane of y-z, which we can see will also rotate |σ〉 onto
|m〉. We can also see that J3 will be ineffective and not be able to move |σ〉 any closer to
|m〉. We can also clearly see from this diagram, that any variations in the complex phase
in the starting state will be detrimental, because it will move the |σ〉 vector around the
top of cone shown and further away from the solution state |m〉, which confirms visually the
result in [BBB+99a], [BK02b], [BBB+99b], [CH01], that the performance of Grover’s algorithm
cannot be improved by varying the phases of the starting amplitudes. Modifying Grover to
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complete an exact search involves simply rotating the precession axis, which sits along the y-
axis for the conventional Grover, around in the plane of x-y towards the x-axis the appropriate
amount, which can be easily calculated.

3.3.4 Exact search

To incorporate the conventional Grover oracle, we need to be able to factorize the search
operator with a term

(I − κ|m〉〈m|) (3.75)

and the unitary condition requires κ = 2 cos(ρ)eiρ, where ρ ∈ ℜ. Now, beginning from
Eq.(3.59) and substituting in

ai =
φi sin |φ|
|φ| (3.76)

and using

P =
(|σ〉〈σ|+ |m〉〈m| − α|σ〉〈m| − α∗|m〉〈σ|)

β2
(3.77)

and Eq.(3.46), we have

Q = I + 2i(a1J1 + a2J2 + a3J3)− P (1− cos |φ|) (3.78)

= I +
ia1
|α| (P − |s〉〈s| − |m〉〈m|)

+
a2
|α|β (α

∗|m〉〈s| − α|s〉〈m|)

+
ia3
β

(|s〉〈s| − |m〉〈m|)− (1− cos |φ|)P

= I +

(
ia3
β

+
ia1|α|
β2

− 1− cos |φ|
β2

)

|s〉〈s|

+

(−ia3
β

+
ia1|α|
β2

− 1− cos |φ|
β2

)

|m〉〈m|

+

(
a2α

∗

|α|β −
ia1α

∗

|α|β2 +
α∗(1− cos |φ|)

β2

)

|m〉〈s|

+

(−a2α
β|α| −

ia1α

|α|β2 +
α(1− cos |φ|)

β2

)

|s〉〈m|.

We require the |m〉〈s| term to vanish, so that we can factorize, hence we require

α∗
(
a2
|α|β −

ia1
|α|β2 +

(1− cos |φ|)
β2

)

= 0. (3.79)

Equating real and imaginary parts, we see that this implies a1 = 0, which then implies

a2 = −
|α|
β

(1− cos |φ|). (3.80)

Hence,

Q = I +

(
ia3
β
− 1− cos |φ|

β2

)

|s〉〈s| (3.81)

+

(−ia3
β
− 1− cos |φ|

β2

)

|m〉〈m|+ 2α(1− cos |φ|)
β2

|s〉〈m|
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and to mimic the Grover search we require this to factorize as

Q =

(

I −
(
1− cos |φ|

β2
− ia3

β

)

|s〉〈s|
)

(3.82)

×
(

I −
(
1− cos |φ|

β2
+

ia3
β

)

|m〉〈m|
)

.

To avoid the cross term |s〉〈m|, we require

a23 +
(1− cos |φ|)2

β2
= 2(1− cos |φ|) (3.83)

and rearranging, we find

a3 = ±
2 sin φ

2

β

√

cos2
|φ|
2
− |α|2. (3.84)

Substituting back into Eq. (3.82), we find

Q =



I −




2 sin2 |φ|

2

β2
± 2i sin φ

2

β

√

1− sin2 |φ|
2

β2



 |s〉〈s|



 (3.85)

×



I −




2 sin2 |φ|

2

β
∓ 2i sin φ

2

β

√

1− sin2 |φ|
2

β2



 |m〉〈m|



 ,

which can be written in the form

Q = (I − 2 cos(ρ)e±iρ|s〉〈s|)(I − 2 cos(ρ)e∓iρ|m〉〈m|), (3.86)

where

cos ρ = ±sin φ
2
sec

θ

2
. (3.87)

We notice that the signs in the exponentials inside the two brackets in Eq. (3.86) are of
opposite sign, which seems to contradict the need for a phase matching condition in this form
of the Grover operator [LXS01] and if we simulate this search process numerically, we find that
this operator indeed rotates the starting vector |s〉 onto the non-solution vector |m⊥〉. This,
however, can be easily remedied by inverting the oracle to return m⊥ instead of m, which
implies the operator Q will now converge to the solution m instead of m⊥. That is, we search
with

Q = (I − 2 cos(ρ)e±iρ|s〉〈s|)(I − 2 cos(ρ)e∓iρ|m⊥〉〈m⊥|). (3.88)

This use of |m⊥〉 in place of |m〉 in the Grover operator is consistent with Fig. 3.9, which
involves a reflection of the state vector about |m⊥〉. The oracle can be inverted by simply
requiring the oracle to return a 1 for a non-solution and a 0 for a solution, as opposed to the
conventional operation of returning a 1 for a solution, and a 0 for a non-solution. If, in fact,
we make the substitution |m⊥〉 for |m〉 into the generators, we find

J1 → −J3 (3.89)

J2 → −J2
J3 → −J1,

which implies that we are now applying the rotation in reverse. The form of Eq.(3.86) can be
related to the results of [LXS01], for exact Grover searches, giving us

ρ = arccos

(
1

|α| sin
π

4 ⌈k⌉+ 2

)

(3.90)
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where we use the conventional grover expression for the number of iterations

k =
π

4 arcsin |α| −
1

2
(3.91)

and equating these two gives us finally

sin
|φ|
2

= cot
θ

2
sin

π

4 ⌈k⌉+ 2
. (3.92)

φ2 and φ3 can be calculated from

φ2 = −|φ| tan
θ

2
tan
|φ|
2

(3.93)

and using the theorem of Pythagoras

φ3 =
√

|φ|2 − |φ2|2. (3.94)

It is interesting to note that the exact search takes the same number of iterations as the
standard Grover search, however, ρ can be decreased below its optimum value, thus allowing
the Grover search to be slowed down to an arbitrary degree. Of course, to maintain an exact
search, though slower because it involves more iterations, ρ will still have to satisfy Eq. (3.90).

Hence, the general rotation vector for an exact search is ~φ = (0, φ2, φ3). If k = ⌈k⌉, then
|φ| = π − θ, as for a normal Grover iteration.

Writing in terms of the states of maximum and minimum weight, we find

Gexact =

[
q(1− q

2 sin
2( θ2))− 1 q sin( θ2)(q cos

2( θ4)− 1)

q sin( θ2)(q sin
2( θ4)− 1) q(1− q

2 sin
2( θ2))− 1

]

, (3.95)

where

q = 2 cos ρeiρ. (3.96)

After ⌈k⌉ iterations, the final state will have a phase on the solution state

ei(π−ρ)|m〉. (3.97)

Simple search example

For a small database of 16 elements, we have n = 16 giving ρ = 0.47327, which gives us
|φ| = 2.07769, and φ2 = −0.91151 and φ3 = 1.86707 to five decimal places and which, thus,
gives us 3 iterations exactly, with

G = (I − (1.584 + 0.811i)|s〉〈s|)(I − (1.584 + 0.811i)|m〉〈m|) (3.98)

(three decimal places) and we find G3|s〉 = e5iρ|m〉, thus solving the search exactly, ignoring
the global phase.

3.3.5 Application: developing a circuit

Looking at the search using the generator J2, we found

Q2 = e2i(
π
2
− θ

2
)J2 . (3.99)
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So, with a starting state of n qubits |σ〉 = H⊗n|0〉, we are mapping from the real amplitudes
to real amplitudes. Looking at J2 Eq.(3.45) for real α, we have

J2 =
−i (α|m〉〈σ| − α|σ〉〈m|)

2αβ
(3.100)

=
−i

2β
√
N








f(0)
f(1)
...

f(N)








[
1 1 . . . 1

]
(3.101)

+
i

2β
√
N








1
1
...
1








[
f(0) f(1) . . . f(N)

]
(3.102)

=
−i

2β
√
N







0 f(0)− f(1) . . . f(0)− f(N)
f(1)− f(0) 0 . . . . . .

. . . . . . . . . . . .
f(N)− f(0) . . . . . . 0






,

where N = 2n. We can see that this matrix is anti-symmetric, hence we can write this in
terms of anti-symmetric basis matrices. Defining Eij , which consists of zeros except for a
single 1 at the position (m,n)

(Eij)mn = δmiδnj , (3.103)

where i, j ∈ 0 . . . N − 1. Then, to make this matrix anti-symmetric, we add a −1 across the
diagonal, to give

(Jij)mn = (Eij)mn − (Eij)nm (3.104)

= δmiδnj − δniδmj .

So, we can use Jij as an anti-symmetric basis for J2. Hence,

(J2)mn =
−i

2β
√
N

N−2∑

i=0

N−1∑

j=i+1

(f(j)− f(i)) (Jij)mn, (3.105)

so that

QJ2 = e
−2i(π

2
− θ

2
) −i

2β
√
N

∑N−2
i=0

∑N−1
j=i+1(f(j)−f(i))(Jij)mn

. (3.106)

Now Jij , which consists of a sum of N(N−1)
2 terms, can be written in a Pauli basis. To form an

antisymmetric matrix, we will need an odd number of occurrences of the σy gate. Switching
to a Pauli basis Pij = ⊗nj=1σu, where u ∈ {x, y, z} and we only use an odd number of σy Pauli
matrices in this tensor product. All possible permutations with an odd number of σy matrices

will be

(
n
1

)

3n−1 +

(
n
3

)

3n−3 +

(
n
5

)

3n−5 + · · · = N(N−1)
2 , which is the same as for the

Jij basis, and so we can switch to this new basis

QJ2 = eφ
∑N(N−1)/2

k=1 skPij .

We find that writing this in a product form, we need n terms,

QJ2 = e
q1iπ
4
σy⊗I⊗I⊗···⊗Ie

q2iπ
4
I⊗σy⊗I⊗···⊗I . . . . .e

qniπ
4
I⊗I⊗···⊗σy (3.107)

where qn is +1 if the nth qubit is zero, otherwise, −1. The 1st qubit represents the most
significant bit.
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A circuit is already known for U = e−iσz∆t [NC02] and, because the Pauli matrix Z can
be transformed into the other Pauli matrices with single qubit operations, we can modify
this circuit to implement any Hamiltonian consisting of arbitrary tensor products of Pauli
matrices. That is, in our case, we can use the relation

σy = HiσzH
†
i , (3.108)

where Hi =
1√
2

[
1 i
i 1

]

. For our circuits, we see that ∆t = π
4 and, hence

e−i∆tσz =

[
e−iπ

4 0

0 ei
π
4

]

= e−iπ
4

[
1 0
0 i

]

= e−iπ
4 S. (3.109)

Hence, for the first term for Q2, we have

e−iσy⊗...I2⊗I2⊗I2φ = (cosφI2 − i sinφσy)⊗ IN/2 (3.110)

=
(

Hi (cosφI2 − i sinφσz)H
†
i

)

⊗ IN/2

= e−iπ
4

(

HiSH
†
i

)

⊗ IN/2.

To include the effect of the oracle, we need to add a ctrl−Y gate as follows:

U = −ie−iπ
4

(

HiSYqH
†
i

)

⊗ IN/2,

where Yq means a Y gate is activated, if the q-th qubit is not in the solution. Hence, inductively,
we can now write down the full equation

QJ2 = e−iκHiSYq1H
†
i ⊗HiSYq2H

†
i ⊗ · · · ⊗HiSYqnH

†
i . (3.111)

This can be simplified to

QJ2 = Xq1H ⊗Xq2H ⊗ · · · ⊗XqnH (3.112)

where Xq means the X gate is activated, if the q-th qubit is 1 in the solution state. Hence, we
have clearly found a viable circuit derived from the generator approach and, being a search in
unit time, we require the oracle to answer the query of whether the j-th qubit is in the solution,
thus a search in unit time is indeed feasible provided a more powerful oracle is accepted.

3.4 Summary

After introducing the conventional Grover search process, we introduce an alternate approach
based on the use of the phase estimation procedure. This approach is limited though, in that
it can only search for single items in a database, but nevertheless provides an alternate search
procedure and so may have advantages in some settings. We then introduce the search ap-
proach based on constructing an appropriate Hamiltonian for the search query. This approach
was then recast in terms of three SU(2) generators for the search space.

The set of three generators (J1, J2, J3), for the complex non-orthogonal space |m〉, |σ〉,
allows us to follow the search process on the Bloch sphere in 3-space, analogous to the pre-
cession of a spin-12 particle in a magnetic field, giving us a good pedagogical tool to describe
the Grover search. We found that the Grover operation G is generated solely by J2, that is
G = e2iθJ2 Eq. (3.62). An alternative search can also be undertaken using J1, rotating in
the complex direction, but not J3. Because J1 cannot be factorized, it appears more suitable
for simulation and adiabatic approaches. A general search was then investigated, using Eq.
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(3.59), using a rotation in a general direction, which enabled us to simply derive an exact
search Eq. (3.96) and the phase matching condition Eq. (3.86). The matrix Q(k) could find
the solution exactly, because k now does not need to be restricted to an integer, as it does
when referring to the power of a Grover matrix. We saw how increasing the energy of the
Grover search Hamiltonian in the adiabatic setting was equivalent to raising the Grover matrix
to a power in the circuit model representation. We were able to construct a unit time Grover
search circuit, however, this required an enhanced oracle, which was able to answer the query
of whether a particular qubit was set at 0 or 1 in the solution state.

Hence in this chapter we have introduced several new approaches to the Grover search
algorithm which provided new insights into the search process and which may have compu-
tational advantages in certain settings. We now complete our analysis of the Grover search
algorithm in the following chapter using the mathematical formalism of geometric algebra.



4

The Grover Search using Geometric Algebra

We now extend the previous analysis of the Grover search algorithm using the mathematical
formalism of GA. To demonstrate its value, we efficiently solve the exact search and easily
represent more general search situations. The two strengths of GA are its method of han-
dling rotations and its integral geometric representation, and we indeed find it to be an ideal
formalism for the Grover search.

The Grover search algorithm [Gro97] seeks to evolve a wave function, from some starting
state |σ〉, into the solution state |m〉, where |m〉 is the set of all solutions, which, upon
measurement, will yield one element from this set. In order to analyze this evolution efficiently,
typically an orthonormal basis |m〉 and |m⊥〉 is defined, as shown on Fig (3.9), upon which the
starting state is plotted. However, in this chapter, we once again use the alternative basis, the
states of maximum and minimum weight identified in Section 3, as the basis for the Grover
search space, which allows us to interpret the Grover search as the precession of a spin-12
particle, precessing from the |σ〉 direction to the |m〉 direction.

Representing the Grover basis states in GA

From the previous section 3.3, we have

|σ〉 = e−iδ

(

− cos
θ

4
| ↑〉+ sin

θ

4
| ↓〉
)

, (4.1)

where we can ignore the global phase, and

|m〉 = − sin
θ

4
| ↑〉+ cos

θ

4
| ↓〉. (4.2)

Converting these spinors into GA, we find using Eq. (1.24)

σs = − cos
θ

4
− sin

θ

4
ισ2 = −eισ2θ/4 (4.3)

ms = − sin
θ

4
− cos

θ

4
ισ2 = −eισ2(π/2−θ/4) = −ισ2e−ισ2θ/4 (4.4)

m⊥
s = cos

θ

4
− sin

θ

4
ισ2 = e−ισ2θ/4. (4.5)

This GA form of the spinors clearly indicates their fundamental nature as rotations, and so
by acting on the σ3 vector, we can find the Bloch sphere representation as

S = ψσ3ψ
†, (4.6)

which gives us in real space

σ = eισ2θ/4σ3e
−ισ2θ/4 = eισ2θ/2σ3 = − sin

θ

2
σ1 + cos

θ

2
σ3 (4.7)

m = eισ2(π/2−θ/4)σ3e
−ισ2(π/2−θ/4) = −σ3eισ2θ/2 = eισ2(π−θ/2)σ3 = − sin

θ

2
σ1 − cos

θ

2
σ3

m⊥ = e−ισ2θ/4σ3e
ισ2θ/4 = σ3e

ισ2θ/2 = sin
θ

2
σ1 + cos

θ

2
σ3.
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Recall that the bi-vectors ισ1, ισ2, ισ3 are used to represent rotations, however, the unit vectors,
σ1, σ2, σ3 can be equated to a real 3-space co-ordinate system x, y, z, respectively. Hence |σ〉,
|m〉 and |m〉⊥ can now be plotted in real Cartesian space analogous to the Bloch vector
representation of a single qubit, as shown in Fig (4.1). As can be seen, we use the σ3 (z-axis)
to measure the angle θ, with φ measured from σ1 rotating in the perpendicular plane. It might
appear this Bloch-sphere type representation contains less information than the Dirac bra-ket
representation with complex phases, however, it can be shown that the polarization vector in
fact contains all of the knowable information about the state of the particle. This is because
the global phase term can be ignored in this case.
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Figure 4.1: Geometric algebra of 3 dimensions. The starting state σ lies at an angle of θ/2
from the vertical σ3 axis. The action of the oracle shown as a reflection about the m⊥ axis,
creating a rotation by θ from m⊥. Clearly a rotation by π about the σ1 axis, or a rotation by
π − θ about the σ2 axis will solve the search problem through rotating the starting vector σ
onto the solution vector m.

4.1 The Grover search operator in GA

The action of the Grover oracle on the state |m〉 is (I − 2|m〉〈m|)|m〉 = −|m〉, which is to flip
the ‘m’ coordinate about the |m⊥〉 axis, as detailed in [NC02]. Reflections are easily handled
in GA, through double sided multiplication of the vector representing the axis of reflection,
the action of the Oracle being therefore

m⊥σm⊥ = mσm. (4.8)

Thus, we can say simply that

Gm = m, (4.9)

where we assume that Gm acts by conjugation, that is

Oracle(ψ) = GmψGm.
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Substituting Eq. (4.7), we find the action of the oracle on σ as

mσm = e−ισ2θ/2σ3σ3e
−ισ2θ/4e−ισ2θ/2σ3 = e−ισ23θ/2σ3 = cos

3θ

2
σ3 + sin

3θ

2
σ1, (4.10)

which is the required vector, as shown in Fig. (4.1). The action of the other half of the Grover
operator I − 2|m〉〈m|, implies a reflection about the σ vector, so that

Gσ = σ. (4.11)

Hence, the combined Grover operator is simply

G = −GσGm = −σm = eισ2θ/2σ3σ3e
ισ2θ/2 = eισ2θ, (4.12)

which is a compact representation for the Grover operator if compared with the conventional
form of Eq. (3.43) and clearly reveals that the Grover operation is fundamentally a rotation,
specifically, a rotation by 2θ about the σ2 axis. Now, in the language of geometric algebra,
to solve the search problem after k iterations of the Grover operator acting onto the starting
state σ, we require

m = GkσG†k,

which is a three-vector equation indicating that the starting vector σ needs to be rotated onto
the solution vector m, through the repeated action of G. Substituting for m,σ and G into Eq.
(4.13), we find

eισ2(π−θ/2)σ3 = eιkσ2θeισ2θ/2σ3e
−ιkσ2θ (4.13)

= eισ2(2kθ+θ/2)σ3,

and equating exponentials, and ignoring rotations modulo 2π, we require

2kθ +
θ

2
= π − θ

2
, (4.14)

or

k =
π

2θ
− 1

2
. (4.15)

Using θ = 2arcsin
√
M√
N

for a database with M solutions, we find

k =
π

4 arcsin
√
M√
N

− 1

2
≈ π
√
N

4
√
M
, (4.16)

agreeing with the well known result for the Grover search.

4.1.1 Exact Grover search

The Grover operator is typically generalized to

G = −
(

I −
(

1− eiφ1
)

|σ〉〈σ|
)(

I −
(

1− eiφ2
)

|m〉〈m|
)

, (4.17)

so that, when the Oracle identifies a solution, it applies a complex phase eiφ2 to the wave
function, not just the scalar −1.

A reflection can be viewed as a rotation by π in one higher dimension, so if we rotate by
an angle φ2 about the m axis, which will be clockwise as viewed from above the σ3 axis, we
obtain the oracle

Gm = eι
φ2
2
(sin(θ/2)σ1+cos(θ/2)σ3). (4.18)
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For φ2 = π, we find Gm = ι (sin(θ/2)σ1 + cos(θ/2)σ3) = ιm, so that the action of the oracle

GmσG
†
m = ιmσ(−ιm) = mσm, (4.19)

which gives the same result as the standard Grover oracle found previously Eq. (4.8), similarly

Gσ = e−ι
φ1
2
(− sin(θ/2)σ1+cos(θ/2)σ3) (4.20)

will be a rotation about the σ axis. Hence, for the exact search for the Grover operator we
have

G = −GσGm (4.21)

= −e−ι
φ1
2
(− sin(θ/2)σ1+cos(θ/2)σ3)eι

φ2
2
(sin(θ/2)σ1+cos(θ/2)σ3)

= cos
φ1
2

cos
φ2
2

+ cos θ sin
φ1
2

sin
φ2
2

+ sin
φ1 + φ2

2
sin

θ

2
ισ1

+sin
φ1
2

sin
φ2
2

sin θισ2 − cos
θ

2
sin

φ1 − φ2
2

ισ3

= eιβ(sin γ sinασ1+sin γ cosασ2+cos γσ3),

for some real numbers α, β, γ, which represents a precession about a nearly arbitrary axis on
the Bloch sphere.

Phase matching

We can see from Fig. (4.1), using the basis of | ↑〉 and | ↓〉, that σ and m lie in the plane of σ1
and σ3, and hence the Grover precession axis must lie in the plane of σ1,σ2. Hence, we need
to remove the σ3 component, and so we require the well known phase matching condition,
φ1 = φ2, giving the exact search as

G = −eιβ(sinασ1+cosασ2), (4.22)

where after some algebra, α and β are obtained from Eq. (4.21) we find

sin
β

2
= sin

θ

2
sin

φ

2
(4.23)

cotα = cos
θ

2
tan

φ

2
,

which can be easily re-expressed assuming a normalization factor Z as

G = eιβ(cos
φ
2
σ1+cos θ

2
sin φ

2
σ2)/Z , (4.24)

which shows clearly the precession plane perpendicular to the vector cos φ2σ1 + cos θ2 sin
φ
2σ2.

To calculate φ for the exact search, we have the algebraic equation

GkσG†k = m. (4.25)

Using Eq.(4.7), we have

eιkβ(sinασ1+cosασ2)eισ2θ/2σ3e
−ιkβ(sinασ1+cosασ2) = −e−ισ2θ/2σ3, (4.26)

which can be rearranged to

eιkβ(sinασ1+cosασ2)eισ2θ/2eιkβ(sinασ1+cosασ2)eισ2θ/2 = −1 (4.27)

or
(eιkβ(sinασ1+cosασ2)eισ2θ/2)2 = −1. (4.28)
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Now, because we can always replace two consecutive precessions with a single precession
operation, we can write

eιkβ(sinασ1+cosασ2)eισ2θ/2 = eικ~v = cosκ+ ι~v sinκ, (4.29)

for some unit vector ~v. Thus, we need to solve from Eq. (4.28)

(eικv̂)2 = e2ικv̂ = cos 2κ+ ι sin 2κv̂ = −1, (4.30)

giving κ = π
2 . Thus the right hand side of Eq. (4.29) is equal to ι~v with the scalar part zero.

Hence, expanding the left hand side of Eq. (4.29) and setting it equal to zero, we have

〈(cos kβ + sin kβι(sinασ1 + cosασ2)) (cos
θ

2
+ sin

θ

2
ισ2)〉0

= cos kβ cos
θ

2
− sin kβ sin

θ

2
cosα

= 0.

Re-arranging this equation, we find

cot kβ = tan
θ

2
cosα =

sin θ
2

√

cos2 θ2 + cot2 φ2

. (4.31)

Isolating k, we find

k =

arccot

(

sin θ
2

√

cos2 θ
2
+cot2 φ

2

)

2 arcsin(sin θ
2 sin

φ
2 )

. (4.32)

Graphing this in Fig. 4.2, we see a minimum corresponding to the
√
N bound, showing that

we cannot speed up the Grover search, however, we can slow the search slightly to find the
exact solution. Using calculus we can find the minimum for k at φ = π, as illustrated in
Fig. 4.2 for a database of 16 elements, and substituting into Eq. (4.32), we find the k which
corresponds to the fastest search

k =
π

2θ
− 1

2
, (4.33)

the same as found for the standard Grover search.
Hence, the minimum integer iterations will be

km =

⌈
π

2θ
− 1

2

⌉

. (4.34)

Seeking the φ to give an exact search, we substitute k = km back into Eq. (4.32) and
re-arranging, we find an expression for φ

2km arcsin

(

sin
θ

2
sin

φ

2

)

= arccot




sin θ

2
√

cos2 θ2 + cot2 φ2



 , (4.35)

which we can simplify to give explicitly

sin
φ

2
= sin

π

4km + 2
csc

θ

2
. (4.36)

We have φ now determined directly from the known θ and km defined in Eq. (3.50) and
Eq. (4.34) respectively, thus solving the exact search using the Grover operator Eq.(4.22).
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The polarization vector ψ, can now be calculated after k iterations

ψ = GkσG†k (4.37)

= eιkβ(sinασ1+cosασ2eισ2θ/2σ3e
−ιkβ(sinασ1+cosασ2 (4.38)

= −(sin2 α sin
θ

2
+ sin

θ

2
cos2 α cos 2βk + cosα cos

θ

2
sin 2βk)σ1 (4.39)

+ (−1

2
sin

θ

2
sin 2α+

1

2
sin 2α sin

θ

2
cos 2βk + cos

θ

2
sinα sin 2βk)σ2

+ (cos
θ

2
cos 2βk − cosα sin

θ

2
sin 2βk)σ3,

where α and β, Eq. (4.23) are defined in terms of φ given by Eq. (4.36), which equals the
solution vector m exactly after k = km iterations, where km given by Eq.(4.34). This could
be graphed in a 3-space, defined by the three vectors σ1, σ2, σ3.

Example of an exact search using GA

For a database of 16 elements we have the condition on φ from Eq. (4.36), for an exact search,
which gives us φ = 2.19506 to five decimal places, from which we can now find α and β. This
gives us the equation for the polarization vector after k iterations:

ψ = −(0.0546434 + 0.195357 cos 2βk + 0.855913 sin 2βk)σ1 (4.40)

+ (−0.10332 + 0.10332 cos 2βk + 0.452673 sin 2βk)σ2

+ (0.968246 cos 2βk − 0.220996 sin 2βk)σ3.

Figure 4.2: Minimum search iterations. The minimum lying at φ = π, showing that the Grover
search is optimal.



4.1 The Grover search operator in GA 61

Substituting in for k = 1, 2, 3 iterations, we find

ψ = (σ1, σ2, σ3) (4.41)

σ = (−0.25, 0, 0.9682)
Gσ = (−0.8456, 0.315, 0.4309)
G2σ = (−0.8456, 0.315,−0.4309)
G3σ = (−0.25, 0,−0.9682),

thus producing the exact solution m after km = 3 iterations, as required.

4.1.2 General exact Grover search

Most generally we can write the Grover operator as

G = −UIγU−1Gm, (4.42)

where
Iγ = I + (eiφ1 − 1)|γ〉〈γ|, (4.43)

where we normally choose γ = |0〉 = |0 . . . 0〉. For U = H, we have

G = −UIγU−1Gm = −(I + (eiφ1 − 1)H|γ〉〈γ|H = −(I + (eiφ1 − 1)|σ〉〈σ| = −GσGm. (4.44)

So, with this modified operator, we effectively use a modified vector to σ, namely the vector
γ = U |0〉. As this is a unit vector, we simply adapt Gσ to rotate about this new vector, that
is, we have

Gγ = e−ιγφ1/2 = e−ι
φ1
2
(− sin(θγ/2) cos(δ)σ1−sin(θγ/2) sin(δ)σ2+cos(θγ/2)σ3), (4.45)

where a and b describe a general unit vector in 3 space. Hence, for the general exact search,
we have

G = −GγGm = −e−ι
φ1
2
(− sin(θγ/2) cos(δ)σ1−sin(θγ/2) sin(δ)σ2+cos(θγ/2)σ3)eιφ2/2(sin(θ/2)σ1+cos(θ/2)σ3).

(4.46)
However, because we have two consecutive precession operations, we can replace this with a
single precession operation

G = eιβ(sin γ sinασ1+sin γ cosασ2+cos γσ3), (4.47)

for some real numbers α, β, γ, where once again we require the coefficient of σ3 to be zero.
We also have a general starting state adjusted, because by replacing H with U , we have

changed the overlap on the starting state, so generally we have

|γ〉 = −e−iφ/2 cos
θ0
4
| ↑〉+ eiφ/2 sin

θ0
4
| ↓〉.

In GA we can write it as
γs = −e−ιφ0σ3/2eιθ0σ2/4 (4.48)

and as a polarization vector

γ = γsσ3γs (4.49)

= sin
θ0
2
cosφ0σ1 + sin

θ0
2
sinφ0σ2 + cos

θ0
2
σ3

= eι
θ0
2
(sinφ0σ1−cosφ0σ2)σ3,
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so the full Grover search will give a polarization vector

ψ = Gkγsσ3γ
†
sG

†k (4.50)

= Gkeι
θ0
2
(sinφ0σ1−cosφ0σ2)σ3G

†k

= −σ3eισ2θ/2.

We can expand this expression using G defined above and equate this to the m vector to solve
for the phases φ1 and φ2. We would expect θ0 = θ, if no knowledge is given about the solution.

4.2 Summary

The Grover search algorithm is a central algorithm in the field of quantum computing, and
hence it is important to represent it in the most efficient formalism possible. The two main
strengths of geometric algebra are its method of handling rotations and its integral geometric
representation, and hence its perfect suitability in describing the Grover search. We find Clif-
ford’s geometric algebra, provides a simplified representation for the Grover operator Eq. (4.12)
and a clear geometric picture of the search process. Using the states of maximum and min-
imum weight, we find that we can interpret the search process as the precession of a spin-12
particle, thus providing a simple visual picture, as shown in Fig 4.1. This is not possible with
the standard formalism as it requires two complex axes, forming a four-dimensional space,
and hence difficult to visualize. We also find that the exact Grover search Eq. (4.22) has an
efficient algebraic solution, as shown in Eq. (4.36). This agrees with the exact search analysis
undertaken in the previous chapter 3, however as anticipated, GA provides a clearer and more
efficient solution. We also wrote down the equation for a completely general Grover search in
Eq. (4.42), which can now be visualized in terms of the Bloch sphere, in which the problem
is to rotate a given starting vector onto a target vector through selection of the appropriate
precession axis, as shown in Fig. 4.1 or Fig. 3.10. Improved intuition obtained via the use of
Clifford’s geometric algebra, may possibly enhance the search for new quantum algorithms.
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Quantum Game Theory

”Games combining chance and skill give the best representation of human life, particularly of

military affairs.” Gottfried Wilhelm von Leibniz.

We now extend our research into the arena of quantum game theory, which is closely
related to quantum computing in that they both involve the manipulation of qubits in order
to achieve a desired outcome. For example, one of the first quantum games studied [Mey99],
involved two players applying operations on a single qubit, but which can be extended to
multiple qubit games.

Quantum game theory extends classical game theory [Ras07], [SÖMI04b], [CT06], [VE00]
an established branch of mathematics that describes and analyzes the strategic interaction
among a set of players, and which began fairly recently in 1999 with a seminal paper by
David Meyer [Mey99], that described a penny-flip game involving a classical and a quantum
player. By allowing the quantum player access to general unitary transformations performed
on his qubit, whereas his opponent, the classical player, only had access to classical coin flips,
Meyer showed that the quantum player achieved an overwhelming advantage, going from a
50:50 chance of winning, to a game where he had a foolproof winning strategy. Following this,
further motivation soon came in [EWL99], with the proposal of a quantum mechanical version
of the famous two player game of Prisoner dilemma which allowed new strategic solutions.
Quantum games with decoherence was also investigated in [Joh01], [YSÖ+05].

In the following, as stated in the literature [Mey99], [EWL99], [FNA02], [FA05b], [Fli05],
[Iqb05], we list some of the key reasons for the significance of game-theoretic studies in the
quantum regime:

1. Game theory uses the concepts and methods of probability theory, in order to analyze
games. Playing quantum games provides an opportunity to generalize conventional
probability into a quantum probability framework [Gud88].

2. Games of competition have an intimate connection with quantum communication con-
cepts. For example, the quantum-mechanical protocols for eavesdropping [GH97], [Eke91],
finance [PS02,PS08], optimal cloning [F.98], computer architectures [dSR08] and quan-
tum teleportation [Pir05], can readily be formulated as games between players and have
the potential to shed new light on fundamental questions in quantum computing and
quantum mechanics [NC02]. For example, Frieden [Fri89], [FS95], [FB00] showed that
physical laws can be derived by considering the information content of a physical quan-
tity, implying that the process of making a measurement represents a game against
nature. It turns out that the observer can never ‘win’, in the sense of obtaining com-
plete information about a particular physical phenomenon.

3. It is possible [Mey99], [Mey02] to re-formulate certain quantum algorithms as games
between classical and quantum players and hence it has been suggested that quantum
games may shed new light on the working of quantum algorithms, possibly helping to
find new ones.

4. Games can provide [Pie02] a useful set of tools in giving semantics to quantum logic and
can be brought to bear on questions concerning the interpretation and the nature of the
concept of uncertainty in the foundations of quantum theory.
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5. Nanoscopic level interactions are dictated by quantum mechanics. Can Dawkins’ dictum
[Daw76] of the ‘Selfish Gene’ be thought of in terms of games of survival with quantum
interactions?

Although recent years have seen a steady increase in the literature of quantum games
[LJ02, PS03], several fundamental questions remain unanswered. For example, do quantum
games offer a genuine extension of the classical game theory or are they only transformed
classical games? Assuming the answer to this question is ‘yes’, then a reasonable domain,
where quantum games have genuine potential to benefit game theory, is in the area of N -
player games, where N can become infinite. It is precisely in this domain that only minimal
investigations have been performed to date. It is because the standard mathematical formalism
of quantum games uses density matrices, and those being complex matrices, the analysis of N -
player games becomes nearly impossible. Also, with density matrices, constructing a geometric
representation of the problem at hand is often hard and sometimes becomes an impossible task.
Hence, one of the key components of this section is the implementation of GA for the analysis
of quantum games. Generally speaking, with the density matrix formalism, we use Dirac’s
bra-ket formalism or density matrices and complex matrices for SU(2) rotations, whereas
with GA, we use quaternion style rotations of vectors in a real 3-space, which thus naturally
provides a convenient geometric picture. GA has also been applied to quantum information
and computation [DL03] [HD02b], [DDL02]. As the area of quantum games is a part of this
field, this provides a basis for a systematic investigation into quantum games using GA. It
has also been noted [PS02] that research into quantum game theory should not be neglected,
because current technological progress suggests that sooner or later someone will take full
advantage of quantum theory and use quantum strategies to defeat us at some game, that is,
an economic, diplomatic or perhaps military one.

A central concept in game theory, is the Nash equilibrium, which is the theoretically
optimal response by each player, assuming rational self interest, based on the games payoff
structure. The non-cooperative games we will consider assume that there is no communication
between the players, though each player has complete knowledge of the games parameters and
the games starting state. Different types of game are defined with a payoff matrix for each
player, based on the outcome of the game. Some common games investigated include the
Prisoner dilemma, Stag hunt and Chicken games. For the two-player Prisoner dilemma (PD)
game we have the payoff matrix for player A

GAij =

[
3 0
5 1

]

=

[
G00 G01

G10 G11

]

. (5.1)

For symmetric games, such as the well known PD game, we have for player B that GBij = GAji.
Each player has two choices in the PD game, to cooperate or defect. If player A defects
and player B cooperates, the payoff for player A will be G10 = 5 as shown, where the first
subscript indicates player A’s choice of defection and the second subscript, player B’s choice
of cooperation. In fact for the second column, where player B defects in both cases, player A
is still better off defecting, receiving G11 = 1 as opposed G01 = 0 if he cooperates. Hence, we
can see that player A will always receive a higher payoff by defecting, irrespective of players’
B choice and hence rational self interest will create a NE of G11 = 1 payoff for both players by
symmetry. The game produces a dilemma because if they could somehow cooperate with each
other then they could both achieve a payoff of 3 units each. The Prisoner’s dilemma has wide
applicability in diverse areas of science such as biology, politics, economics and sociology. For
example the PD game has applicability to climate change negotiations, in that each country
will benefit from a stable climate and so they should cooperate to achieve this, however no
country wants to act unilaterally because its extra manufacturing costs for example, will put
it in a weaker position economically, hence all countries will tend not to cooperate and hence
do nothing (that is defect), as in the PD game.
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A well known criticism [vEP02], [ÖSI07] of games incorporating quantum mechanics, ques-
tions whether these quantum games should be considered completely new games rather than
extended versions of an existing classical game, because the players in quantum games are
typically given access to extended strategy sets (such as unitary transformations), relative to
what they are allowed to employ in the corresponding classical game. However the approach
we adopt to quantum games is based on an EPR type setting [ICA08, Iqb05], developed in
Chapter 6, which avoids this criticism because the players’ strategy sets in this formulation
remain classical, being a choice of two measurement directions, and the classical game is re-
covered when the quantum entanglement of the shared state goes to zero. Thus this category
of quantum games can be genuinely considered to embed the corresponding classical game
and hence a genuine extension of the classical game.

As a first step in studying quantum games, we present quantum games from the perspective
of a table of non-factorisable joint probabilities, published in [CIA10]. This provides a natural
link from classical probabilistic games to quantum games. From this perspective, quantum
effects are represented as non-factorisable joint probability distributions. We then look at
quantum games from a true quantum mechanical perspective but using the formalism of GA
in place of the more conventional bra-ket formalism. We introduce for the first time [CILVS09]
the tools of GA to present an improved analysis of Meyer’s penny flip game [Mey99]. In this
work, we found that GA indeed provided a geometric picture of the quantum mechanical
interactions for this two-player game, which allowed a visualization of the solution strategy
that emerges in this quantum game. We then extend this approach to two-player, three-
player and finally N -player games, which can be used to model more complicated strategic
interactions. Multiqubit games are naturally modeled in GA as probabilistic outcomes over
multiple qubits and have a very efficient solution shown in Eq. (1.25).
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5.1 Constructing quantum games from symmetric

non-factorisable joint probabilities

Quantum games constructed from a table of non-factorisable joint classical probabilities avoids
the use of the conventional quantum mechanical formalism typically required in quantum game
theory. Classical games are described when the joint probabilities are factorisable but games
with quantum mechanical features are produced when the joint probabilities become non-
factorisable. Incorporating a symmetry constraint, we then give the Nash equilibrium and
payoff relations for a general quantum game which still embeds the classical game when the
joint probabilities become factorisable. Quantum versions of Prisoner dilemma, Stag Hunt
and the Chicken game are then investigated with this scheme. We show that this approach
provides a general framework for both classical and quantum games without recourse to the
formalism of quantum mechanics, thus making the field more accessible to the non-physicist.
A follow up paper linking this approach to a quantum mechanical approach as described in
Chapter 6, has been submitted for publication.

Published in Phys. Lett. A, 20010. [CIA10] (attached).
Authors: J. M. Chappell(Adelaide University), A. Iqbal(Adelaide University) and D. Ab-

bott(Adelaide University).
Statement of contributions: Dr. Iqbal had been working on non-factorisable joint proba-

bilities as a way to represent quantum games without using the normal quantum mechanical
formalism. J. Chappell suggested that a symmetry constraint on the table, might naturally
produce classical and quantum games in this framework. J. Chappell worked through the
consequences of this idea, and along with the support of Dr. Iqbal and Prof. D. Abbott
produced a paper, accepted for publication in Phys. Lett. A.

Signed:

J. M. Chappell Dr A. Iqbal Prof. D. Abbott
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5.2 The penny flip quantum game and geometric algebra

We analyze Meyer’s quantum penny flip game using the language of geometric algebra(GA)
and so determine all possible unitary transformations which enable the player Q to implement
a winning strategy. We find that GA can provide a direct derivation of the winning trans-
formation, which can be parameterized by the two angles θ and φ. Our results show that
GA facilitates a clear visual picture of the penny flip game, that is helpful in motivating and
developing further analysis of this quantum game. The result is significant, because for the
first time the mathematical formalism of GA is applied to the field of quantum games and
it appears to be superior to conventional approaches. Its specific benefits are the removal of
the redundancy of the global phase and a simple visual representation of the problem. The
success with a single qubit game naturally leads to an extension to two-player games with two
qubits.

Published in Journal of the Physical Society of Japan, Volume 78. [CILVS09] (attached).
Authors: J. M. Chappell(Adelaide University), A. Iqbal(Adelaide University), M. A.

Lohe(Adelaide University) and Lorenz von Smekal(Adelaide University).
Statement of contributions: Dr. A. Iqbal initially introduced J. Chappell to Meyer’s

quantum Penny Flip game. J. Chappell then proceeded to rework the original paper, using
GA. It soon became clear that GA provided a clear and concise derivation of a general solution.
With Dr Azhar’s, Dr Lohe’s and Dr Lorenz von Smekal’s oversight, J. Chappell then prepared
a suitable document for publication.

Signed:

J. M. Chappell Dr A. Iqbal Dr M.A.Lohe Dr Lorenz von Smekal



6

Two-player Quantum Games

The quantum game analyzed in the previous chapter, Meyer’s penny flip game (attached), de-
scribed a two-player game in which players apply unitary transformations on a single common
qubit, which is then submitted for measurement to determine the outcome of the game. We
now progress to two-player games, in which two qubits are employed, with a separate qubit
allocated to each player and, significantly, by utilizing a pair of quantum particles, we now
have available the quantum mechanical resource of entanglement. The previous schemes were
analyzed using conventional techniques of Bra-ket notation and density matrices, however, we
now introduce an analysis based on Geometric Algebra(GA).

6.1 Introduction

Although its origins can be traced to earlier works [Bla80,Wie83,Mer90b,Mer90a], the ex-
tension of game theory [Bin07,Ras07] to the quantum regime [Per93] was proposed by Meyer
[Mey99] and Eisert et al [EWL99] and has since been investigated by others [Vai99, BH01,
vEP02, Joh01, MW00, IT01, DLX+02b, DLX+02a, PS02, FA03, IT02, PS03, SOMI04a, FA05a,
IW04,Men05,CT06, Iqb05,NT04,SÖMI04b, IT07, ÖSI07, IC07,RNTK08,FH07,AV08,GZK08,
ITC08, ICA08, LHJ09, IA09,CILVS09,CIA10, JMCL11a]. Game theory is a vast subject but
many interesting strategic interactions can still be found in simple-to-analyze two-player two-
strategy non-cooperative games. The well known games of Prisoners’ Dilemma (PD) and Stag
Hunt [Bin07,Ras07] are two such examples.

The general idea in the quantization scheme proposed by Eisert et al [EWL99] for such
games involves a referee who forwards a two-qubit entangled state to the two players. Players
perform their strategic actions on the state that consist of local unitary transformations to
their respective qubits. The qubits are subsequently returned to the referee for measurement
from which the players’ payoffs are determined. The setup ensures that players sharing a
product initial state corresponds to the mixed-strategy version of the considered classical game.
However, players sharing an entangled state can lead to new Nash equilibria (NE) [Bin07,
Ras07] consisting of pairs of unitary transformations [Per93,EWL99]. At these quantum NE
the players can have higher payoffs relative to what they obtain at the NE in the mixed-
strategy version of the classical game.

This approach to constructing quantum games was subsequently criticized [vEP02] as
follows. The players’ strategic actions in the quantum game are extended operations relative
to their actions in the original mixed-strategy version of the classical game, in which, each
player can perform a strategic action consisting of a probabilistic combination of their two
pure strategies. The mentioned criticism [vEP02] argued that as the quantum players have
expanded strategy sets and can do more than what the classical players can do, it is plausible
to represent the quantum game as an extended classical game that also involves new pure
strategies. The entries in the extended game matrix can then be suitably chosen so to be
representative of the players’ payoffs at the obtained quantum NE. This line of reasoning can
be extended further in stating that quantum games are in fact ‘disguised’ classical games and
to quantize a game is equivalent to replacing the original game by an extended classical game.

As a way to counter the criticism in [vEP02], two-party Einstein-Podolsky-Rosen (EPR)
type experiments [EPR35,Boh51,B+64,Bel87,Bel66,ADR82,CS78,Cer00] are recognized to
have genuinely quantum features. One observes that the setting of such experiments can
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be fruitfully adapted [IW04, Iqb05, IC07, ICA08, IA09] for playing a quantum version of a
two-player two-strategy game, which allows us to avoid the criticism from another perspec-
tive. In particular, with the EPR type setting the players’ strategies can be defined entirely
classically—consisting of a probabilistic combination of a player’s choice between two mea-
surement directions. That is, with this setting, the players’ strategy sets remain identical to
ones they have in a standard arrangement for playing a mixed-strategy version of a classical
two-player two-strategy game. As the players’ strategy sets in the quantum game are not
extended relative to the classical game, for this route to constructing quantum games, the
mentioned criticism [vEP02] does not apply.

Figure 6.1: The EPR setup.

The usefulness of applying the formalism of geometric algebra (GA) [Hes99,HS84,DL03,
DSD07] in the investigation of quantum games has recently been shown [CILVS09] for the well
known quantum penny flip game [Mey99]. One may ask about the need of using the formalism
of GA when, for instance, the GA based analysis of two-player quantum games developed in
the following can also be reproduced with the standard analysis with Pauli matrices. We can
argue that the Pauli matrices are not always the preferred representation. Especially, as it
is quite often overlooked that the algebra of Pauli matrices is the matrix representation for
the Clifford’s geometric algebra R3, which is no more and no less than a system of directed
numbers representing the geometrical properties of Euclidean 3-space. As a GA based analysis
allows using operations in 3-space with real coordinates, it thus permits a visualization that
is simply not available in the standard approach using matrices over the field of complex
numbers. Pauli matrices are isomorphic to the quaternions, and hence represent rotations of
particle states. This fact paves the way to describe general unitary transformations on qubits,
in a simplified algebraic form, as rotors that bring noticeable simplifications and geometrical
clarifications. We apply constraints on the parameters of EPR type arrangements that ensure
a faithful embedding of the mixed-strategy version of the original classical game within the
corresponding quantum game. In particular, we show how using GA we can determine new
NE in quantum games of Stag Hunt and Prisoners’ Dilemma played in the EPR type setting.

6.2 EPR setting for playing a quantum game

We have the following payoff matrices

A = Alice
S1
S2

Bob

S′
1 S′

2(
G00 G01

G10 G11

)

, B = Alice
S1
S2

Bob

S′
1 S′

2(
H00 H01

H10 H11

)

, (6.1)
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giving Alice’s and Bob’s payoffs, respectively. Here Alice’s pure strategies are S1 and S2 and
Bob’s pure strategies are S′

1 and S′
2. In a run, Alice chooses her strategy to be either S1 or

S2 and likewise, in the same run, Bob chooses his strategy to be either S′
1 or S′

2. We consider
games with symmetrical payoffs for which B = AT , where T indicates transpose. This requires
H00 = G00, H01 = G10, H10 = G01, and H11 = G11.

The EPR setting assumes that players Alice and Bob are spatially-separated participants,
who are located at the two arms of the EPR system. In a run, each player receives one half of
a two-particle system emitted by the same source. We associate Alice’s strategies S1, S2 to the
directions κ11, κ

1
2 respectively and similarly, associate Bob’s strategies S′

1, S
′
2 to the directions

κ21, κ
2
2, respectively. On receiving a pair of particles, players Alice and Bob together choose a

pair of directions from the four possible cases (κ11, κ
2
1), (κ

1
1, κ

2
2), (κ

1
2, κ

2
1), (κ

1
2, κ

2
2) and a quantum

measurement is performed along the chosen pair. The outcome of the measurement at either
arm is +1 or −1. Over a large number of runs, a record is maintained of the players’ choices
of directions, representing their strategies, and one of the four possible outcomes (+1,+1),
(+1,−1), (−1,+1), (−1,−1) emerging out of the measurement. Within each of the brackets,
the first entry is reserved for the outcome at Alice’s side and the second entry for the outcome
at Bob’s side. Players’ payoff relations are expressed in terms of the outcomes of measurements
that are recorded for a large number of runs, as the players sequentially receive, two-particle
systems emitted from the source. These payoffs depend on the strategic choices that each
player adapts for his/her two directions over many runs, and on the dichotomic outcomes of
the measurements performed along those directions.

6.3 Geometric algebra

Geometric algebra (GA) [Hes99,HS84,DL03,DSD07] is an associative non-commutative alge-
bra, that can provide an equivalent description to the conventional Dirac bra-ket and matrix
formalisms of quantum mechanics, consisting of solely of algebraic elements over a strictly
real field. Recently, Christian [Chr07] has used the formalism of GA in thought provoking
investigations of some of the foundational questions in quantum mechanics. In the area of
quantum games, GA has been used by Chappell et al [CILVS09] to determine all possible uni-
tary transformations that implement a winning strategy in Meyer’s PQ penny flip quantum
game [Mey99], and also in analyzing three-player quantum games [JMCL11a].

Using the one-to-one mapping from quantum states to GA defined in Eq. (1.24) it can
then be shown using the Schmidt decomposition of a general two qubit state, that a general
two-particle state can be represented (see Appendix) in GA as

ψ = AB(cos
γ

2
+ sin

γ

2
ισ12ισ

2
2), (6.2)

where γ ∈ [0, π2 ] is a measure of the entanglement and where A,B are single particle rotors
applied to the first and second qubit, respectively.

General unitary operations in GA can be represented as

R(θ1, θ2, θ3) = e−θ3ισ3/2e−θ1ισ2/2e−θ2ισ3/2. (6.3)

This rotation, in Euler angle form, can completely explore the available space of a single qubit,
and is equivalent to a general unitary transformation acting on a spinor. We have the rotors
for each qubit defined as

A = R(α1, α2, α3) = e−α3ισ3/2e−α1ισ2/2e−α2ισ3/2 (6.4)

B = R(β1, β2, β3) = e−β3ισ3/2e−β1ισ2/2e−β2ισ3/2.
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We see that with the three degrees of freedom provided in each rotor and with the entanglement
angle γ, we have defined a two particle quantum state with 7 degrees of freedom, as required
for a two-particle quantum state ignoring the global phase. For example, for A = B = 1 and
γ = −π

2 , we find the Bell state, or with A = 1 and B = R(π, 0, 0) and γ = π
2 , we produce the

singlet state.
To simulate the process of measurement, we form a separable state φ = RS, where R and

S are single particle rotors, which allow general measurement directions to be specified. The
overlap probability between two states in the N -particle case is given by Eq.(1.25), which for
the two particle case becomes

P (ψ, φ) =
〈
ψEψ†φEφ†

〉
−
〈
ψJψ†φJφ†

〉
, (6.5)

where E and J are defined by Eq.(1.26) and Eq.(1.28).

6.3.1 Calculating observables

Employing Eq. (1.25), we firstly calculate

ψEψ† =
1

2
AB

(

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

) (
1− ισ13ισ23

) (

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

)

B†A†

=
1

2
AB

(
1− ισ13ισ23 + sin γ

(
ισ12ισ

2
2 − ισ11ισ21

))
B†A†

=
1

2

(

1− ιAσ13A†ιBσ23B
† + sin γ

(

ιAσ12A
†ιBσ22B

† − ιAσ11A†ιBσ21B
†
))

(6.6)

and

ψJψ† =
1

2
AB

(

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

) (
ισ13 + ισ23

) (

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

)

B†A†

=
1

2
AB

(

cos2
γ

2
− sin2

γ

2

) (
ισ13 + ισ23

)
B†A†

=
1

2
cos γ

(

ιAσ13A
† + ιBσ23B

†
)

. (6.7)

To describe the players measurement directions, we have R = e−ικ
1σ1

2 and S = e−ικ
2σ2

2 . For
the quantum game in the EPR setting, κ1 can be either of Alice’s two directions i.e. κ11 or κ12.
Similarly, in the expression for S the κ2 can be either of Bob’s two directions i.e. κ21 or κ22.
Hence we obtain

φJφ† = RSJS†R†

=
1

2

(

ιRσ13R
† + ιSσ23S

†
)

=
1

2

(

ισ13e
ικ1σ1

2 + ισ23e
ικ2σ2

2

)

, (6.8)

and

φEφ† = RSES†R†

=
1

2

(

1− ιRσ13R†ιSσ23S
†
)

=
1

2

(

1− ισ13eικ
1σ1

2 ισ23e
ικ2σ2

2

)

. (6.9)

Now from Eq. (1.25), we calculate

−
〈

ψJψ†φJφ†
〉

0
= −1

4

〈

cos γ
(

ιAσ13A
† + ιBσ23B

†
)(

ισ13e
ικ1σ1

2 + ισ23e
ικ2σ2

2

)〉

0

=
1

4
cos γ

[
(−)mX(κ1) + (−)nY (κ2)

]
, (6.10)
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where m,n ∈ {0, 1} refers to measuring a |0〉 or a |1〉 state, respectively, and using the results
in Appendix, we have

X(κ1) = cosα1 cosκ
1 + cosα3 sinα1 sinκ

1, (6.11)

Y (κ2) = cosβ1 cosκ
2 + cosβ3 sinβ1 sinκ

2. (6.12)

Also, from Eq. (1.25) we obtain

〈

ψEψ†φEφ†
〉

0
(6.13)

=
〈

(1− ιAσ13A†ιBσ23B
† + sin γ(ιAσ12A

†ιBσ22B
† − ιAσ11A†ιBσ21B

†))

× (1− ισ13ισ23eικσ
1
2eιτσ

2
2 )
〉

0

=
1

4

[
1 + (−)m+nXY − (−)m+n sin γ{U(k1)V (k2)− F (k1)G(k2)}

]
, (6.14)

where

F (κ1) = cosα2(cosκ
1 sinα1 − cosα3 sinκ

1 cosα1) + sinκ1 sinα2 sinα3, (6.15)

G(κ2) = cosβ2(cosκ
2 sinβ1 − cosβ3 sinκ

2 cosβ1) + sinκ2 sinβ2 sinβ3 (6.16)

and

U(κ1) = − sinα2(cosκ
1 sinα1 − cosα3 sinκ

1 cosα1) + sinκ1 cosα2 sinα3, (6.17)

V (κ2) = − sinβ2(cosκ
2 sinβ1 − cosβ3 sinκ

2 cosβ1) + sinκ2 cosβ2 sinβ3. (6.18)

To simplify the equations, we define

Z(κ1, κ2) = F (k1)G(k2)− U(k1)V (k2) (6.19)

= cosφ[cosκ1 cosκ2 sinβ1 sinα1 − sinκ1 cosκ2 sinβ1 cosα1 cosα3

+ sinκ1 sinκ2(cosα1 cosα3 cosβ1 cosβ3 − sinα3 sinβ3)

− cosκ1 sinκ2 sinα1 cosβ1 cosβ3]

+ sinφ[sinκ1 cosκ2 sinα3 sinβ1 + cosκ1 sinκ2 sinα1 sinβ3

+ sinκ1 sinκ2(cosβ1 cosβ3 sinα3 + cosα1 cosα3 sinβ3)]. (6.20)

Now combining Eq. (6.10) and Eq. (6.14) we have the probability to observe a particular state

Pmn =
1

4

[
1 + cos γ{(−)mXi + (−)nYj}+ (−)m+n(XiYj + sin γZij)

]
. (6.21)

To simplify notation we have written Zij = Z(κ1i , κ
2
j ) , Xi = X(κ1i ) and Yj = Y (κ2j ), where

i, j ∈ {1, 2} represent the two possible measurement directions available to each player. We
notice that we were able to make the substitution φ = α2 + β2 in Eq. (6.20), which as shown
in Appendix, is as expected from the known redundancy in the rotors. If we put γ = 0, that
is, for no entanglement, we have the probability

Pmn =
1

4

(
1 + (−)mXi + (−)nYj + (−)m+nXiYj

)

=
(1 + (−)mXi)

1

2

(1 + (−)nYj)2
2

, (6.22)

which shows a product state incorporating general measurement directions for each qubit.
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Writing out the probabilities for the four measurement outcomes we find

P00(κ
1
i , κ

2
j ) =

1

4
[1 + cos γ(Xi + Yj) + (XiYj + sin γZij)] , (6.23)

P01(κ
1
i , κ

2
j ) =

1

4
[1 + cos γ(Xi − Yj)− (XiYj + sin γZij)] , (6.24)

P10(κ
1
i , κ

2
j ) =

1

4
[1 + cos γ(−Xi + Yj)− (XiYj + sin γZij)] , (6.25)

P11(κ
1
i , κ

2
j ) =

1

4
[1 + cos γ(−Xi − Yj) + (XiYj + sin γZij)] . (6.26)

6.3.2 Finding the payoff relations

We allow each player the classical probabilistic choice between their two chosen measurement
directions for their Stern-Gerlach detectors. The two players, Alice and Bob choose their first
measurement direction with probability x and y respectively, where x, y ∈ [0, 1]. Now, we
have the mathematical expectation of Alice’s payoff, where she chooses the direction κ11 with
probability x and the measurement direction κ12 with probability 1− x, as

ΠA(x, y) = xy[P00G00 + P01G01 + P10G10 + P11G11]

+ x(1− y)[P00G00 + P01G01 + P10G10 + P11G11]

+ y(1− x)[P00G00 + P01G01 + P10G10 + P11G11]

+ (1− x)(1− y)[P00G00 + P01G01 + P10G10 + P11G11], (6.27)

where we have used the payoff matrix, defined for Alice, in Eq. (6.1) and the subscript A refers
to Alice. We also define

∆1 = G10 −G00, ∆2 = G11 −G01, ∆3 = ∆2 −∆1, (6.28)

so that by using Eqs. (6.23-6.26) the payoff for Alice (6.27) is expressed as

ΠA(x, y)

=
1

4

[

G00 +G10 +G01 +G11

+∆3{x((X1 −X2)Y2 + (Z12 − Z22) sin γ) + y((Y1 − Y2)X2 + (Z21 − Z22) sin γ)

+ xy{(X1 −X2)(Y1 − Y2) + sin γ(Z11 + Z22 − Z12 − Z21)}+X2Y2 + Z22 sin γ}

− cos γ{(∆1 +∆2)((X1 −X2)x+X2)−∆4((Y1 − Y2)y + Y2)}
]

, (6.29)

where ∆4 = G00 − G01 + G10 − G11. Bob’s payoff, when Alice plays x and Bob plays y can
now be obtained by interchanging x and y in the right hand side of Eq. (6.29).

6.3.3 Solving the general two-player game

We now find the optimal solutions by calculating the Nash equilibrium (NE), that is, the
expected response assuming rational self interest. To find the NE we simply require

ΠA(x
∗, y∗) ≥ ΠA(x, y

∗), ΠB(x
∗, y∗) ≥ ΠB(x

∗, y), (6.30)

which is stating that any unilateral movement of a player away from the NE of (x∗, y∗), will
result in a lower payoff for that player. We find

ΠA(x
∗, y∗)−ΠA(x, y

∗)

=
1

4
(x∗ − x)

[

∆3

{
y∗((X1 −X2)(Y1 − Y2) + sin γ(Z11 + Z22 − Z12 − Z21))

+ (X1 −X2)Y2 + (Z12 − Z22) sin γ
}
− cos γ(∆1 +∆2)(X1 −X2)

]

(6.31)
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and for the second player Bob we have similarly

ΠB(x
∗, y∗)−ΠB(x

∗, y)

=
1

4
(y∗ − y)

[

∆3

{
x∗((X1 −X2)(Y1 − Y2) + sin γ(Z11 + Z22 − Z12 − Z21))

+ (Y1 − Y2)X2 + (Z21 − Z22) sin γ
}
− cos γ(∆1 +∆2)(Y1 − Y2)

]

. (6.32)

6.3.4 Embedding the classical game

To embed the classical game, we require at zero entanglement, not only the same pair of
strategies being a NE but also to have the bilinear structure of the classical payoff relations.
At a NE of (x∗, y∗) = (0, 0), with zero entanglement, we find the payoff from Eq. (6.29) to be

ΠA(0, 0) =
1

4

[
G00(1 +X2)(1 + Y2) +G10(1−X2)(1 + Y2)

+G01(1 +X2)(1− Y2) +G11(1−X2)(1− Y2)
]
. (6.33)

This result illustrates how we could select any one of the payoff entries we desire with the
appropriate selection of X2 and Y2, however in order to achieve the classical payoff of G11 for
this NE, we can see that we require X2 = −1 and Y2 = −1. If we have a game which also has
a classical NE of (x∗, y∗) = (1, 1) then from Eq. (6.29) at zero entanglement we find the payoff

ΠA(1, 1) =
1

4

[
G00(1 +X1)(1 + Y1) +G10(1−X1)(1 + Y1)

+G01(1 +X1)(1− Y1) +G11(1−X1)(1− Y1)
]
. (6.34)

So, we can see, that we can select the required classical payoff, of G00, by the selection of
X1 = 1 and Y1 = 1.

Referring to Eq. (6.12), we then have the conditions

X(κ1) = cosα1 cosκ
1 + cosα3 sinα1 sinκ

1 = ±1, (6.35)

Y (κ2) = cosβ1 cosκ
2 + cosβ3 sinβ1 sinκ

2 = ±1. (6.36)

Looking at the equation for Alice, we have two classes of solution: If α3 6= 0, then for the
equations satisfying X2 = Y2 = −1, we have for Alice in the first equation α1 = 0, κ12 = π
or α1 = π, κ12 = 0 and for the equations satisfying X1 = Y1 = +1, we have α1 = κ11 = 0 or
α1 = κ11 = π, which can be combined to give either α1 = 0, κ11 = 0 and κ12 = π or α1 = π,
κ11 = π and κ12 = 0. For the second class with α3 = 0, we have the solution α1 − κ12 = π and
for X1 = Y1 = +1 we have α1 − κ11 = 0.

So, in summary, for both cases we have that the two measurement directions are π out
of phase with each other, and for the first case (α3 6= 0) we can freely vary α2 and α3, and
for the second case (α3 = 0), we can freely vary α1 and α2 to change the initial quantum
quantum state without affecting the game NE or the payoffs. The same arguments hold for
the equations for Y . Combining these results and substituting into Eq. (6.20), we see by
inspection for the two cases that

F (κ1) = G(κ2) = U(κ1) = V (κ2) = 0, (6.37)

and hence, we find that

Z22 = Z21 = Z12 = Z11 = 0. (6.38)

This then reduces the equation governing the NE in Eq. (6.31) to

ΠA(x
∗, y∗)−ΠA(x, y

∗) =
1

2
(x∗ − x)

[
∆3{2y∗ − 1} − cos γ(∆1 +∆2)

]
≥ 0, (6.39)
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which now has the new quantum behavior governed solely by the entanglement angle γ. We
have the associated payoffs

ΠA(x, y) =
1

2

[
G00 +G11 − cos γ(G00 −G11) + 2xy∆3

− x{∆3 + cos γ(∆1 +∆2)} − y{∆3 − cos γ(G00 −G01 +G10 −G11)}
]
. (6.40)

Setting γ = 0 in Eq. (8.22) we find

ΠA(x, y) = G11 + x(G01 −G11) + y(G10 −G11) + xy(G00 −G01 −G10 +G11), (6.41)

which has the classical bilinear payoff structure in terms of x and y. Hence we have faithfully
embedded the classical game inside a quantum version of the game, when the entanglement
goes to zero.

We also have the probabilities for each state |m〉|n〉, after measurement from Eq. (6.21),
for this form of the quantum game as

(Pmn)ij =
1

4

[
1 + cos γ((−)m+i+1 + (−)n+j+1) + (−)m+n+i+j

]
, (6.42)

for the two measurement directions i and j.

6.4 Examples

Here we explore the above results for the games of Prisoners’ Dilemma and Stag Hunt. The
quantum versions of these games are discussed in Refs. [EWL99,BH01,FA03,FA05a, IA09].

6.4.1 Prisoners’ Dilemma

The game of Prisoners’ Dilemma (PD) [Ras07] is widely known to economists, social and
political scientists and is one of the earliest games to be investigated in the quantum regime
[EWL99]. PD describes the following situation: two suspects are investigated for a crime that
authorities believe they have committed together. Each suspect is placed in a separate cell
and may choose between not confessing or confessing to have committed the crime. Referring
to the matrices (6.1) we take S1 ∼ S′

1 and S2 ∼ S′
2 and identify S1 and S2 to represent

the strategies of ‘not confessing’ and ‘confessing’, respectively. If neither suspect confesses,
i.e. (S1, S1), they go free, which is represented by G00 units of payoff for each suspect. The
situation (S1, S2) or (S2, S1) represents in which one prisoner confesses while the other does
not. In this case, the prisoner who confesses gets G10 units of payoff, which represents freedom
as well as financial reward as G10 > G00, while the prisoner who did not confess gets G01,
represented by his ending up in the prison. When both prisoners confess, i.e. (S2, S2), they
both are given a reduced term represented by G11 units of payoff, where G11 > G01, but it is
not so good as going free i.e. G00 > G11.

With reference to Eq. (6.28), we thus have ∆1, ∆2 > 0. However, depending on the
relative sizes of ∆1, ∆2, the quantity ∆3 = ∆2−∆1 can be positive or negative. At maximum
entanglement (cos γ = 0), we note from Eq. (6.39), that there are two cases depending on ∆3.
If ∆3 > 0, we notice that both the NE of (x∗, y∗) = (0, 0) and (x∗, y∗) = (1, 1) are present,
and from Eq. (8.22) we have the payoff in both cases

ΠA(0, 0) = ΠB(0, 0) =
1

2
(G00 +G11) = ΠA(1, 1) = ΠB(1, 1), (6.43)

which is a significant improvement over the classical payoff of G11. For ∆3 < 0, we have the
two NE of (x∗, y∗) = (0, 1) and (x∗, y∗) = (1, 0), and from Eq. (8.22) we have the payoff

ΠA(0, 1) = ΠB(0, 1) =
1

2
(G01 +G10) = ΠA(1, 0) = ΠB(1, 0). (6.44)
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If we reduce the entanglement of the qubits provided for the game, increasing cos γ towards one,
then from Eq. (6.39), we find a phase phase transition to the classical NE of (x∗, y∗) = (0, 0),
at ∆3 − cos γ(∆1 +∆2) = 0 or

cos γ =
∆3

∆1 +∆2
=

∆2 −∆1

∆2 +∆1
. (6.45)

Because we know that ∆1, ∆2 > 0, for the PD game, then a phase transition to the classical
NE is guaranteed to occur, in the range [0, 1].

Consider a particular example of PD by taking G00 = 3 = H00, G01 = 0 = H10, G10 = 4 =
H01, and G11 = 2 = H11 in matrices (6.1). From (6.28) we find ∆1 = 1, ∆2 = 2 and ∆3 = 1
and we obtain γ ≤ cos−1(1/3) for a transition to the classical NE. Thus, for this PD game, to
generate a non-classical NE the entanglement parameter γ should be greater than cos−1(1/3).

6.4.2 Stag Hunt

The game of Stag Hunt (SH) [Ras07] is encountered in the problems of social cooperation. For
example, if two hunters are hunting for food, in a situation where they have two choices, either
to hunt together and kill a stag, which provides a large meal, or become distracted and hunt
rabbits separately instead, which while tasty, make a substantially smaller meal. Hunting a
stag of course is quite challenging and the hunters need to cooperate with each other in order
to be successful. The game of SH has three classical NE, two of which are pure and one is
mixed. The two pure NE correspond to the situation where both hunters hunt the stag as a
team or where each hunts rabbits by himself.

The SH game can be defined by the conditions ∆3 > ∆2 > 0 and ∆1 + ∆2 > 0 and
∆3 > ∆1+∆2. In the classical (mixed-strategy) version of this game three NE (two pure and
one mixed) appear consisting of (x∗, y∗) = (0, 0), (x∗, y∗) = (1, 1) and (x∗, y∗) = (∆2

∆3
, ∆2
∆3

).
From Eq. (6.39) and the defining conditions of SH game we notice that both the strategy pairs
(0, 0) and (1, 1) also remain NE in the quantum game for an arbitrary γ. Eq. (8.22) give the
players’ payoffs at these NE as follows:

ΠA(0, 0) =
1

2
[G00 +G11 − cos γ(G00 −G11)] = ΠB(0, 0), (6.46)

ΠA(1, 1) =
1

2
[G00 +G11 + cos γ(G00 −G11)] = ΠB(1, 1), (6.47)

which assume the values G11 and G00 at γ = 0, respectively. When γ = π
2 we have ΠA(0, 0) =

ΠA(1, 1) =
1
2(G00+G11) = ΠB(1, 1) = ΠB(0, 0). For the mixed NE for the quantum SH game

we require from Eq. (6.39), ∆3{2y∗ − 1} − cos γ(∆1 +∆2) = 0 or

x∗ =
cos γ(∆1 +∆2) + ∆2 −∆1

2∆3
= y∗, (6.48)

which returns the classical mixed NE of (∆2
∆3
, ∆2
∆3

) at zero entanglement. Depending on the

amount of entanglement, the pair (x∗, y∗), however, will shift themselves between ∆2
∆3

and
∆2−∆1
2∆3

. Players’ payoffs at this shifted NE can be obtained from Eq. (8.22). Consider a
particular example of SH by taking G00 = 10 = H00, G01 = 0 = H10, G10 = 8 = H01, and
G11 = 7 = H11 in matrices (6.1). From (6.28) we find ∆1 = −2, ∆2 = 7 and ∆3 = 9. At
γ = π

2 we have ΠA(0, 0) = ΠA(1, 1) =
17
2 = ΠB(1, 1) = ΠB(0, 0). That is, the players’ payoffs

at the NE strategy pair (0, 0) are increased from 7 to 17
2 while at the NE strategy pair (1, 1)

these are decreased from 10 to 17
2 . The mixed NE in the classical game is at x∗ = 7

9 = y∗

whereas it shifts to 1
2 at γ = π

2 .
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6.5 Discussion

The EPR type setting for playing a quantum version of a two-player two-strategy game is
explored using the formalism of Clifford geometric algebra (GA), used for the representation
of the quantum states, and the calculation of observables. We find that analyzing quantum
games using GA comes with some clear benefits, for instance, improved perception of the
quantum mechanical situation involved and particularly an improved geometrical visualization
of quantum operations. To obtain equivalent results using the familiar algebra with Pauli
matrices would be possible but obscures intuition. We also find that an improved geometrical
visualization becomes helpful in significantly simplifying quantum calculations.

We find that by using an EPR type setting we produce a faithful embedding of symmetric
mixed-strategy versions of classical two-player two-strategy games into its quantum version,
and that GA provides a simplified formalism over the field of reals for describing quantum
states and measurements.

For a general two-player two-strategy game, we find the governing equation for a strategy
pair forming a NE and the associated payoff relations. We find that at zero entanglement the
quantum game returns the same pair(s) of NE as the classical mixed-strategy game, while the
payoff relations in the quantum game reduce themselves to their bilinear form corresponding
to a mixed-strategy classical game. We find that, within our GA based analysis, even though
the requirement to properly embed a classical game puts constraints on the possible quantum
states allowing this, we still have a degree of freedom, available with the entanglement angle
γ, with which we can generate new NE. As a specific example the PD was found to have a
NE of (x∗, y∗) = (1, 1) at high entanglement.

Analysis of quantum PD game in this paper can be compared with the results developed for
this game in Ref. [IC07] also using an EPR type setting, directly from a set of non-factorizable
joint probabilities. Although Ref. [IC07] and the present paper both use an EPR type setting,
they use non-factorizability and entanglement for obtaining a quantum game, respectively.
Our recent work [CIA10] has observed that Ref. [IC07] does not take into consideration a
symmetry constraint on joint probabilities that is relevant both when joint probabilities are
factorizable or non-factorizable. When this symmetry constraint is taken into consideration,
an analysis of quantum PD game played using an EPR setting does generate a non-classical
NE in agreement with the results in this paper.

Many other classical games could now be investigated in this setting, however, we proceed
instead to demonstrate the use of GA in solving three-player and N -player games using an
EPR setting.
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Three-player Quantum Games in an EPR

setting

In the paper attached, we extend the Einstein-Podolsky-Rosen (EPR) framework for two-
player quantum games, to three-player quantum games. As already noted, by using an EPR
setting, the players’ strategy sets remain identical to those available to players in the mixed-
strategy version of the classical game, obtained as a proper subset of the corresponding quan-
tum game, thus avoiding a common criticism of quantum games, that they are not genuine
extensions of existing classical games. Using general symmetrical three-qubit pure states in
this framework, we analyze the three-player quantum game of Prisoners’ Dilemma.

The usefulness of achieving this is firstly to establish a sound framework for quantum
games for three players which authentically extend classical games, but also in establishing an
approach which is immediately extendable to the N -player quantum game.

Published in Public Library of Science, Volume 6(7). [JMCL11a] (attached).
Authors: J. M. Chappell(Adelaide University), A. Iqbal(Adelaide University) and D. Ab-

bott(Adelaide University)
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ous chapter based on two qubits to three qubits. Dr A. Iqbal and Prof D. Abbott consulted on
the extra difficulties posed by games played with the three qubit GHZ and W states analyzed.
J. Chappell and A. Iqbal then prepared a paper for publication, with further checking by D.
Abbott and M.A. Lohe.

Signed:

J. M. Chappell Dr A. Iqbal Prof. D.Abbott Dr M.A. Lohe
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N-player Quantum Games

We now generalize our analysis of two-player and three-player quantum games to multi-player
quantum games which are also analyzed in the context of an Einstein-Podolsky-Rosen (EPR)
experiment. As previously noted, in this setting, the players’ strategy sets remain identical
to the ones in the mixed-strategy version of the classical game, and so we obtain a proper
embedding of the classical game. Expressions are found for the probability distribution for N
qubit states subject to general measurement directions, from which expressions for the mixed
Nash Equilibrium and the payoffs are found, producing a general quantum game environment
for N ≥ 2 players. In order to avoid the cumbersome use of large N × N matrices defining
the payoffs, we define the player payoffs with linear functions, and as a specific example the
Prisoner dilemma is solved for all N , finding a new property for the Prisoner dilemma, that
for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an
odd number of players the cooperating players receive a higher payoff.

8.1 Introduction

Initially, studies in the arena of quantum games focused on two-player, two-strategy non-
cooperative games but was extended to multi-player quantum games by Benjamin and Hayden
[BH01]. Such games can be used to describe multi-party situations, such as in the analysis
of secure quantum communication [NC02]. As multi-player quantum games are usually found
significantly harder to analyze, as we are required to define an N × N payoff matrix, and
calculate measurement outcomes over N -qubit states, GA is identified as the most suitable
formalism in order to allow ease of analysis. Also, in the case where N → ∞, clearly matrix
methods will become unworkable and so an algebraic approach, such as GA, becomes essential.

8.2 EPR setting for playing multi-player quantum games

For a multi-player quantum game in a EPR setting [IW04, IC07, ICA08] we have players P i

who are spatially-separated participants, located at the N arms of an EPR system [Per93], as
shown in Fig. 8.1. In one run of the experiment, each player chooses one out of two possible
measurement directions. These two directions in space, along which spin or polarization
measurements can be made, are the players’ strategies.

As Fig. 8.1 shows, we represent the ith players two measurement directions as κi1, κ
i
2, with

the measurement outcome being +1 or −1.
Over a large number of runs the players are allocated a qubit from an N -particle system

emitted from a source upon which measurements are performed and a record is maintained
of the players’ payoffs. These payoffs depend on the N -tuples of the various players’ strategic
choices made over a large number of runs and on the dichotomic outcomes (measuring spin-up
or spin-down) from the measurements performed along those directions.

8.2.1 Symmetrical N qubit states

For N -player quantum games an entangled state of N qubits is prepared by the supervisor,
which for fair games should be symmetric with regard to the interchange of the N players,
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Figure 8.1: The EPR setup for an N -player quantum game. In this setting, each player is
given a choice of two measurement directions for their allocated qubit, from a shared N -qubit
quantum state.

and we assume that all information about the state once prepared is known by the players.
Two types of entangled starting states can readily be identified which are symmetrical with
respect to the N players. The GHZ-type state

|GHZ〉N = cos
γ

2
|00 . . . 0〉+ sin

γ

2
|11 . . . 1〉, (8.1)

where we include an entanglement angle γ ∈ [−π
2 ,

π
2 ] and the W -type state

|W〉N =
1√
N

(|1000 . . . 00〉+ |0100 . . . 00〉+ |0010 . . . 00〉+ · · ·+ |0000 . . . 01〉) . (8.2)

To represent these in geometric algebra, we start with the mapping for a single qubit from
Eq. (1.24), so that for the GHZ-type state we have

ψGHZN
= cos

γ

2
+ sin

γ

2
ιe12ιe

2
2 . . . ιe

N
2 , (8.3)

where the superscript indicates which particle space each qubit belongs to, and the negative
coefficient on the second term for an odd number of particles can be absorbed into sin γ. Also
for the W-type state we have in GA

ψWN
= − 1√

N

(
ιe12 + ιe22 + · · ·+ ιeN2

)
. (8.4)

8.2.2 Unitary operations and observables in GA

We define U i = R(θi1, θ
i
2, θ

i
3) for a general unitary transformation acting locally on each qubit

i, where R is defined in Eq. (6.3), which the supervisor applies to the individual qubits, which
gives the starting state

(
U1 ⊗ U2 ⊗ · · · ⊗ UN

)
|ψ〉, (8.5)



8.2 EPR setting for playing multi-player quantum games 83

upon which the players now decide upon their measurement directions.

The overlap probability between two states ψ and φ, in the N -particle case is given in
Eq.(1.25). Initially we assume that N is odd, in order to simplify our derivation, but our
results are then easily generalized for all N .

The supervisor now submits each qubit for measurement, through N Stern-Gerlach type
detectors, with each detector being set at one of the two angles chosen by each player. As
mentioned, the players choices, are a classical choice between two possible measurement di-
rections, and hence the players strategy sets remain the same as in the classical game, with
the quantum outcomes arising solely from the shared quantum state.

In order to calculate the measurement outcomes, we define a separable state φ = A1A2 . . . AN ,
to represent the players directions of measurement, where Ai is a rotor defined in Eq. (6.3),
with probabilistic outcomes calculated according to Eq.(1.25). The |0〉 and |1〉 outcomes, ob-
tainable from measurement, correspond to the two classical choices 0 and 1, and each player is
rewarded according to a payoff matrix, for each player p, given by Gp. The payoff calculated
from

Πp =
1∑

i1,...,iN=0

Gp
i1...iN

Pi1...iN = f (Pi1...iN ) , (8.6)

where Pi1...iN is the probability of recording the state |i1〉|i2〉 . . . |iN 〉 upon measurement, where
i1, . . . , iN ∈ {0, 1}, and Gp

i1...iN
is the payoff for this measured state. For large N it is preferable

to calculate the payoff as some function f of the measured states, to avoid the need for large
N ×N payoff matrices.

8.2.3 GHZ-type state

Firstly, we calculate the probability distribution of measurement outcomes from Eq.(1.25),
from which we then calculate player payoffs from Eq. (8.6). For the GHZ-type state we have
the first part of the observable given by

ψEψ† =
1

2N−1

(
N∏

i=1

U i

)
(

cos
γ

2
+ sin

γ

2
ιe12ιe

2
2 . . . ιe

N
2

)

(8.7)



1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r(ιei3)





(

cos
γ

2
− sin

γ

2
ιe12ιe

2
2 . . . ιe

N
2

)
(

N∏

i=1

U i
†
)

=
1

2N−1

(
N∏

i=1

U i

)

1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r(ιei3)





(
N∏

i=1

U i
†

)

=
1

2N−1



1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r(V i
3 )



 ,
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where V j
k = ιU jekU

j† , and

ψJψ† =
1

2N−1

(
N∏

i=1

U i

)
(

cos
γ

2
+ sin

γ

2
ιe12ιe

2
2 . . . ιe

N
2

)

(8.8)





⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1(ιe
i
3)





(

cos
γ

2
− sin

γ

2
ιe12ιe

2
2 . . . ιe

N
2

)(∏

U i
†)

=
1

2N−1

(∏

U i
) (

cos γ + sin γιe12ιe
2
2 . . . ιe

N
2

)
⌊N+1

2
⌋

∑

r=1

(−)r+1CN2r−1(ιe
i
3)
(∏

U i
†)

=
1

2N−1
cos γ

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1(V
i
3 )

− sin γ







N∑

i

V 1
2 . . . V

i
1 . . . V

N
2 −

N∑

i,j,k=1

i 6=j 6=k

V 1
2 . . . V

i
1V

j
1 V

k
1 . . . V

N
2 + . . . (−)N−1

2 V 1
1 V

2
1 . . . V

N
1






.

=
1

2N−1
cos γ

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1(V
i
3 )− sin γ

( ⌊N/2⌋
∑

r=0

(−)r+N−1
2 CN2r(V

i
2V

j
2 )V

k
1 . . . V

N
1

)

.

For the measurement settings with a separable wave function φ =
∏

iA
i, we deduce the

observables by setting γ = 0 in Eq. (8.7) and Eq. (8.8) to be

φJφ† =
1

2N−1

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1(M
i
3)

φEφ† =
1

2N−1



1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r(M i
3)



 , (8.9)

where M j
k = ιAjekA

j† . For Aj = e−ικe
j
2/2 which allows a rotation of the detectors by an angle

κ, we find

φJφ† =
1

2N−1

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1

(

ιei3e
ικei2

)

(8.10)

φEφ† =
1

2N−1



1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r
(

ιei3e
ικei2

)



 .

It should be noted in Eq. (8.10), that we have defined the measurement angles with a simplified
rotor, e−ικe

i
2/2, and we assume that this will still provide full generality, which is in accordance

with the known result [Per93] that Bell’s inequalities can still be maximally violated when the
allowed directions of measurement are located in a single plane as opposed to being defined
in three dimensions.

So, referring to Eq.(1.25), we find, through combining Eq. (8.7) and Eq. (8.10)

2N−2〈ψEψ†φEφ†〉0 =
1

2N

〈(

1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r
(
V i
3

) )(

1 +

⌊N
2
⌋

∑

r=1

(−)rCN2r
(
ιei3e

ικei2
))〉

0
(8.11)

=
1

2N



1 +

⌊N
2
⌋

∑

r=1

CN2r
(
Ki
)



 ,
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where Ki = V i
3 ιe

i
3e
ικei2 = cosκi cosαi1 +sinκi sinαi1 cosα

i
3, using the standard results listed in

Appendix A.4. We notice that the cross terms in the expansion of the brackets in Eq. (8.11),
do not contribute because we only retain the scalar components in this expression.

We also have for the second part of Eq.(1.25), through combining Eq. (8.8) and Eq. (8.10)

− 2N−2〈ψJψ†φJφ†〉0 (8.12)

=
1

2N

〈(

cos γ

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1

(
V i
3

)
− sin γ

( ⌊N/2⌋
∑

r=0

(−)r+N−1
2 CN2r(V

i
2V

j
2 )V

k
1 . . . V

N
1

)

⌊N+1
2

⌋
∑

r=1

(−)r+1CN2r−1

(

ιei3e
ικei2

)〉

0

=
1

2N

(

cos γ

⌊N+1
2

⌋
∑

r=1

CN2r−1

(
Ki
)
+ sin γΩ

)

,

where Ω =
∑⌊N/2⌋

r=0 (−)rCN2r(Xi
2X

j
2)X

k
1 . . . X

N
1 and

Xi
1 = V i

1 ιe
i
3e
ικei2 = (− sinκ(cosα1 cosα2 cosα3 − sinα2 sinα3) + sinα1 cosα2 cosκ)

i , (8.13)

and

Xi
2 = V i

2 ιe
i
3e
ικei2 = (sinκ(cosα2 sinα3 + sinα2 cosα3 cosα1)− sinα1 sinα2 cosκ)

i , (8.14)

see Appendix A.4.

Probability amplitudes for N qubit state, general measurement directions

So combining our last two results using Eq.(1.25), we find the probability to find any state
after measurement, valid now for all N

Pk1...kN =
1

2N

(

1 +

⌊N
2
⌋

∑

r=1

CN2r(ǫ
iKi) + cos γ

⌊N+1
2

⌋
∑

r=1

CN2r−1(ǫ
iKi) + ǫ1...NΩsin γ

)

,

where we have included ǫi = (−)ki ∈ {+1,−1}, to select the probability to measure spin-up
or spin-down on a given qubit.

If we take γ = 0, describing the classical limit, we have from Eq. (8.15)

Pk1...kN =
1

2N



1 +

⌊N/2⌋
∑

r=1

CN2r(ǫ
iKi) +

⌊(N+1)/2⌋
∑

r=1

CN2r−1(ǫ
iKi)



 (8.15)

=
1

2N

(

1 +

N∑

r=1

CNr (ǫiKi)

)

=
1

2N
(
1 + ǫ1K1

) (
1 + ǫ2K2

)
. . .
(
1 + ǫNKN

)
,

which shows that for zero entanglement we can form a product state as expected. Alternatively
with general entanglement, but only operations on the first two qubits, we have

Pkikj =
1

8

(

1 + ǫk cos γ
)
(

1 +

N∑

r=2

CNr (ǫi)

)
(

1 + ǫikKi
)(

1 + ǫjkKj
)

,

which show that for the GHZ-type entanglement that each pair of qubits is mutually un-
entangled, a well known property of the GHZ state.
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Player payoffs

In general to represent the permutation of signs introduced by the measurement operator we
can define for the first player, say Alice,

ai
1...iN =

1

2N

1∑

j1...jN=0

ǫi
1...iNG1

j1...jN , (8.16)

so for example, a0...0 = 1
2N

∑1
j1...jN=0G

1
j1...jN

, and we have the relation aiaj = aij etc. that is

we write a0...1...0 with a 1 in the ith position as ai.

Using the payoff function we find for the first player, say Alice

ΠA(κ
i
j) = a0...0 +

⌊N/2⌋
∑

r=1

CN2r(a
iKi) + cos γ

⌊(N+1)/2⌋
∑

r=1

CN2r−1(a
iKi) + ak

1...kNΩsin γ (8.17)

and similarly for the second player, say Bob, where we would use Bob’s payoff matrix in place
of Alices’.

Mixed-strategy payoff relations

For a mixed strategy game, players choose their first measurement direction κi1, with prob-
abilities xi, where xi ∈ [0, 1] and hence choose the direction κi2 with probabilities (1 − xi),
respectively. The first player Alice’s payoff is now given as

ΠA(x
1, x2, . . . , xN ) (8.18)

= x1 . . . xN
1∑

i,j,k=0

Pi1...iN (κ
1
1, κ

2
1, . . . , κ

3
1)Gi1...iN

+ · · ·+ x1(1− x2) . . . xN
1∑

i,j,k=0

Pi1...iN (κ
1
1, κ

2
2, . . . , κ

3
1)Gi1...iN

+ · · ·+ (1− x1)(1− x2)x3 . . . xN
1∑

i,j,k=0

Pi1...iN (κ
1
2, κ

2
2, κ

3
1, . . . , κ

N
1 )Gi1...iN

+ · · ·+ (1− x1)(1− x2)(1− x3) . . . (1− xN )
1∑

i,j,k=0

Pi1...iN (κ
1
2, κ

2
2, κ

3
2, . . . , κ

N
2 )Gi1...iN .

8.2.4 Embedding the classical game

If we consider a strategy N -tuple (x1, x2, x3, . . . , xN ) = (0, 1, 0, . . . 0) for example, at zero
entanglement, then the payoff for Alice is obtained from Eq. (8.18) to be

ΠA(x
1, . . . , xN ) =

1

2N
[G000...0(1 +K1

2 )(1 +K2
1 )(1 +K3

2 ) . . . (1 +KN
2 ) (8.19)

+G100...0(1−K1
2 )(1 +K2

1 )(1 +K3
2 ) . . . (1 +KN

2 )

+G010...0(1 +K1
2 )(1−K2

1 )(1 +K3
2 ) . . . (1 +KN

2 )

+G110...0(1−K1
2 )(1−K2

1 )(1 +K3
2 ) . . . (1 +KN

2 )

+ · · ·+G111...1(1−K1
2 )(1−K2

1 )(1−K3
2 ) . . . (1−KN

2 )].

Hence, in order to achieve the classical payoff of G101...1, we can see that we require K1
2 = −1,

K2
1 = +1 and K3

2 . . .K
N
2 = −1.
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This shows that we can select any required classical payoff by the appropriate selection of
Ki
j = ±1. We therefore have the conditions for obtaining the classical mixed-strategy payoff

relations as
Ki
j = cosαi1 cosκ

i
j + sinαi1 cosα

i
3 sinκ

i
j = ±1. (8.20)

We find two classes of solution: If αi3 6= 0, then for the equations satisfying Ki
2 = −1 we

have for Alice in the first equation αi1 = 0, κi2 = π or αi1 = π, κi2 = 0 and for the equations
satisfy Ki

1 = +1 we have αi1 = κi1 = 0 or αi1 = κi1 = π, which can be combined to give either
αi1 = 0, κi1 = 0 and κi2 = π or αi1 = π, κi1 = π and κi2 = 0. For the second class with α3 = 0
we have the solution αi1 − κi2 = π and for Ki

1 = +1 we have αi1 − κi2 = 0.
So in summary for both cases we have that the two measurement directions are π out

of phase with each other, and for the first case (αi3 6= 0) we can freely vary αi2 and αi3, and
for the second case (αi3 = 0), we can freely vary αi1 and αi2 to change the initial quantum
quantum state without affecting the game Nash equilibrium (NE) or payoffs [Ras07,Bin07].
These results imply in both cases that Ω = 0.

We then have the associated payoff for Alice

ΠA(x
1, x2, . . . xN ) = a00...0 − cos γ

⌊(N+1)/2⌋
∑

r=1

CN2r−1[a
i0(1− 2xi) + a0i(1− 2xi)] (8.21)

+

⌊N/2⌋
∑

r=1

CN2r[a
1i(1− 2x1)(1− 2xi) + a0ij(1− 2xi)(1− 2xj)].

For example, for three players this will reduce to

ΠA(x
1, x2, x3) (8.22)

= a000 + a011(1− 2x2)(1− 2x3) + a110(1− 2x1)((1− 2x2) + (1− 2x3))

− cos γ
(
a111(1− 2x1)(1− 2x2)(1− 2x3) + a100(1− 2x1) + a001(2− 2x2 − 2x3)

)
.

Now, we can write the equations governing the NE for the first player as

ΠA(x
i∗, x2∗, . . . xN∗)−ΠA(x

i, x2∗, . . . , xN∗)

= (x1∗ − x1)



−
⌊N/2⌋
∑

r=1

CN2r(a
1iI1(1− 2xi∗)) + cos γ

⌊(N+1)/2⌋
∑

r=1

CN2r−1(a
i0I1(1− 2xi∗))



 ≥ 0.

We are using I1 as a placeholder, which has a value one, but ensures that the correct number
of terms are formed from CNr (). For example, for three players we find the NE governed by

ΠA(x
1∗, x2∗, x3∗)−ΠA(x

1, x2∗, x3∗)

= (x1∗ − x1)[a110(2x2∗ − 1) + a101(2x
3∗ − 1) + cos γ{a100 + a111(2x

2∗ − 1)(2x3∗ − 1)}] ≥ 0.

Symmetric game

For a symmetric game we have a1...1 = b1...1 = etc, a0...0 = b0...0 = etc and a11000...0 =
a10100...0 = a10010...0 = . . . , and similarly for other symmetries, and using these conditions for
a symmetric game, we can find the NE for other players

ΠA(x
i∗, x2∗, . . . xN∗)−ΠA(x

i∗, x2, . . . , xN∗)

= (x2∗ − x2)



−
⌊N/2⌋
∑

r=1

CN2r(a
1iI2(1− 2xi∗)) + cos γ

⌊(N+1)/2⌋
∑

r=1

CN2r−1(a
i0I2(1− 2xi∗))



 ≥ 0.

We can see that the new quantum behavior is governed solely by the payoff matrix and by
the entanglement angle γ, and not by other properties of the quantum state.
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Linear payoff relations

We can see that as N → ∞, that we need to define an infinite number of components of
the payoff matrix through ai. Hence in order to proceed to solve specific games, we need to
write the payoff matrix as some functional form of the measurement outcomes, as shown in
Eq. (8.6). The simplest approach is to define linear functions over the set of player choices, as
developed in [FH07], defining the following general payoff function, for the non-flipping player

$0 = an+ b (8.23)

and for the flipping player

$1 = cn+ d (8.24)

where n is the number of players not flipping.

This approach enables us to simply define various common games. For example the Pris-
oner dilemma, which has the essential feature that a defecting player achieves a higher payoff,
is represented if we have c ≥ a ,d > a + b and a > 0. This result is determined by ensuring
that if a non-flipping player decides to flip, then his payoff rises as determined by Eq. (8.23)
and Eq. (8.24). For example for a = 3, b = −3, c = 4, d = 1 we have defined an N player
Prisoner dilemma, and for N = 2 we find

GAij =

[
3 0
5 1

]

, (8.25)

which gives us the typical payoff matrix for two-player Prisoner dilemma.

For the Chicken game we require c ≥ a , d < a+ b and a > 0 and for the minority game,
assuming a symmetry between payoffs for the |0〉 and |1〉 states we require c = −a, d = b−aN
and a < 0. Hence it is natural to define

p1 = d− (a+ b), p2 = c− a, (8.26)

as two key determinants of various games.

It should be noted that while this definition in Eq. (8.23) and Eq. (8.24) can generally define
an infinite set of Prisoner dilemma games through simply putting conditions on a, b, c, d, it is
still only a subset of the space of all possible Prisoner dilemma games defined over N × N
payoff matrices.

Using the linear functions defined in Eq.(8.23) and Eq.(8.24) we find

a0...0 =
1

4
(N(c+ a)− p2 + 2(b+ d)) (8.27)

a10...0 = −1

4
((N − 1)(c− a) + 2(d− (a+ b))) = −1

4
((N − 1)p2 + 2p1)

a110...0 = −c− a
4

= −p2
4

a1110...0, a11110...0 . . . = 0

and

a010...0 =
c+ a

4
(8.28)

a011...0, a0111...0, . . . = 0.

If required, Eq. (8.23) and Eq. (8.24) can be extended with quadratic terms in n, in order to
allow a greater variety of Prisoner dilemma games to be defined.



8.2 EPR setting for playing multi-player quantum games 89

NE and payoff for linear payoff relations

We can see that the series above terminates, which thus allows us to simplify the NE conditions,
for the first player to

(x1∗ − x1)
(

p2

N∑

i=2

(1− 2xi∗)− cos γ ((N − 1)p2 + 2p1)

)

≥ 0 (8.29)

and similarly for the other N − 1 players.
The payoff can then also be simplified to

ΠA = a0...0 + (1− 2x1)(− cos γa10...0 + a110...0
N∑

i=2

(1− 2xi))− cos γa010...0
N∑

i=2

(1− 2xi)

=
1

4
(2(b+ d)− p2 + (c+ a)(N − cos γ

N∑

i=2

(1− 2xi)) (8.30)

+ (1− 2x1)(cos γ((N − 1)p2 + 2p1))− p2
N∑

i=2

(1− 2xi))).

Prisoner dilemma

For the Prisoner dilemma, having p2 ≥ 0 and p1 > 0 as defined in Eq. (8.26), we find from the
equation for Nash equilibrium Eq.(8.29) to produce the classical outcome cos γ > N−1

N−1+δ and
more generally

N − 1− 2n

N − 1 + δ
< cos γ <

N + 1− 2n

N − 1 + δ
= λn, (8.31)

where δ = 2p1
p2

= 2(d−(a+b))
c−a , so we find for the Prisoner dilemma δ ∈ (0,∞), hence the above

inequality will hold for N ≥ 2. So in summary, at the classical limit we have all players
flipping, and then we have the transition to the non-classical region at λ1 and we then have
equally spaced transitions as entanglement increases down to maximum entanglement where
we have the number of players not flipping n = ⌊N/2⌋. So we always have the same number
of transitions for a given number of players, but they concertina closer together as the first
transition λ1, moves to wards zero, through changing the game parameters, p1 and p2.

The maximum payoff, close to maximum entanglement is

ΠnA =
1

4
(2(b+ d) + (c+ a)N + (c− a)N∈Odd) (8.32)

ΠfA =
1

4
(2(b+ d) + (c+ a)N − (c− a)N∈Odd),

where the final (c − a) term only occurs for N odd. So for N even the payoffs are equal,
but for N odd, the non-flipping player receives a higher or equal payoff to the flipping player.
The payoff rises linearly with N , whereas without entanglement, we have the payoff fixed at
d units from Eq.(8.24).

The conventional Prisoner dilemma game for all N

For the Prisoner dilemma settings shown in Eq. (8.25), which gives the conventional Prisoner
dilemma game for two players, then we find from Eq. (8.26), p1 = 1 and p2 = 1, and so we
can then simplify the general NE conditions in Eq. (8.29), for the first player, to

(x1∗ − x1)
(

N∑

i=2

(1− 2xi∗)− (N + 1) cos γ

)

≥ 0 (8.33)
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Figure 8.2: Phase structure for N -player Prisoner dilemma. For cos γ > λ1 we have the
classical regime, where all players flip, and as entanglement increases we find an increasing
number of players flipping, up to ⌊N/2⌋ near maximum entanglement.

and similarly for the other N − 1 players. The left and right edges of each NE zone, shown in
Fig. 8.2, can now be written from Eq. (8.31) as

N − 1− 2n

N + 1
< cos γ <

N + 1− 2n

N + 1
. (8.34)

In each zone we find the payoff for the flipping and non-flipping player, from Eq. (8.30), now
given by

Πf =
1

2
(3N − 2 + n+ (4− 3N + 7n) cos γ) (8.35)

Πn =
1

2
(4N − 2− n+ (4 + 4N − 7n) cos γ) ,

which defines the payoff diagram for an N player PD, and which produces the classical PD at
N = 2 at zero entanglement.

At each LH boundary, for the flipping player, we have from Eq. (8.34), N−1−2n
N+1 = cos γ or

n = N − 1− (N + 1) cos γ. Substituting this into the flipping player payoff in Eq. (8.35), we
find

Πf = −3 + 7

4
(N + 1)(1− cos2 γ) = −3 + 7

4
(N + 1) sin2 γ, (8.36)

for the flipping players’ payoff. We thus see that the payoff at each boundary follows a
downwards parabolic shape in cos γ, if drawn on Fig. 8.2. If we allow N to increase without
limit, then the boundaries would concertina infinitesimally close together, and in the limit as
N →∞, the payoff’s would form a continuous parabolic curve in cos γ, given by Eq. (8.36).

8.2.5 W entangled state

Following the same procedure as used for the GHZ-type state, we find the probability distri-
bution for the W-type state

Pk1...kN =
1

N2N

(

N +
N∑

r=1

(N − 2r)CNr
(
ǫiKi

)
+ 2

N∑

r=2

CNr

(

ǫiǫjǫk
(

Xi
2X

j
2 +Xi

1X
j
1

)

Kk
)
)

,
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see Appendix B for derivation. We can then find the payoff function for the first player, Alice

ΠA(κ
1, . . . , κN ) = Na0...0+

N∑

r=1

(N −2r)CNr (aiKi)+2
N∑

r=2

CNr (aijk(Xi
2X

j
2 +X

i
1X

j
1)K

k) (8.37)

and similarly for other players.
However with the W-type state it is impossible to turn off the entanglement, and so it will

not be possible to embed the classical game, as we have done with the GHZ-type state. Hence
we will not proceed any further except to show the result of maximizing the payoff function
in Eq. (8.37) for the Prisoner dilemma.

Prisoner Dilemma

For the Prisoner dilemma we can maximize the payoff function, and we find that we require
all players to flip, for all N and the resultant payoff for the first player Alice and hence all
players is

ΠA = c+ d− c+ d− (a+ b)

N
. (8.38)

So as N →∞, then the payoff approaches c+ d from below.

8.3 Conclusion

Using geometric algebra, the probability distribution is found after applying general measure-
ment directions on a general N qubit entangled state, for the GHZ type Eq.(8.15) and W
states Eq.(8.37).

Linear functions parameterized by the number of non-flipping players for an N player game
are then defined , from which games can then be defined in a general way. The linear functions
are solved for N players and the Nash equilibrium and payoff relations then determined.

As a specific example the Prisoner dilemma is solved for a general N and we find an
interesting feature, that the payoffs at the Nash equilibrium are equal for the flipping and
non-flipping player only for even N and also in the limit of large N the payoff rises linearly
with N given by (c+ a)N/4 for the GHZ type state.

At maximum entanglement the payoff for the GHZ type and W type states for the Prisoner
dilemma become equal at N = 2, producing the formula

ΠGHZ = ΠW =
a+ b+ c+ d

2
. (8.39)

This equality is to be expected at N = 2, because these two states are equivalent up to local
operations.

So in summary we have produced a general quantum game environment, for any number
of players N ≥ 2, which will embed the classical game at zero entanglement, and using
linear functions for player payoffs we can produce game outcomes for all N . Hence, the results
previously obtained for two-player and three-player games, are now subsumed by these results.

The linear functions could be generalized to second order to increase the range of games
represented. For example, a quadratic term could be added to Eq. (8.24) to expand the
variety of games.
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Conclusions

The research began with a general overview of the field of quantum computing, with the key el-
ements and principles being outlined in chapter one. We then described the basic construction
of quantum computers from qubits using the circuit model framework for quantum computing,
describing one qubit and two qubit gates, and some simple algorithms. We also introduced the
formalism of Clifford geometric algebra which we proceeded to show in subsequent chapters
can be used as an alternative to the conventional bra-ket notation, and is particularly suited
to represent and describe rotations on qubits.

In chapter two we investigated the first of the two key algorithms of the field, Shor’s
factorization algorithm, followed by Grover’s search algorithm in chapter three.

Shor’s algorithm, is based on the operation of the phase estimation procedure, which
entails an associated probability of error. Several different estimates of this error have been
produced in the literature, all requiring simplifying assumptions and approximations in order
to obtain a concise formula. A careful review of these derivations was carried out which noted
an asymmetry in the definition of the error, which once corrected allowed an analytic solution
to be found [JMCL11b]. This formula will more easily allow the optimal design of quantum
computers using the phase estimation procedure in the future.

The work on the error formula also motivated the development of a quantum computing
simulator, written in the Java programming language, to allow visual modeling of the key
algorithms, which was extended over time to model most aspects of quantum computing.
Using a graphical user interface, the program allowed the dragging of basic gates onto a circuit
board type layout, which allowed the sequential analysis of the wave function after each set
of gates to be displayed. The software allowed a very clear visual picture of the operation
of basic algorithms, and the software simulator could perhaps be utilized by students in the
future to improve understanding of the basic operations of quantum computers.

In chapter three Grover’s search algorithm was investigated, and because it is known
that the search process is an SU(2) rotation, we found a set of SU(2) generators for this space,
based on the two non-orthogonal basis vectors |m〉 and |σ〉. This allowed us to identify the
Grover search process as equivalent to the precession of the polarization axis of a spin-12 particle
in a magnetic field. These results were presented on a poster at Quantum Information and
Control in Queensland (QICIQ) and the 4th Asia Pacific Conference in Quantum Information
Science (4APCQIS) in 2008.

In chapter four The Grover search algorithm was then recast in the mathematical for-
malism of GA (geometric algebra). This was done for two reasons, firstly because, as noted
previously in chapter three, the Grover search process is an SU(2) rotation, and GA is known
to be a natural language in which to describe rotations, and secondly, because it provides
a clear geometric picture within a real three dimensional space. We were then, for the first
time, able to concisely reproduce the known results of the Grover search algorithm in this
formalism. We also found an efficient algebraic solution to the exact Grover search, and also
using the visual picture provided by GA in three space, the more general search situations
could easily be understood in terms of different precession axes, or different locations in the
space of the starting and final states.

In chapter five we extended the use of qubits to the field of quantum game theory. Quan-
tum games like quantum computers are based on application of unitary operations to qubits,
and we apply the formalism of GA, successfully used for the Grover search, to describe Meyer’s
penny flip game. This game is based on two players applying unitary operations to a single
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common spin 1
2 particle. An analysis was completed, which enabled a general solution to be

found, along with a clear geometric picture describing the solution space [CILVS09](attached).

We then investigated quantum games from a more general perspective, representing games
as a table of non-factorizable joint probabilities [CIA10]. This provides a natural link from
classical probabilistic games to quantum games without recourse to the conventional quan-
tum mechanical formalisms, thus making the field of quantum games more accessible to the
non-physicist. This approach provides a general framework within which both classical and
quantum games can be located.

In chapter six and seven following the analysis of quantum games based on a single
qubit, it was then natural to extend this analysis to two-player and three-player and finally N -
player quantum games, which differ from the Penny flip game in that each player is allocated
a separate qubit from an entangled quantum state. Several different approaches, in fact, have
been proposed in order to describe quantum games, but we chose a more recent approach,
basing the quantum game on a physical EPR experiment. This approach has the advantage
of avoiding a common criticism of quantum games, which states that quantum games are
simply different enhanced classical games. With the EPR approach, players choices remain
completely classical, being simply the choice of two possible measurement directions, thus
avoiding this criticism. We then investigated two-player and three-player games, with the
three-player game analysis being published in PLoS [JMCL11a], which was then extended to
N -player games. The two-player and three-player games were both conducted in the same
pattern in order to allow a straightforward generalization to the much more difficult N -player
games.

In chapter eight we extended the analysis of quantum games to the general N -player
case. For N players, clearly the use of matrices becomes unwieldy, but through describing
unitary operations in GA and through writing the N×N payoff matrices in a functional form,
we found that we could achieve general results as N →∞. We found for the Prisoner dilemma
game a new result could be found, that the payoffs at the Nash equilibrium are equal to each
other for the flipping and non-flipping player only for even N .

9.0.1 Original contributions

Several new results were obtained during the different investigations undertaken as part of my
thesis, including four major results which were successfully published [JMCL11b, CILVS09,
CIA10,JMCL11a].

The first new result achieved was the analytic solution to the problem of finding the error
limits for the phase estimation procedure [JMCL11b], its significance being that this procedure
is the basis for Shor’s factorization algorithm. Further investigations of the phase estimation
procedure then resulted in its novel application to performing the Grover search process in
Chapter 3.

The Grover search algorithm was then analyzed more generally, finding the three gener-
ators of the SU(2) Grover search space, and finding an analogy of the search process with
the precession of a spin-12 particle in a magnetic field, which was presented on a poster at
an international conference. The formalism of geometric algebra(GA) was then applied for
the first time to the analysis of the Grover search algorithm, which showed a very efficient
description of this important algorithm, and due to its clarity may provide further insights.

The use of GA was then applied to an analogous situation involving the quantum penny
flip game, a game based on manipulating a single qubit, for which a general solution was
found [CILVS09] and we showed that the use of GA also allowed a clear visual picture of the
general solution. Investigations in the field of quantum game theory continued which led to the
development of a probabilistic framework for quantum games, which interprets entanglement
as a classical non-factorizable joint probability distribution, and using a symmetric distribution
we found a very general framework within which to describe two-player games [CIA10].
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As a special type of quantum game we then developed a quantum game framework
based on an EPR experiment, with general results for two-player, three-player and finally
N -player games achieved in Chapters 6 − 8, with three-player games being successfully pub-
lished [JMCL11a] and two-player games currently submitted for peer review and N -player
games in preparation. This approach is significant as it has the advantage of avoiding a com-
mon criticism of other quantum game frameworks of not properly embedding the underlying
classical game.

As a more general product of the research we also showed how GA provides a suitable
formalism for the whole field of quantum computing, and we found for example an efficient
representation for the Grover search in Chapter 4, and Shor’s factorization algorithm in Chap-
ter 2 as well as the common gate operations shown in Chapter 1. Also, during this research
a quantum circuit simulation program was developed in the Java programming language,
which allowed easy graphical analysis of the wavefunction for simple circuits, and which could
continue to be developed as an analysis tool.

9.0.2 Further work

We have presented the general equation for the Grover search in GA, but perhaps some specific
cases could now be solved, such as more general starting states, and also the partial search
process could also perhaps be now placed within this framework.

The N -player formula could now be applied to specific game scenarios and perhaps many
specific results could be forthcoming, such as investigating the common games of Stag hunt or
Minority game, along with the optimal use of coalitions between players when more than two
players are involved. We have also defined N -player game payoffs using linear functions as
opposed to a general N ×N payoff matrix, so that to achieve more generality, quadratic func-
tions could now be employed to allow more general game definitions. Clearly these relations
could be expanded to arbitrary powers of n, in order to create more general games.

The use of a non-factorizable joint distribution in order to represent entanglement is in
fact a very generic approach, and if it could be extended to N participants it could be applied
in a general way to optimizing network performance, for example.

The Java simulator, which we developed, was a useful tool to test various ideas and to
visually see the resultant wave functions. This program could now be developed further as a
useful learning tool for students wishing to gain a better understanding of the basic principles
of quantum computing algorithms.
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Appendix

A.1 Actions of SU(2) generators on basis vectors

J1|σ〉 =
−α∗

2|α| |m〉 =
−e−iδ

2
|m〉 (A.1)

J1|m〉 =
−α
2|α| |σ〉 =

−eiδ
2
|σ〉

J2|σ〉 =
−iα∗

2|α|β |m〉+
i|α|
2β
|σ〉 = −ie

−iδ

2β
|m〉+ i|α|

2β
|σ〉

J2|m〉 =
−i|α|
2β
|m〉+ iα

2|α|β |σ〉 =
−i|α|
2β
|m〉+ ieiδ

2β
|σ〉

J3|σ〉 =
1

2β
(|σ〉 − α∗|m〉)

J3|m〉 =
1

2β
(α|σ〉 − |m〉)

J+|σ〉 =
e−iδ(1− β)

2β
|m〉 − |α|

2β
|σ〉

J+|m〉 =
−eiδ(1 + β)

2β
|σ〉+ |α|

2β
|m〉

J−|σ〉 =
−e−iδ(1 + β)

2β
|m〉+ |α|

2β
|σ〉

J−|m〉 =
eiδ(1− β)

2β
|σ〉 − |α|

2β
|m〉.

A.2 Euler angles in geometric algebra

Expanding a general rotor in the Euler angle form in terms of trigonometric functions, we
have

R = e−ισ3
α
2 e−ισ2

β
2 e−ισ3

χ
2 (A.2)

= cos
β

2
cos

α+ χ

2
+ sin

β

2
sin

α− χ
2

ισ1 − sin
β

2
cos

α− χ
2

ισ2 − cos
β

2
sin

α+ χ

2
ισ3.

We can now derive a few special cases:

Case 1: χ = −α:

R = e−ισ3
α
2 e−ισ2

β
2 eισ3

α
2 (A.3)

= cos
β

2
+ sin

β

2
sinαισ1 − sin

β

2
cosαισ2

= eι
β
2
(sinασ1−cosασ2).
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Case 2: χ = α− π:

R = e−ισ3
α
2 e−ισ2

β
2 e−ισ3

(α−π)
2 (A.4)

= cos
β

2
sinα+ sin

β

2
ισ1 + cos

β

2
cosαισ3

= eι
b
2
(sin aσ1+cos aσ3),

where

tan a = tan
β

2
secα (A.5)

cos
b

2
= cos

β

2
sinα, (A.6)

or inverting the formulas we have

sin
β

2
= sin a sin

b

2
(A.7)

cotα = cos a tan
b

2
. (A.8)

Case 3:

R = eισ3
α
2 eισ2

β
2 eισ3

α−π
2 (A.9)

= cos
β

2
sinα+ sin

β

2
ισ1 − cos

β

2
cosαισ3

= eι
b
2
(sin aσ1−cos aσ3).

Case 4:

R = e−ισ3
α
2 eισ2

β
2 eισ3

−α+π
2 (A.10)

= cos
β

2
sinα− sin

β

2
ισ1 + cos

β

2
cosαIσ3

= eι
b
2
(− sin aσ1+cos aσ3).

A.3 Demonstration that the Grover oracle is a reflection about

m using GA

In the | ↑〉, | ↓〉 basis, a general state can be written

|ψ〉 =
[
− cos χ4
sin χ

4

]

= − cos
χ

4
| ↑〉+ sin

χ

4
| ↓〉. (A.11)

Writing the Grover oracle in this space, we have

Gm = I − 2|m〉〈m| = I − 2 sin2
θ

4
| ↑〉〈↑ |− 2 cos2

θ

4
| ↓〉〈↓ |+sin

θ

2
| ↑〉〈↓ |+sin

θ

2
| ↓〉〈↑ |. (A.12)

We find

Gm|ψ〉 =

(

− cos
χ

4
+ 2 sin2

θ

4
cos

χ

4
+ sin

θ

2
sin

χ

4

)

| ↑〉 (A.13)

+

(

sin
χ

4
− 2 cos2

θ

4
sin

χ

4
− sin

θ

2
cos

χ

4

)

| ↓〉 (A.14)

= − cos

(
θ

2
+
χ

4

)

| ↑〉 − sin

(
θ

2
+
χ

4

)

| ↓〉 (A.15)

↔ − cos

(
θ

2
+
χ

4

)

+ sin

(
θ

2
+
χ

4

)

ισ2. (A.16)
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Using Eq.(4.6), we find

〈S〉 = sin
(

θ +
χ

2

)

σ1 + cos
(

θ +
χ

2

)

σ3. (A.17)

We see this new vector is then a reflection about the vector m.

A similar result holds for Gσ, that is

Gσ|ψ〉 ↔ − cos

(
θ

2
− χ

4

)

+ sin

(
θ

2
− χ

4

)

ισ2, (A.18)

which gives us

〈S〉 = sin
(

θ − χ

2

)

σ1 + cos
(

θ − χ

2

)

σ3, (A.19)

which once again is a simple reflection, but this time about σ.

A.4 Standard results when calculating observables

These results, particularly those shown in Eq. (A.25), are used when calculating the observ-
ables in GA. We have also calculated the general case with general measurement directions in
Eq. (A.23). If we have a rotor defined as

A = e−α3ισ3/2e−α1ισ2/2e−α2ισ3/2 (A.20)

and for measurement, we use

R = e−λισ3/2e−κισ2/2e−ηισ3/2. (A.21)

We find, firstly

ιAσ1A
† = ιe−α3ισ3/2e−α1ισ2/2e−α2ισ3/2σ1e

α2ισ3/2eα1ισ2/2eα3ισ3/2 (A.22)

= e−α3ισ3/2e−α1ισ2/2(cosα2 − sinα2ισ3)e
−α1ισ2/2e−α3ισ3/2ισ1

= e−α3ισ3/2(cosα2e
−α1ισ2 − sinα2ισ3)e

−α3ισ3/2ισ1

= e−α3ισ3/2(cosα2 cosα1 − cosα2 sinα1ισ2 − sinα2ισ3)e
−α3ισ3/2ισ1

= (cosα1 cosα2e
−α3ισ3 − sinα1 cosα2ισ2 − sinα2ισ3e

−α3ισ3)ισ1

= (cosα1 cosα2 cosα3 − cosα1 cosα2 sinα3ισ3 − sinα1 cosα2ισ2

− sinα2 cosα3ισ3 − sinα2 sinα3)ισ1

= (cosα1 cosα2 cosα3 − sinα2 sinα3)ισ1 − sinα1 cosα2ισ3

+(cosα1 cosα2 sinα3 + sinα2 cosα3)ισ2

ιAσ2A
† = ιe−α3ισ3/2e−α1ισ2/2e−α2ισ3/2σ2e

α2ισ3/2eα1ισ2/2eα3ισ3/2

= e−α3ισ3/2e−α1ισ2/2(cosα2 − sinα2ισ3)e
α1ισ2/2e−α3ισ3/2ισ2

= e−α3ισ3/2(cosα2 − sinα2ισ3e
α1ισ2)e−α3ισ3/2ισ2

= e−α3ισ3/2(cosα2 − cosα1 sinα2ισ3 − sinα1 sinα2ισ1)e
−α3ισ3/2ισ2

= (cosα2e
−α3ισ3 − cosα1 sinα2ισ3e

−α3ισ3 − sinα1 sinα2ισ1)ισ2

= (cosα2 cosα3 − cosα1 sinα2 sinα3)ισ2 − (cosα2 sinα3 + cosα1 sinα2 cosα3)ισ1

+sinα1 sinα2ισ3

ιAσ3A
† = cosα1ισ3 + sinα1 cosα3ισ1 + sinα1 sinα3ισ2,
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then we find the following results

〈ιAσ3A†ιRσ3R
†〉0 = − cosα1 cosκ− sinα1 cosα3 sinκ cosλ (A.23)

− sinα1 sinα3 sinκ sinλ

= − cosα1 cosκ− cos(α3 − λ) sinα1 sinκ

〈ιAσ2A†ιRσ3R
†〉0 = sinκ cosλ(cosα2 sinα3 + sinα2 cosα3 cosα1)− sinα1 sinα2 cosκ

− sinκ sinλ(cosα2 cosα3 − cosα1 sinα2 sinα3)

= − cosκ sinα1 sinα2 + sinκ(cosα1 cos(α3 − λ) sinα2

+cosα2 sin(α3 − λ))
〈ιAσ1A†ιRσ3R

†〉0 = − sinκ cosλ(cosα1 cosα2 cosα3 − sinα2 sinα3) + sinα1 cosα2 cosκ

− sinκ sinλ(cosα1 cosα2 sinα3 + sinα2 cosα3)

= cosα2(cosκ sinα1 − cosα1 cos(α3 − λ) sinκ1)
+ sinα2 sinκ sin(α3 − λ)

and also, we find

〈ιAσ1A†ιRσ1R
†〉0 = − sinα1 cosα2 sinκ cos η (A.24)

− (cosα1 cosα2 sinα3 + sinα2 cosα3)(cosκ cos η sinλ+ sin η cosλ)

− (cosα1 cosα2 cosα3 − sinα2 sinα3)(cosκ cos η cosλ− sin η sinλ)

= sin(α3 − λ1)(cos η1 cosκ1 sinα2 − cosα1 cosα2 sin η
1)

− cos(α3 − λ1)(cosα1 cosα2 cos η
1 cosκ1 + sinα2 sin η

1)

− cosα2 cos η
1 sinα1 sinκ

1

〈ιAσ2A†ιRσ2R
†〉0 = − sinα1 sinα2 sinκ sin η

− (cosα2 sinα3 + cosα1 sinα2 cosα3)(cos η sinλ+ cosκ sin η cosλ)

− (cosα2 cosα3 − cosα1 sinα2 sinα3)(cos η cosλ− cosκ sin η sinλ)

= sin(α3 − λ1)(cosα1 cos η
1 sinα2 − cosα2 cosκ

1 sin η1)

− cos(α3 − λ1)(cosα1 cosκ
1 sinα2 sin η

1 + cosα2 cos η
1)

− sinα1 sinα2 sin η
1 sinκ1.

We have the special cases for just a single measurement direction κ

〈ιAσ3A†ισ3e
κισ2〉0 = − cosα1 cosκ− sinα1 cosα3 sinκ (A.25)

〈ιAσ2A†ισ3e
κισ2〉0 = sinκ(cosα2 sinα3 + sinα2 cosα3 cosα1)− sinα1 sinα2 cosκ

〈ιAσ1A†ισ3e
κισ2〉0 = − sinκ(cosα1 cosα2 cosα3 − sinα2 sinα3) + sinα1 cosα2 cosκ.

A.5 Deriving the general two qubit state representation in GA

The Schmidt decomposition of a general two particle state can be written [DL03]

|ψ〉 = ρ
1
2 eiχ

[

cos
γ

2
e

−iφ
2

(

cos
α1

2
e

−iα3
2 |0〉+ sin

α1

2
e

iα3
2 |1〉

)

⊗
(

cos
β1
2
e

−iβ3
2 |0〉+ sin

β1
2
e

iβ3
2 |1〉

)

+ sin
γ

2
e

iφ
2

(

sin
α1

2
e

−iα3
2 |0〉 − cos

α1

2
e

iα3
2 |1〉

)

⊗
(

sin
β1
2
e

−iβ3
2 |0〉 − cos

β1
2
e

iβ3
2 |1〉

)]

. (A.26)
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We note that the Schmidt decomposition assumes that cos γ ≥ sin γ, hence we need to enforce
the condition γ ∈ [0, π2 ]. Using the mapping defined in Eq. (1.24), we find that

e
−iφ
2

(

cos
α1

2
e

−iα3
2 |0〉+ sin

α1

2
e

iα3
2 |1〉

)

= cos
α1

2
e

−i(φ+α3)
2 |0〉+ sin

α1

2
e

i(α3−φ
2 |1〉

=

(

cos
α1

2
cos

φ+ α3

2
− i cos

α1

2
sin

φ+ α3

2

)

|0〉

+

(

sin
α1

2
cos

α3 − φ
2

+ i sin
α1

2
sin

α3 − φ
2

)

|1〉

→ cos
α1

2
cos

φ+ α3

2
− cos

α1

2
sin

φ+ α3

2
ισ3

− sin
α1

2
cos

α3 − φ
2

ισ2 + sin
α1

2
sin

α3 − φ
2

ισ1

= e−ια3σ3/2e−ια1σ2/2e−ιφσ3/2. (A.27)

We can then also deduce that

eiχ
(

cos
β1
2
e

−iβ3
2 |0〉+ sin

β1
2
e

iβ3
2 |1〉

)

→ e−ιβ3σ3/2e−ιβ1σ2/2eιχσ3 . (A.28)

If we then make the substitution α1
2 → −(π2 −

α1
2 ) we find

e
iφ
2

(

sin
α1

2
e

−iα3
2 |0〉 − cos

α1

2
e

iα3
2 |1〉

)

→ −e−
ια3σ3

2 eι(
π
2
−α1

2
)σ2e

ιφσ3
2

= −e−
ια3σ3

2 e−
ια1σ2

2 e−
ιφσ3

2 ισ12, (A.29)

and

eiχ
(

sin
β1
2
e

−iβ3
2 |0〉 − cos

β1
2
e

iβ3
2 |1〉

)

→ −e−
ιβ3σ3

2 e−
ιβ1σ2

2 ισ22e
ιχσ3 . (A.30)

The general state is then represented as

ψ = ρ
1
2 e−ια3σ3/2e−ια1σ2/2e−ιφσ3/2e−ιβ3σ3/2e−ιβ1σ2/2(cos

γ

2
+ sin

γ

2
ισ12ισ

2
2)e

ιχσ3 . (A.31)

We notice the first qubit has an extra degree of freedom available in the applied rotor as
compared to the second qubit, namely, the parameter φ. However, we had a choice where we
associated the complex phase during the derivation. So if we split the phase eiφσ3/2 between
the two qubits as eiα2σ3/2 and eiβ2σ3/2, we can have symmetrical rotors on each qubit with

A = e−ια3σ3/2e−ια1σ2/2e−ια2σ3/2, B = e−ιβ3σ3/2e−ιβ1σ2/2e−ιβ2σ3/2, (A.32)

where φ = α2 + β2. The general two qubit state can now be written as

ψ = ρ
1
2AB

(

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

)

eιχσ3E. (A.33)

The extra E term on the end of the wave function is included because we have introduced
a second copy of ι for the second particle space, whereas normally the complex number i is
common across all particle spaces. We can remove this redundancy with a projection operator,
E = 1

2(1 − ισ13ισ23). However, when we come to form the observables ψEψ† and ψJψ†, we
notice that because E2 = E and EJ = JE = J , we see that the inclusion of E, as well as
the global phase term eιχσ3 , will cancel out in both cases and hence is superfluous. Also for
a pure state we have ρ = 1 and so without loss of generality, in regard to the observables, we
can write a general two-particle state in GA, compactly as

ψ = AB
(

cos
γ

2
+ sin

γ

2
ισ12ισ

2
2

)

. (A.34)

We see that with the five degrees of freedom provided with the rotors and also the entanglement
angle γ, we have defined a two particle quantum state with six degrees of freedom, as required
for a normalized two-particle quantum state ignoring the global phase.
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A.6 Two-player games: SO6 geometric algebra

This approach is the most general method for two particles because it also allows a disentan-
gling operation but, unfortunately, it cannot be generalized beyond two particles, because the
isomorphism does not continue beyond SU(4).

We define two separate SO3 spaces e1, e2, e3 and f1, f2, f3 where e21 = f2i = 1 and all six
orthonormal vectors anti-commute with each other, and where we define

σ1i = eif1f2f3 = eiι
2 (A.35)

σ2i = e1e2e3fi = ι1fi,

where the superscripts indicate which particle space the vector belongs to and let ι = ι1ι2,
where we find ι1 and ι2 anti-commute, and so using this new combined ι, we find (ι)2 = ιι = −1.
From now on ι will always refer to ι = e1e2e3f1f2f3, combined from both particle spaces. Then
we find

σiσj = δij + ιǫijkσk, (A.36)

which mimics the Pauli algebra and

σ1i σ
2
j = σ2jσ

1
i (A.37)

with its commuting property allows us to use the geometric product in the same way as the
tensor product. We can identify a basis for two-particle spinor space as

|0〉|0〉 ←→ 1 (A.38)

|0〉|1〉 ←→ ισ22

|1〉|0〉 ←→ ισ12

|1〉|1〉 ←→ ισ12σ
2
2.

In fact, for a general entangled two-particle state, we can write

ψ = A1B2(cos
γ

2
+ sin

γ

2
ισ12σ

2
2), (A.39)

where γ is a measure of the entanglement, and A1 and B2 are general single particle ro-
tors(unitary rotations) on each qubit.

General unitary operations in GA can be represented as

R(α1, α2, α3) = e−α3ισ3/2e−α1ισ2/2e−α2ισ3/2. (A.40)

This rotation, represented in geometric algebra, is in Euler angle form and can completely
explore the available space of a single qubit, and is equivalent to the general unitary transfor-
mation denoted by the matrix

[
eiθ3/2 cos θ12 −e−iθ2/2 sin θ1

2

eiθ2/2 sin θ1
2 e−iθ3/2 cos θ12

]

(A.41)

acting on a spinor. We see that with the 3 degrees of freedom provided in each rotor and the
entanglement angle γ, we have defined a two particle quantum state with 7 degrees of freedom
as required for a two-particle quantum state ignoring the global phase.

The observables are found in geometric algebra from a density operator(which mimic
density matrices) [PD01]

ρ = ψP 1
3P

2
3ψ

† (A.42)
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where P k3 = 1 + σk3 . So, we find

P 1
3P

2
3 = (1 + σ13)(1 + σ23) = (1 + σ13σ

2
3) + (σ13 + σ23). (A.43)

So, we have

ρ = ψP 1
3P

2
3ψ

† (A.44)

= ψ(1 + σ13 + σ23 + σ13σ
2
3)ψ

†

= 1 + ψσ13σ
2
3ψ

† + ψσ13ψ
† + ψσ23ψ

†.

Taking each term from Eq.(A.44) in turn, starting with σ13, we find ψσ13ψ
†

= AB(cos
γ

2
+ sin

γ

2
ισ12σ

2
2)σ

1
3(cos

γ

2
− sin

γ

2
ισ12σ

2
2)B

†A† (A.45)

= AB(cos
γ

2
+ sin

γ

2
ισ12σ

2
2)(cos

γ

2
+ sin

γ

2
ισ12σ

2
2)σ

1
3B

†A†

= AB(cos γ + sin γισ12σ
2
2)σ

1
3B

†A†

= cos γAσ13A
† − sin γAσ11A

†Bσ22B
†,

where we used the results σ13σ
1
2 = −σ12σ13, ισ12σ22ισ12σ22 = ι2 = −1 and ισ12σ

2
2σ

1
3 = −σ11σ22. By

symmetry of the first and second particle, we can immediately write

ψσ23ψ
† = cos γBσ23B

† − sin γAσ12A
†Bσ21B

†. (A.46)

Finally, we have ψσ13σ
2
3ψ

†

= AB(cos
γ

2
+ sin

γ

2
ισ12σ

2
2)σ

1
3σ

2
3(cos

γ

2
− sin

γ

2
ισ12σ

2
2)B

†A† (A.47)

= AB(cos
γ

2
+ sin

γ

2
ισ12σ

2
2)(cos

γ

2
− sin

γ

2
ισ12σ

2
2)σ

1
3σ

2
3B

†A†

= ABσ13σ
2
3B

†A†

= Aσ13A
†Bσ23B

†.

So, the full density operator is

ρ = 1 + cos γAσ13A
† − sin γAσ11A

†Bσ22B
† (A.48)

+ cos γBσ23B
† − sin γAσ12A

†Bσ21B
† +Aσ13A

†Bσ23B
†

= 1 + cos γ(Aσ13A
† +Bσ23B

†)

+ Aσ13A
†Bσ23B

† − sin γ(Aσ11A
†Bσ22B

† +Aσ12A
†Bσ21B

†).

For measurement, we employ the density operator

ρM = R1R2(1 + σ13 + σ23 + σ13σ
2
3)R

1R2 (A.49)

and we have R1 = eικ
1σ1

2 and R2 = eικ
2σ2

2 where κ1 and κ2 are measurement directions for
players 1 and 2 respectively, so that we have

ρM = eικσ
1
2/2eικσ

2
2/2(1 + σ13 + σ23 + σ13σ

2
3)e

−ικσ2
2/2e−ικσ

1
2/2 (A.50)

= 1 + σ13e
−ικσ1

2 + σ23e
−ικσ1

2 + σ13σ
2
3e

−ικσ2
2e−ικ2σ2 .
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Retaining the scalar part of the product ρMρ, written as 〈ρMρ〉0 , we find the probability of
measuring each wave state as

4Pmn = 〈ρMρ〉0 (A.51)

= 〈[1 + cos γ(Aσ13A
† +Bσ23B

†)

+ Aσ13A
†Bσ23B

† − sin γ(Aσ11A
†Bσ22B

† +Aσ12A
†Bσ21B

†)]

× [1 + σ13e
−ικ1σ1

2 + σ23e
−ικ2σ2

2 + σ13σ
2
3e

−ικ1σ1
2e−ικ

2σ2
2 ]〉0

= 〈1 + cos γ(Aσ13A
†σ13e

−ικ1σ1
2 +Bσ23B

†σ23)e
−ικ2σ2

2

+ Aσ13A
†σ13Bσ

2
3B

†σ23e
−ικ1σ1

2e−ικ
2σ2

2

− sin γ(Aσ11A
†σ13Bσ

2
2B

†σ23 +Aσ12A
†σ13Bσ

2
1B

†σ23)e
−ικ1σ1

2e−ικ
2σ2

2 〉0
= 1 + cos γ((−)mA+ (−)nB + (−)m+nAB + (−)m+n sin γZ,

where

A(κ1) = cosα1 cosκ
1 − sinα1 cosα3 sinκ

1 (A.52)

B(κ2) = cosβ1 cosκ
2 − sinβ1 cosβ3 sinκ

2

and

Z(κ1, κ2) = (cos k1 sinα1 + cosα1 cosα3 sinκ
1) (A.53)

×(cosκ2 sinβ1 sinφ+ sinκ2 sinβ3 cosφ+ sinκ2 cosβ1 cosβ3 sinφ)

− sinκ1 sinκ2 sinβ3 sinα3 sinφ+ cosκ2 sinβ1 cosφ sinα3 sinκ
1

+ sinκ2 cosβ1 cosβ3 cosφ sinα3 sinκ
1.

To simplify notation, we will write Zij = Z(κ1i , κ
2
j ) , Ai = A(κ1i ) and Bj = B(κ2j ), where

i, j ∈ {1, 2} represent the two possible measurement directions available to each player. We
notice that we still have some symmetry in our result because we have made the substitution
φ = α2 + β2 , so that we have six degrees of freedom out of a possible seven. This final
symmetry would probably be lost if we allow variations of measurement directions out of the
plane perpendicular to the line of sight.

If we try γ = 0 for no entanglement, we have the probability

Pmn =
1

4
(1 + (−)mA+ (−)nB (A.54)

+(−)m+nAB)

=
(1 + (−)mA)1

2

(1 + (−)nB)2

2
,

which shows a product state incorporating general measurement directions for each qubit.
Writing out the probabilities for the four measurement outcomes with general measurement

directions, we find

P00(κ
1, κ2) =

1

4
[1 + cos γ(A(κ1) +B(κ2)) + (A(κ1)B(κ2) + sin γZ(κ1, κ2))] (A.55)

P01(κ
1, κ2) =

1

4
[1 + cos γ(A(κ1)−B(κ2))− (A(κ1)B(κ2) + sin γZ(κ1, κ2))]

P10(κ
1, κ2) =

1

4
[1 + cos γ(−A(κ1) +B(κ2))− (A(κ1)B(κ2) + sin γZ(κ1, κ2))]

P11(κ
1, κ2) =

1

4
[1 + cos γ(−A(κ1)−B(κ2)) + (A(κ1)B(κ2) + sin γZ(κ1, κ2))].

We allow each player the classical probabilistic choice between the two allocated measurement
directions for their Stern-Gerlach detectors. The two players choose their first measurement
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direction with probability x and y respectively, where x, y ∈ [0, 1]. We will assume the general
case where players can choose different measurement directions to each other.

Now, we have the mathematical expectation of Alices’ payoff where she chooses the direc-
tion κ11 with probability x and the measurement direction κ12 with probability 1− x as

ΠA(x, y) = xy(P00(κ
1
1, κ

2
1)G00 + P01(κ

1
1, κ

2
1)G01 + P10(κ

1
1, κ

2
1)G10 + P11(κ

1
1, κ

2
1)G11) (A.56)

+ x(1− y)(P00(κ
1
1, κ

2
2)G00 + P01(κ

1
1, κ

2
2)G01 + P10(κ

1
1, κ

2
2)G10 + P11(κ

1
1, κ

2
2)G11)

+ y(1− x)(P00(κ
1
2, κ

2
1)G00 + P01(κ

1
2, κ

2
1)G01 + P10(κ

1
2, κ

2
1)G10 + P11(κ

1
2, κ

2
1)G11)

+ (1− x)(1− y)(P00(κ
1
2, κ

2
2)G00 + P01(κ

1
2, κ

2
2)G01 + P10(κ

1
2, κ

2
2)G10 + P11(κ

1
2, κ

2
2)G11),

where, for the Prisoner dilemma, we have

GAij =

[
3 0
5 1

]

=

[
G00 G01

G10 G11

]

=

[
K L
M N

]

. (A.57)

For symmetric games, such as the Prisoner dilemma game, we have GBij = GAji. Generally
speaking, any payoff matrix satisfying G10 > G00 > G11 > G01 is in the form of a Prisoner
dilemma.

In the classical Prisoner dilemma game, we have two prisoners Alice and Bob being held
in separate cells ready to be interviewed. To encourage confessions, the interrogator sets out
a reward scheme, where if the players qubit is measured as the |0〉 state, then this corresponds
to exonerating the other prisoner(co-operating with the other prisoner) and |1〉 corresponds to
accusing the other prisoner(defection), which allows four possible payoff results, as shown in the
payoff matrix. So, if Alice co-operates but Bob defects against her, for example, Alice receives
a reward of 0, and Bob receives a payoff of 5 units. This game forms a dilemma for both players
because there is a conflict between the maximum payout received by two rational responses
based on satisfying self interest(called the Nash equilibrium), and the Pareto optimum, which
is the best overall payoff available to both players. The Nash equilibrium will be both players
defecting and receiving 1 unit in this case, because we can see that if either player decides to
change their choice from this position they will receive a smaller payoff of 0. If both players
though could trust each other and co-operate they would both receive a greater payout of 3
units, however there is a great temptation for either player to break the agreement and defect
and improve his payoff to 5. We find that this impasse appears to be partially solved through
the use of entanglement in the quantum form of the game.

We also define ∆1 = G10−G00, ∆2 = G11−G01 and ∆3 = ∆2−∆1 . We have ∆1,∆2 > 0
for the Prisoner dilemma game in general. We define

p =
1

4
[(A1 −A2)(B1 −B2) + sin γ(Z11 + Z22 − Z12 − Z21)] (A.58)

so that we find the payoff for Alice

ΠA(x, y) =
1

4
[G00 +G10 +G01 +G11 (A.59)

+ ∆3{4pxy + x((A1 −A2)B2 + (Z12 − Z22) sin γ) + y((B1 −B2)A2 + (Z21 − Z22) sin γ)

+ A2B2 + Z22 sin γ} − cos γ(∆1 +∆2)((A1 −A2)x+A2)

+ cos γ(G00 −G01 +G10 −G11)((B1 −B2)y +B2)].

A.6.1 Solving the two-player game

To find the Nash equilibrium, we require

ΠA(x
∗, y∗) ≥ ΠA(x, y

∗) (A.60)

ΠB(x
∗, y∗) ≥ ΠB(x

∗, y)
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which is stating that any movement of a player away from the Nash equilibrium (x∗, y∗), will
result in a lower payoff for that player. We find

ΠA(x
∗, y∗)−ΠA(x, y

∗) (A.61)

=
1

4
(x∗ − x)[∆3{4py∗ + (A1 −A2)B2 + (Z12 − Z22) sin γ} − cos γ(∆1 +∆2)(A1 −A2)]

=
1

4
(x∗ − x)(A1 −A2)[∆3{y∗(B1 +

sin γ(Z11 − Z21)

A1 −A2
) + (1− y∗)(B2 +

sin γ(Z12 − Z22)

A1 −A2
)}

− cos γ(∆1 +∆2)]

and for the second player Bob we have similarly

ΠB(x
∗, y∗)−ΠB(x

∗, y) (A.62)

=
1

4
(y∗ − y)[∆3{4px∗ + (B1 −B2)A2 + (Z21 − Z22) sin γ} − cos γ(∆1 +∆2)(B1 −B2)].

A.6.2 Embedding the classical game

We would like the classical game embedded in the quantum game at zero entanglement(γ = 0),
and so the requirement for a N.E. becomes

ΠA(x
∗, y∗)−ΠA(x, y

∗) (A.63)

=
1

4
(x∗ − x)(A1 −A2)[∆3{y∗B1 + (1− y∗)B2} − (∆1 +∆2)] ≥ 0.

Because |∆3| ≤ |∆1 +∆2|, the term in square brackets is always negative and if A1 −A2 > 0,
then we have the classical NE (x∗ = 0). By symmetry, Bob also has the NE y∗ = 0, provided
B1−B2 > 0. At this NE of (x∗, y∗) = (0, 0) and at zero entanglement we find the payoff from
Eq. (A.59) to be

ΠA(x, y) =
1

4
[G00(1 +A2)(1 +B2) +G10(1−A2)(1 +B2) (A.64)

+G01(1 +A2)(1−B2) +G11(1−A2)(1−B2)].

In order to achieve the classical payoff of G11, we can see that we require A2 = −1 and
B2 = −1, that is

A(κ12) = cosα1 cosκ
1
2 − sinα1 cosα3 sinκ

1
2 = −1 (A.65)

B(κ22) = cosβ1 cosκ
2
2 − sinβ1 cosβ3 sinκ

2
2 = −1.

These equations have two classes of solution: if α3, β3 6= 0, then we have for the first equation
α1 = 0, κ12 = π or α1 = π, κ12 = 0 and similarly for the second equation. For the second class
with α3, β3 = 0, we have the solution α1 + κ12 = π and β1 + κ22 = π.

For the first class, we find Z22 = Z21 = Z12 = 0 and Z11 = sinκ11 sinκ
2
1 sin(α3+β3+α2+β2)

and for the second class, we find Z22 = Z21 = Z12 = 0 and Z11 = sin(α1 + κ11) sin(β1 +
κ21) sin(α2 + β2).

These two classes gives the NE, governed in both cases

ΠA(x
∗, y∗)−ΠA(x, y

∗) (A.66)

=
1

4
(x∗ − x)(cosκ11 + 1)[∆3{y∗(cosκ21 +

sin γZ11

cosκ11 + 1
)− (1− y∗)} − cos γ(∆1 +∆2)] ≥ 0

with a corresponding payoff of

ΠA(x, y) =
1

4
[2(G00 +G11)− 2 cos γ(G00 −G11) (A.67)

+ xy∆3{(A1 + 1)(B1 + 1) + sin γZ11} − x(A1 + 1){∆3 + cos γ(∆1 +∆2)}
−y(B1 + 1){∆3 − cos γ(G00 −G01 +G10 −G11)}].

Thus Eq. (A.66) governs the possible NE and Eq. (A.67) the associated payoffs for a quantum
Prisoner dilemma game which will embed the classical game at zero entanglement.
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A.7 Two-player games: entangled measurement model

In this approach we have a local realist model consisting of two unentangled qubits upon
which Alice and Bob act with their local unitary transformations. We then measure using a
Bell type measurement operator, placing all non-local correlations in the final measurement
operator. The advantage is, that we can easily visualize the state of the two separate qubits
as two separate Bloch sphere vectors.

We use the same basis as Alternative Method 1 two-particle spinor space as

|0〉|0〉 ←→ 1 (A.68)

|0〉|1〉 ←→ −ισ22
|1〉|0〉 ←→ −ισ12
|1〉|1〉 ←→ ισ12ισ

2
2.

We assume a separable state is prepared for Alice and Bob upon which they act producing,

ψ = AB (A.69)

where

A = R(α1, α2, α3) (A.70)

B = R(β1, β2, β3).

We have the two observables ψJψ† and ψEψ†, where

J = ισ13 + ισ23 (A.71)

E = 1− ισ13ισ23.

Given a measurement operator

φ = eικσ
1
2/2eικσ

2
2/2(cos γ + sin γισ12ισ

2
2) (A.72)

to represent the measurement, where γ ∈ [−π
2 ,

π
2 ], and κ = 0, π for the measurement direction.

We are using the notation κσ22 = κ2σ22, so we can have separate κ for each particle space. So
forming the observables we have

ψJψ† = AB(ισ13 + ισ23)A
†B† (A.73)

=
1

2
(ιAσ13A

† + ιBσ23B
†)

and for the joint observable

ψEψ† = AB(1− ισ13ισ23)A†B† (A.74)

=
1

2

(

1− ιAσ13A†ιBσ23B
†
)

and for the measurement settings

φJφ† = eικσ
1
2/2eικσ

2
2/2(cos

γ

2
+ sin

γ

2
ισ12ισ

2
2)(ισ

1
3 + ισ23) (A.75)

× (cos
γ

2
+ sin

γ

2
ισ12ισ

2
2)e

−ικσ2
2/2e−ικσ

2
2/2

=
1

2
eικσ

1
2/2eικσ

2
2/2(cos2

γ

2
− sin2

γ

2
)

× (ισ13 + ισ23)e
ικσ2

2/2e−ικσ
1
2/2

=
1

2
cos γ(eικσ

1
2 ισ13 + eικσ

2
2 ισ23)
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φEφ† = eικσ
1
2/2eικσ

2
2/2(cos

γ

2
+ sin

γ

2
ισ12ισ

2
2)(1− ισ13ισ23) (A.76)

× (cos
γ

2
+ sin

γ

2
ισ12ισ

2
2)e

−κσ2
2/2e−κσ

1
2/2

=
1

2
(1− ιeικσ1

2eικσ
2
2σ13ισ

2
3 + sin γ(ισ12ισ

2
2 − ιeικσ

1
2eικσ

2
2σ11ισ

2
1)),

from which we can calculate the probabilities to measure different states. For the special cases
κ = 0, π, which defines the standard measurement basis, we have

φJφ† =
1

2
cos γ((−)xισ13 + (−)yισ23),

where each x, y ∈ {0, 1} refers to measuring a |0〉 or a |1〉 state, respectively and

φEφ† = −1

2

(
1 + (−)x+yισ13ισ23 + sin γ(ισ12ισ

2
2 + (−)x+yισ11ισ21)

)
.

So, the separable part of the measurement is

= −〈ψJψ†φJφ†〉 (A.77)

= −1

2
(ιAσ13A

† + ιBσ23B
†)
1

2
cos γ((−)xισ13 + (−)yισ23)

=
1

4
cos γ((−)x cosα1 + (−)y cosβ1).

For the joint measurement

= 〈ψEψ†φEφ†〉 (A.78)

= −1

4
(1− ιAσ13A†ιBσ23B

†)

×
(
1 + (−)x+yισ13ισ23 + sin γ(ισ12ισ

2
2 + (−)x+yισ11ισ21)

)

=
1

4
(1 + (−)x+y cosα1 cosβ1 − sin γ sinα1 sinα2 sinβ1 sinβ2

+ (−)x+y sin γ sinα1 cosα2 sinβ1 cosβ2)

=
1

4
(1 + (−)x+y cosα1 cosβ1 + (−)x+y sin γ sinα1 sinβ1 cos(α2 − (−)x+yβ2).

So, the final density operator is

ρ =
1

4
(1 + cos γ((−)x cosα1 + (−)y cosβ1) (A.79)

+ (−)x+y cosα1 cosβ1 + (−)x+y sin γ sinα1 sinβ1 cos(α2 − (−)x+yβ2)).

So, we can generate the four probabilities

P00 =
1

4
(1 + cosα1 cosβ1 + cos γ(cosα1 + cosβ1) (A.80)

+ sin γ sinα1 sinβ1 cos(α2 − β2))

P01 =
1

4
(1− cosα1 cosβ1 + cos γ(cosα1 − cosβ1)

− sin γ sinα1 sinβ1 cos(α2 + β2))

P10 =
1

4
(1− cosα1 cosβ1 + cos γ(− cosα1 + cosβ1)

− sin γ sinα1 sinβ1 cos(α2 + β2))

P11 =
1

4
(1 + cosα1 cosβ1 − cos γ(cosα1 + cosβ1)

+ sin γ sinα1 sinβ1 cos(α2 − β2)).



A.8 Three-player quantum game examples 109

We have the payoff functions for Alice and Bob,

ΠA = 3P00 + 5P10 + P11 (A.81)

=
1

4
(9− 3 cos γ cosα1 + 7 cos γ cosβ1

− cosα1 cosβ1 + sin γ sinα1 sinβ1 cosα2 cosβ2

+ 9 sin γ sinα1 sinβ1 sinα2 sinβ2)

ΠB = 3P00 + 5P01 + P11

=
1

4
(9 + 7 cos γ cosα1 − 3 cos γ cosβ1

− cosα1 cosβ1 + sin γ sinα1 sinβ1 cosα2 cosβ2

+ 9 sin γ sinα1 sinβ1 sinα2 sinβ2),

which confirm the relations from the previous method with κ1 = κ2 = 0.

A.8 Three-player quantum game examples

A.8.1 Prisoner dilemma, W-state

Given the following payoff matrix, which is in the form of a Prisoner dilemma

State Payoff
|000〉 (3,3,3)
|001〉 (0,0,5)
|010〉 (0,5,0)
|100〉 (5,0,0)
|011〉 (0,4,4)
|101〉 (4,0,4)
|110〉 (4,4,0)
|111〉 (1,1,1)

we then have

c1 =
1

6
(3− 0 + 0− 5 + 4− 1) =

1

6
(A.82)

c2 =
1

6
(−3 + 0 + 5− 8) = 1

c3 =
1

6
(0− 0− 8 + 1) =

7

6
.

Thus, we have satisfied all conditions for one and three flips, giving us four NE. This gives us
the payoffs

Choices Player1,Player2,Player3
(d,c,c) (11/3,7/3,7/3)
(c,d,c) (7/3,11/3,7/3)
(c,c,d) (7/3,7/3,11/3)
(d,d,d) (8/3,8/3,8/3)

A.8.2 Prisoner dilemma with GHZ state at Pareto optimum

This example shows that a three player quantum Prisoner dilemma game carefully chosen can
in fact reach the Pareto optimum. We have l = d : dc − c : cd > 0 for the Prisoner dilemma
game and also we find a > 0 and b < 0 and therefore, we can refer to [JMCL11a]. Also, we
have b− a cos γ < 0 and so we do not have the no-flip case.

So to satisfy the condition for a NE we could pick
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State Payoff
|000〉 (6,6,6)
|001〉 (3,3,12)
|010〉 (3,12,3)
|100〉 (12,3,3)
|011〉 (0,9,9)
|101〉 (9,0,9)
|110〉 (9,9,0)
|111〉 (1,1,1)

We have c : cc = 6, c : cd = 3, d : cc = 12, c : dd = 0, d : dc = 9, d : dd = 1, giving
us m = d : cc − c : cc = 12 − 6 = 6 and n = d : dd − c : dd = 1 − 0 = 1, giving us
a = n + m = 7 and b = n − m = −5, and so b/a < 0, so we have the first case. Also, we
have l = d : dc − c : cd = 9 − 3 > 0 and so no single flip NE exist. We have a transition at
cos γ = 5/7 from a quantum to a classical region and the maximum payoff at cos γ = 0 for
not flipping

Πf =
1

2
(0 + 12) = 6 (A.83)

Πn =
1

2
(3 + 9) = 6,

so that, at maximum entanglement, we reach the Pareto optimum as a Nash equilibrium.
Classically, the NE is at 1.

A.9 W entangled state

We have the state before measurement from Eq.(8.4) as

ψ = − 1√
N

(∏

U i
) N∑

i

ιei2. (A.84)

So forming the observables from Eq.(1.25) we have

ψJψ† (A.85)

= − 1

N2N−1

(∏

U i
) N∑

i

ιei2





N+1
2∑

r=1

(−)r+1CN2r−1(ιe
i
3)





N∑

i

ιei2

(∏

U i
†
)

=
1

N2N−1

(∏

U i
)( (N+1)/2

∑

r=1

(N − 4r + 2)CN2r−1(ιe
i
3)− 2

(N−1)/2
∑

r=1

CN2r+1(ιe
i
2ιe

j
2ιe

k
3)

− 2

(N−1)/2
∑

r=1

CN2r+1(ιe
i
1ιe

j
1ιe

k
3)
)(∏

U i
†
)

=
1

N2N−1

( (N+1)/2
∑

r=1

(−)r+1(N − 4r + 2)CN2r−1(V
i
3 ) + 2

(N−1)/2
∑

r=1

(−)rCN2r+1(V
i
2V

j
2 V

k
3 )

+ 2

(N−1)/2
∑

r=1

(−)rCN2r+1(V
i
1V

j
1 V

k
3 )
)

,
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where V i
k = ιU iekU

i† . Also from Eq.(1.25) we have

ψEψ† (A.86)

= − 1

N2N−1

(∏

U i
) N∑

i

ιei2



1 +

N/2
∑

r=1

(−)rCN2r(ιei3)





N∑

i

ιei2

(∏

U i
†
)

=
1

N2N−1

∏

U i
(

N − 2

N/2
∑

r=1

CN2r(ιe
i
2ιe

j
2ιe

k
3) +

N/2
∑

r=1

(4r −N)CN2r(ιe
i
3)

− 2

N/2
∑

r=1

CN2r(ιe
i
1ιe

j
1ιe

k
3)
)∏

U i†

=
1

N2N−1

(

N + 2

N/2
∑

r=1

(−)rCN2r(V i
2V

j
2 V

k
3 ) +

N/2
∑

n=1

(−)r(N − 4r)CN2r(V
i
3 )

+ 2

N/2
∑

r=1

(−)rCN2r(V i
1V

j
1 V

k
3 )
)

.

So, referring to Eq.(1.25), we find

−2N−2〈ψJψ†φJφ†〉0 (A.87)

= − 1

N2N

〈( (N+1)/2
∑

r=1

(−)r+1(N − 4r + 2)CN2r−1(V
i
3 ) + 2

(N−1)/2
∑

r=1

(−)rCN2r+1(V
i
2V

j
2 V

k
3 )

+ 2

(N−1)/2
∑

r=1

(−)rCN2r+1(V
i
1V

j
1 V

k
3 )
)(

N+1
2∑

r=1

(−)r+1CN2r−1(ιe
i
3e
ικei2)

)〉

0

=
1

N2N





N+1
2∑

r=1

(N − 4r + 2)CN2r−1(K
i) + 2

N−1
2∑

r=1

CN2r+1(X
i
2X

j
2K

k) + 2

N−1
2∑

r=1

CN2r+1(X
i
1X

j
1K

k)





=
1

N2N





N+1
2∑

r=1

(N − 4r + 2)CN2r−1(K
i) + 2

N−1
2∑

r=1

CN2r+1

(

(Xi
2X

j
2 +Xi

1X
j
1)X

k
3

)



 .

Also from Eq.(1.25), we find

2N−2〈ψEψ†φEφ†〉0 (A.88)

=
1

N2N

〈(

N + 2

N/2
∑

r=1

(−)rCN2r(V i
2V

j
2 V

k
3 ) +

N/2
∑

r=1

(−)r(N − 4r)CN2r(V
i
3 )

+ 2

N/2
∑

r=1

(−)rCN2r(V i
1V

j
1 V

k
3 )
)(

1 +

N/2
∑

r=1

(−)rCN2r(ιei3eικe
i
2)
)〉

0

=
1

N2N
(N + 2

N/2
∑

r=1

CN2r(ǫ
iǫjXi

2X
j
2X

k
3 ) +

N/2
∑

r=1

(N − 4r)CN2r(K
i)

+2

N/2
∑

r=1

CN2r(ǫ
iǫjǫkXi

1X
j
1X

k
3 ))

=
1

N2N



N +

N/2
∑

r=1

(N − 4r)CN2r(K
i) + 2

N/2
∑

r=1

CN2r
(
(Xi

2X
j
2 +Xi

1X
j
1)K

k
)



 .
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So the probabilities that a measurement will return a given state will be

Pk1...kN =
1

N2N

( (N+1)/2
∑

r=1

(N − 4r + 2)CN2r−1(K
i) + 2

(N−1)/2
∑

r=1

CN2r+1

(
(Xi

2X
j
2 +Xi

1X
j
1)K

k
)

+ N +

N/2
∑

r=1

(N − 4r)CN2r
(
Ki
)
+ 2

N/2
∑

r=1

CN2r
(
(Xi

2X
j
2 +Xi

1X
j
1)K

k
))

and combining the summation terms we find the probability distribution, for the W-type state
subject to general measurement directions

Pk1...kN =
1

N2N

(

N +
N∑

r=1

(N − 2r)CNr
(
ǫiKi

)
+ 2

N∑

r=2

CNr
(
ǫiǫjǫk(Xi

2X
j
2 +Xi

1X
j
1)K

k
)

)

.
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Abstract

Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only
approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by
ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in
solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special
cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity
and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in
validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of
qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum
computers.
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Introduction

Phase estimation is an integral part of Shor’s algorithm [1] as

well as many other quantum algorithms [2], designed to run on a

quantum computer, and so an exact expression for the maximum

probability of error is valuable, in order to efficiently achieve a

predetermined accuracy. Suppose we wish to determine a phase

angle w to an accuracy of s bits, which hence could be in error,

with regard to the true value of w, by up to 2{s, then due to the

probabilistic nature of quantum computers, to achieve this we will

need to add p extra qubits to the quantum register in order to

succeed with a probability of 1{e. Quantum registers behave like

classical registers upon measurement, returning a one or a zero

from each qubit. Previously, Cleve et al. [3] determined the

following upper bound:

pC~q log2
1

2e
z

1

2

� �

r: ð1Þ

Thus the more confident we wish to be (a small e), for the output
to achieve a given precision s, the more qubits, p, will need to be

added to the quantum register. Formulas of essentially the same

functional form as Eq. (1), are produced by two other authors, in

[2] and [4], due to the use of similar approximations in their

derivation. For example, we have p~qlog2
1

2e
z2

� �

z log2 pr,

given in [4]. As we show in the following, these approximate error

formulas are unsatisfactory in that they overestimate the number

of qubits required in order to achieve a given reliability.

The phase angle is defined as follows, given a unitary operator

U , we produce the eigenvalue equation U DuT~e2piwDuT, for some

eigenvector DuT, and we seek to determine the phase w[½0,1) using
the quantum phase estimation procedure [5]. The first stage in

phase estimation produces, in the measurement register with a t

qubit basis fDkTg, the state [2]

D~wwTStage1~
1

2t=2

X

2t{1

k~0

e2piwk DkT: ð2Þ

If w~b=2t for some integer b~0,1, . . . 2t{1, then

D~wwTStage1~
X

2t{1

k~0

yk DkT , with yk~
e2pibk=2

t

2t=2
, ð3Þ

is the discrete Fourier transform of the basis state DbT, that is, the

state with amplitudes xk~dkb. We then read off the exact phase

w~b=2t from the inverse Fourier transform as DbT~F {D~wwT.

In general however, when w cannot be written in an exact t bit

binary expansion, the inverse Fourier transform in the final stage

of the phase estimation procedure yields a state

DwT:F{D~wwTStage1 , ð4Þ

from which we only obtain an estimate for w. That is, the

coefficients xk of the state DwT in the t qubit basis fDkTg will yield

probabilities which peak at the values of k closest to w.

Our goal now is to derive an upper bound which avoids the

approximations used in the above formulas and hence obtain a

precise result.

Results

In order to derive an improved accuracy formula for phase

estimation, we initially follow the procedure given in [3], where it

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19663



is noted, that because of the limited resolution provided by the

quantum register of t qubits, the phase wmust be approximated by

the fraction
b

2t
, where b is an integer in the range 0 to 2t{1 such

that b=2t~0:b1 . . . bt is the best t bit approximation to w, which is

less than w. We then define

d~w{b=2t,

which is the difference between w and b=2t and where clearly

0ƒdv2{t. The first stage of the phase estimation procedure

produces the state given by Eq. (2). Applying the inverse quantum

Fourier transform to this state produces

DwT~
X

2t{1

k~0

xk DkT , ð5Þ

where

xk~
1

2t

X

2t{1

‘~0

e2pi(w{k=2t)‘
~

1

2t
1{e2pi 2

td

1{e
2pi(d{k{b

2t
)
: ð6Þ

Assuming the outcome of the final measurement is m, we can

bound the probability of obtaining a value of m such that

Dm{bDƒe, where e is a positive integer characterizing our desired

tolerance to error, where m and b are integers such that 0ƒmv2t

and 0ƒbv2t. The probability of observing such an m is given by

pr(Dm{bDƒe)~
X

e

‘~{e

Dxbz‘D
2: ð7Þ

This is simply the sum of the probabilities of the states within e of

b, where

xbz‘~
1

2t
1{e2pi 2

td

1{e2pi(d{‘=2t)
, ð8Þ

which is the standard result obtained from Eq. (6), in particular see

equation 5.26 in [2]. Typically at this point approximations are

now made to simplify x‘, however we proceed without

approximations. We have

Dxbz‘D
2
~

1

22t
1{cos(2p2td)

1{cos(2p(d{‘=2t))
: ð9Þ

Suppose we wish to approximate w to an accuracy of 2{s, that is,

we choose e~2t{s{1
~2p{1, using t~szp, which can be

compared with Eq. 5.35 in [2], and if we denote the probability

of failure

E~p(Dm{bDwe), ð10Þ

then we have

E~1{
1{cos2p2td

22t

X

2p{1

‘~{2p{1

1

1{cos2p(d{‘=2t)
: ð11Þ

This formula assumes that for a measurement m, we have a

successful result if we measure a state either side of b within a

distance of e, which is the conventional assumption.

This definition of error however is asymmetric because there

will be unequal numbers of states summed about the phase angle w
to give the probability of a successful result, because an odd

number of states is being summed. We now present a definition of

the error which is symmetric about w.

Modified definition of error
Given an actual angle w that we are seeking to approximate in

the phase estimation procedure, a measurement is called successful

if it lies within a certain tolerance e of the true value w. That is, for
a measurement of state m out of a possible 2t states, the probability

of failure will be

E~p D2p
m

2t
{wDw

1

2

2p

2s

� �

: ð12Þ

Thus we consider the angle to be successfully measured accurate

to s bits, if the estimated w lies in the range w+
1

2

2p

2s
. Considering

our previous definition Eq. (10), due to the fact that b is defined to

be always less than w, then compared to the previous definition of

E, we lose the outermost state at the lower end of the summation in

Eq. (11) as shown in Fig. (1). For example for p~1, the upper

bracket in Fig. (1) (representing the error bound) can only cover

two states instead of three, and so the sum in Eq. (11) will now sum

from 0 to 1, instead of {1 to 1, for this case.

An optimal bound
Based on this new definition then for all cases we need to add 1

to the lower end of the summation giving

E~1{
1{cos2p2td

22t

X

2p{1

‘~{2p{1z1

1

1{cos2p(d{‘=2t)
ð13Þ

and if we define a~2td and rearrange the cosine term in the

summation we find

Figure 1. Defining the limits of summation for the phase
estimation error. For the cases p~1,2,3, we show the measurements
which are accepted as lying within the required distance of w, shown by
the vertical arrow, which define the limits of summation used in Eq. (13).
doi:10.1371/journal.pone.0019663.g001
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E~1{
1{cos2pa

22tz1

X

2p{1

‘~{2p{1z1

csc2
p

2t
(a{‘): ð14Þ

Next, we demonstrate that the right hand side of Eq. (14) takes

its maximum value at a~
1

2
. Since we know 0ƒav1, and since

we expect the maximum value of E~E(a,t,p) to lie about midway

between the two nearest states to generate the largest error, that is

at a~1=2, we will substitute a~
1

2
zD, where D%

1

2
. To

maximize E we need to minimize

cos2p
1

2
zD

� �

X

2p{1

‘~{2p{1z1

csc2
p

2t
1

2
{‘zD

� �

, ð15Þ

as a function of D. Expanding to quadratic order with a Taylor

series, we seek to minimize

1{p2D2
zO(D4)

� �

c0zc1Dzc2D
2
zc3D

3
zO(D4)

� �

, ð16Þ

where ci are the coefficients of the Taylor expansion of cosecant2

in D. We find by the odd symmetry of the cotangent about ‘~
1

2
that

c1~
2p

2t

X

2p{1

‘~{2p{1z1

cot
p

2t
(
1

2
{‘) csc2

p

2t
(
1

2
{‘)~0, ð17Þ

and so we just need to minimize

c0z(c2{c0p
2)D2

zO(D3): ð18Þ

Differentiating, we see we have an extremum at D~0, and

therefore E(a,t,p) has a maximum at a~1=2.

Substituting a~
1

2
we obtain

Eƒ1{
2

22t

X

2p{1

‘~{2p{1z1

1

1{cos
2p

2t
(
1

2
{‘)

: ð19Þ

We note that the summation is symmetrical about ‘~1=2, and
substituting t~pzs, we obtain for our final result

E(s,p)~1{
1

22(pzs){2

X

2p{1

‘~1

1

1{cos
p(2‘{1)

2(pzs)

: ð20Þ

That is, given a desired accuracy of s bits, then if we add p more

bits, we have a probability of success given by 1{E, of obtaining a

measurement to at least s bits of accuracy. Thus we have

succeeded in deriving a best possible bound for the failure rate

E~E(s,p).

Special Cases
Numerical calculations show that E(t,p) quickly approaches its

asymptotic value as t??, and this limit gives a fairly accurate

upper bound for E, for t greater than about 10 qubits. Using

cosx§1{
x2

2
which is valid for all x, and is accurate for

x~O(1=2t) as t??,

Eƒ1{
4

22t

X

2p{1

‘~1

1

1{(1{
1

2
(
p

2t
(2‘{1))2)

~1{
8

p2

X

2p{1

‘~1

1

(2‘{1)2

ð21Þ

An exact form for this can be found in terms of the trigamma

function, being a special case of the polygamma function as shown

in Abramowitz and Stegun [6], Eq. 6.4.5:

Eƒ
2

p2
y’

1z2p

2

� �

ð22Þ

where y’(z)~
dy

dz
is the trigamma function, y(z)~

C’(z)

C(z)
is the

digamma function, and C(z)~

ð?

0

tz{1e{tdt is the standard

gamma function.

Now considering the p?? limit, which also includes the t??

limit because t~pzs, we can find an asymptotic form in the limit

of large p also from [6], Eq. 6.4.12, namely

E~
4

p2
2{p, ð23Þ

which shows that the error rate drops off exponentially with p

extra qubits. The formula Eq. (23) can be re-arranged to give

p?~qlog2
2

ffiffiffi

2
p

p2E
r ð24Þ

which can be compared with the previous approximate formula

shown in Eq. (1).

We have checked the new error formula through simulations,

by running the phase estimation algorithm on a 2-dimensional

rotation matrix, and undertaking a numerical search for the

rotation angle that maximizes the error E, which has confirmed

Eq. (20) to six decimal places.

Discussion

An exact formula is derived for the probability of error in the

quantum phase estimation procedure, as shown in Eq. (20). That

is, to calculate w accurate to a required s bits with a given

probability of success 1{E we add p extra qubits, where p is given

by Eq. (20). If we have a large number of qubits then we can use

Eq. (22) valid at the t?? limit. In the p?? limit the asymptote

is found as a simple exponential form Eq. (23).

The exact formula avoids overestimating the number of qubits

actually required in order to achieve a given reliability for phase

estimation and we have also found this formula to be useful in

confirming the operation of classical simulators of the phase

estimation procedure.

Precise Error Bound for Phase Estimation
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Introduction

The field of game theory [1,2] has a long history [3], but was

first formalized in 1944 with the work of von Neumann and

Morgenstern [4], aiming to develop rational analysis of situations

that involve strategic interdependence.

Classical game theory has found increasing expression in the

field of physics [3] and its extension to the quantum regime [5] was

proposed by Meyer [6] and Eisert et al [7], though its origins can

be traced to earlier works [8–11]. Early studies in the area of

quantum games focused on the two-player two-strategy non-

cooperative games, with the proposal for a quantum Prisoners’

Dilemma (PD) being well known [7]. A natural further develop-

ment of this work was its extension to multiplayer quantum games

that was explored by Benjamin and Hayden [12]. Du et al. [13,14]

explored the phase transitions in quantum games for the first time

that are central in the present article.

The usual approach in three-player quantum games considers

players sharing a three-qubit quantum state with each player

accessing their respective qubit in order to perform local unitary

transformation. Quantum games have been reported [15] in which

players share Greenberger-Horne-Zeilinger (GHZ) states and theW

states [5], while other works have, for instance, investigated the

effects of noise [16,17] and the benefits of players forming coalitions

[18,19].

A suggested approach [20–23] in constructing quantum games

uses an Einstein-Podolsky-Rosen (EPR) type setting [24–31]. In

this approach, quantum games are setup with an EPR type

apparatus, with the players’ strategies being local actions related to

their qubit, consisting of a linear combination (with real coef-

ficients) of (spin or polarization) measurements performed in two

selected directions.

Note that in a standard arrangement for playing a mixed-

strategy game, players are faced with the identical situation, in that

in each run, a player has to choose one out of two pure strategies.

As the players’ strategy sets remain classical, the EPR type setting

avoids a well known criticism [32] of quantum games. This cri-

ticism refers to quantization procedures in which players are given

access to extended strategy sets, relative to what they are allowed

to have in the classical game. Quantum games constructed with an

EPR type setting have been studied in situations involving two

players [22] and also three players [23]. The applications of three-

player quantum games include describing three-party situations,

involving strategic interaction in quantum communication [33].

In recent works, the formalism of Clifford’s geometric algebra

(GA) [34–38] has been applied to the analysis of two-player

quantum games with significant benefits [39,40], and so is also

adopted here in the analysis of three-player quantum games. The

use of GA is justified on the grounds that the Pauli spin algebra is a

matrix representation of Clifford’s geometric algebra in R3, and

hence we are choosing to work directly with the underlying

Clifford algebra. There are also several other documented benefits

of GA such as:

a) The unification of the dot and cross product into a single

product, has the significant advantage of possessing an

inverse. This results in increased mathematical compactness,

thereby aiding physical intuition and insight [41].

b) The use of the Pauli and Dirac matrices also unnecessarily

introduces the imaginary scalars, in contrast to GA, which

uses exclusively real elements [42]. This fact was also pointed

out by Sommerfield in 1931, who commented that ‘Dirac’s use

of matrices simply rediscovered Clifford algebra’ [43].

c) In the density matrix formalism of quantum mechanics, the

expectation for an operator Q is given by Tr rQð Þ
~SyjQjyT, from which we find the isomorphism to GA,

Tr rQð Þ<SrQT0, the subscript zero, indicating to take the

scalar part of the algebraic product rQ, where r and Q are
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now constructed from real Clifford elements. This leads to a

uniquely compact expression for the overlap probability

between two states in the N-particle case, given by Eq. (13),

which allows straightforward calculations that normally

require 8|8 complex matrices representing operations on

three qubits.

d) Pauli wave functions are isomorphic to the quaternions, and

hence represent rotations of particle states [44]. This fact

paves the way to describe general unitary transformations on

qubits, in a simplified algebraic form, as rotors. In regard to

Hestenes’ analysis of the Dirac equation using GA, Boudet

[41] notes that, ‘the use of the pure real formalism of

Hestenes brings noticeable simplifications and above all the

entire geometrical clarification of the theory of the electron. ’

e) Recent works [6,39,40] show that GA provides a better

intuitive understanding of Meyer’s quantum penny flip game

[6], using operations in 3-space with real coordinates, permitting

helpful visualizations in determining the quantum player’s

winning strategy. Also, Christian [45,46] has recently used

GA to produce thought provoking investigations into some of

the foundational questions in quantum mechanics.

Our quantum games use an EPR type setting and players have

access to general pure quantum states. We determine constraints

that ensure a faithful embedding of the mixed-strategy version of

the original classical game within the corresponding quantum

game. We find how a Pareto-optimal quantum outcome emerges

in three-player quantum PD game at high entanglement. We also

report phase transitions taking place with increasing entanglement

when players share a mixture of GHZ and W type states in

superposition.

In an earlier paper [23], two of the three authors contributed to

developing an entirely probabilistic framework for the analysis of

three-player quantum games that are also played using an EPR

type setting, whereas the present paper, though using an EPR type

setting, provides an analysis from the perspective of quantum

mechanics, with the mathematical formalism of GA. The previous

work analyzed quantum games from the non-factorizable property

of a joint probability distribution relevant to a physical system that

the players shared in order to implement the game. For the game

of three-player Prisoners’ Dilemma, our probabilistic analysis

showed that non-factorizability of a joint probability distribution

indeed can lead to a new equilibrium in the game. The three-

player quantum Prisoners’ Dilemma, in the present analysis,

however, moves to the next step and explores the phase structure

relating players’ payoffs with shared entanglement and also the

impact of players sharing GHZ and W states and their mixture.

We believe that without using the powerful formalism of GA, a

similar analysis will nearly be impossible to perform using an

entirely probabilistic approach as developed in [22].

EPR setting for playing quantum games
The EPR setting [20,22,23] two player quantum games involves

a large number of runs when, in a run, two halves of an EPR pair

originate from the same source and move in the opposite

directions. Player Alice receives one half whereas player Bob

receives the other half. To keep the non-cooperative feature of the

game, it is assumed that players Alice and Bob are located at some

distance from each other and are not unable to communicate

between themselves. The players, however, can communicate

about their actions, which they perform on their received halves,

to a referee who organizes the game and ensures that the rules of the

game are followed. The referee makes available two directions to

each player. In a run, each player has to choose one of two

available directions. The referee rotates Stern-Gerlach type

detectors [5] along the two chosen directions and performs

quantum measurement. The outcome of the quantum measure-

ment, on Alice’s side, and on Bob’s side of the Stern-Gerlach

detectors, is either z1 or {1. Runs are repeated as the players

receive a large number of halves in pairs, when each pair comes

from the same source and the measurement outcomes are

recorded for all runs. A player’s strategy, defined over a large

number of runs, is a linear combination (with normalized and real

coefficients) of the two directions along which the measurement is

performed. The referee makes public the payoff relations at the

start of the game and announces rewards to the players after the

completion of runs. The payoff relations are constructed in view of

a) the matrix of the game, b) the list of players’ choices of direc-

tions over a large number of runs, and c) the list of measurement

outcomes that the referee prepares using his/her Stern-Gerlach

apparatus.

For a three-player quantum game, this setting is extended to

consider three players Alice, Bob and Chris who are located at the

three arms of an EPR system [5]. In the following they will be

denoted by A, B and C, respectively. As it is the case with two-

player EPR setting, in a run of the experiment, each player

chooses one out of two directions.

We have used the EPR setting in view of the well known Enk

and Pike’s criticism [32] of quantum games that are played using

Eisert et al’s setting [7]. Essentially this criticism attempts to equate

a quantum game to a classical game in which the players are given

access to an extended set of classical strategies. The present paper

uses an EPR setting in which each player has two classical

strategies consisting of the two choices he/she can make between

two directions along which a quantum measurement can be

performed. That is, the player’s pure strategy, in a run, consists of

choosing one direction out of the two. As the sets of strategies

remain exactly identical in both the classical and the quantum

forms of the game, it is difficult to construct an Enk and Pike type

argument for a quantum game that is played with an EPR setting.

As Fig. 1 shows, we represent Alice’s two directions as k11,k
1
2.

Similarly, Bob’s directions are k21,k
2
2 and Chris’ are k31,k

3
2. The

players measurement directions form a triplet out of eight possible

cases k11,k
2
1,k

3
1

� �

, k11,k
2
2,k

3
1

� �

, k12,k
2
1,k

3
1

� �

, k12,k
2
2,k

3
1

� �

, k11,k
2
1,k

3
2

� �

,

k11,k
2
2,k

3
2

� �

, k12,k
2
1,k

3
2

� �

, k12,k
2
2,k

3
2

� �

and measurement is performed

along the chosen directional triplet. The measurement outcome

for each player along their chosen direction is z1 or {1.

Over a large number of runs the players sequentially receive

three-particle systems emitted from a source and a record is

maintained of the players’ choices of directions over all runs. One

of the eight possible outcomes z1,z1,z1ð Þ, z1,{1,z1ð Þ,
{1,z1,z1ð Þ, {1,{1,z1ð Þ, z1,z1,{1ð Þ, z1,{1,{1ð Þ,
{1,z1,{1ð Þ, {1,{1,{1ð Þ emerges out of the measurement

in an individual run, with the first entry for Alice’s outcome, the

second entry for Bob’s outcome and the third entry for Chris’

outcome.

In the following we express the players’ payoff relations in terms

of the outcomes of these measurements. These payoffs depend on

the triplets of the players’ strategic choices made over a large

number of runs and on the dichotomic outcomes of the mea-

surements performed along those directions.

Players’ sharing a symmetric initial state
We consider the situation in which an initial quantum state of

three qubits is shared among three players. To obtain a fair game,

we assume this state is symmetric with regard to the interchange of

the three players. The GHZ state is a natural candidate given by

Three-Player Quantum Games
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jGHZT~cos
c

2
j000Tzsin

c

2
j111T, ð1Þ

where we have an entanglement angle c[<, which has been shown

[5] to be capable of producing the maximally entangled three

qubit state. Alternatively we could start with the W entangled state

jWT~
1
ffiffiffi

3
p j100Tzj010Tzj001Tð Þ: ð2Þ

The other symmetric state would be an inverted W state

j �WWT~
1
ffiffiffi

3
p j110Tzj011Tzj101Tð Þ: ð3Þ

After the measurement along three directions selected by the

players, each player is rewarded according to a payoff matrix GP ,
for each player P[fA,B,Cg. Thus the expected payoffs for a

player is given by

PP k1,k2,k3
� �

~

X

1

i,j,k~0

GP
ijkPijk, ð4Þ

where Pijk is the probability the state jiTjjTjkT is obtained after

measurement, with i,j,k[f0,1g, along the three directions k1,k2,k3
chosen by Alice, Bob and Chris respectively. In the EPR setting,

k1 can be either of Alice’s two directions i.e. k11 or k
1
2 and similarly

for Bob and Chris.

Clifford’s geometric algebra
The formalism of GA [34–38] has been shown to provide an

equivalent description to the conventional tensor product

formalism of quantum mechanics.

To set up the GA framework for representing quantum states,

we begin by defining s1,s2,s3 as a right-handed set of

orthonormal basis vectors, with

si:sj~dij , ð5Þ

where dij is Kronecker delta. Multiplication between algebraic

elements is defined to be the geometric product, which for two

vectors u and v is given by

uv~u:vzu ^ v, ð6Þ

where u:v is the conventional symmetric dot product and u ^ v is

the anti-symmetric outer product related to the Gibb’s cross

product by u|v~{iu ^ v, where i~s1s2s3. For distinct basis

vectors we find

sisj~si:sjzsi ^ sj~si ^ sj~{sj ^ si~{sjsi: ð7Þ

This can be summarized by

sisj~dijzieijksk, ð8Þ

where eijk is the Levi-Civita symbol. We can therefore see that i

squares to minus one, that is i2~s1s2s3s1s2s3~s1s2s1s2~{1

and commutes with all other elements and so has identical

properties to the unit imaginary i. Thus we have an isomorphism

between the basis vectors s1,s2,s3 and the Pauli matrices through

the use of the geometric product.

In order to express quantum states in GA we use the one-to-one

mapping [36,38] defined as follows

jyT~aj0Tzbj1T~
a0zia3

{a2zia1

" #

<y

~a0za1is1za2is2za3is3,

ð9Þ

where ai are real scalars.

For a single particle we then have the basis vectors

j0T<1, j1T<{is2 ð10Þ

and so for three particles we can use as a basis

j0Tj0Tj0T<1 ð11aÞ

j0Tj0Tj1T<{is32 ð11bÞ

j0Tj1Tj0T<{is22 ð11cÞ

j0Tj1Tj1T<is22is
3
2, ð11dÞ

j1Tj0Tj0T<{is12 ð11eÞ

j1Tj0Tj1T<is12is
3
2 ð11fÞ

Figure 1. The EPR setup for three-player quantum game. A
three-qubit entangled quantum state is distributed to the three players,
who each choose between two possible measurement directions.
doi:10.1371/journal.pone.0021623.g001
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j1Tj1Tj0T<is12is
2
2 ð11gÞ

j1Tj1Tj1T<{is12is
2
2is

3
2, ð11hÞ

where to reduce the number of superscripts representing particle

number we write i1s12 as is12. General unitary operations are

equivalent to rotors in GA [36], represented as

R h1,h2,h3ð Þ~e{h3is3=2e{h1is2=2e{h2is3=2, ð12Þ

which is in Euler angle form and can completely explore the available

space of a single qubit. Using the definition of unitary operations

given by Eq. (12) we define A~R a1,a2,a3ð Þ, B~R b1,b2,b3ð Þ,
C~R x1,x2,x3ð Þ for general unitary transformations acting locally

on each of the three players qubit in order to generalize the starting

state, that is the GHZ or W states, as far as possible.

We define a separable state w~KLM, where K , L and M are

single particle rotors, which allow the players’ measurement

directions to be specified on the first, second and third qubit

respectively. The state to be measured is now projected onto this

separable state w. The overlap probability between two states y
and w in the N-particle case is given in Ref. [36] as

P y,wð Þ~2N{2 SyEy{wEw{T0{SyJy{wJw{T0

h i

, ð13Þ

where the angle brackets ST0 mean to retain only the scalar part of

the expression and E and J are defined for 3 particles in Ref. [36] as

E~ P
N

i~2

1

2
1{is13is

i
3

� �

~
1

4
1{is13is

2
3{is13is

3
3{is23is

3
3

� �

ð14aÞ

J~Eis13~
1

4
is13zis23zis33{is13is

2
3is

3
3

� �

: ð14bÞ

The { operator acts the same as complex conjugation: flipping

the sign of i and inverting the order of the terms.

Results

We now, firstly, calculate the observables from Eq. (11) for the

GHZ state in GA, which from Eq. (11) gives

y~ABC cos
c

2
{sin

c

2
is12is

2
2is

3
2

� �

, ð15Þ

where A, B, and C represent the referee’s local unitary actions,

written as rotors A, B, and C in GA, on the respective player’s

qubits, in order to generalize the starting state. Referring to Eq.

(13), we firstly calculate

yJy{
~

1

4
ABC cos

c

2
{sin

c

2
is12is

2
2is

3
2

� �

is13zis23zis33{is13is
2
3is

3
3

� �

| cos
c

2
zsin

c

2
is12is

2
2is

3
2

� �

C{B{A{

~
1

4
ABC cos c{sin cis12is

2
2is

3
2

� �

is13zis23zis33{is13is
2
3is

3
3

� �

C{B{A{

~
1

4
cos c R3zS3zT3{R3S3T3ð Þ

zsin c R1S2T2zR2S1T2zR2S2T1{R1S1T1ð Þ

ð16Þ

where Rk~iAskA
{,Sk~iBskB

{,Tk~iCskC
{.

We also calculate

yEy{
~

1

4
ABC cos

c

2
{sin

c

2
is12is

2
2is

3
2

� �

1{is13is
2
3{is13is

3
3{is23is

3
3

� �

| cos
c

2
zsin

c

2
is12is

2
2is

3
2

� �

C{B{A{

~
1

4
ABC 1{is13is

2
3{is13is

3
3{is23is

3
3

� �

C{B{A{

~
1

4
1{R3S3{R3T3{S3T3ð Þ:

ð17Þ

For measurement defined with K~e
{iks1

2
=2
, L~e

{iks2
2
=2

and

M~e
{iks3

2
=2

allowing a rotation of the detectors by an angle k,

where we have written k1s12 as ks12, we find

wJw{~

1

4
is13e

iks1
2zis23e

iks2
2zis33e

iks3
2{is13is

2
3is

3
3e

iks1
2e

iks2
2e

iks3
2

� � ð18aÞ

wEw{~

1

4
1{is13is

2
3e

iks1
2e

iks2
2{is13is

3
3e

iks1
2e

iks3
2{is23is

3
3e

iks2
2e

iks3
2

� �

:
ð18bÞ

From Eq. (13) we find

2SyEy{wEw{T~
1

8
1{R3S3{R3T3{S3T3ð Þ

|(1{is13is
2
3e

iks1
2e

iks2
2{is13is

3
3e

iks1
2e

iks3
2{is23is

3
3e

iks2
2e

iks3
2 )

~
1

8
1z({)lzmX (k1)Y (k2)z({)lznX (k1)Z(k3)
�

z({)mznY (k2)Z(k3)
�

~
1

8
1z({)lzmXiYjz
�

({)lznXiZkz({)mznYjZk

�

,

ð19Þ

where l,m,n[f0,1g refers to measuring a j0T or j1T state,

respectively, and using the standard results listed in the Appendix

S1, we have

Xi~X k1i
� �

~cos a1 cosk
1
i zcos a3 sin a1 sin k

1
i , ð20aÞ

Yj~Y k2j

� �

~cosb1 cos k
2
j zcos b3 sinb1 sin k

2
j , ð20bÞ

Zk~Z k3k
� �

~cos x1 cosk
3
kzcos x3 sin x1 sink

3
k, ð20cÞ

with i,j,k[f1,2g, representing the two measurement directions
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available to each player. Also from Eq. (13) we have

{2SyJy{wJw{T~{
1

8
S(cos c(R3zS3zT3{R3S3T3)

z sin c(R1S2T2zR2S1T2zR2S2T1{R1S1T1))

|(is13e
iks1

2zis23e
iks2

2zis33e
iks3

2{is13is
2
3is

3
3e

iks1
2e

iks2
2e

iks3
2 )T0

~
1

8
(cos c(({)lXiz({)mYjz({)nZkz({)lmnXiYjZk)

z({)lmn sin c(FiVjWkzUiGjWkzUiVjHk{FiGjHk))

~
1

8
½cos cf({)lXiz({)mYjz({)nZkz({)lmnXiYjZkg

z({)lmn sin cHijk�,

ð21Þ

where

Fi~F k1
� �

~{sink1i cos a1 cos a2 cos a3{sin a2 sin a3ð Þ

zsin a1 cos a2 cos k
1
i ,

ð22aÞ

Gj~G k2
� �

~{sink2j cos b1 cos b2 cos b3{sinb2 sinb3ð Þ

zsin b1 cosb2 cos k
2
j ,

ð22bÞ

Hk~H k3
� �

~{sink3k cos x1 cos x2 cos x3{sin x2 sin x3ð Þ

zsin x1 cos x2 cos k
3
k

ð22cÞ

and

Ui~U k1
� �

~sin k1i cos a2 sin a3zsin a2 cos a3 cos a1ð Þ

{sin a1 sin a2 cos k
1
i ,

ð23aÞ

Vj~V k2
� �

~sink2j cos b2 sin b3zsin b2 cos b3 cos b1ð Þ

{sinb1 sin b2 cos k
2
j ,

ð23bÞ

Wk~W k3
� �

~sink3k cos x2 sin x3zsin x2 cos x3 cos x1ð Þ

{sin x1 sin x2 cosk
3
k

ð23cÞ

and

Hijk~FiVjWkzUiGjWkzUiVjHk{FiGjHk: ð24Þ

So we find from Eq. (13) the probability to observe a particular

state after measurement as

Plmn~
1

8
½1zcos cf {ð ÞlXiz {ð ÞmYjz {ð ÞnZkg

z {ð ÞlmXiYjz {ð ÞlnXiZkz {ð Þmn
YjZk

z {ð Þlmnfcos cXiYjZkzsin cHijkg�:

ð25Þ

For instance, at c~0 we obtain

Plmn~
1

8
1z {ð ÞlXi

� �

1z {ð ÞmYj

� �

1z {ð ÞnZkð Þ, ð26Þ

which shows a product state, as expected. Alternatively with

general entanglement, but no operation on the third qubit, that is

xi~0, we have

Plm~
1

8
½1zcos cf {ð ÞlXiz {ð ÞmYjz1z {ð Þlmn

XiYjg

z {ð ÞlmXiYjz {ð ÞlXiz {ð ÞmYj �:

~
1

8
½ 1zcos cð Þ 1z {ð ÞlXi

� �

1z {ð ÞmYj

� �

�,

ð27Þ

which shows that for the GHZ type entanglement each pair of

qubits is mutually unentangled.

Obtaining the payoff relations
We extend the approach of Ichikawa and Tsutsui [47] to three

qubits and represent the permutation of signs introduced by the

measurement process. For Alice we define

a000~
1

8

X

ijk

GA
ijk, a100~

1

8

X

ijk

{ð ÞiGA
ijk, ð28aÞ

a010~
1

8

X

ijk

{ð ÞjGA
ijk, a001~

1

8

X

ijk

{ð ÞkGA
ijk, ð28bÞ

a110~
1

8

X

ijk

{ð Þizj
GA

ijk, a011~
1

8

X

ijk

{ð Þjzk
GA

ijk, ð28cÞ

a101~
1

8

X

ijk

{ð Þizk
GA

ijk, a111~
1

8

X

ijk

{ð Þizjzk
GA

ijk: ð28dÞ

Using Eq. (4), we then can find the payoff for each player

PA k1i ,k
2
j ,k

3
k

� �

~a000zcos cfa100Xiza010Yjza001Zkg

za110XiYjza101XiZkza011YjZk

za111fcos cXiYjZkzsin cHijkg,

ð29aÞ

PB k1i ,k
2
j ,k

3
k

� �

~b000zcos cfb100Xizb010Yjzb001Zkg

zb110XiYjzb101XiZkzb011YjZk

zb111fcos cXiYjZkzsin cHijkg,

ð29bÞ

PC k1i ,k
2
j ,k

3
k

� �

~c000zcos cfc100Xizc010Yjzc001Zkg

zc110XiYjzc101XiZkzc011YjZk

zc111fcos cXiYjZkzsin cHijkg,

ð29cÞ

where, as Eqs. (20) show, the three measurement directions
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k1i ,k
2
j ,k

3
k are held in Xi,Yi,Zi. Alternatively, in order to produce

other quantum game frameworks [7,48], we can interpret the

rotors A,B,C, held in Xi,Yi,Zi, as the unitary operations which

can be applied by each player to their qubit, where in this case, the

measurement directions will be set by the referee.

Mixed-strategy payoff relations. For a mixed strategy

game, Alice, Bob and Chris choose their first measurement

directions k11, k
2
1, k

3
1 with probabilities x, y and z respectively,

where x,y,z[ 0,1½ � and hence choose the directions k12, k
2
2, k

3
2 with

probabilities 1{xð Þ, 1{yð Þ, 1{zð Þ, respectively. Alice’s payoff is
now given as

PA x,y,zð Þ

~xyz
X

1

i,j,k~0

Pijk k11,k
2
1,k

3
1

� �

Gijkzx 1{yð Þz
X

1

i,j,k~0

Pijk k11,k
2
2,k

3
1

� �

Gijk

z 1{xð Þyz
X

1

i,j,k~0

Pijk k12,k
2
1,k

3
1

� �

Gijkz 1{xð Þ 1{yð Þz

X

1

i,j,k~0

Pijk k12,k
2
2,k

3
1

� �

Gijk

zxy 1{zð Þ
X

1

i,j,k~0

Pijk k11,k
2
1,k

3
2

� �

Gijkzx 1{yð Þ 1{zð Þ

X

1

i,j,k~0

Pijk k11,k
2
2,k

3
2

� �

Gijk

z 1{xð Þy 1{zð Þ
X

1

i,j,k~0

Pijk k12,k
2
1,k

3
2

� �

Gijk

z 1{xð Þ 1{yð Þ 1{zð Þ
X

1

i,j,k~0

Pijk k12,k
2
2,k

3
2

� �

Gijk:

ð30Þ

Payoff relations for a symmetric game. For a symmetric

game we have PA x,y,zð Þ~PA x,z,yð Þ~PB y,x,zð Þ~PB z,x,yð Þ
~PC y,z,xð Þ~PC z,y,xð Þ. This requires a111~b111~c111, a000~

b000~c000, a110~b110~a101~c101~b011~c011, b100~c100~a010
~c010~a001~b001, a100~b010~c001 and a011~b101~c110. The

payoff relations (0) are then reduced to

PA k1i ,k
2
j ,k

3
k

� �

~a000zcos cfa100Xiza001Yjza001Zkg

za110XifYjzZkgza011YjZkza111fcos cXiYjZkzsin cHijkg,
ð31aÞ

PB k1i ,k
2
j ,k

3
k

� �

~a000zcos cfa001Xiza100Yjza001Zkg

za110YjfXizZkgza011XiZkza111fcos cXiYjZkzsin cHijkg,
ð31bÞ

PC k1i ,k
2
j ,k

3
k

� �

~a000zcos cfa001Xiza001Yjza100Zkg

za110ZkfXizYjgza011XiYjza111fcos cXiYjZkzsin cHijkg:
ð31cÞ

Embedding the classical game
If we consider a strategy triplet x,y,zð Þ~ 0,1,0ð Þ for example, at

zero entanglement, then the payoff to Alice is obtained from Eq.

(30) to be

PA x,y,zð Þ~
1

8
½G000 1zX2ð Þ 1zY1ð Þ 1zZ2ð ÞzG100 1{X2ð Þ 1zY1ð Þ 1zZ2ð Þ

zG010 1zX2ð Þ 1{Y1ð Þ 1zZ2ð ÞzG110 1{X2ð Þ 1{Y1ð Þ 1zZ2ð Þ
zG001 1zX2ð Þ 1zY1ð Þ 1{Z2ð ÞzG101 1{X2ð Þ 1zY1ð Þ 1{Z2ð Þ
zG011 1zX2ð Þ 1{Y1ð Þ 1{Z2ð ÞzG111 1{X2ð Þ 1{Y1ð Þ 1{Z2ð Þ�:

ð32Þ

Hence, in order to achieve the classical payoff of G101 for this

triplet, we can see that we require X2~{1, Y1~z1 and

Z2~{1.

This shows that we can select any required classical payoff by

the appropriate selection of Xi, Yi, Zi~+1. Referring to Eq. (20),

we therefore have the conditions for obtaining classical mixed-

strategy payoff relations as

Xi~cos a1 cosk
1
i zcos a3 sin a1 sin k

1
i ~+1, ð33aÞ

Yj~cos b1 cosk
2
j zcos b3 sinb1 sink

2
j ~+1, ð33bÞ

Zk~cos x1 cos k
3
kzcos x3 sin x1 sink

3
k~+1: ð33cÞ

For the equation for Alice, we have two classes of solution: If

a3=0, then for the equations satisfying X2~Y2~Z2~{1 we

have for Alice in the first equation a1~0, k12~p or a1~p, k12~0

and for the equations satisfy X1~Y1~Z1~z1 we have

a1~k11~0 or a1~k11~p, which can be combined to give either

a1~0, k11~0 and k12~p or a1~p, k11~p and k12~0. For the

second class with a3~0 we have the solution a1{k12~p and for

X1~Y1~Z1~z1 we have a1{k12~0.

So in summary for both cases we have that the two measurement

directions are p out of phase with each other, and for the first case

(a3=0) we can freely vary a2 and a3, and for the second case

(a3~0), we can freely vary a1 and a2 to change the initial quantum
quantum state without affecting the game Nash equilibrium (NE) or

payoffs [1,2]. The same arguments hold for the equations forY and

Z. Using these results in Eq. (24) we find that Hijk~0.

We have the associated payoff for Alice

PA x,y,zð Þ~ 1

2
½G000zG111{cos c G000{G111ð Þ

{4 yzzð Þ a110za011ð Þzcos cf4x a111za100ð Þ
z4 a111za001ð Þ yzzð Þgz8xa110 yzz{1ð Þz8yza011

{8a111 cos cfxyzxzzyz{2xyzg�:

ð34Þ

Setting c~0 in Eq. (34) we find Alice’s payoff as

PA x,y,zð Þ~G111zx G011{G111ð Þzy G110{G111ð Þ
zz G110{G111ð Þz4xy a110{a111ð Þz4xz a110{a111ð Þ
z4yz a011{a111ð Þz8xyza111,

ð35Þ

which has the same payoff structure as the mixed-strategy version

of the classical game.
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Now, we can also write the equations governing the NE as

PA x�,y�,z�ð Þ{PA x,y�,z�ð Þ
~ x�{xð Þ½a110 2y�{1ð Þza101 2z�{1ð Þ
zcos cfa100za111 2y�{1ð Þ 2z�{1ð Þg�§0

PB x�,y�,z�ð Þ{PB x�,y,z�ð Þ
~ y�{yð Þ½b110 2x�{1ð Þzb011 2z�{1ð Þ
zcos cfb010zb111 2x�{1ð Þ 2z�{1ð Þg�§0

PC x�,y�,z�ð Þ{PC x�,y�,zð Þ
~ z�{zð Þ½c101 2x�{1ð Þzc011 2y�{1ð Þ
zcos cfc001zc111 2x�{1ð Þ 2y�{1ð Þg�§0,

ð36Þ

where the strategy triple x�,y�,z�ð Þ is a NE. Using the conditions

defined earlier for a symmetric game, we can reduce our equations

governing the NE for the three players to

x�{xð Þ½2a110 y�zz�{1ð Þ
zcos cfa100za111 2y�{1ð Þ 2z�{1ð Þg�§0,

ð37aÞ

y�{yð Þ½2a110 x�zz�{1ð Þ
zcos cfa100za111 2x�{1ð Þ 2z�{1ð Þg�§0,

ð37bÞ

z�{zð Þ½2a110 x�zy�{1ð Þ
zcos cfa100za111 2x�{1ð Þ 2y�{1ð Þg�§0

ð37cÞ

We can see that the new quantum behavior is governed solely by

the payoff matrix through a100, a110 and a111 and by the entang-

lement angle c, and not by other properties of the quantum state.

For completeness, we have Bob’s payoff, in the symmetric case, as

PB x,y,zð Þ~ 1

2
½G000zG111{cos c G000{G111ð Þ

{4 xzzð Þ a110za011ð Þzcos c4y a111za100ð Þ
z4 xzzð Þ a111za001ð Þ�z8ya110 xzz{1ð Þz8xza011

{8a111 cos cfxyzxzzyz{2xyzg�:

ð38Þ

The mixed NE for all players is

x�~y�~z�~
{a110zcos ca111+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2110{cos ca100a111

q

2 cos ca111
: ð39Þ

Maximally entangled case. For c~p=2 at maximum

entanglement for both NE of x�,y�,z�ð Þ~ 0,0,0ð Þ and x�,y�,z�ð Þ
~ 1,1,1ð Þ we have the payoff

PA x�,y�,z�ð Þ~PB x�,y�,z�ð Þ~PC x�,y�,z�ð Þ~ 1

2
G000zG111ð Þð40Þ

which gives the average of the two corners of the payoff matrix,

which is as expected.

Prisoners’ Dilemma. An example of a three-player PD

game is shown in Table 1. For this game, from Eq. (28), we have

a000~32=8,a001~14=8, a010~14=8,a011~0,a100~{8=8,a101~
{2=8,a110~{2=8,a111~0, with the NE from Eqs. (37) given by

x�{xð Þ½{ y�zz�{1ð Þ{2 cos c�§0, ð41aÞ

y�{yð Þ½{ x�zz�{1ð Þ{2 cos c�§0, ð41bÞ

z�{zð Þ½{ x�zy�{1ð Þ{2 cos c�§0: ð41cÞ

We have the classical NE of x�,y�,z�ð Þ~ 0,0,0ð Þ for cos c~1,

but we have a phase transition, as the entanglement increases, at

cos c~
1

2
where we find the new NE x�,y�,z�ð Þ~ 1,0,0ð Þ,

x�,y�,z�ð Þ~ 0,1,0ð Þ and x�,y�,z�ð Þ~ 0,0,1ð Þ. The payoff for Alice

from Eq. (34) is given by

PA x,y,zð Þ~ 1

2
½7z2xz yzzð Þ 1{2xð Þ

{cos cf5z4x{7 yzzð Þg�:
ð42Þ

For the classical region we have PA 0,0,0ð Þ~PB 0,0,0ð Þ~
PC 0,0,0ð Þ~ 7

2
{

5

2
cos c, which is graphed in Fig. 2 along with

other parts of the phase diagram. It should be noted that cos c can
go negative, which will produce a mirror image about the vertical

axis of the current graph. That is for cos c decreasing from {
1

2
to

{1, we have a NE of x�,y�,z�ð Þ~ 1,1,1ð Þ, falling from 2:25 down

to 1. We will also have the NE of x�,y�,z�ð Þ~ 1,1,0ð Þ and

x�,y�,z�ð Þ~ 0,1,1ð Þ for { 1

2
cos cv0.

This graph also illustrates the value of coalitions, because if Bob

and Chris both agree to implement the same strategy, then the

only NE available for 0vcos cv
1

2
for example, is x�,y�,z�ð Þ~

1,0,0ð Þ. However, for a NE in the region of cos c just less than one

half, both Bob and Chris receive a significantly greater payoff, of

around 4:5 units, as opposed to 2:5 for Alice, so the coalition will

receive nearly twice the payoff.

Table 1. An example of three-player Prisoners’ Dilemma.

State j000T j001T j010T j100T j011T j101T j110T j111T
Payoff (6,6,6) (3,3,9) (3,9,3) (9,3,3) (0,5,5) (5,0,5) (5,5,0) (1,1,1)

The payoff for each player (one,two,three), for each measurement outcome.
doi:10.1371/journal.pone.0021623.t001
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Players sharing the W state
The second type of three particle entangled state [49] is the W state

y~{ABC
1
ffiffiffi

3
p is12zis22zis32

� �

, ð43Þ

where once again we have used the three rotors A, B and C in order

to generalize the state as far as possible. So proceeding as for the GHZ

state, the probability that a particular state will be observed after

measurement can be found to be

Plmn~
1

24
½3z({)lXiz({)mYjz({)nZk

z({)lzmzn(2(XiGjHkzFiYjHkzFiGjZkzXiVjWk

zUiYjWkzUiVjZk){3XiYjZk)

z({)lzm(2FiGjz2UiVj{XiYj)

z({)lzn(2FiHkz2UiWk{XiZk)

z({)mzn(2GjHkz2VjWk{YjZk)�:

ð44Þ

Clearly the same probability distribution would be found for the

second type of W state, shown in Eq. (3), because it is simply an

inverse of this state.

Obtaining the pure-strategy payoff relations. With

players sharing a W state, referring to Eq. (28), we introduce the

following notation for Alice

a
0
xyz~

1

3
axyz: ð45Þ

Using the payoff function given by Eq. (4), we then find for Alice

PA(k
1
i ,k

2
j ,k

3
k)

~3a
0
000za

0
100Xiza

0
010Yjza

0
001Zkza

0
011(2GjHkz2VjWk{YjZk)

za
0
110(2FiGjz2UiVj{XiYj)za

0
101(2FiHkz2UiWk{XiZk)

za
0
111 2fXiGjHkzFiYjHkzFiGjZkzXiVjWkzUiYjWkzUiVjZkg

�

{3XiYjZk

�

:

ð46Þ

Similarly for other players, simply by switching to their payoff

matrix in place of Alices’.

Obviously for the W state there is no way to turn off the

entanglement and so it is not possible to embed a classical game,

hence we now turn to a more general state which is in a

superposition of the GHZ and W type states.

Games with general three-qubit state
It is noted in Ref. [49] that there are two inequivalent classes of

tripartite entanglement, represented by the GHZ and W states.

More specifically, Ref. [50] finds a general three qubit pure state

jyT3~l0j000Tzl1e
iwj100Tzl2j101Tzl3j110Tzl4j111T ð47Þ

where l1,w[<, with l1§0, 0ƒwƒp and
P4

j~0 l
2
j ~1.

We have a 1 : 1 mapping from complex spinors to GA given in

Eq. (9), so we will have a general three qubit state represented in

GA as

y~ABC½l0{l1 cos xis
1
2zl1 sinxis

1
1

zl2is
1
2is

3
2zl3is

1
2is

2
2{l4is

1
2is

2
2is

3
2�,

ð48Þ

which with the rotors gives us 15 degrees of freedom.

We desire though, a symmetrical three-qubit state in order to

guarantee a fair game and so we construct

jyT3~r0j000Tzr1(j001Tzj010Tzj100T)
zr2(j011Tzj101Tzj110T)zr3j111T

ð49Þ

as the most general symmetrical three qubit quantum state, with ri
subject to the conventional normalization conditions. We might

think to add complex phases to the four terms, however we find

that this addition has no effect on the payoff or the NE and so can

be neglected. This symmetrical state can be represented in GA, by

referring to Eq. (11), as

y~ABC½cos c

2
cos

w

2
zsin

w

2
sin

d

2
(is12zis22zis32)=

ffiffiffi

3
p

zsin
w

2
cos

d

2
(is12is

2
2zis22is

3
2zis12is

3
2)

=
ffiffiffi

3
p

zsin
c

2
cos

w

2
is12is

2
2is

3
2�:

ð50Þ

If we set c~0 and w~0 we find the product state j000T, which we

will constrain to return the classical game as for the GHZ state.

For c~p=2 and w~0 we produce the maximally entangled GHZ

state and for w~p we have the W type states in a superposition

controlled by d. Using Eq. (50) and following the same calculation

path used for the GHZ state, we can arrive at the NE, using the

same condition for classical embedding as for the GHZ state,

finding for Alice

PA(x
�,y�,z�){PA(x,y

�,z�)

~(x�{x)½3(a100zU2) cos c(1zcos w)

z2U1(1z2 cos w){(a100{3U2)(1{cos w)cos d�,
ð51Þ

where

Figure 2. Phase structure for Alice in quantum PD game using
EPR setting. For the PD example given in Table 1, the classical

outcome of (0,0,0), is still returned for low entanglement, cos cw
1

2
, but

with new NE arising at higher entanglement. As the game is symmetric,

we have PA(0,1,0)~PA(0,0,1) and the NE (0,0,1) is not shown.
doi:10.1371/journal.pone.0021623.g002
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U1~a110 2y�{1ð Þza101 2z�{1ð Þ~2a110 y�zz�{1ð Þ ð52aÞ

U2~a111 1{2y�ð Þ 1{2z�ð Þ: ð52bÞ

We can see the effect of the W type states in the cos d term and so

it illustrates how both types of W states contribute. The reason

they can both appear is because by demanding the classical

embedding we have severely restricted the available unitary

transformations available to transform the starting state.

The payoff relations. The payoff function for Alice given by

PA~a000{
1

2
V1zV3ð Þ cos c 1zcos wð Þz 1

3
V2 1z2 cos wð Þ

z
1

6
V1{3V3ð Þ 1{cos wð Þ cos d,

ð53Þ

where

V1~a100 1{2xð Þza010 1{2yð Þza001 1{2zð Þ ð54aÞ

V2~a110(1{2x)(1{2y)

za101(1{2x)(1{2z)za011(1{2y)(1{2z)
ð54bÞ

V3~a111 1{2xð Þ 1{2yð Þ 1{2zð Þ: ð54cÞ

The payoff for Bob and Chris found by simply replacing aijk with

bijk and cijk from their respective payoff matrices. When

comparing with the payoff formula above with the classical

result at x,y,zð Þ~ 0,0,0ð Þ, it is helpful to note that a000za001
za010za011za100za101za110za111~G000 and generally a000

z {1ð Þna001z {1ð Þma010z {1ð Þmzn
a011z {1ð Þla100z

{1ð Þlzn
a101z {1ð Þlzm

a110z {1ð Þlzmzn
a111~Glmn:

Uniform superposition state. If we select a uniform

superposition state, with r0~r1~r2~r3~
1

2
, that is,

substituting c~
p

2
, w~

2p

3
and d~

p

2
, giving a product state

H63j000T, with H being the Hadamard operator, then we find

that PA x�,y�,z�ð Þ{PA x,y�,z�ð Þ~0 for Alice, and similarly for

the other players. That is the payoff will be independent of the

player choices and Eq. (53) gives PA~PB~PC~a000. Where

a000 represents the average of all the entries in the payoff matrix,

as expected for a uniform superposition state.

Prisoners’ Dilemma. For the PD game from the previous

section with the GHZ state, we found a100~{8=8,a110~
{2=8,a111~0, so U2~0, with the NE from Eq. (79) for the

three players given by

(x�{x)½(1{y�{z�)(1z2 cos w){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55aÞ

(y�{y)½(1{x�{z�)(1z2 cosw){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55bÞ

(z�{z)½(1{x�{y�)(1z2 cosw){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55cÞ

with the payoff for Alice given by

PA~4{
1

6
(1{2x)(1{y{z)(1z2 cos w){

1

4
(5z4x{7y{7z)½cos c(1zcosw){

1

3
(1{cos w) cos d�:

ð56Þ

We can see with w~0 we recover the NE for the GHZ state, in

Eq. (37).

Shifting of the NE compared to the GHZ state. We have

the classical NE of x�,y�,z�ð Þ~ 0,0,0ð Þ for cos c~1 and cos w~1,

but we can see, that once again, we have a phase transition, as the

entanglement increases, to a new NE of x�,y�,z�ð Þ~ 1,0,0ð Þ,
x�,y�,z�ð Þ~ 0,1,0ð Þ and x�,y�,z�ð Þ~ 0,0,1ð Þ.
The phase transition will be at cos c~

1

3
2{cos dð Þz

2 cos d{1

3 1zcos wð Þ . We notice that as we increase the weighting towards

the W state, by increasing w, that it becomes easier to make the

phase transition in comparison to the pure GHZ state, that is, we

improve access to the phase transition as we introduce the weight

of the j011Tzj101Tzj110T state. In fact, even at cos c~1, we

can achieve the NE of x�,y�,z�ð Þ~ 1,1,1ð Þ, with w~p, giving a

payoff of 3
1

3
units.

Maximizing the payoff. Looking at the payoff function for

Alice in Eq. (56), we can seek to maximize this function. The

maximum achievable payoff is found to be 4:5, which is equal to

the maximum payoff found for the GHZ state, see Fig. 2. Thus

incorporating W type states into a superposition with the GHZ

state, cannot improve the maximum payoff.

Observing Fig. 3, we can see that as we mix in the W state, that

the phase transitions move to the right, with an extra offset

available by changing d, and the maximum payoff obtainable, will

drop below the maximum achievable of 4:5 with the pure GHZ

state. Fig. 3, shows the shifted NE from 0:5 to 2=3 and payoffs for

the case w~
p

2
and d~0.

Discussion

A quantum version of a three-player two-strategy game is

explored, where the player strategy sets remain classical but their

payoffs are obtained from the outcome of quantum measurement

performed, as in a typical EPR experiment. If players share a

product state, then the quantum games reduces itself to the

classical game, thus ensuring a faithful embedding of a mixed-

strategy version of a classical three-player two-strategy game

within the more general quantum version of the game.

For a general three-player two-strategy game, we find the

governing equation for a strategy triplet forming a NE is given by

Eq. (51) with the associated payoff relations obtained in Eq. (53).

At zero entanglement the quantum game returns the same

triplet(s) of NE as the classical mixed-strategy game and the payoff

relations in the quantum game reduce to the trilinear form given

in Eq. (35), equivalent to the classical game involving mixed-

strategies. We find that even though the requirement to properly

embed a classical game puts significant restrictions on the initial

quantum states, we still have a degree of freedom, available

with the entanglement angle c, with which we can generate a

new NE.

As a specific example the PD was found to have a NE of

x�,y�,z�ð Þ~ 1,1,1ð Þ at high entanglement. For the GHZ state, the

phase diagram is shown in Fig. 2, which is modulated with the

inclusion of the W type states, by reducing the payoffs and sliding

the NE closer to the classical region.
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As our setup for a three-player quantum game involves players

performing classical strategies, our conclusions are restricted by

not only players sharing GHZ or W states but also by the EPR

setting that we use. The most general form of the GHZ state

permits a description in terms of a single entanglement parameter

c. However, as the general W state involves three kets, the

entanglement in such a state cannot be described by a single

parameter. It appears that as for symmetric W states with equal

superposition it is not possible to remove entanglement, therefore,

embedding a classical game within the quantum game (while

players share such states) is not possible in the EPR-type setup in

which players can perform only classical strategies. Our results in

this regard are general in that although they rely on the EPR

setting, but not on a particular game as these use the parameters

introduced in Eqs. (28a–28d) that can be evaluated for any game.

Also, this is discussed in the Section 5, where games with general

three-qubit symmetric states are considered, that include combi-

nation of GHZ and W states. However, the situation with sharing

non-equally weighted superposition states can be entirely different,

not considered in the present paper, but represents a useful

extension for future work.

Our analysis shows that, with a quantization based on the EPR

setting, a faithful embedding of a classical game can be achieved that

also avoids an Enk-Pike type argument [32] because players’ strategy

sets are not extended relative to the classical game. However, with

players sharing entangled states, while their strategy sets remain

classical, our quantum games lead to new game-theoretic outcomes.

We also find that an analysis of three-player quantum games using

Clifford’s geometric algebra (GA) comes with some clear benefits, for

instance, a better perception of the quantum mechanical situation

involved and particularly an improved geometrical visualization of

quantummechanical operations. The same results using the familiar

algebra with Pauli matrices may possibly be tractable but would

certainly obscure intuition. Also, the simple expression given in (13)

for the overlap probability between two quantum states in the

N-particle case is another benefit of the GA approach.

The results reported in the paper can be useful in a game-

theoretic analysis of the EPR paradox. Bell’s consideration of the

EPR paradox usually implies the inconsistency between locality

and completeness of quantum mechanics, or in more broader

terms, simply the surprising nonlocal effects invoked by entangle-

ment. However, one notices that these conclusions are merely

sufficient but not necessary for the violation of Bell’s inequality and

that other interpretations are also reported [45,51–54], especially,

the interpretation based on the non-existence of a single

probability space for incompatible experimental contexts [55].

This non-existence also presents a new route in constructing

quantum games and the first step in this direction was taken in Ref

[56]. Because such quantum games originate directly from the

violation of Bell’s inequality, they allow a discussion of the EPR

paradox in the context of game theory. This is also supported by

the fact that for quantum games with players sharing entangle-

ment, a game-theoretic analysis that involves Bell’s settings [26–

28] has been reported in Refs [57,58].

A variety of other classical games could now be adapted and

applied to this three-player framework, with new NE being

expected. The present study of three-player quantum games can

also be naturally extended to analyze the N-player quantum

games. We believe that the mathematical formalism of GA permits

this in a way not possible using the usual complex matrices. Also,

this extension could be fruitfully exploited in developing a game-

theoretic perspective on quantum search algorithms and quantum

walks. We find that our analysis can be helpful in providing an

alternative viewpoint (with emphasis on underlying geometry) on

multi-party entanglement shared by a group of individuals

(players), while they have conflicting interests and can perform

only classical actions on the quantum state. That is, a viewpoint

that is motivated by the geometrical perspective that Clifford’s

geometric algebra provides. Such situations take place in the area

of quantum communication and particularly in quantum cryp-

tography [59–61].

Supporting Information

Appendix S1

(PDF)

Figure 3. Phase transition in three-player quantum Prisoners’ Dilemma with a general three qubit state. The solid lines indicate the
phase transitions from Table 1, and shown in Fig. 1, with the dashed lines indicating the shifted transitions when the W-state is mixed in. We observe

that new NE now arise at lower entanglement, at cos c~
2

3
, as indicated by the arrow pointer.

doi:10.1371/journal.pone.0021623.g003
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