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Abstract

This work investigates the processes used to reconstruct extensive air showers induced

in the atmosphere by ultra high energy cosmic rays. It contributes to the e�orts of the

Pierre Auger Collaboration, whose members are working to solve many mysteries behind

the phenomenon of these particles. Speci�cally my work has focused on the use of the

Pierre Auger Observatory's �uorescence detectors to determine cosmic ray energies. I have

investigated ways to reduce the systematic uncertainties involved in the reconstruction

process.

To accurately reconstruct an extensive air shower in order to determine properties of

the primary cosmic ray, we need to be able to model how the atmosphere will a�ect its

production and propagation. A precise knowledge of how to interpret the signals received

at our detectors is also needed. Inaccurate models or incorrect assumptions may lead

to large errors in the shape and magnitude of the true energy spectrum of the cosmic

rays which we observe at Earth. We wish to use the information that we gather from

this experiment about the energy spectrum, anisotropy and composition of cosmic rays

to help locate and study sources, and the acceleration mechanisms that produce their

incredible energies. If we are inaccurately reconstructing these extensive air showers then

this could lead to incorrect theories being developed. The systematic uncertainties that I

have investigated and are presented in my thesis are:

• An unexplained halo of light around the shower track at the �uorescence detector

which led me to develop a parameterisation for singly scattered Cherenkov light

that we receive at the �uorescence detectors. This parameterisation is a function of

ix



shower evolution, distance to the shower, scattering probability and angular distance

from the tracks centre.

• Uncertainty in the nitrogen �uorescence yield due to the humidity dependence of

collisional quenching. To take this dependence into account I constructed monthly

vapour pressure pro�les using data acquired from radiosonde launches conducted

above the Pierre Auger Observatory. As the �uorescence detectors are unable to

detect air showers on overcast days, launches conducted in overcast conditions were

identi�ed and excluded, using infra-red cloud camera data and sky temperature

measurements. Methods to reduce the uncertainty on the vapour pressure pro�les

uncertainties were also investigated.

• Uncertainty in the methods used to interpret the light seen by the �uorescence

detectors. When comparing two methods, I found that they di�ered in their approach

to take into account the lateral shower width at large shower ages. This was because

the initial parameterisation was only constructed up to shower ages of 1.2. I used

the simulation package CORSIKA to check whether the original parameterisation

was still valid at ages up to 1.5, and to check its validity down to primary particle

energies of 1017eV.

In addressing these systematic uncertainties, we now have a better understanding of the

light that we receive at the Fluorescence Detectors, and of how to collect this light for

use in reconstructing extensive air showers to determine the cosmic ray energy spectrum,

cosmic ray composition and their arrival directions.
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