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Abstract

Wireless sensor networks, when compared with other traditional wireless communica-

tion systems, possess two unique characteristics: (i) the limited battery power supply

of sensor nodes, and (ii) the redundant data which are correlated among different n-

odes. These two are associated with energy consumption and data traffic control. The

research in this thesis aims at designing an energy efficient routing scheme with data

aggregation in wireless sensor networks.

In this thesis, we developed an energy-efficient routing scheme consisting of the setup

phase, the routing tree optimisation phase and the data gathering phase. The setup

phase is to build initial routing trees by the ant colony optimisation algorithm which is

executed between the base station and all sensor nodes. A key to our routing scheme

is the routing tree optimisation phase. The routing tree optimisation is performed by

the base station using the particle swarm optimisation algorithm. We propose a modi-

fied particle swarm optimisation algorithm that is capable of jointly exploring the data

traffic and communication structure to provide the optimal strategy for data gathering.

Once the routing tree optimisation has been accomplished, it comes to the data gather-

ing phase. Data flows to the aggregator node, the aggregator node then transmits the

gathering data to the base station via multi-hop in this phase of operation.

The performance of our routing scheme is evaluated by comparing with three existing

routing schemes using simulations. Our scheme performs as well as the shortest path

tree algorithm and saves more than 45% energy over the other two algorithms in the

non-aggregation scenario. If perfect aggregation occurs, our scheme obtains about 5%

energy reduction at least. When varying from non to perfect aggregation, the simula-

tion results show that our scheme can adapt to the change of data correlation condition

and achieve at least 25% energy saving on average. Since our scheme can save energy

and enhance transmission efficiency, it is well suited for applications where energy and

data traffic are the primary considerations.
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Chapter 1

Introduction and
Motivation

T
HIS chapter gives a brief introduction to routing in wireless sen-

sor networks. The research problems and the contributions of this

thesis are presented. Finally, the thesis structure is discussed and

the contents of each chapter are summarised.
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1.1 Research Area

1.1 Research Area

Wireless sensor networks are an integration of micro electro mechanical systems (MEM-

S), low-power electronics and low-power radio frequency (RF) design [3] [4] [5] [6]. A

wireless sensor network generally consists of three main components: (i) Numerous

sensor nodes. Sensor nodes are capable of object sensing, data processing, storing, and

routing activities. (ii) A base station (BS). The base station may be a fixed or mobile n-

ode which can link the sensor network to an existing communications infrastructure or

to the internet with the users to disseminate the data sensed for further processing. (ii-

i) Wireless transmission media. In a sensor network, communicating nodes are linked

by a wireless medium. For different application requirements like marine applications,

we must choose the corresponding transmission media.

C
B

A D

F

E

Base station

Observed region Sensor nodes

Internet
or other

communication
infrastructures

User

Target

Figure 1.1. System architecture of wireless sensor networks.

Fig. 1.1 shows the system architecture of a typical WSN. First, sensor nodes which

are usually scattered in an observed region sense and collect high-quality informa-

tion about the environment. Data aggregation or combination of the individual n-

odes, which is generally defined as the use of techniques that gather several sources of

raw data from multiple sources to combine new raw data, will keep surveillance more

power-efficient and potentially more accurate. Then, in order to obtain and analyse
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Chapter 1 Introduction and Motivation

the data extracted from remote objects, each sensor node must promptly collect and

forward the event reports either to other sensors or back to an external BS.

The open system interconnection reference model (OSI/RM) [7] [8] established by the

international standards organisation (ISO) specifies the relationship between messages

transmitted in a communication network and applications programs run by the users.

Hence, we can use a similar model to classify WSNs into different functions which

imply communication layers. Fig. 1.2 shows the five layers of OSI/RM for WSNs.

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Figure 1.2. The model of WSNs layers.

OSI/RM consists of the application layer, transport layer, network layer, data link lay-

er, and physical layer. The applications layer represents programs run by users. The

transport layer maintains the flow of data and provides error detection and correction.

Routing is performed in the network layer. The data link layer implements media ac-

cess control (MAC) protocol to resist fading, filter noise and reduce message collision.

The physical layer provides the actual hardware communication link interconnections.

The research work in this thesis focuses on routing schemes in WSNs. In network

concepts, routing is the act of directing and delivering network traffic across a net-

work from sources to a destination, whose kernel is path determination. A routing

scheme specifies how routers communicate with each other and how transmission oc-

curs across a network. The routing scheme is responsible for selecting an end-to-end

routing path fulfilling the desired quality of service (QoS) characteristics.

Routing in sensor networks is very challenging due to several characteristics that dis-

tinguish them from contemporary communication and wireless ad-hoc networks. First,
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1.2 Research Problems

it is not possible to build a global addressing scheme because of large numbers of

sensor nodes. Therefore, classical IP-based protocols cannot be applied to sensor net-

works. Second, in contrast to typical communication networks almost all applications

of sensor networks require the flow of sensed data from multiple regions (sources) to a

particular sink. Third, generated data traffic has significant redundancy since multiple

sensors may generate the same data within the vicinity of a phenomenon. Such redun-

dancy needs to be exploited by the routing protocols to improve energy and bandwidth

utilisation. Fourth, sensor nodes are tightly constrained in terms of transmission pow-

er, on-board energy, processing capacity and storage and thus require careful resource

management.

The introduction above demonstrates that routing scheme in WSNs is a complex sys-

tem which involves various challenging research issues, such as network dynamics,

node deployment, energy consideration and data aggregation. This thesis emphasises

the data gathering and aggregation in WSNs.

More details about WSNs routing schemes will be introduced in Chapter 2.

1.2 Research Problems

The objective of this thesis is:

• To study energy-efficient routing schemes with data aggregation in a distributed

wireless environment subject to limited transmission range, and periodic and

aperiodic traffic patterns.

To better illustrate the research problems, we construct a routing tree depicted in Fig. 1.3.

Data aggregation is the most important ingredient for a well-designed routing scheme.

In sensor networks, however, data centric routing, in which routing is done based on

the content of the data packets, is often adopted to promote data aggregation. It is

assumed that the aggregation results of data from different nodes can be combined in

a single packet. Although there are three routing options in Fig. 1.3, we cannot easily
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Chapter 1 Introduction and Motivation

Base station

No aggregation Packets aggregated at A Packets aggregated at B

A

B

Source node

Base station Base station

Figure 1.3. The impact of routing on data aggregation.

determine which routing scheme is optimal in the minimisation of energy dissipation.

Hence, we address three research problems.

1. Designing an energy-efficient routing scheme to reduce energy consumption for

data transmission.

Since the distances between nodes and the base station may be long and the transmis-

sion power of a wireless radio is proportional to distance squared or an even higher

order in the presence of obstacles, traditional single-hop routing will drain energy of

sensor nodes quickly.

2. Selecting a generic data aggregation model which accommodates different correla-

tion conditions.

The data correlation coefficient is the key to data aggregation, but this coefficient is

heavily dependent on the application scenarios. The existing aggregation models are

not sufficient because they can only deal with some extreme conditions where data

correlate each other completely.

3. Finding an optimum routing tree with data aggregation to minimise energy cost.
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1.3 Original Contributions

The existing algorithms for finding a routing tree with data aggregation generate sub-

optimal aggregation trees because their aggregation model is not generic to capture

the various correlation conditions. By using the generic aggregation model, an op-

timal routing tree with data aggregation can adapt to the change of data correlation

conditions and select reasonable paths to minimise total energy dissipation.

1.3 Original Contributions

Our research contributions in this thesis are summarised as follows:

• A new multi-hop routing algorithm that can reduce the energy consumption for

the data transmission from the source nodes to the base station and prolong the

network lifetime.

• A generic aggregation model which does not depend on any specific relationship

among information supplied by sensor nodes nor on any particular model of data

aggregation to adapt to a variety of applications.

• A particle swarm optimisation algorithm that finds a near optimal routing tree

with data aggregation to minimise energy consumption in different data correla-

tion conditions.

Although our routing scheme is specific for the applications of wireless sensor net-

works, some algorithms, such as the modified PSO algorithm, can be adopted to op-

timise other quality of service metrics for other wireless networks. In addition, the

multi-hop routing algorithm in our scheme can be applied to other wireless network

routing (like ad-hoc network routing).

The following paper presented as part of the work in this thesis:

• Y. Wang and C. C. Lim, “Gathering correlated data in wireless sensor network-

s using a heuristic algorithm,” in Proc. 2011 International Conference on Opto-

Electronics Engineering and Information Science, vol. 1, Dec. 2011, pp. 417-421.
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Chapter 1 Introduction and Motivation

1.4 Thesis Structure

The thesis is presented in five chapters:

Chapter 1 provides a brief introduction to wireless sensor networks. In addition, the

research problems for doing the work, the contributions to knowledge provided by the

thesis, and the structure of the thesis are also discussed.

Chapter 2 presents the background including the approach used for the routing scheme,

aggregation models and data gathering algorithms which are utilised to connect sensor

nodes via suboptimal aggregation trees under certain conditions.

Chapter 3 introduces one solution for constructing a routing tree with data aggrega-

tion in wireless sensor networks. The fundamental system models are discussed and

established. A modification of the particle swarm optimisation algorithm is proposed.

Compared with three other existing algorithms, the performance of an aggregation tree

using the PSO algorithm is analysed as well.

Chapter 4 sets up network simulation and gives a set of simulation results to evaluate

the performance of our routing scheme with data aggregation by comparing with other

routing schemes in terms of consumed energy and energy efficiency.

Chapter 5 reviews and concludes the thesis. In addition, some recommendations for

future work are given. Finally, the original contributions to knowledge are re-summarised.
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Chapter 2

Background

T
HIS chapter contains details of data-centric routing schemes in

wireless sensor networks. The classification of routing schemes

in this chapter provide a clear view of routing background and

its working mechanism. In addition, data gathering algorithms are intro-

duced to represent three suboptimal schemes for generating data aggrega-

tion trees.
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2.1 Introduction

2.1 Introduction

Routing is an essential part in the network layer. A routing scheme defines the way of

disseminating information, and it enables the information to select applicable routes

between any two nodes on a communication network. There are two main components

to consider in routing scheme design: communication structure and data control. Be-

fore addressing some particular aspects in network layer of wireless sensor networks,

it is significant to understand some background of routing approaches, data reduction

and data gathering algorithms. Hence, the issues of routing schemes are introduced in

this chapter. The introduction provides options and explanations in choosing a suit-

able method for a particular application. Moreover, for each method in routing scheme

the operations and regulations establish boundaries on how the technology may be ap-

plied.

2.2 Approach for Routing Schemes

Adopting efficient routing approaches is important for many routing schemes in wire-

less sensor networks. Approaches, such as multi-hop routing and clustering, are avail-

able to improve the performance of schemes in terms of energy efficiency and network

organisation.

2.2.1 Multi-hop Routing

In wireless sensor networks, if source nodes are far away from the base station, they

will drain energy quickly because of direct transmission. Hence, it is sensible to ap-

ply multi-hop routing to reduce the energy consumption of delivering data from the

sources to the base station. In the multi-hop routing, one or more intermediate n-

odes forward data in relay if the energy consumption for transmission can be de-

creased [9] [10] [11].

Among many energy-aware multi-hop routing approaches, minimum transmission

energy (MTE) routing is the most popular one for wireless networks [4] [12] [13]. In
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Chapter 2 Background

A C
d

B C
d

A B
d

A

B

C

Figure 2.1. Minimum transmission energy (MTE) routing.

MTE, sensor nodes do not only transmit their own sensing data, but also serve as

routers for other sensor nodes to deliver data packets from the source node to a given

destination so as to minimise the total transmission energy. Assuming power dissipa-

tion is proportional to the distance between the transmitting node and the receiving

node, consider the situation shown in Fig. 2.1, node A will transmit to the node C

through node B if:

d2
AB + d2

BC < d2
AC. (2.1)

This multi-hop routing can be employed in wireless sensor networks where all the

nodes must send their data to the base station. Each relay node uses a particular rout-

ing scheme to the determine its next hop until data are collected by the base station.

The routes maintenance requires nodes to update the paths periodically so as to keep

connectivity with the base station. For long-distance transmissions, multi-hop routing

routing can dramatically reduce transmission power compared to direct communica-

tion.

2.2.2 Clustering

Clustering is an efficient approach that has been proposed to support scalable media

access control (MAC) and routing protocols in wireless networks [14] [15] [16] [17] [18].

For large-scale sensor networks, it can be divided into small groups (cluster) using

clustering. In each cluster sensor nodes are elected as two roles which are a cluster

head and numerous cluster members. In this case, the cluster head collects data from

member nodes and then forwards them to the base station.
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In addition, the cluster head facilitates in-network data aggregation, which is signifi-

cant for prolonging the lifetime of network, and effectively manages the network topol-

ogy. The election of the cluster heads usually involves (i) the determination of a set of

parameters for each node either to the whole network or to group of nodes and (ii) the

comparison of these parameters in order to choose the best nodes as cluster heads.

There are two typical algorithms to represent how the clustering approach works.

• WCA

The on-demand weighted clustering algorithm (WCA) [19] algorithm proposed

by Chatterjee et al. takes a set of parameters, such as the node degree, trans-

mission power, battery power and the speed of the nodes into consideration and

calculates an objective function with the four factors to selects a cluster head. It

formulates the clustering problem to an optimisation problem for achieving more

reasonable maintenance of the network stability.

• Multi-layer clustering algorithms

Multi-layer clustering algorithms have been proposed for efficient routing in

wireless ad hoc and sensor networks [17] [20]. The cluster heads on the lower

level elect a cluster head from them for the upper level, and they also aggregate

data and transmit them to the upper level accordingly. It is noteworthy that the

algorithm assumes that network topology changes slowly and infrequently.

Although clustering performs well as mentioned above, there are some drawbacks

in it. First, the cluster heads election should know based global information of net-

work, which incurs high overhead and slow reaction to topology changes. Second, it is

complex to construct and maintain the desired hierarchical structure in the multi-layer

clustering algorithms.

2.3 Data Reduction

In WSNs, it is not feasible to assign internet protocol (IP) address to each node due to

the sheer number of nodes deployed. Moreover, in the sensor network, data produced
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by different neighbour nodes may be highly correlated and redundant. These char-

acteristics shifts the research focus from the traditional address-centric routing, which

is to find short routes between pairs of addressable terminals, to a more data-centric

routing, which aims at finding routes from multiple sources to a single destination with

in-network combination of redundant data.

Unlike the traditional ad-hoc networks, energy resources in WSNs are usually scarce

due to the cost and size constraints of sensor nodes. The energy usage for data trans-

mitting and receiving can be defined as follows:

ETx = f (ktij , di,j), (2.2)

ERx = g(krhi). (2.3)

where ETx is energy expended for data transmitting, ktij is amount of transmitted da-

ta, di,j is euclidian distance between node i and j, ERx is energy expended for data

receiving, and krhi is the number of bits received by relay node i from node h. Since

the most important constraint imposed on total energy consumption is the amount

of transmitted and received data, minimising the number of transmissions is vital in

data-centric applications. In order to minimise the amount of data exchanged among

nodes, we can apply data reduction techniques which includes two ideas: aggregation

and approximation.

2.3.1 Data Aggregation

In the sensor network, data generated from different neighbour nodes may be high-

ly correlated and redundant. As a result, similar packets from multiple nodes can be

aggregated instead of delivering the raw data packets. Since data aggregation is incor-

porated in routing schemes to reduce the amount of transmissions while still distribut-

ing information about the events of interests, it is deemed as an effective approach to

balance the communication needs and energy constraints.

Perfect aggregation [21] is the most common aggregation scheme. With perfect aggre-

gation, a sensor node combines data packets received by different neighbours into a
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single data packet, and then transmits it to the next hop, where minimum, maximum,

average or count operations is executed as a perfect aggregation function [22] [23]. Be-

cause it is assumed that data from different sources are complete correlated, such an

operation can dramatically reduces the traffic load and conserve energy of the sen-

sors [24] [25] [26]. In this sense perfect aggregation is quite efficient and has been

assumed in most studies [27] [28] [21] [29]. However, it is not generic and limits the

application of wireless sensor networks.

In-network aggregation is more suitable for exploratory, continuous queries that need

to obtain a live estimate of some (aggregated) quantity, but it should be chosen care-

fully according to applications. Because aggregator nodes send aggregated data to the

base station, they may be attacked by malicious attacker. If security cannot be guaran-

teed, the base station cannot ensure the validity of the aggregated data.

2.3.2 Data Approximation

Approximation techniques [30] [31] [32] are lossy data compression approach which

mainly occurs in source nodes and the base station. The data values that the sensor

transmits to the base station are split into two parts which are base signal and com-

pressed sensor data updates. Each sensor allocates a small capacity of memory to

maintain the base signal. Source nodes extract the values of prominent features from

the recorded data and treat them as base signal in the approximate representation that

is transmitted to the base station. Compared with the base signal, measurement values

are processed to be compressed sensor data updates. When the base station receives

compressed sensor data updates, it appends the latest updates to a log file. Thus, the

obtained approximation approximates the original measurement value collected by

sensors.

Whenever the source nodes collect enough data to transmit, the base signal should be

checked. It will be updated if sensors capture new features from sensed data. When

such updates occur, the base signal updates are transmitted to the base station. After

that, the base station appends the base signal updates in a special log file that is unique
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for each sensor. With this method, the approximation received by the base station

adapts to time-varying data.

In such cases, sensor nodes are mostly preserving energy and periodically process and

transmit large batches of their measurements to the monitoring station for further pro-

cessing and archiving, and approximation techniques are thus more suitable for the

collection of historical data through long-term queries.

2.4 Data Gathering Algorithms

Energy consumption, scalability, and load balancing are important requirements for

many data gathering sensor network applications. Therefore, data gathering algo-

rithms are proposed for achieving development in this area and categorised into cluster-

based algorithm, the chain-based algorithm and the tree-based algorithm for power

saving in term of transmission structure.

2.4.1 Cluster-based Algorithms

Clustering schemes have been proposed in order to meet the energy efficiency and

scalability requirement of the WSNs. The main issue is forming subnetwork clusters,

encouraging multi-hop transmission and enabling data aggregation. In addition, tasks

for the sensor nodes with different characteristics are also performed. Some cluster-

based algorithms have been developed based on hierarchical structures.

• LEACH

Low energy adaptive clustering hierarchy (LEACH) protocol [33] is one of the

most popular clustering algorithms with distributed cluster formation for WSNs.

The algorithm randomly selects cluster heads and periodically rotates the role so

that the energy loads can be shared among the sensors. Time division multiple

access (TDMA) or code division multiple access (CDMA) schedules are also cre-

ated for each cluster node in order to avoid excessive contentions of the channel
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and allow sensors to effectively turn their radios off when not actively transmit-

ting. It forms clusters based on the received signal strength and uses the cluster

head (CH) nodes as routers to the base station. One way to reduce the amount

of communication is to incorporate data aggregation on the cluster heads before

sending out packets to the base station.

LEACH forms clusters by using a distributed algorithm, where nodes make au-

tonomous decisions without any centralised control. However, this approach

does not take actual energy consumption of the cluster heads into account. Heinzel-

man et al. also assume that all nodes are time synchronised, nodes have homoge-

nous energy levels initially, use one-hop clustering, and that they can communi-

cate directly with the BS. Researchers have extended LEACH to LEACH-C [34]

that adds a central control algorithm considering energy to form the clusters.

LEACH-C produces better clusters by dispersing the cluster head nodes through-

out the network.

• TEEN

In 2001, A. Manjeshwar and D. P. Agarwal [35] proposed threshold sensitive en-

ergy efficient sensor network (TEEN) protocol. TEEN is also LEACH-like for

cluster head election, but is more threshold-sensitive hierarchical. In this proto-

col, the cluster head sends its members two threshold values. One is hard thresh-

old which is minimum possible value of the sensed attribute to trigger a sensor

node. Hard threshold allows nodes to transmit the event only when the sensed

attribute is in the range of interest, thus reducing the number of transmissions

significantly. The other is soft threshold which is a small change in the value of

the sensed attribute. Once the hard threshold is satisfied, the node is triggered

to transmit data only when the current value of the sensed attribute differs from

sensed value by an amount which ia equal to or greater than the soft threshold.

Consequently, the soft threshold further prevents from the redundant data trans-

mission.
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Since the protocol will be reactive if there are sudden changes in the sensed at-

tribute, it is suitable for time-critical applications. However, TEEN is not ap-

plicable for periodic reports because the user may not get any data at all if the

thresholds are not reached.

• HEED

More recently, HEED [9] is proposed by Younis and Fahmy in 2004. The proto-

col extends LEACH by incorporating communication range limits and cost in-

formation. In HEED, the initial probability for each sensor to become a cluster

head is dependent on its residual energy. In references [36] [37] [38], the suitable

cluster head is selected by combining load balancing, topology and energy in-

formation, but without considering data like in TEEN, and these algorithms are

a little complex. Some signal strength-based clustering algorithms, such as ref-

erences [39] [40], can be used in application of target tracking, but they do not

achieve energy optimisation.

HEED uses the clustering approach by considering the residual energy and has a

constant iteration number, so it can prolong the network time and suit for large

network. However, since HEED enables every node to independently and prob-

abilistically decide on its role in the clustered network, it cannot guarantee op-

timal elected set of cluster heads. And the one-hop routing approach in HEED

only perform well in a case when the cluster head close to the base station. When

a cluster head locates far from the base station, it may consume more energy to

forward data to the base station via one hop.

2.4.2 Chain-based Algorithms

In cluster-based sensor networks, sensors transmit data to the cluster head where data

aggregation is performed. However, if the cluster head is far away from the sensors,

they might expend excessive energy in communication. Further improvements in en-

ergy efficiency can be obtained if sensors transmit only to close neighbours. The key

idea behind chain based data aggregation is that each sensor transmits only to its clos-

est neighbour.
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• PEGASIS

Power-efficient gathering in sensor information systems (PEGASIS) protocol [25]

is a LEACH-inspired protocol. PEGASIS is not exactly a cluster-based protocol,

as nodes are not explicitly grouped into clusters. Instead of forming clusters,

PEGASIS is based on forming chains of sensor nodes. In the chain, each node

only aggregates the collected data with its own data, then passes the aggregated

data to a close neighbour. Only one sensor node is elected from the chain to

communicate with the base station. The nodes then transmit until the data reach

the base station, in this way the amount of energy spent per round is significantly

reduced. This approach distributes the energy load evenly among the sensor

nodes in the network.

The difference from LEACH is to employ multi-hop transmission and selecting

only one node to transmit to the sink or base station. Since the overhead caused

by dynamic cluster formation is eliminated, multi hop transmission and data

aggregation is employed, PEGASIS outperforms the LEACH. However, excessive

delay is introduced for distant nodes, especially for large networks and single

leader can be a bottleneck.

• COSEN

In contrast to PEGASIS, chain oriented sensor network for efficient data collec-

tion (COSEN) [41] is a two-layer hierarchical chain-based routing scheme. In the

scheme, sensor nodes are divided into several low-level chains according to geo-

graphical location. For the low-level chain leader election, energy efficiency is a

major concern, so the chain leader is the sensor node with the maximum residual

energy. Furthermore, the low-level leaders are regarded as members of a high-

level chain, and the high-level chain leader will be elected accordingly. During

the phase of data communication, all member nodes execute a similar procedure

as that in PEGASIS to send their aggregated data, via their respective low-level

leaders and the high-level leader, toward the base station.

COSEN, compared with PEGASIS, can decrease the transmission delay and en-

ergy consumption, but it still gives rise to a considerable amount of redundant
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transmission paths, especially for those nodes which are near to the base station

but have to detour their aggregated data toward the chain leaders.

2.4.3 Tree-based Data Gathering Algorithm

In order to avoid drawbacks of long one hop transmission in cluster-based algorithm

and excessive delay in cluster-based algorithm, tree-based data gathering algorithm

is proposed. In a tree based network, sensor nodes are organised into a tree struc-

ture where data aggregation is performed at intermediate nodes along the tree and a

concise representation of the data is transmitted to the root node. Tree based data ag-

gregation is suitable for applications which involve in-network data aggregation. One

of the main aspects of tree-based networks is the construction of an energy efficient

data aggregation tree.

• Shortest path tree algorithm

Shortest path tree (SPT) based on Dijkstra [42] algorithm is to find a set of edges

connecting all nodes such that the sum of the edge lengths from the source to each

node is minimised. Since each node in the network has some data to transmit to

the base station, it can be viewed as a network with sources and one base station.

If the redundancy among the information gathered by different sensors is fairly

low, then it can be interpreted that the entire data sensed by each node travels

to the base station. Let the energy cost for each packet be the sum of energy

consumed by every node involved in its transmission from the source to the base

station, it can be concluded that shorter the path traveled by the packet and less

the number of hops, lower is the energy expended. SPT constructs trees based on

this notion.

In order to minimise the total path lengths, the path from the root to each n-

ode must be a shortest path connecting them. Since, weight on the edges in the

graph represents energy for communication, the SPT algorithm also accounts for

the number of hops between a node and the base station. Therefore, SPT-based

approach is used for tree construction when there is no redundancy among the
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information gathered by different sensors. While a class of SPT-based routing al-

gorithms has been developed in [43] [44] [45] assuming statistically independent

information, the more realistic case of correlated data has also been considered

in [46] [47] [48] [49] [50].

• Minimum spanning tree algorithm

Minimum spanning tree utilises prim algorithm [51] to enable each node to s-

elect the nearest neighbour node to be its parent node, and incrementally add

nodes to construct a routing tree. Consider the data between different sensors

are complete correlated. In this case, a packet transmitted by any node will be

eliminated after one hop. To spend least energy in transmitting a packet, a node

should transmit it to its closest (by weight) neighbour towards the base station.

Since sensor nodes only know local network topology, this kind of greedy algo-

rithm can play a part in scalability of network and equalisation of energy con-

sumption to some extent. As a consequence, MST-based approach is applicable

for tree construction when the gathered data are identical for every sensor.

• Shallow light tree algorithm

Shallow light tree (SLT) algorithm [52] [53] is to find a spanning tree that simulta-

neously approximates a shortest-path tree and a minimum spanning tree. The ba-

sic idea of the algorithm is to regard the MST algorithm as an initial tree structure,

traverse the current tree, and check each vertex whether the distance requirement

for that vertex is met in the current tree. If it is not met, the edges of the shortest

path between the vertex and the root are substituted for current edges so as to

maintain a tree structure, and the weight of other the vertices which connects to

the new edges is update accordingly. After all vertices have been checked and

paths have been added as necessary, the remaining tree is the desired SLT.
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2.5 Conclusion

This chapter has introduced how the routing schemes of wireless sensor networks are

classified, developed, operated and regulated. The tree-based data gathering algo-

rithms have been introduced since the correlated data gathering and aggregation are

the major concern of the work in this thesis. The contents of this chapter provide a

wireless routing background and serve as complementary materials for understand-

ing the rest of the thesis.
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Chapter 3

Optimisation on Data
Gathering and Aggregation

P
ARTICLE swarm optimisation (PSO) algorithm for optimising

data gathering and aggregation is described in this chapter. A

modification on PSO algorithm which maps elements of algo-

rithm to practical problem is discussed. Following this discussion, a nov-

el data gathering algorithm with aggregation for minimising energy con-

sumption is proposed, analysed and verified.
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3.1 Introduction

Data aggregation is one significant issue in network routing of energy-constrained

wireless sensor networks since routing with aggregation can consume less energy than

delivering data to base station directly. The energy consumption is determined by traf-

fic control and data transmission. Hence it is necessary to find a transmission structure

that cooperates with data aggregation in order to minimise energy consumption. In

such cases, routing tree with data aggregation is a reasonable routing scheme [23].

Our research problem is to find a routing tree with data aggregation to achieve min-

imum energy expense. This problem is an NP-complete problem [48] [54] because it

can be reducible to weighted set cover problem in graph theory, which has been shown

to be NP complete [55]. Since solving the NP-complete problem requires intense com-

putation cost that is super-polynomial in the input size, it may be enough to find a

near optimal solution to get a satisfactory result in polynomial time instead of an exact

solution. Heuristic algorithms are applied to either give nearly the optimal answer fast

and easily or provide a solution not for all instances of the problem.

This chapter consists of ten sections. Section 3.2 introduces network model, data cor-

relation model and energy model which are used to set up network environment in

our study. Section 3.3 formulates the research problem and describes the optimisation

objective. In order to solve the problem, Section 3.4 and Section 3.5 introduce three

heuristic algorithms to provide possible solutions. Section 3.6 and Section 3.7 provide a

novel routing scheme which is aiming at achieve minimum energy expense by optimis-

ing aggregation tree on data traffic and communication structure. The performances

of our proposed routing scheme compared with some existing routing algorithms are

analysed in Section 3.9. Finally, we provide our conclusion in Section 3.10.

3.2 System Model
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3.2.1 Network Model

A set of sensors are assumed to be dispersed in a field and quasi-stationary. All com-

munication is over wireless links. Wireless links are considered bidirectional and sym-

metric so that any two nodes can communicate using the same transmission power

levels only if they are in range of each other. Sensor nodes are homogenous and ar-

bitrarily allocated with equal initial energy. Nodes are not location-aware, i.e., not

equipped with GPS-capable antenna, and nodes are left unattended after deploymen-

t. Therefore, battery recharge is not possible. Efficient, energy-aware sensor network

routing schemes are thus required for energy conservation.

From a viewpoint of graph theory, a wireless sensor network can be represented by

an undirected graph G(V, E), where V represents the set of all sensors in the network,

and E ⊂ V × V represents the set of communication links between a pair of nodes.

Graph G(V, E) contains n = | V | nodes and l = | E | links. It is defined that every node

is vi ∈ V (1 ≤ i ≤ n), the set of source nodes is S ⊂ V, d ∈ V is the base station in

wireless sensor networks, and every link is eij = (vi, vj) ∈ E (1 ≤ i ̸= j ≤ n).

All traffic generated by sensors are destined for the base station, composing a routing

tree. The problem on routing is to find out an optimal routing tree when transmit-

ting data from a number of sensing nodes to the base station so that the base station

can promptly detecting or tracking information of observed region and conduct corre-

sponding processing.

3.2.2 Correlation of Data

In this thesis, we consider a multi-hop wireless sensor network with one base station

and n sensors distributed uniformly in a sensor field. The base station sends a query

and k (k ≤ n) sensors respond to that query. We consider the problem of efficiently

aggregating the information sent by the k sensors to the base station.

Specifically, the goal is to optimise the message complexity for sending data generated

by the k sensors to the base station. It is assumed that there is correlation among the

data generated by the k sensors. To possibly accommodate a wide range of scenarios,
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we abstract data redundancy among two sensor nodes using a single value ρ, termed

correlation coefficient. ρ will determine the amount of data reduction due to aggrega-

tion. Assume that data amount after aggregation is not less than any of its inputs and

not more than the sum of all inputs, ρ ∈ [0, 1].

We consider the case when there is a reasonable degree of correlation between the in-

formation collected from different sensors. For example, let Rvi and Rvj be the amount

of data generated by two sensors in response to a query. Without loss of generality, if

the size of data sent by the two sensor is not the same, we have Rvi>Rvj . Hence, the

output from the aggregator node is:

R(vi, vj) = Rvi + (1 − ρ)Rvj (3.1)

where R(vi, vj) is the amount of data after aggregating Rvi and Rvj . For this case, when

the information from the two sensors are perfectly correlated (ρ = 1), we see that the

message size after aggregation is the same as the amount of data generated by one

source (Rvi). On the other hand, if there is no correlation (ρ = 0) between the two

sensed data, the message size after aggregation is Rvi + Rvj .

As the data of nodes are correlated, the amount of data traffic depend on the transmis-

sion structure, so for an arbitrary ρ the optimal solution for data gathering is not fixed

and unique. For example, as shown in Figure 3.1, assume Rvi=Rvj=R, according to

the aggregation rule mentioned above, if ρ ≤ 1
2 then the cost of case (a) is less than the

cost of case (b), otherwise case (b) has a cost less than case (a). Therefore data traffic

depend on the structure of communication, and hence optimising the cost function is

difficult.

3.2.3 Energy Model

The free space model is used to predict the received signal power of each packet. The

free space propagation model assumes the ideal propagation condition that there is

only one clear line-of-sight path between the transmitter and the receiver. The follow-

ing equation calculates the received signal power in free space at distance d from the
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Figure 3.1. Two transmission structures with aggregation.

transmitter.

Pr(d) =
PtGrGtλ

2

(4π)2d2L
(3.2)

where Pt is the transmitted signal power, Pr(d) is the received power which is a func-

tion of the distance between the transmitter and the receiver, Gt and Gr are the antenna

gains of the transmitter and the receiver respectively, L is the system loss factor, and λ

is the wavelength of the transmitted signal.

In this thesis, by assuming that the gains between a pair of transmitter-receiver are the

same in both directions, nodes use (3.2) to compute the distance to their neighbours

and the base station.
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Figure 3.2. Radio energy dissipation model.

Furthermore, according to the radio energy dissipation model illustrated in Fig. 3.2,

we adopt both the free-space propagation model and the two-ray ground propaga-

tion model to approximate path loss sustained because of wireless channel transmis-

sion [56] [57] [58]. The unit energy consumption for transmitter or receiver electronics
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is defined as Eelec, which a radio dissipates to run the transmitter or receiver circuits.

Both the free space (d2 power loss) and the multi-path fading (d4 power loss) channel

models are used in this model, depending on the distance between the transmitter and

the receiver. The energy expanded by the radio for transmitting a k bit message over a

distance d, is given by:

ETx(k, d) =

 kEelec + kϵ f sd2, d < d0;

kEelec + kϵtgd4, d ≥ d0;
(3.3)

d0 =

√
ϵ f s

ϵtg
(3.4)

ERx(k) = kEelec (3.5)

where ETx is the energy dissipated in the transmitter, Eelec is the per bit energy dis-

sipation for running the transceiver circuitry, ϵ f s and ϵtg are both parameters but for

different propagation model, d0 is the cross-over distance, and ERx is the radio expends

of receiver.

It is assumed that the radio channel is symmetric, which indicates that the energy cost

of transmitting a packet from vi to vj is the same as the cost of transmitting a packet

from vj to vi.

In our network model, a father node can always aggregate the data gathered from its

children into a single length-fixed packet, and therefore, it also consumes Eda amount

of energy for data aggregation. We use the same parameters as in [58]: Eelec = 50nJ/bit,

d0 = 87m, ϵ f s = 10pJ/bit/m2, and ϵtg = 0.0013pJ/bit/m4.

3.3 Description of Optimisation Objective

It has been proved that the tasks performed by the sensor nodes that are related with

communications (transmitting and receiving data) spend much more energy than those

related with data processing and memory management [59] [60]. Since one of the main

concerns in wireless sensor networks is to save as much energy as possible, it would be
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preferable that the routing algorithm can perform as much data processing as possible

in the network nodes, than transmitting all data through multi-hop to the base station

to be processed there. Therefore, the key optimisation objective is considered: the data

traffic and transmission structure.

Given the set of source node S and the base station d in wireless sensor networks

G(V, E), our objective is to find a connected subgraph G′(V′, E′) ⊆ G, where S ⊂ V′,

and d ∈ V′, in order to minimise the energy consumption for transmitting data from

all source nodes to the base station. The objective function is formulated as follows:

min ∑
vi∈V′

Rvi w(vi, d) (3.6)

subject to:

∑
i,j∈V′,i ̸=j

cij ≥ 1 (3.7)

| V′ |= p (3.8)

p ≤ n (3.9)

where w(vi, d) is the total weight of edges on path from node i to base station on con-

structed aggregation tree. In wireless networks, the weight of each edge can be consid-

ered as the energy expended for per unit data communication and data aggregation.

Rvi is the amount of data generated by node vi. cij ∈ {0, 1} indicates the link state

between nodes i and j. cij = 1 means the link is active and cij = 0 otherwise. As the

connectivity constraint, in (3.7) means the sensor node can have one communication

link with its neigbour at least. Constraints (3.8) and (3.9) guarantee that the number of

active node (all source nodes, intermediate nodes and the base station) p cannot exceed

the total number of sensors n in wireless sensor networks.

Assume each source (node) is a discrete random variable with specific amount of data

to transmit. It should be noted that generated amount of data Rvi in each relay node

depends on incoming flow to that node. Because of correlation between data sources,

each relay node can combine available data of children nodes into new data. Clearly
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each relay node reduces the correlation of received data from other nodes. Therefore,

Rvi is a decreasing function of the amount of incoming flow because data aggregation

always reduces amount of information.

Assume that relay nodes can perform data aggregation on data gathered from differ-

ent sensors, not only forwards them. In such correlated data network, the amount of

transmitted data for each node depends on network aggregation structure, so changing

the structure of network tree affects both the amount of transmitted data of each node

(Rvi) and the path cost (w(vi, d)). Therefore, we have a joint treatment of data aggre-

gation and transmission structure to find an optimal routing tree for minimising (3.6).

Because finding an aggregation tree for minimising cost function (3.6) is NP-complete,

using a heuristic algorithm is sensible.

3.4 Swarm Intelligence

Swarm intelligence (SI) [61] [62] constructs stochastic optimisation algorithms by imi-

tating group behaviour in nature. Since it emerged in 80’s of 20th century, this raised

multiple disciplines researchers’ attention on this field. As a result, SI has become a hot

and frontier of artificial intelligence and interdisciplinary involved in economy, society

and creatures. SI exploits group advantages to provide a novel perspective on search-

ing solution for complex problems under the premise that non-centralised control and

no global model exist.

Some scholars extended definition on swarm intelligence and regarded social behaviour

of some creatures, such as fish school, bird flock and ant colony, as swarm intelligence

behaviour, but there are following two common understandings. One is collective

intelligence expressed by a set of simple intelligence agents, which is exemplified in

ant colony optimisation (ACO) and ant clustering algorithm (ACA). The other regards

members of group as particles instead of simple intelligence agents, which is exempli-

fied in particle swarm optimisation (PSO).
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3.4.1 Ant Colony Optimisation

Ant colony optimisation algorithm is one of the essential branches of swarm intelli-

gence, and it is a stochastic search algorithm which can find the optimal solution by

evolving the population of candidate solutions. The algorithm inspired by the be-

haviour of a real ant colony was proposed by Dorigo in 1992 [63]. After substantial

observation and careful research, biologists found that ants communicate with each

other via a substance called pheromone.

As a real ant moves, it deposits and senses pheromone on the ground. When an ant

reaches a point that has more than one outgoing branch, the probability of selecting a

certain branch is dependent on the amount of pheromone deposited on each branch.

More ants passing along a path results in more pheromone being left on that path

resulting in a higher probability of the path being selected. The pheromone on the

shortest path will grow faster than that on other branches. Hence, individual ants

are able to follow this path and find food. On the other hand, with time flying, the

pheromone will dissipate in a certain proportion, so pheromone on the paths which

fewer ants passed will disappear gradually.

The ant colony optimisation algorithm is jointly completed by artificial ants, and it im-

itates the collaboration of real ant colony. Each artificial ant independently searches

solutions in the space of candidate solutions, and deposits a certain amount of infor-

mation. Better performance of the solution results in more information being left on

that solution resulting in a higher probability of the solution being selected. At the ini-

tial stage, the amount of information allotted to solutions is identical. With the run of

algorithms the amount of information deposited on the optimal solution will increase,

and the algorithm will gradually converge.

Because of the advantages of the ACO algorithm, it has been employed in a wide range

of applications. The ACO algorithm was first successfully used to solve traveling sales-

man problem (TSP) [64], then it was applied to solve scheduling problem accompanied

by in-depth research. In telecommunication networks, the ACO algorithm can be ex-

ploited to solve capacity balancing problem as well. However, the ACO algorithm still
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has some disadvantages. For example, it needs long time to execute calculation and

stagnation often happens.

There are many improved versions for the ACO algorithm so far, but they substantially

stem from the standard ACO algorithm. In order to illustrate the standard ACO algo-

rithm well, we take symmetrical TSP of n cities as an example to briefly introduce how

the ACO algorithm finds the shortest path. At the initial stage, we assume that there

are m ants, and each path has the same amount of pheromone τij(0) = C (C is con-

stant). During the motion, the kth (k = 1, 2, ..., m) ant decides the transition direction

according to the amount of pheromone on each path. At the moment t the transition

probability from city i to city j is

pk
ij(t) =


[τij(t)]α[ηij(t)]β

∑
s∈allowedk

[τis(t)]α[ηis(t)]β
, j ∈ allowedk

0, otherwise
(3.10)

where allowedk={{0, 1, ..., n − 1} − tabuk} is a set of cities which can be selected in

next step. Unlike the actual ant colony, the artificial ant colony has memory function.

tabuk (k = 1, 2, ..., m) is used to record the cities passed by ant k. The set tabuk adjusts

dynamically with evolution. α is heuristic information factor, and it demonstrates the

effect of accumulative information in the course of of ants movement. The bigger α is,

the more the ant is inclined to choose the path passed by other ants and the stronger

collaboration among ants. β is heuristic expectation factor, and it indicates the effect of

heuristic information in the course of of ants movement. ηij(t) represents the heuristic

information from city i to city j, normally ηij(t) is defined as follows:

ηij(t) =
1

dij
(3.11)

where dij is the distance between city i and city j. As for ants, the smaller dij is, the

bigger ηij(t) is and the bigger pk
ij(t) will be. Obviously, the heuristic function shows

the expectation degree of transfer from city i to city j. When ant completes a cycle after

n moments, the amount of pheromone on each path has to modify according to the

following formula:

τij(t + n) = (1 − ρ)τij(t) + ρ∆τij(t) (3.12)
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where the parameter ρ demonstrates pheromone evaporation rate, while 1− ρ indicat-

ed a pheromone residue factor. ∆τij is the increment of the amount of pheromone on

path (i, j) in this cycle.

3.4.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) algorithm stems from the simulation of a simpli-

fied society model, and it was proposed as a typical swarm optimisation algorithm

inspired by the behaviour of bird flocking [65]. Scholars found that during the flight

birds often make a sudden change of direction, disperse or get together. Although their

behaviours are usually unpredictable, the whole population always maintains consis-

tent, and the individual keeps the most appropriate distance between each other as

well.

Through the research on the behaviour of similar creature population, the scholars

found that there exists a sharing mechanism of social information in the population

of creature, and it brings an advantage of population evolution and forms the basis of

the PSO algorithm. Besides, human beings usually take advantage of their and others

experience for decision-making, and this behaviour also composes a basic concept of

the PSO algorithm. Based on these ideas, Eberhart and Kennedy first proposed the

particle swarm optimisation algorithm in 1995.

When using the PSO algorithm to solve optimisation problems, the solutions corre-

sponds to the position of a bird in searching space, and the birds are named as “par-

ticle” or “agent”. Each particle has its own position, velocity and fitness value. In

addition, each particle records the position of current optimal particle and searches to-

wards this position in the solution space. Each iteration is not completely stochastic

because the next solutions will be searched on this basis of the existing best solution.

The PSO algorithm first conducts population initialisition for stochastic particles, then

in each iteration particles update themselves by following two extreme values. The

one is the best solution found by the particle itself, which is named individual extreme
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point (represented by pibest). The other is the current best solution found in the popula-

tion, which is represented by pgbest. The PSO algorithm finds out the optimal solution

by means of collaboration among particles. It exploits the idea that information sharing

can generate evolutionary advantage in biological populations, while genetic algorith-

m (GA) is based on Darwin’s theory on evolution, namely survival of the fittest.

The positions of particles are generated randomly in the searching space, and the initial

velocity of each particle is randomly given as well. The concept of the PSO algorith-

m is based upon population collaboration and information exchange accelerating the

motion of each particle to the best positions.

Assume that in a D-dimensional searching space m particles compose a swarm and

fly with a certain velocity, where the particle i denotes a D-dimensional vector xi =

{xi1, xi2, ..., xid}, i = 1, 2, ..., m. The performance of xi is assessed by its fitness value

which is calculated through substituting xi into the objective function. The motion of

particles changes according to the following equations:

vk+1
id = ωvk

id + c1rand()(pk
ibest − xk

id) + c2rand()(pk
gbest − xk

id) (3.13)

xk+1
id = xk

id + vk+1
id (3.14)

where k is the iteration number, vid denotes the velocity of the particle i in the dth-

dimensional (1 ≤ d ≤ D) particle swarm space, xid represents the particle i current

position, pibest is its best previous position, and pgbest is the best position among all

particles in the population. Function rand() is a random function with a range [0,

1]. Constants c1 and c2 are learning factors used to accelerate the motion speed of

particles. The inertia weight, ω is a user-specified parameter that controls, with c1 and

c2, the impact of previous historical values of particle velocities on its current one. A

large inertia weight facilitates global exploration while a small inertia weight facilitates

fine-tuning local search. In each dimension, the velocity of particle will be limited in a

upper limit Vmax (Vmax > 0) to maintain vk+1
id within a reasonable range.

In (3.13) the first term is the velocity of particle in the last iteration. The second term

is the cognition part, and it indicates that the particle flies to the best position which

has been found by itself. The third term is the society part, and it demonstrates that
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information sharing and collaboration guide the particles towards the current best po-

sition of population. (3.14) is employed to calculate the new coordinates of particle’s

position. (3.13) and (3.14) determine the next motion and location of the particle jointly.

The motion tracks can be illustrated in the Figure 3.3.

v k+1
id

v k
id

x k
id

x k+1

id

p
gbest

p
ibest

Figure 3.3. Motion tracks of a particle.

3.5 Genetic Algorithm

Genetic algorithm (GA) is a stochastic search method which is inspired by evolution

laws of nature [66]. The main property of the GA is that the algorithm can operate

directly on the objective without constrained by derivation or continuity of function.

The procedure of the GA is as follows:

Step 1. Encoding: Because the GA cannot process data of solution space directly, so we

express them as genotype string data of genetic space through encoding. Generally, the

variable is expressed by binary encoding. Because binary encoding requires transform

between real numbers, decimal system is sometimes used to encode naturally.

Step 2. Population initialisation: In the GA a string data is called an individual, and

N individuals compose a population. First, system generates N string data randomly.

The iteration of the GA then starts with an initial point which refers to the N string

data.
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Step 3. Fitness evaluation: Substitute initial population into pre-defined fitness func-

tion, and use the fitness values to determine the merits of individuals.

Step 4. Selection: According to the fitness values computed by Step 3, select the fittest

individuals as parents to reproduce offsprings.

Step 5. Reproduction: In this step, generate new individuals from the mating pool by

crossover and mutation operations.

a.) Crossover: The crossover operation takes a pair of parents from the mating pool

randomly, and gives a pair of offsprings chromosomes by exchanging substrings of

the two parent chromosomes. The new offsprings inherit the parents’ features which

represent an exchange and combination of information. After the crossover operation,

we replace the parents in the mating pool by their offsprings. The mating pool has

therefore been modified, but still maintains the same number of elements.

b.) Mutation: The mutation is an important method for preserving the diversity of

the individuals by introducing small and random changes in to them. In order to

achieve that, chromosomes are taken from the mating pool randomly, and the value of

a gene is modified with a given probability. The mutation supplies an opportunity for

generating new individuals in a larger range.

Step 6. Stopping criteria check: If the stopping criteria is satisfied, the GA ends, other-

wise return to Step 3.

3.6 Proposed Solution to the Energy-Efficient Problem

The central theme of the problem mentioned in Section 3.3 is to find out a transmission

structure which can minimise energy consumption in a large wireless sensor network

where the data are correlated. For this optimisation problem, the swarm intelligence

can efficiently approximate to the optimal solution.

This thesis proposes a novel routing scheme for data gathering and aggregation. In the

routing scheme, source nodes first release control packets and enable them to move

randomly from the source nodes to the base station. When the control packets arrive
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at the base station, the paths passed by the packets are then encoded to be individ-

uals, and initial population is formed accordingly. By means of selection, crossover

and mutation among the individuals, we can find a near optimal routing tree for data

gathering and aggregation.

This scheme based on the swarm intelligence consists of

• an ACO algorithm which is exploited to provide candidate solutions,

• a PSO algorithm that aims at finding out a near optimal aggregation tree which

minimises energy consumption of routing.

3.7 PSO Modified by GA for routing with aggregation

For a routing tree with data aggregation, the existing algorithms introduced in Sec-

tion 3.4 and Section 3.5 are insufficient to implement optimisation. Solely using the

ACO algorithm needs a considerable number of control packets, and the overhead will

increase accordingly. The genetic algorithm can evolve into a satisfactory result, but its

convergence is slow. Optimisation on an aggregation tree relates to path selection, and

path selection belongs to a discrete problem. The standard PSO algorithm is the real

valued PSO, and it cannot operate addition or subtraction directly on the path. Hence,

the standard PSO algorithm should be extended to deal with the discrete optimisation

problems which require the ordering or arranging of discrete elements, eg. the routing

tree with aggregation problem.

A popular solution is to keep the velocity update equation (3.13) unchanged, but the

actual new position components are changes to be 1 or 0 with a probability [67]. An-

other method views the position vectors of the particles as probabilities and employing

roulette wheel selection for discretisation [68]. The two techniques both extend the real

valued PSO to its binary version, namely Binary PSO (BPSO), by a simple discretisa-

tion of the values of velocities or positions of particles. A more general discrete PSO

is proposed in [69] to solve the traveling salesman problem. The method redefines the

six basic mathematical objects and operations in the discrete space.
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Since the standard PSO cannot conduct optimisation directly on the discrete problem, it

needs an equivalent form for velocity and displacement equation. In velocity equation,

subtraction between the optimal position and the current position embodies the trend

that particles close to the optimal position. In such cases, the subtraction, which can be

understood as the process of information exchange, is similar to the crossover operator

of the GA. Multiplication between inertia weight and velocity can be interpreted as

extending search range, and it is similar to the mutation operator of the GA. As a

consequence, we consider to propose a PSO algorithm which is modified by the GA

in order to address the discrete nature of our optimisation problem. Hence, (3.13) and

(3.14) are replaced by (3.15) and (3.16).

vk+1
id = ωvk

id ⊕ (pk
ibest ⊗ xk

id)⊕ (pk
gbest ⊗ xk

id) (3.15)

xk+1
id = xk

id ⊕ vk+1
id (3.16)

where k is the iteration number, vid denotes the velocity of particle i in the dth-dimensional

(1 ≤ d ≤ D) particle swarm space, xid represents the particle i current position, pibest

is its best previous position, pgbest is the best position among all particles in the popu-

lation, the operator ⊕ represents a composition, and the operator ⊗ indicates informa-

tion exchange which is implemented by crossover.

Through the study of the distributed properties of the ACO algorithm, we exploit a

relatively small number of control packets to generate some candidate paths, collect

and forward the information about the network to the base station. In the base station

a set of routing trees is encoded as the individuals, and employ the PSO algorithm

to find out the near optimal transmission structure. The base station then sends the

determined routing information to each source node, and enables the source nodes

and relay nodes to update their routing tables. Fig. 3.4 shows the conceptual flow of

particle swarm motion process.

In the following sections, we define our particle representation, specify the initial pop-

ulation, describe the fitness function and selection, and the strategies for crossover and

mutation.
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Population Initia-
lisation

use ACO algorithm to
create an initial
population of random
individuals

Fitness Evaluation

define a fitness function
to determine fitness
values

Population

Selection

select the fittest indiv-
iduals  for reproduction
with a probability

Reproduction

create new individuals
from the mating pool by
crossover and mutation

Crossover

Parent

Offspring

Mutation

Terminate?

END

Encoding

interpret candidate
solutions into particles
for reliable variation

Figure 3.4. Discrete PSO algorithm conceptual flow.

3.7.1 Encoding

Encoding involves coding paths serial into a feasible solution (or a position) in the

search space. In the case of encoding, different schemes which are applied to corre-

sponding problems will affect the design of selection, crossover or mutation directly,

thereby influencing the convergence and complexity of the PSO algorithm. Usually

Prüfer number [70] is used for tree encoding, but this manner has complex encoding-

decoding process and bad locality that small variations in the representation may cause

big adjustments in the network structure. Also it has poor heritability and if the graph

is incomplete then this method represents infeasible solutions. Gen et al. [71] utilis-

es priority-based encoding scheme, but this scheme needs to know neighbour nodes’
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priority in advance and is non-applicable for solving our problem. Ahn and Ramakr-

ishna [72] makes use of variable-length encoding scheme which can narrow search

space. However, this design will increase complexity of crossover or selection as result

of variable-length of string data. Encoding approach proposed by Munetomo et al. [73]

is similar to the encoding method of the TSP [74] which is based on path, but it is dif-

ficult to do crossover. Therefore, we adopt fixed-length position encoding to perceive

routing tree directly.

We represent the individual, for a specific aggregation tree, as a string of node num-

bers. The length of each individual is always equal to the number of relay nodes. A

routing scheme for a network with 7 relay nodes, and one base station, is shown in

Fig. 3.5(a) and the corresponding particle is shown in Fig. 3.5(b). In this example, the

value of the gene in position 1 is 3, indicating that node 1 transmits to node 3. Similarly,

the value in position 3 is 8, indicating that node 3 transmits to node 8 (the base station).

Base station

2
1

3
4

8

5

7

6

1

5

1

5

22

(a) Routing tree

3 4 8 8 3 8 6

1 2 3 4 5 6 7

Previous hop nodes

Next hop nodes

1 2 3 4 5 6 71 2 3 4 5 6 7

(b) Individual (Solution representation)

Figure 3.5. Encoding a routing tree as an individual.For (b), the number serial at the upper

string indicates the previous hop nodes while the number serial at the lower string

represents the next hop nodes.

3.7.2 Population Initialisation

In general, there are two ways to generate the initial population, heuristic initialisation

and random initialisation. For most large scale problems, such as network communi-

cation design, random initialisation has better effect on global optimal solutions. The

ACO algorithm mentioned in Section 3.8.1 is used to generate initial population that
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consists of random trees. The ACO algorithm is an algorithm that finds paths for con-

nected graphs. It starts from source nodes and selects next hop nodes in accordance

with pheromone. If pheromone is updated according to transition probability func-

tions, the next hop nodes are randomly selected to form the paths with the ACO algo-

rithm. As a consequence, we have an initial population with random trees. Note that

all initial particles are valid and no repair function is needed.

We improve the performance of particle swarm search by determining a proper initial

population. The main idea of our work is that the correspondence of nodes behaviour

through local optimisation (versus global optimisation) is greater than the correspon-

dence of nodes behaviour in random initialisation. The SPT algorithm and the MST

algorithm have good results in initial population, when correlation coefficient is equal

to 0 and 1 respectively. For instance, when correlation coefficient approaches 0, if in

the SPT algorithm, node vi connects to vj, then in the global optimum the probabil-

ity for vi to connect to vj is greater than the probability of vi to connect to another

node. Hence the probability of similarity between corresponding elements of the local

optimum and the global optimum is greater than corresponding elements of random

vector and global optimum.

We can say that the probability of mapping the values of optimised nodes (by The SPT

algorithm or the MST algorithm) to values of nodes in the global optimum is greater

than the probability of mapping the values of random implementation to the global

optimum. By using this idea, the performance of the PSO algorithm is improved when

the search space increases.

3.7.3 Fitness Function

After generating each new individual, we need to evaluate its fitness value. We define

the fitness value as the energy consumption of the network. We calculate the total

transmit energy, ETx(ktij , dij), dissipated in a round by each relay node i, 1 ≤ i ≤ n,

to transmit ktij bits data to another node (either a relay node or the base station) j,
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1 ≤ i ≤ n + 1, using the following first order radio model [58]:

ETx(ktij , dij) =

 ktij Eelec + ktij ϵ f sd2, d < d0;

ktij Eelec + ktij ϵtgd4, d ≥ d0;
(3.17)

d0 =

√
ϵ f s

ϵtg
(3.18)

where dij is the euclidian distance between node i and j, Eelec is the per bit energy

dissipation for running the transceiver circuitry, ϵ f s and ϵtg are both parameters but

for different propagation model, d0 is the cross-over distance. Similarly, the receive

energy, ERx(kri), dissipated in a round by each relay node i, 1 ≤ i ≤ n, is defined as

ERx(krhi) = krhi Eelec (3.19)

where krhi is the number of bits received by relay node i from node h in a round. Hence,

we compute Eo, the total energy dissipated by each relay node i for one round of data

gathering as

Eo = ∑
h∈Ri

ERx(krhi) + Eda ∑
h∈Ri

krhi + ∑
j∈Ti

ETx(ktij , dij) (3.20)

where Ri is the set made up of the nodes that transmit krhi bits message to node i in a

round. Ti is the set made up of the nodes that receive ktij bit message from node i in the

same round. Eda is the per bit energy dissipation for aggregating data which are from

different sources. Obviously, our metric for energy dissipation takes into consideration

including the transmit energy, the receive energy and aggregation energy. Therefore,

the fitness function is defined as Eo.

3.7.4 Selection

The function of selection operator is to select individuals which have relative large

fitness values with relative large probabilities from their parent generation. The PSO

algorithm then puts the chosen individuals in the offspring generation and waits for

further evolution implemented by crossover and mutation. There are many different

selection schemes such as the roulette wheel selection, the liner ranking selection, and
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the tournament selection. The principle of these selection schemes is consistent, which

is to select individuals “randomly” from an old population to generate a novel pop-

ulation. In fact, the “random” selection is not completely random. It copies an old

individual and adds it into new population with a certain probability which is propor-

tional to the ratio of its fitness value to the sum of all individuals’ fitness.

Among various selection schemes, the roulette wheel selection [75] is the most fre-

quently used, but this selection may have problems when the fitness values differ very

much. In order to circumvent the problems of fitness proportionate selection meth-

ods, we adopt the ranking selection [76] [77] [78] as a part of implementation of the

modified PSO algorithm in this thesis.

In the ranking selection, the probability of an individual to be selected is assigned ac-

cording to its rank which is based on the objective function values in the sorted list

of all individuals in the population. Using the rank smoothes out larger differences

of the fitness values and emphasises small ones. Nevertheless, because the ranking

selection is also based on probability to come into effect, on the one hand, the virtue of

this method is that individuals with low fitness value are given the opportunity to be

selected so as to keep diversity of the population. On the other hand, individuals with

high fitness value can be eliminated, making evolution a temporary retrogression. In

order to compensate for this deficiency, the optimal individual in the parent genera-

tion is handed down to the offspring generation unconditionally according to the PSO

algorithm. Consider n individuals in the population, this selection scheme performs

as follows:

Step 1. Rank individuals according to the fitness values and determine their positions

in the population. For instance, the ranking of the least fit individual is the 1st, and the

ranking of the fittest individual is the nth.

Step 2. Calculate the probability pi to be selected for the ith individual as:

pi =
i

n
∑

j=1
j

(3.21)
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Step 3. For the ith individual, calculate the accumulative probability gi from the 1th to

the ith individual:

gi =
i

∑
j=1

pj (3.22)

Step 4. Generate a random number r which is uniformly distributed in [0, 1]. If the

condition satisfies gi−1 < r ≤ gi, the ith individual is selected.

Step 5. Repeat Step 4 until the amount of generated individuals is equal to the size of

population.

3.7.5 Crossover

The offspring generation obtained by crossover has to represent routing trees from

source nodes to the base station, otherwise they are illegal solutions. Consequently, we

propose the following crossover method for the above defined individuals.

In the velocity formula of the PSO algorithm, the operator ⊗ in (3.15) indicates infor-

mation exchange which is similar to the operation of crossing in the GA. In the GA, the

crossover replaces the corresponding position of ordinary genes with a segment of the

optimal genes. So we use the crossover as the equivalent form of the ⊗ operation in

(3.13).

The term pk
gbest ⊗ xk

id indicates that a particle tends to the global optimum, so it is e-

quivalent to the crossover operator of dealing with the generic individuals and the

gbest. Because of the requirement of encoding, source nodes are known at the stage of

crossover. First, we randomly select a gene in the locus of the same source node be-

tween the global optimal individual and a generic individual and put it into the same

locus of the offspring. We then make the same selection at the locus of the relay node

which is indicated by the previous chosen gene. This process is repeated until the base

station is found. For the rest nodes which are not used, genes from the same locus

between the global optimal individual and a generic individual are selected random-

ly. Fig. 3.6 is an example for crossover between the global optimal aggregation tree

and a generic aggregation tree and corresponding interpretation in aggregation tree

structure.
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The term pk
ibest ⊗ xk

id indicates that a particle tends to the local optimum, so it is equiv-

alent to the crossover operator between the generic aggregation trees and the ibest.

Fig. 3.7 is an example for crossover between the local optimal aggregation tree and a

generic aggregation tree and corresponding interpretation in network structure.
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(a) Crossover operation
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(b) Routing tree structure adjustment

Figure 3.6. Crossover between the global optimal individual and the generic individual and

corresponding interpretation. For (a), the number serial at the upper string indicates

the previous hop nodes while the number serial at the lower string represents the next

hop nodes.

3.7.6 Mutation

In the velocity formula of the PSO algorithm, multiplying ω by vk
id indicates that a

particle searches toward a new space. This moving tendency is similar to the operation

of mutation in the GA. In the GA, the mutation operator makes ordinary genes have

large changeable scales and search toward wider space, so we use the mutation as the

equivalent form of the multiplying items ωvk
id. The mutation operator also has many

forms for corresponding encoding schemes. The design of the mutation is to prevent
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Figure 3.7. Crossover between the local optimal individual and the generic individual and

corresponding interpretation. For (a), the number serial at the upper string indicates

the previous hop nodes while the number serial at the lower string represents the next

hop nodes.

algorithm from falling into the local optimal solution. It can make the population tend

to diversify and guarantee that there are better individuals in the offspring generation.

Because of the requirement of encoding, source nodes are known at the stage of muta-

tion. If a certain individual is selected to conduct mutation, the routing tree represent-

ed by the individual will be altered. We select a node i to substitute for node j from

set Ω where the node i has the same previous hop node and next hop node as node

j. Hence, we can use node i to replace node j, thereby generating a new routing tree.

This process is illustrated by Fig. 3.8.

3.7.7 Addition

The addition operation indicates the sum of several processing steps. Through orderly

executing the equivalent subitems in the PSO algorithm, we can obtain the effect of

addition. In the equivalence of the addition, the outputs of previous steps are the
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Figure 3.8. Examples of the mutation operation. For (a), the number serial at the upper string

indicates the previous hop nodes while the number serial at the lower string represents

the next hop nodes. The gray number after the bar is selected to execute the mutation.

inputs of latter steps. According to (3.15) and (3.16), we can deduce that

xk+1
id = xk

id + vk+1
id

= xk
id ⊕ ωvk

id ⊕ (pk
ibest ⊗ xk

id)⊕ (pk
gbest ⊗ xk

id) (3.23)

The computation sequence is from right to left. We still take the network shown in

Fig. 3.5(a) as an example. Applying two crossover operations to a generic aggregation

tree shown in Fig. 3.6 and Fig. 3.7 and one mutation operation shown in Fig. 3.8, we

can acquire the final result as Fig. 3.9.

By means of the equivalence of the crossover, mutation and addition, the PSO algorith-

m can be used to solve the routing tree with data aggregation problem. In addition, in

order to preserve information of the optimal solution, the optimal individual in a par-

ticular iteration is not updated. After this iteration, if the effect of another individual is

superior to the optimal individual, the individual which has better effect will become

the optimal individual. The previous optimal particle is regarded as an generic particle

and will be updated in the next iteration.
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Figure 3.9. Decoding of result output by PSO algorithm. For (a), the number serial at the

upper string indicates the previous hop nodes while the number serial at the lower

string represents the next hop nodes.

3.8 Routing Scheme in Detail

The implementation of the reliable routing scheme, which is broken up into rounds,

can be divided into three broad phases: setup phase, routing tree optimisation phase,

and data gathering phase. In the following subsections, we will discuss each of these

in detail.

3.8.1 Setup Phase

After the deployment of the base station and all nodes, the fast setup phase will operate

immediately. This phase is made up of three steps:

Step 1. The base station discovery: The base station broadcasts a “hello” message to all

the nodes at a certain power level. In this way, each node can compute the approximate

distance to the base station and select the appropriate power level to communicate with

the base station when acting as the root of the tree.

Step 2. Neighbour discovery: Each node broadcasts its information of node identity

(ID) and current transmitting power to the nodes in its coverage area. When node i

receives this message from node j, it will add node j to its neighbour table and record

node j’s ID, energy and distance, which are computed using (3.2).
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Step 3. Initial trees construction: First, the base station broadcasts a query to all the

nodes in the network. After receiving this packet, k of the n sensors will compute the

distance to the base station and respond to that query. We assign identical pheromone

τ0 = 0.5 to each node in network. When the source node wants to send data, it will

comply with the ACO algorithm to select the next hop node using transition probabil-

ity formula (3.10).

Because optimisation on a routing tree is mainly implemented by the PSO algorithm,

we carry out the local pheromone updating to decrease computation and complexity

of the ACO algorithm. The function of the local pheromone updating is to enable

the later control packets, which are influenced by pheromone of the visited nodes, to

have a strong ability to explore the nodes which have not been visited. As the control

packet moves between nodes i and j, it updates the amount of pheromone on the link

(i, j) according to following equation:

τij(t + n) = max{τmin, min{τmax, (1 − ρ)τij(t) + ρ∆τij(t)}} (3.24)

∆τij(t) =
m

∑
k=1

∆τk
ij(t) (3.25)

∆τk
ij(t) =

1 + di − dj

dj
(3.26)

where τmin and τmax are minimum and maximum of the amount of pheromone the

pheromone respectively, ρ (0 < ρ < 1) is pheromone evaporation rate, di is the distance

between nodes i and base station, dj is the distance between nodes j and base station,

and Q is a constant. We set τmin = 0.3, τmax = 0.7, ρ = 0.2, α = 1, and β = 2.

After a certain number of control packets arrive at the base station, the process of initial

trees construction ends. Each track of control packet constitutes a path, and the path

from a certain source node to the base station is not unique. Therefore, the ACO algo-

rithm provides the PSO algorithm with various routing trees which are the candidate

solutions of the PSO algorithm.
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3.8.2 Routing Tree Optimisation Phase

This phase is an interim phase before data gathering and aggregation is operated. In

this phase, the routing tree will be optimised to tradeoff between data aggregation and

transmission structure. As mentioned in Section 3.1, optimal aggregation tree problem

is NP-complete, and hence PSO algorithm can be applied to solve it with a near optimal

solution.

The PSO algorithm is an iteration-based optimisation tool, and it has wide applicabil-

ity to all sorts of continuous combinatorial optimisation problems. The kernel of the

PSO algorithm is to make use of three pieces of information, including generic parti-

cles, local extremum of particles and global extremum of population, to guide the next

iteration of particles’ velocity and position. For the matter of optimal aggregation tree

problem, the different routes corresponding to current positions are independent, and

this situation does not match continuous variables optimisation in the PSO algorithm.

Besides that, addition and subtraction operations between paths and the rate of path

change are difficult to express directly by using the velocity and displacement formu-

las of the PSO algorithm. Hence, we need to make further improvements in the PSO

algorithm so that it can be used to optimise paths. The specific process of optimisation

is explained in Section 3.7.

3.8.3 Data Gathering Phase

The data gathering phase occupies the main network lifetime, which is longer than the

topology adjustment phase. In this phase, data flows to the aggregator node which is

elected by the PSO algorithm in the end of the routing tree optimisation phase. The

aggregator node then aggregates the gathering data to a new fixed length packet and

transmits it to the base station via multi-hop.

3.9 Performance Analysis

In this section, we perform a comparison between the PSO algorithm for aggregation

tree and other algorithms such as the SPT algorithm, the MST algorithm, and the SLT
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algorithm. As mentioned before, the SLT algorithm is a routing algorithm proposed

in [53], aimed at simultaneously approaching to both the MST algorithm and the SPT

algorithm for given nodes. The SLT algorithm is employed in [49] as an approximation

solution to solve the aggregation tree problem. From the comparison, we will conclude

that PSO surpasses other three algorithms with two typical correlation coefficients.

3.9.1 Scenario

Consider a sensor network where nodes are scattered on an N × N square grid, where

only N nodes in the left column are sources. The base station is located at the rightmost

bottom corner. We assume that each source generates unit data I0 which is responded

to the query of the base station. Data packets will be aggregated at a relay node on

their paths to the base station when the paths overlap at the node. The aggregation

cost at the base station can be negligible from the total routing cost since a base station

usually is not subject to the restrictions of energy.

Nodes in the grid can only communicate with their neighbours. The energy dissipation

for delivering one bit of data between adjacent nodes is assumed to be c0. Let q0 be the

cost for aggregating per bit of multi data packets. In addition, variable ρ indicates

different correlation coefficients for I0. Under this setup, we compare four routing

schemes, namely the SPT algorithm, the MST algorithm, the SLT algorithm, and the

PSO algorithm for aggregation tree. According to (3.1), data traffic after aggregation is

mainly determined by ρ. Therefore, ρ is a key parameter which can significantly affect

routing decisions when involving data aggregation. For instance, a low ρ may enable a

node to employ shortest path transmission strategy, especially when the data amount

cannot be significantly reduced. We consider two typical scenarios to demonstrate

their performance differences with the change of ρ:

• In the first scenario, ρ approaches 1. In other words, the data among different

sensors are highly correlated.

• In the second scenario, ρ approaches 0. That is to say, the redundancy among the

information gathered by different sensors is fairly low.
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3.9.2 Near Perfect Aggregation

When ρ approaches 1, the routing tree established by four algorithms are depicted in

Fig. 3.10. Without loss of generality, at each relay node, two correlated data packets

I0 are aggregated to output another I0 + I0(1 − ρ) packet. In the SPT algorithm, the

distance from each source node to the base station is N − 1 hops. In the MST algorithm,

the farthest source is 2(N − 1) hops from the base station. Since 2(N − 1) < (1 +
√

2)(N − 1), according to [53], the SLT algorithm will degrade into the MST algorithm

for this scenario. In the following, we will examine the cost of the MST (SLT) algorithm,

the SPT algorithm, and the PSO algorithm for this network.

The cost for the MST algorithm, CMST, can be derived as

CMST =
N−1

∑
i=1

[I0 + (i − 1)(1 − ρ)I0]c0 +
N−1

∑
i=1

[I0 + (N − 1)(1 − ρ)I0]c0

+
N−1

∑
i=1

[I0 + I0 + (i − 1)(1 − ρ)I0]q0

= 2(N − 1)I0c0 +
(N − 1)(3N − 4)

2
(1 − ρ)I0c0

+[2(N − 1) +
(N − 1)(N − 2)

2
(1 − ρ)]I0q0 (3.27)

The cost for the SPT algorithm is

CSPT =
N−1

∑
i=1

iI0c0 +
N−1

∑
i=1

[I0 + (i − 1)(1 − ρ)I0]c0

+
N−2

∑
i=1

[I0 + I0 + (i − 1)(1 − ρ)I0]q0

=
N(N − 1)

2
I0c0 + (N − 1)I0c0 +

(N − 1)(N − 2)
2

(1 − ρ)I0c0

+[2(N − 1) +
(N − 2)(N − 3)

2
(1 − ρ)]I0q0 (3.28)

In this case, it is easy to verify that the performance of the MST algorithm is the better

than the SPT algorithm. As mentioned in Section 3.7.2, the SPT algorithm and the MST

algorithm have good results in initial population, respectively when ρ is equal to 0 and

1. Hence, we select the SPT structure and the MST structure as individuals in the PSO

algorithm to execute variation. An apparent offspring we can get is that all sources
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Figure 3.10. Data aggregation trees for the MST algorithm, the SPT algorithm, the SLT

algorithm, and the PSO algorithm when ρ approaches 1.

except node 1 connect to one node which in turn will connect to the base station via
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the shortest path as shown in Fig. 3.10(c). The cost for this aggregation tree is

CPSO1 =
N−1

∑
i=1

[I0 + (i − 1)(1 − ρ)I0]c0 + I0c0 +
N−2

∑
i=1

[I0 + (N − 1)(1 − ρ)I0]c0

+
N−1

∑
i=1

[I0 + I0 + (i − 1)(1 − ρ)I0]q0

= 2(N − 1)I0c0 +
3(N − 1)(N − 2)

2
(1 − ρ)I0c0

+[2(N − 1) +
(N − 1)(N − 2)

2
(1 − ρ)]I0q0 (3.29)

The cost is the lessen than the MST algorithm when N = 3, 4. When N ≥ 5, we use

the MST, the SPT and the routing tree shown in Fig. 3.10(c) as individuals to continue

the optimisation by the PSO algorithm. After several iterations, source nodes will be

connected to a centre in the left column, and the centre node is connected to the base

station via the shortest path as shown in Fig. 3.10(d). Since the amount of source nodes

is a randomisation number, the location of the centre node will vary accordingly, which

will induce different paths and consequently have different total costs. When N =

2k, (k = 1, 2, ..., m),

CPSO2 =

N
2 −1

∑
i=1

[I0 + (i − 1)(1 − ρ)I0]c0 +

N
2

∑
i=1

[I0 + (i − 1)(1 − ρ)I0]c0

+
N−1

∑
i=1

[I0 + (
N
2
− 1)(1 − ρ)I0 + (1 − ρ)I0 + (

N
2
− 2)(1 − ρ)2 I0]c0

+2

N
2 −1

∑
i=1

[I0 + I0 + (i − 1)(1 − ρ)I0]q0

+[I0 + (
N
2
− 2)(1 − ρ)I0 + I0 + (

N
2
− 1)(1 − ρ)I0]q0 (3.30)

The first and second terms of (3.30) represent the transmission costs from the left top

and left bottom sources to the centre node, the third term summarises the transmission

costs from centre nodes to the base station, and the fourth and fifth terms captures the

aggregation costs on the left line. The above equation can be simplified as

CPSO2 = [2(N − 1) +
(N − 2)2 + 2N(N − 1)

4
(1 − ρ) +

(N − 1)(N − 4)
2

(1 − ρ)2]I0c0

+[2(N − 1) + (
N
2
− 1)(

N
2
− 2)(1 − ρ) + (N − 3)(1 − ρ)]I0q0 (3.31)
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When N ≥ 5, the difference of cost in (3.29) and (3.31) is demonstrated in the equation

below:

CPSO1 − CPSO2 = [
3N2 − 12N + 8

4
(1 − ρ)− (N − 1)(N − 4)

2
(1 − ρ)2]I0c0

+(
N2

4
− N + 2)(1 − ρ)I0q0

> [
3N2 − 12N + 8

4
− (N − 1)(N − 4)

2
](1 − ρ)I0c0

+(
N2

4
− N + 2)(1 − ρ)I0q0

>
N(N − 2)

4
(1 − ρ)I0c0 + (

(N − 2)2

4
+ 1)(1 − ρ)I0q0

> 0 (3.32)

Since CPSO1 < CMST, we have CPSO2 < CMST. Evidently, provided that ρ approaches

1, the PSO algorithm always outperforms the MST algorithm. Simultaneously, it is

always better than the SPT algorithm. When N = 2k + 1, (k = 1, 2, ..., m), the same

conclusions can still be drawn by following a similar analysis.

3.9.3 Near Non-aggregation

In order to make aggregation meaningful, the aggregation cost should be smaller than

the transmission cost. Otherwise, relay nodes will prefer forwarding data directly in-

stead of doing aggregation for energy saving. Without loss of generality, at each relay

node, aggregation between any two data packets will occur on condition that

[I0 + (1 − ρ)I0]c0 + 2I0q0 < 2I0c0

q0 <
ρc0

2
(3.33)

Considering q0 is a constant which is larger than 0, (3.33) cannot be satisfied when ρ

approaches 0. In other words, it is not necessary to perform data aggregation during

routing. Hence, the PSO algorithm takes the SPT algorithm as the optimal solution.

Evidently, the PSO algorithm always outperforms the MST algorithm as well.

The above analysis concludes that the PSO algorithm can actually approximate to the

optimal solution and outperform the MST (SLT) algorithm and the SPT algorithm in
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different scenarios while the SPT algorithm and the MST algorithm can only perform

well in certain extreme cases. Indeed, the data correlation coefficient is usually between

0 and 1. In the next chapter, we will give extensive simulation results to illustrate

the outperforming of the PSO algorithm for an aggregation tree under more general

system setups.

3.9.4 Time complexity analysis

In this subsection, we will analyse the time complexity of PSO algorithm. Assume that

there are n nodes in wireless sensor networks, M (M is a constant) initial particles and

t evolution iterations. In the first step, it will cost O(1) times for selection. During the

second step, it first takes O((M− 2)n) times to perform crossover between generic par-

ticles and the global optimum. Then, the PSO algorithm performs crossover between

generic particles and the local optimum. Thus, its time complexity is O((M − 2)n) as

well. Next, the algorithm will perform mutation among M particles. The time com-

plexity is O(1). After that, the decoding time in this method is O(n log n). There-

fore, the total complexity of PSO algorithm is t(O(1) +O((M − 2)n) +O((M − 2)n) +

O(1) + O(n log n)) = O(tn log n).

3.9.5 Message complexity analysis

Next, we analyse the message complexity of the ACO algorithm. Assume that there are

n nodes in wireless sensor networks, K source nodes. In the first phase, each node will

broadcast its local information once, such as node identity (ID) and current transmit-

ting power, so the message complexity is O(n). In the second phase, each source node

sends a control data to base station via a path. The transition probability determined

by pheromone levels influences the next hop selection, which helps to increase the di-

versity of routing tree. It takes O(Kn) messages at most for a routing tree construction.

In the third phase, since the PSO algorithm requests M initial routing trees. Therefore,

the total message complexity of the ACO algorithm is O(n) + O(MKn) = O(n).
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3.10 Conclusion

In this chapter, we have formulated the research problem and described the optimi-

sation objective. Concerning optimisation on data gathering with aggregation, three

heuristic algorithms were introduced to provide possible solutions to the problem. P-

SO algorithm modified by the GA was discussed to address the discrete nature of our

optimisation problem. Following this discussion, a novel data gathering algorithm

with aggregation for minimising energy consumption was proposed. The mathemat-

ical analysis shows that the aggregation tree using the PSO algorithm outperforms

other three existing routing algorithms.
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Chapter 4

Performance Evaluation by
Simulation

T
HIS chapter provides a set of simulation results to evaluate the

performance of our proposed routing scheme under different

environments and conditions. The performance of the particle

swarm optimisation (PSO) algorithm for an aggregation tree is compared

with three other existing algorithms in terms of energy consumption.
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4.1 Introduction

In this chapter, we present an extensive set of simulations to evaluate the performance

of our proposed routing scheme. For sensor nodes randomly deployed in a 2D field, we

compare the performance of the PSO algorithm with other routing algorithms based

on the shortest path tree (SPT) algorithm, the minimum spanning tree (MST) algorith-

m, and the shallow light tree (SLT) algorithm. The impact of network connectivity and

the correlation coefficient on different algorithms is studied. Concurring with our de-

sign goal and analysis of the the PSO algorithm, our key finding of the experiments is

that the PSO algorithm can adapt itself to a wide range of network connectivity and

data correlation. While other algorithms may achieve better performance in some ex-

treme cases, they suffer from varying conditions and hence perform poorly in general

scenarios.

4.2 Simulation Set-up

A square region of size 50m×50m is uniformly divided into 100 grids, and each sen-

sor is deployed in one grid. Since the coordinate of each sensor is determined by a

random function which can generate uniformly distributed random numbers within

the interval [0,50], the sensor nodes are randomly distributed. We assume that each

source node produces one unit of data and sends it to the base station located at the

bottom-right corner as shown in Fig. 4.1. A few sensors act as sources and all sensors

can be acting as routers.

The data packet size is 4000 bits. This means that each node transmits a 4000 bits data

packet to the base station once. The calculation of energy consumption for data trans-

mission is based on the energy model presented in Section 3.2.3. The correlation model

introduced in Section 3.2.2 is employed here to estimate the packet size after data ag-

gregation. The parameters utilised in the simulations are summarised in Table 4.1. The

simulation results presented in this chapter are the averages of 30 simulation runs.

4.3 Performance Evaluation
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Figure 4.1. Network structure for simulation.

Table 4.1. Parameters of simulation.
Parameter Value

Number of nodes N 100

Network size 50m×50m

Base station location (50m, 50m)

Initial energy of sensor nodes 1J

Data packet size 4000bits

Radio electronics energy Eelec 50nJ/bit

Cross-over distance d0 87m

Amplifier parameter of free space model ϵ f s 10pJ/bit/m2

Amplifier parameter of two-ray ground model ϵtg 0.0013pJ/bit/m4

Data aggregation energy Eda 15nJ/bit/signal

4.3.1 Compared objectives

For the simulations described in this section, we implemented the SPT algorithm, the

MST algorithm, the SLT algorithm, and the PSO algorithm to compare the performance

of our routing scheme. We briefly summarise these four algorithms here.
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We define a source nodes set as V′, T is the set of nodes existing in the routing tree and

the weight from the nodes of T to root node s has been identified, and L is the set of

relay nodes.

(a) The SPT algorithm

The SPT algorithm is an interactive process that works through a graph or a set of

vertices and paths to calculate any source node to the base station in the set. It goes

through these steps:

Step 1. Select the base station to be s: T = {s}.

Step 2. If x ∈ L links to s, update the weight Ws,x between s and x, otherwise Ws,x = ∞.

Step 3. Find out ti ∈ V′, subject to Ws,ti = min{Ws,x|x ∈ L}

Step 4. Record the relay nodes from s to ti, and update T and V′: T = T ∪ {t1} ∪ {t2} ∪

... ∪ {ti}, V′ = V′ − {ti}. If V′ = ∅, the algorithm ends, otherwise return to Step 2.

These steps are shown in Fig. 4.2 as a flow chart.

(b) The MST algorithm

The MST algorithm enables each source node to link to the nearest source node as

its parent node, and incrementally add nodes to construct a routing tree. It can be

implemented according to following steps:

Step 1. Select the base station to be s: T = {s}.

Step 2. If x ∈ L links to s, update the weight Ws,x between s and x, otherwise Ws,x = ∞.

Step 3. Find out t ∈ V′, which subjects to Wp,t = min{Ws,x|s ∈ T, x ∈ L}.

Step 4. Record the relay nodes from s to ti, and update T, V′ and s: T = T ∪ {t1} ∪

{t2} ∪ ... ∪ {ti}, V′ = V′ − {ti}, and s = ti. If V′ = ∅, the algorithm ends, otherwise

return to Step 2.

These steps are shown in Fig. 4.3 as a flow chart.
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Figure 4.2. The flow chart of the SPT algorithm.

(c) The SLT algorithm

The SLT algorithm is designed to find a spanning tree that simultaneously approxi-

mates a shortest-path tree and a minimum spanning tree. It works as the following

procedure:

Step 1. Select the minimum spanning tree to be T, the base station to be s.

Step 2. Find out the farthest node t ∈ V′. If the weight of t to the base station is larger

than 1 +
√

2 times of that in the shortest path tree, the node will use the shortest path

to the base station to substitute the original path, and update T and the weight of node

x which connects to the node t in the current tree as Ws,x = min{Ws,x, Ws,t + Wt,x}.

Step 3. Update V′: V′ = V′ − {ti}. If V′ = ∅, the algorithm ends, otherwise return to

Step 2.
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These steps are shown in Fig. 4.4 as a flow chart.

(d) The PSO algorithm

The PSO algorithm utilises a heuristic method to find a near optimal routing tree. It

performs as follows:

Step 1. Build initial population (routing tree) T1, T2, ..., Tn.

Step 2. Set a counter t = 0.

Step 3. Define a fitness function to evaluate the fitness of each particle. The fitness

function is defined in Section 3.7.3.

Step 4. Select fittest individuals for crossover and mutation with a probability. The

selection scheme is introduced in Section 3.7.4.
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Figure 4.4. The flow chart of the SLT algorithm.

Step 5. Perform two crossover operations to a generic particle Ti. One is executed

between Ti and global best particle Tgbest. The other is executed between Ti and local

best particle Tlbest. The crossover scheme is specified in Section 3.7.5.

Step 6. Perform mutation to Ti. The mutation scheme is discussed in Section 3.7.6.

Step 7. If t > N, the algorithm ends, otherwise update t: t = t + 1 and return to Step

2.

These steps are shown in Fig. 4.5 as a flow chart.

4.3.2 Simulation Results
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Figure 4.5. The flow chart of the PSO algorithm.

(a) Impact of Network Connectivity

Since R denotes the transmission range of a node and k represents the number of source

nodes, by varying R and k, we can control the connectivity of the network. Naturally,

different connectivity will affect the behaviour of different routing algorithms.

The first set of simulations is carried out to investigate the total energy consumption

with ρ approaches 0 and R=10m, 15m, and 20m. The simulation results are depicted in

Fig. 4.6, Fig. 4.7, and Fig. 4.8.

Fig. 4.6(a), Fig. 4.7(a), and Fig. 4.8(a) show the mean of energy consumption per round

versus the number of source nodes using an aggregation tree with the PSO algorith-

m, the MST algorithm, the SPT algorithm, and the SLT algorithm. Clearly, when ρ

approaches 0 the PSO algorithm performs as well as the SPT algorithm and reduces

energy consumption significantly compared with the MST algorithm and the SLT al-

gorithm. A reduction of average energy consumption of about 40% and 50% can be
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(b) Variance of energy consumption versus the

number of source nodes

Figure 4.6. Energy consumption versus the number of source nodes when R=10m and ρ

approaches 0.

0 5 10 15 20
0

1

2

3

4

5
x 10

7

The number of source nodes

M
ea

n 
of

 e
ne

rg
y 

co
ns

um
pt

io
n 

(n
J)

 

 

SLT
MST
SPT
PSO

(a) Mean of energy consumption versus the num-

ber of source nodes

0 5 10 15 20
0

1

2

3

4

5
x 10

6

The number of source nodes

V
ar

ia
nc

e 
of

 e
ne

rg
y 

co
ns

um
pt

io
n 

(n
J)

 

 

SLT
MST
SPT
PSO

(b) Variance of energy consumption versus the

number of source nodes

Figure 4.7. Energy consumption versus the number of source nodes when R=15m and ρ

approaches 0.

obtained by the PSO algorithm as well as the SPT algorithm over the SLT algorithm

and the MST algorithm, respectively.
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(b) Variance of energy consumption versus the

number of source nodes

Figure 4.8. Energy consumption versus the number of source nodes when R=20m and ρ

approaches 0.

This can be explained as follows: In a network with poor correlation, the PSO algorith-

m reduces to the SPT algorithm, and data should be transmitted directly to the base

station via the shortest paths instead of aggregator nodes by detouring, since there is

no redundancy among the information gathered by different sensors and aggregation

at any relay node is not efficient in reducing the data amount. As the PSO algorith-

m explicitly considers correlation condition, this phenomenon can be captured and

exploited. On the contrary, the SLT results in a fixed routing structure according to

network topology and a fixed approximation ratio to the MST algorithm and the SP-

T algorithm and hence cannot dynamically adapt to the change of data correlation.

Therefore, when ρ approaches 0, the SLT algorithm cannot recognise the advantage of

transmitting over direct links and results in poor performance.

Fig. 4.6(b), Fig. 4.7(b), and Fig. 4.8(b) show the variance of energy consumption with

the number of source nodes changing in the four algorithms. From these graphs, when

ρ approaches 0 it can be easily observed that the average energy consumption of the

MST algorithm varies much more than the three other algorithms. Since the MST algo-

rithm has the most transmission tasks, the energy consumption dramatically changes

from scenario to scenario with different network topologies. When k increases from
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5 to 20, there is a rise in the variance of energy consumption for the four algorithms

accordingly. The reason is that the increase in the number of source nodes raises the

load of the transmission task.
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(b) Variance of energy consumption versus the

number of source nodes

Figure 4.9. Energy consumption versus the number of source nodes when R=10m and ρ

approaches 1.
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(b) Variance of energy consumption versus the

number of source nodes

Figure 4.10. Energy consumption versus the number of source nodes when R=15m and ρ

approaches 1.
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(b) Variance of energy consumption versus the

number of source nodes

Figure 4.11. Energy consumption versus the number of source nodes when R=20m and ρ

approaches 1.

The second set of simulations was carried out to measure the total energy consumption

with ρ approaches 1 and R=10, 15, and 20. The simulation results are depicted in

Fig. 4.9, Fig. 4.10, and Fig. 4.11.

When ρ approaches 1 as illustrated in Fig. 4.9(a), Fig. 4.10(a), and Fig. 4.11(a), the PSO

algorithm performs better than all other algorithms with regard to the mean of energy

consumption. A reduction of average energy consumption of about 5%, 5%, and 40%

can be obtained by the PSO algorithm over the MST algorithm, the SLT algorithm, and

the SPT algorithm respectively.

The performance of the MST algorithm is the closest to that of the PSO algorithm.

However, since some nodes within one hop to the base station would waste energy

for detouring to aggregator nodes rather than transmitting directly to the base station,

the MST algorithm cannot achieve the optimal performance. Because the nodes can

not sufficiently take advantage of data aggregation to reduce the transmission task,

the SPT algorithm expends the most energy compared with the three other algorithms.

The SLT algorithm can balance between data aggregation and direct transmission, but

it gets the benefit implicitly. Hence, we observed that the energy consumption of the
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PSO algorithm increases more slowly than the SLT algorithm with the increase in k.

Longer transmission range and thus better network connectivity of the network is in

favour of the PSO algorithm as it can employ more direct shortest paths to prevent

unnecessary aggregation cost at the node near the base station.

Fig. 4.9(b), Fig. 4.10(b), and Fig. 4.11(b) show the variance of energy consumption with

the number of source nodes changing in the four algorithms when ρ approaches 1.

From these graphs, it can be easily observed that the average energy consumption of

the SPT algorithm varies much more than the three other algorithms. Since the SPT

algorithm cannot sufficiently exploit data aggregation to improve energy efficiency,

its transmission task is much greater than the three other algorithms, and the energy

consumption varies in a wider range accordingly. When k increases from 5 to 20, there

is a rise in the variance of energy consumption for the four algorithms accordingly

since the increase in k raises the load of the transmission task.

(b) Impact of Simulation Runs

The third set of simulations was carried out to measure the average energy consump-

tion impacted by simulation runs with R=15m and k=20.The simulation results are

depicted in Fig. 4.13.

Fig. 4.12(a) and Fig. 4.12(b) show the results by varying the number of runs in different

data correlation scenarios. Although the degree of data aggregation differs markedly

between them, these two figures demonstrate a similar trend that with the increase

in the number of runs the average energy consumption of the four algorithms fluctu-

ates and gradually respectively stabilises after performing 30 runs. Hence, 30 runs are

reasonable for statistical significance in our simulation.

(c) Impact of Correlation Coefficient

The correlation coefficient ρ determines data reduction ratio after data aggregation,

and it is heavily dependent on the application scenarios. For instance, for the purpose

of sensing environment temperature, each node only sends out one temperature value

packet after data aggregation and hence ρ for this scenario is 1. On the other hand,
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(b) Mean of energy consumption versus simula-

tion runs when ρ approaches 1

Figure 4.12. Energy consumption versus simulation runs when R=15m and k=20.

in a multimedia sensor network, images collected by different sensor nodes may have

different redundancy because of overlapping fields of view. In this scenario, ρ may

vary from 0 to 1. Therefore, it is necessary to examine the performance of the four

algorithms under different correlation coefficients.

The fourth set of simulations was carried out to measure the impact of correlation

coefficient by comparing our proposed PSO algorithm and the three other algorithms

with R=15m and k=20. The simulation results are depicted in Fig. 4.13.

We vary ρ from 0 to 1 with a step size of 0.2. Fig. 4.13(a) illustrates the average en-

ergy consumption of the four algorithms. The costs of all algorithms decrease with

the increase in ρ, the correlation coefficient. This exemplifies that data aggregation in

sensor networks can greatly benefit the routing performance by reducing redundancy

among correlated data. In addition, the PSO algorithm evidently outperforms other

algorithms in the energy consumption with the increase in the correlation coefficient.

A reduction of average energy consumption of about 25%, 30%, and 35% can be ob-

tained by the PSO algorithm over the SLT algorithm, the MST algorithm, and the SPT

algorithm, respectively.
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lation coefficient

Figure 4.13. Energy consumption versus correlation coefficient when R=15 and k=20.

When ρ is small, the SPT algorithm performs well. However, it does not benefit from

the increase in ρ as it cannot efficiently perform data aggregation to eliminate redun-

dancy among data. In the contrast, the MST algorithm gets the worst performance

when ρ is small since it pursues data aggregation but data are actually low correlated.

Although the SLT algorithm is more balanced than the MST algorithm and the SPT al-

gorithm, it is still constrained by the fixed routing structure and a fixed approximation

ratio to the MST algorithm and the SPT algorithm. We observed the PSO algorithm

performs much better than the SLT algorithm. The main reason is that the PSO algo-

rithm recalculates total energy dissipation in every stage to get perfect matching and,

thus, can adapt to the correlation among nodes.

Fig. 4.13(b) shows the variance of energy consumption in the four algorithms when

ρ changes from 0 to 1. From this graph, it can be easily observed that the average

energy consumption of the MST algorithm and the SLT algorithm varies much more

than the other two algorithms. The main reason is that the MST algorithm and the

SLT algorithm prefer to detour to pursue data aggregation. Although the transmission

task decreases with the rise in correlation coefficient, it is still more than the other two

algorithms for a wide range of correlation coefficient.
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The fifth set of simulations was carried out to measure the maximum run (the first

node dies) by comparing our proposed algorithm and the three other methods with

R=15m and k=20.
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Figure 4.14. The number of runs versus correlation coefficient when R=15m and k=20.

We can see from the figure that the maximum run of all algorithms grows with the

increase in ρ. The main reason is that data aggregation can significantly reduce traffic

by eliminating redundancy among correlated data and hence consuming less energy.

Since aggregator nodes receive data from different nodes and perform data aggrega-

tion, they always die earlier than others due to the heavy load. When ρ < 0.8, the SPT

algorithm outperforms the three other algorithms markedly in terms of maximum run

because data from different sources are opportunistically aggregated and the amount

of data for aggregation is not large. Since the SPT algorithm cannot sufficiently exploit

data aggregation to reduce energy cost, it does not benefit as well as the three other

algorithms when ρ increases from 0.8 to 1. We observed that the PSO algorithm per-

forms much better than the SLT algorithm and the MST algorithm. Because the MST

algorithm and the SLT algorithm prefer to detour to pursue data aggregation, large

amount of data may be aggregated on nodes near the sources, and these aggregator

nodes will exhaust energy earlier. In addition, it can be clearly seen from Fig. 4.14 that
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the maximum run of the PSO algorithms drops dramatically when ρ varies from 0 to

0.2. When ρ = 0, there is no redundancy among data and thus, the PSO algorithm

transmits data via shortest path. When ρ changes from 0 to 0.2, the PSO algorithm can

find more aggregator nodes to share the same paths and the load of aggregator nodes

become heavier. As a result, the maximum run of the PSO algorithm declines.

4.4 Conclusion

The performance of our proposed routing scheme was evaluated under different en-

vironments and conditions by simulation. Simulation results showed that our scheme

performs as well as the shortest path tree algorithm and saves more than 45% of energy

over the other two algorithms in the non-aggregation scenario. If perfect aggregation

occurs, our scheme obtains about 5% energy reduction at least. When varying from

non to perfect aggregation, the simulation results show that our scheme can adapt to

the change of data correlation condition and achieve at least a 25% energy saving on

average. Since our scheme can save energy and enhance transmission efficiency, it is

well suited for applications where energy and data traffic are the primary consider-

ations. It is shown that the PSO algorithm can perform well in data gathering and

aggregation for wireless sensor networks.
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Chapter 5

Conclusions and Future
Work

T
HIS chapter concludes the thesis by reviewing the work done,

re-summarising the original contributions, and recommending

future work that could be undertaken by others.
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5.1 Review of and Conclusions from the Work in This

Thesis

We developed an energy-efficient data gathering and aggregation routing scheme that

caters for the energy challenges in wireless sensor networks. The ant colony optimisa-

tion algorithm in the scheme collects information about the network and builds initial

routing trees. This can avoid the broadcast storm which renders the network unable

to transport normal traffic and provide population diversity for routing tree optimi-

sation. The particle swarm optimisation (PSO) algorithm which is performed by the

base station is utilised in the scheme to optimise a joint objective between data traffic

and transmission structure. The number of traffic tasks can be decreased by executing

data aggregation in aggregator nodes. Using this heuristic algorithm, more reasonable

aggregator nodes in terms of energy-efficiency can be selected. In order to reduce the

energy consumption for data transmission from aggregator nodes to the base station,

the particle swarm optimisation algorithm optimises transmission structure as well.

This algorithm conducts a multi-hop routing in terms of energy consumption. Signifi-

cant energy dissipation of data transmission can be reduced by using this algorithm.

The performance of the developed protocol is evaluated by simulations. Energy con-

sumption and network lifetime are defined as the performance metrics for compar-

ing the proposed algorithm with three existing routing algorithms. Simulation results

show that the proposed algorithm outperformed existing algorithms in terms of energy

consumption and that our scheme can adapt to the change of network connectivity and

data correlation condition. Furthermore, these results verified the theoretical analysis

of our algorithm regarding optimisation on data traffic and transmission structure. It is

shown that the particle swarm optimisation algorithm can perform well in the routing

scheme for wireless sensor networks.

Because routing tree optimisation is conducted in the base station, there are small time

latency and communication overhead problems when using the proposed algorithm

as the routing scheme for wireless sensor networks. In addition, using the multi-hop

routing for data transmission from cluster heads to the base station needs a bit more

Page 78



Chapter 5 Conclusions and Future Work

time than direct transmission. Since our scheme can save energy and enhance trans-

mission efficiency, it is well suited for applications where energy and data traffic are

the primary considerations.

5.2 Recommendations on Future Work

The energy-efficient data gathering and aggregation based on the PSO algorithm pro-

posed in this thesis offers good performance in data-gathering and aggregation appli-

cations of wireless sensor networks. The analysis and simulation results show that the

routing algorithm outperforms the three other existing algorithms. However, some

aspects of the protocol still need to be improved.

While the aggregation tree with the PSO algorithm has been shown to outperform

other routing algorithms, including the SPT algorithm, the MST algorithm, and the

SLT algorithm in various system settings, it assumes that aggregation is performed

at the intersection nodes whenever data streams are encountered. However, such a

strategy may introduce unnecessary energy consumption since it cannot adaptively

adjusts aggregation decisions for sensor nodes regarding whether aggregation should

be performed.

The correlation model employed in this thesis is not an approximated spatial model,

where the correlation coefficient decreases with the distance between two nodes pro-

vided that they are within a correlation range. If two nodes are more than a certain

distance apart, the correlation coefficient is simply 0. Otherwise, the correlation co-

efficient is influenced by the distance between the nodes. By varying the correlation

range, we can control the average correlation coefficient of the network. Therefore, the

data correlation model should be modified further.

5.3 Conclusion

This chapter summarises the research carried out in the duration of the master by re-

search study. The research done in this thesis contributes to knowledge in data gath-

ering and aggregation for wireless sensor networks. The thesis provides a general
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method for (a) gathering information by an ant colony optimisation algorithm which

is an approach to provide particles for the PSO algorithm and (b) aggregation tree op-

timisation using a modified PSO algorithm. The contributions in this thesis could be

used by other researchers in their own studies and applications. The work in this the-

sis and the recommendations on future work in Section 5.2 will create more research

possibilities for improving wireless sensor networks systems.

Page 80



Appendix A

T
HIS appendix contains work of the published paper as part of

the contributions in this thesis.
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