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from habitat image processing
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Abstract. Cost-effective proxies of biodiversity and species abundance, applicable across
a range of spatial scales, are needed for setting conservation priorities and planning action. We
outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images
that, being an effective proxy for habitat complexity, correlates with species diversity and
requires little image processing or interpretation. We validated this method for coral reefs of
the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using
digital photographs of benthic communities at the transect scale and high-resolution Landsat
satellite images at the reef scale. We calculated an index of image-derived spatial
heterogeneity, the mean information gain (MIG), for each scale and related it to univariate
(species richness and total abundance summed across species) and multivariate (species
abundance matrix) measures of fish community structure, using two techniques that account
for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and
distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG
alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance,
and 25% in fish community structure at multiple scales, thus demonstrating the possibility of
easily and rapidly exploiting spatial information contained in digital images to complement
existing methods for inferring diversity and abundance patterns among fish communities.
Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-
cost way to optimize the design of surveys used in conservation planning. In data-sparse
situations, this simple approach also offers a viable method for rapid assessment of potential
local biodiversity, particularly where there is little local capacity in terms of skills or resources
for mounting in-depth biodiversity surveys.

Key words: biodiversity; coral reef fish; ecological indicators; Great Barrier Reef, Australia; Landsat;
mean information gain; multilevel mixed-effects model; photography; remote sensing; spectral signal.

INTRODUCTION

Rapid global change and the widespread decline of

marine resources worldwide argue for developing cost-

effective predictors of marine biodiversity as tools for

conservation planning and prioritization (Beger and

Possingham 2008, Dalleau et al. 2010), particularly in

highly threatened environments such as coral reefs

(MacNeil et al. 2010, Mellin et al. 2010a, b). Among

potential predictors of species diversity, structurally

complex environments should provide greater opportu-

nities for variation and adaptation according to the

niche theory (Huston 1979, Levin 1999). This link

between species diversity and habitat complexity,

however, has been difficult to quantify in benthic

environments, mostly due to problems in measuring

structural complexity among different habitats. A

heterogeneous environment should give rise to a greater

variety of niches and thus favor the establishment and

maintenance of a greater diversity of species, particu-

larly specialists, and this is the case on coral reefs (Caley

and St John 1996, Halford and Caley 2009). Coral

carbonate structure provides many crevices and shelter

opportunities, as well as large gradients of environmen-

tal conditions in light, depth, temperature, and hydro-

dynamic exposure. This structural complexity of coral

habitats is closely linked with fish species diversity at

multiple spatial scales and distant locations (e.g., Sale

and Douglas 1984, Caley and St John 1996, Chittaro

2004). However, measuring reef complexity using

traditional in situ methods is time-consuming and tends

to be locally focused (e.g., Frost et al. 2005), limiting the

application of such methods over broad biogeographic

scales.
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The habitat complexity–diversity hypothesis has been

tested at the site scale (Luckhurst and Luckhurst 1978,

Friedlander and Parrish 1998, Attrill et al. 2000) using

three-dimensional physical descriptors of reef structure

and heterogeneity such as substratum rugosity, topog-

raphy, and the distribution of hole size and volume, all

of which are measured in situ. At broader spatial scales,

high-resolution remote-sensing methods are potentially

useful, but are limited in their ability to describe habitat

complexity as accurately as field-based surveys (e.g.,

Kuffner et al. 2007). Such limitations, as well as their

high costs, have limited their routine use. Therefore,

rapidly deployable, cross-scale, and cost-effective prox-

ies for habitat complexity still need to be developed.

Here we explore the use of imagery for developing such

metrics that effectively characterize the complexity of

two-dimensional reef habitats and are applicable across

multiple scales. Our approach is distinct from previous

methods in using compressed imagery that does not

require extensive and complicated processing.

The development of both in situ digital photography

and remote sensing has increased the availability of

habitat maps for species distribution modeling. In situ

images are typically used to define a typology of habitats

relevant for understanding species distributions at scales

,100 m (Dumas et al. 2009), whereas remotely sensed

images are used to map these habitats and associated

species at scales .100 m (e.g., Mattio et al. 2008). These

habitat maps are increasingly used as spatially explicit

layers in habitat suitability models, whereby biodiversity

metrics (e.g., species richness, abundance, functional

groups) can be mapped indirectly (Garza-Pérez et al.

2004, Mellin et al. 2007). However, these methods are

time-consuming, often requiring some form of field

validation, are scale-specific, and are rarely transferrable

across different study areas. Such nontransferability

clearly limits regional and global comparisons (Mellin et

al. 2009). In addition, most of the cost of habitat

mapping lies in labeling, whereby clusters of same-

colored pixels are labeled according to habitat name or

some other benthic property such as complexity

(Andréfouët 2008). Avoiding the need for qualitative

and quantitative labeling would greatly reduce the cost

of using such images. Here we present a scale-

independent method that does not require labeling, but

is instead based directly on image metrics computed

automatically by measuring the spatial heterogeneity

(e.g., texture) of the signal (radiance or reflectance) in

different spectral bands.

Digital images are composed of two interdependent

characteristics: tone (i.e., spectral information) and

texture (i.e., tonal variability in a given area; Baraldi

and Parmiggiani 1995). Therefore, the texture of an

image contains valuable information about the spatial

and structural arrangements of the objects it represents

(St-Louis et al. 2006). Because such images incorporate

within-habitat heterogeneity (as opposed to discrete

habitat categories) and minimize errors associated with

boundary delineation (Andréfouët et al. 2000, St-Louis

et al. 2006), an image’s heterogeneity might be a

reasonable estimate of habitat heterogeneity at any

spatial scale. Therefore, if image-derived spatial hetero-

geneity is directly linked to the complexity and

heterogeneity of habitats across multiple scales, greater

species diversity would be expected in areas of greater

image heterogeneity.

Few studies to date have demonstrated positive

relationships between image-derived spatial heterogene-

ity and biodiversity metrics, with the exception of, for

example, the diversity of vascular plants in temperate

forests at scales ,100 m (Proulx and Parrott 2008,

2009), and birds (St-Louis et al. 2006, Bellis et al. 2008),

mammals (Estes et al. 2008), and vascular plants

(Oldeland et al. 2010) at scales .100 m. Although these

studies’ results varied depending on the ecosystem,

species, and image-based metrics used, there was a

relationship between species diversity and habitat

characteristics derived from imagery at relatively small

spatial scales (e.g., 57–63% of variation explained in bird

species richness in semiarid habitats [St-Louis et al.

2006]; 27% of bongo antelope Tragelaphus euryceros

isaaci habitat selection [Estes et al. 2008]). To our

knowledge, no similar study has been applied to marine

ecosystems; as such, it remains unknown whether, how

well, and at what scales image-derived spatial heteroge-

neity can be used as a predictor for marine biodiversity.

Among the many metrics available to describe digital

images, mean information gain (MIG) is a well-

established measure of the complexity of spatial and

temporal patterns (Grassberger 1988, Wackerbauer et

al. 1994, Gell-Mann and Lloyd 1996, Lloyd 2001). MIG

provides an index for two-dimensional surfaces on a

scale from complete order to complete disorder. MIG

also has the advantage of being a global indicator of

spatial heterogeneity in an image that can be easily

applied to both high-resolution digital photographs and

lower-resolution satellite images.

Here we test the ability of MIG-based estimates of

spatial heterogeneity in coral reef images, taken at

different spatial scales, to predict fish biodiversity

patterns. We use an extensive, hierarchically stratified

coral reef data set, coupling fish census data with in situ

benthic and satellite images of reef habitats. Our

objectives were to (1) measure variation in heterogeneity

of reef habitat images taken at different spatial scales

and the covariance among them; (2) evaluate the relative

ability of each scale of image-derived spatial heteroge-

neity to characterize fish biodiversity using hierarchical,

multilevel statistical models; and (3) assess the combined

performance of MIG across all scales for predicting

observed patterns in coral reef fish biodiversity. We

explicitly test the hypotheses that increasing habitat

complexity, as measured by higher image MIG, mirrors

increasing species richness and abundance, and that

these relationships are spatially scale-dependent.
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METHODS

Study reefs and data collection

The Great Barrier Reef (GBR) consists of more than

2900 reefs extending over 2300 km between 98 and 248 S

latitude and covers ;350 000 km2 (see Plate 1). Between

1993 and 2007, fish communities on 46 reefs on the GBR

have been monitored annually by the Australian

Institute of Marine Science in the Long Term Monitor-

ing Program (Sweatman et al. 2005). These reefs occur

in six longitudinal sectors (Cooktown/Lizard Island,

Cairns, Townsville, Whitsunday, Swains, Capricorn

Bunkers) spanning most of the GBR (Fig. 1). Within

each sector, with the exception of the Swains and

Capricorn Bunker sectors, at least three reefs were

sampled in each of three shelf positions: inner, middle,

and outer. In the two southern sectors, reef formation

does not occur at all three shelf positions.

On each survey reef, three sites in a single habitat (the

first stretch of continuous reef on the northeast flank of

the reef, excluding vertical drop-offs) and separated by

.250 m were selected for sampling. Within each site, five

randomly selected and permanently marked 50-m

transects were deployed roughly parallel to the reef

crest, each separated by 10–40 m along the 6–9 m depth

contour. Sampling was evenly distributed among years

and transects except for 2005. Each year, counts within

these transects were recorded for 251 fish species from 10

families. This set of species excludes those that are

cryptic or nocturnal and therefore have a low probabil-

ity of detection. Larger mobile species were counted first

along a transect 5 m wide, and smaller, less mobile

species such as damselfishes (Pomacentridae) were

counted in a 1-m wide strip along the same transect

during the return swim (for detailed methods, see

Halford and Thompson 1996). Only adult fish (.1 year

old) were recorded, these being distinguished from

juveniles by their size and coloration. Sites were sampled

by different divers within and among years; annual

FIG. 1. Map of the Great Barrier Reef, Australia, with the positions of 46 AIMS (Australian Institute of Marine Science) reefs
monitored annually since 1993. Circled numbers indicate the location of each latitudinal sector.
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calibration exercises were done to ensure consistency

among divers (Halford and Thompson 1996).

Habitat image acquisition and treatment

Transect scale.—Still images of benthic sessile com-

munities were extracted from underwater video surveys

recorded along each transect subsequent to the 2008 fish

surveys (Abdo et al. 2004). A diver swam each transect

and recorded benthic communities using a Sony Digital

DCR-TRV950E video camera with the zoom set to full

wide-angle, the focus to manual, and the focal length to

0.5–1 m. A picture of the data sheet was taken at the

beginning of each transect for transect identification and

to set white balance. The camera was kept parallel to the

substratum at a distance of ;20 cm and moved along

the 50-m transect at an approximately constant speed

for 4–5 min. One still image (resolution 3072 3 2304

pixels) was extracted from these video records approx-

imately every 1 m, with between 36 and 73 images

recorded for each transect, depending on transect

topographic complexity. In total, 35 098 images were

acquired at the transect scale.

Following Proulx and Parrott (2008), we translated

each image from RGB (Red, Green, Blue) color

coordinates to HSV (Hue, Saturation, Value) coordi-

nates. The benefit of the HSV system is that it

reproduces more effectively how the human brain

represents and manipulates color, while preserving

within- and among-image variation in the original

RGB system. Next, we classified each pixel value (range

0–255) into M ¼ 10 evenly distributed classes. We then

calculated the mean information gain (MIG), a measure

of complexity in temporal and spatial data (Wacker-

bauer et al. 1994, Andrienko et al. 2000) that previously

has been linked to habitat complexity in terrestrial

ecosystems (Proulx and Parrott 2008, 2009). MIG

provides an index ranging from 0 for uniform patterns

across pixels to 1 for completely random patterns.

Intermediate values of MIG correspond to irregular

patterns composed of objects across a range of sizes,

typical of complex natural scenes (Andrienko et al.

2000). MIG is similar to second-order measures of

texture (Bellis et al. 2008); it describes the additional

information gained by looking at the configuration of

values in the neighborhood of each pixel in an image.

Thus, we would expect images of uniform, undifferen-

tiated habitats to have low MIG (i.e., low information

gain) and images of random, or highly differentiated

habitats to have high MIG (i.e., high information gain)

(e.g., at the transition between bright sand patches and

hard bottoms colonized by benthic organisms, or

between deep and shallow areas, the latter being

characterized by a brighter signature). Images of

irregular patterns typical of complex reef structure

(i.e., structural complexity arising from high substratum

rugosity and a wide range of hole sizes and distributions

at the patch scale, or fractal-like reef forms at the reef

scale) should have intermediate MIG.

We computed MIG for each of the three bands in the

HSV image as follows:

MIG ¼
�
XMk

j¼1

pðvjÞlog pðvjÞ
" #

� �
XM

i¼1

pðciÞlog pðciÞ
" #

logðMk=MÞ
ð1Þ

where p(ci ) is the relative frequency of pixel value ci in
the image and p(v j) is the relative frequency with which

a specific spatial configuration (v j) of k values is

observed. For M classes of values, the number of

possible configurations in a k-pixel neighborhood is Mk.

To ensure that each possible configuration has a

reasonable probability of occurring in an image, it is

generally recommended that the ratio of the total

number of pixels in the image to Mk be greater than

100. At all scales, we chose the highest possible value of

M to retain as much information as possible from the

image. For the transect images, we used M¼ 10 and k¼
4 (i.e., a pixel neighborhood of 2 3 2 pixels), giving a

ratio of total pixels to Mk of ;700. These parameters

maximized the range of scales considered while enabling

inter-site comparisons, as well as ensuring the use of a

consistent k value for image analyses at all scales.

Calculated in this way, MIG represents the difference

between the spatial entropy (calculated using a k-pixel

neighborhood) and the aspatial entropy (calculated for

individual pixel values irrespective of their location) in

the image. Values range from 0 for completely random

images to 1 for images of a single, solid color.

Intermediate values of MIG are associated with more

spatially heterogeneous data and therefore can be

correlated with habitat complexity in images taken

within particular ecosystems (Parrott 2010).

Site scale.—We obtained a mosaic of 25 Landsat

ETMþ images of the GBR and neighboring coastal

regions from the GBR Marine Park Authority

(GBRMPA). We acquired images for the period

between 17 August 1999 and 16 May 2002 (we chose

this period because a scan line corrector problem limited

the quality of Landsat, creating gaps in the data
acquired after 2003). These images were taken mostly

during low tide, in clear, offshore shelf waters.

Landsat provides images of the bottom in the blue

band down to 30 m. To avoid any geodetic error in fish

station locations, images were georectified using a series

of ground-truthing points at a precision better than 1

pixel (30 m). To process sites throughout the GBR with

the same radiometric quality, GBRMPA radiometrically

normalized the 25 images to avoid discontinuities from

one image to another. The result is a quasi-cloud-free

composite image of the entire GBR without radiometric

internal bias. The entire mosaic is distributed by

GBRMPA in a low compression rate JPEG format with

a pixel size of 30 m. Negligible information loss and

changes in MIG values are attributable to JPEG

compression (L. Parrot, unpublished data).
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For each reef, we extracted a 513 51 pixel JPEG from

the Landsat image, centered on the centroid of the three

Long Term Monitoring Program sampling sites per reef

to capture a section of the reef edge and water around

the sites. We calculated the spatial heterogeneity (MIG;

Eq. 1) of each of the site scale images in the same

manner as described previously for the transect scale

using M ¼ 2 and k ¼ 4.

Reef scale.—We used a fixed-size rectangular window

of 2513 351 pixels to extract reef-scale images from the

overall Landsat image. We selected the size of the

observation window to have a width as long as the

widest (east to west) reef in the data set and a height as

long as the longest (north to south) reef in the data set.

We extracted five images for each reef: one with the

window centered on the geographical coordinates of the

reef centroid and four other images shifted in each of the

four cardinal directions by ;20% from the center

coordinates. Five images were necessary to test whether

the exact position of the window used for extraction had

an effect on the MIG obtained. We tested the null

hypothesis (H0) that image differences among reefs were

not greater than within reefs using a multivariate

analysis of variance (MANOVA; Anderson 2001) based

on distance matrices and 1000 permutations. The fixed-

size window was necessary to avoid biasing the results

due to the effect of image size on MIG; however, images

for small reefs therefore contained a larger proportion of

water. We analyzed the five images for each reef for

spatial heterogeneity as before, using Eq. 1 with M ¼ 4

and k ¼ 4.

Data organization

We were primarily interested in spatial patterns in fish

diversity and how they related to the heterogeneity of

reef images, in particular, the still images of benthic

communities acquired in 2008. Accordingly, we only

used fish data recorded between 2003 and 2007

(discarding fish data collected during 2005 because

many reefs were not sampled that year due to inclement

weather). Restricting the fish data in this way also

minimized any potential effects of past disturbance

affecting benthic communities; in particular, storms in

1988 removed a large amount of live coral that did not

fully recover until 2003 (Sweatman et al. 2008). We

defined fish species richness (R) as the total number of

fish species sampled on each transect obtained by

pooling species across the four years. For each transect,

we defined total fish abundance (N ) as the sum of

individual species abundances across the four years to

avoid potential autocorrelation due to counting the

same individuals in multiple years.

For each transect and in each of the HSV bands, we

averaged MIG across all images taken along it. At the

reef scale, there was no evidence of an effect of the exact

position of the observation window on MIG values

(MANOVA with 1000 permutations; probability of

concluding an effect P ¼ 0.26). Therefore, for each reef

and in each of the HSV bands, we averaged MIG across

the five observation windows. This procedure ensured

that MIG values obtained for each reef did not depend

on the exact position of the observation window, but

rather accounted for the complexity of the reef of

interest, as well as (to a lesser extent) that of its

immediate neighborhood. The final data set used in our

analyses therefore consisted of a matrix in which fish

data at the transect level (i.e., individual species

abundances, total species richness, and total abundance)

were associated with MIG values at the transect, site,

and reef scales (Fig. 2).

ANALYSIS

We first partitioned the variation in MIG at each

spatial scale and estimated the relative proportion of

each source of variation. We used a MANOVA based

on distance matrices and 1000 permutations to investi-

gate patterns of variation in MIG at each scale as a

function of the latitudinal and cross-shelf ordinal

factors; distances to the coast and seaward extent of

the Great Barrier Reef at that latitude (Mellin et al.

2010a), and reef size and isolation (Mellin et al. 2010b).

We then used hierarchical linear models (Gelman

and Hill 2007, MacNeil et al. 2009) to quantify the

relationship between fish species richness or abundance

(i.e., R or N ) and MIG at each spatial scale, while

accounting for the hierarchical structure of the data on

this relationship (i.e., reef and site-within-reef correla-

tion). The hierarchical structure resulted from ecolog-

ical processes occurring at larger scales and influencing

fish species richness and abundance at smaller scales.

This hierarchical structure was quantified by including

a reef- and/or site-level intercept (which we will specify)

in our linear models, thereby allowing an estimate of

the importance of reef- and site-scale effects in

structuring the biological data observed while simulta-

neously improving the accuracy of parameter estimates

relative to non-hierarchical models (MacNeil et al.

2009). We evaluated relative, bias-corrected model

support using Akaike’s information criterion corrected

for small sample sizes (AICc).

We constructed two sets of random-intercept, fixed-

slope, Poisson hierarchical, linear models to predict R

and N as a function of MIG at the reef and transect

scales, and at the site and transect scales, respectively.

Within each set, we estimated effects on R and N

resulting from (1) the hierarchical structure of the data

set only, (2) the hierarchical structure of the data set and

MIG (each scale separately, then combined), (3) the

hierarchical structure of the data set, MIG and their

interaction, and (4) MIG only. Scenario (1) was

achieved by fitting a model with no fixed effects but

random intercepts among reefs (or sites), and comparing

it to a single-intercept (NULL) model to determine if

any hierarchical structure was present in the data.

Scenario (2) was achieved by fitting three models with

both random reef/site level intercepts and fixed effects

CAMILLE MELLIN ET AL.796 Ecological Applications
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including either the reef- (or site-) scale MIG, or

transect-scale MIG, or both. Scenario (3) was achieved

by adding to the analysis described for scenario (2), an

interaction between fixed effects, allowing the effects of

MIG at the transect scale to vary depending on MIG at

the reef (or site) scale. Scenario (4) was achieved by

randomizing the hierarchical structure, which was done

by refitting each model set after randomization tran-

sects-within-reefs, simulating a total of 1000 different

hierarchical structures (Cornell et al. 2007, MacNeil et

al. 2009).

For both response variables, we validated the

assumed Poisson error distribution based on the

Gaussian distribution of model residuals, using the

normalized scores of standardized residual deviance (Q–

Q plots). We assessed the predictive ability of the top-

ranked model according to AICc using a 10-fold cross-

validation (Davison and Hinkley 1997). This bootstrap

resampling procedure estimates the mean prediction

error, and the goodness of fit (i.e., coefficient of

determination, R2) of the relationship between predicted

and observed values for 10% of observations randomly

omitted from the calibration data set. This procedure

was iterated 1000 times. We generated spatial correlo-

grams assessing autocorrelation in R and N (raw data

and model residuals) as a function of the distance

between transects using Moran’s I (Diggle and Ribeiro

2007). We chose distance classes for the autocorrelation

analysis to reflect the nested design of the data set and

included first-order neighboring transects (class 1), or all

transects within a same site (class 2), reef (class 3), cross-

shelf location (class 4), and latitudinal sector (class 5).

We assessed evidence for spatial autocorrelation after a

Bonferroni correction (Legendre and Legendre 1998).

We did a third set of analyses to partition variation in

the multivariate fish assemblage structure (i.e., species

abundance matrix) explained by the hierarchical struc-

ture of the data set and by MIG at each scale. We used a

FIG. 2. Schematic representation of the stratified sampling design, reef images available at each spatial scale, and structure of
the resulting data set. MIG is the mean information gain, ID is identity, R is fish species richness, and N is total fish abundance. The
diagrams are indicative only, and the spatial arrangement of transects is not as depicted.
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constrained distance-based redundancy analysis with

1000 permutations (Legendre and Anderson 1999). We

computed a Bray-Curtis distance matrix based on the

fish assemblage matrix and a Euclidian distance matrix

based on MIG (all scales). Transects were then clustered

based on each distance matrix successively and using the

k-means algorithm (Legendre and Legendre 1998). We

calculated the similarity between the two classifications,

defined as the proportion of transects falling in the same

cluster using either distance matrix, and compared this

proportion to the distribution of proportions expected

under a null model given by 1000 randomizations of

transects-within-clusters based on the fish distance

matrix.

RESULTS

Hierarchical linear models of MIG at the transect

scale revealed substantial hierarchical structure in the

data, with clear AICc-based evidence for high site-

within-reef dependence among all three response vari-

ables (i.e., MIG of benthic images calculated for each of

the three [HSV] color bands) accounting for up to 86%

of deviance in the saturation of benthic images (Table

1). We also found evidence for latitudinal sector effects

on MIG at the transect scale, distance to the coast on

MIG at the site scale, and reef size on MIG at the reef

scale (Appendix A). Because the effect of reef size on

MIG at the reef scale is likely to be an artifact of the

fixed-size window used to calculate MIG, we included

reef area as an offset in subsequent hierarchical linear

models.

Reef hierarchical structure alone accounted for 71.2%

and 75.1% of null deviance in R (Table 2) and N (Table

3), respectively. Even though models including image

indices were top-ranked according to AICc, they reduced

model deviance by ,1% relative to the random

intercept-only models. However, when transects were

permuted within reefs to randomize the hierarchical

structure, image indices reduced model deviance by 27%

(R) and 31% (N ), respectively, relative to intercept-only

models (the latter only reduced null deviance by 2% and

7%, respectively; Tables 2 and 3), thereby demonstrating

the importance of habitat structure in explaining a

considerable percentage of the variation in biodiversity

patterns beyond the influence of hierarchical reef

structure alone. A combination of MIG at the transect

TABLE 2. Summary of hierarchical linear models of fish species richness (R) as a function of mean
information gain variables (HSV; coordinates for hue, saturation, and value) at the reef (rf ) and
transect (tr) scales, on original and randomized data sets.

Model k LL wAICc D

Original

R ; A þ rf-HSV þ (1 j reef ) 7 �266.87 0.58 71.75
R ; A þ rf-HSV þ tr-HSV þ (1 j reef ) 10 �264.79 0.21 71.97
R ; (1 j reef ) 3 �272.38 0.14 71.17
R ; tr-HSV þ (1 j reef ) 6 �270.31 0.05 71.39
R ; A þ tr-HSV þ tr-HSV 3 rf-HSV þ (1 j reef ) 10 �267.18 0.02 71.72
NULL 3 �944.66 0 0

Randomized

R ; A þ rf-HSV þ tr-HSV þ (1 j reef ) 10 �670.27 1 29.05
R ; A þ tr-HSV þ tr-HS 3 rf-HSV þ (1 j reef ) 10 �690.6 0 26.89
R ; A þ rf-HSV þ (1 j reef ) 7 �786.75 0 16.72
R ; tr-HSV þ (1 j reef ) 6 �798.53 0 15.47
R ; (1 j reef ) 3 �924.87 0 2.09
NULL 3 �944.66 0 0

Notes: Reef area (A) is used as a controlling factor to account for the fixed size window of
Landsat images. Other abbreviations are k, number of parameters; LL, log likelihood; wAICc,
weight given by the Akaike’s information criterion corrected for small sample size; D, percentage
deviance explained. Model notation follows that of the lme4 package in the R programming
language.

TABLE 1. Summary of the hierarchical linear models of mean
information gain variables (HSV coordinates) at the transect
(tr) scale and as a function of the reef and site-within-reef
hierarchical structures (i.e., random intercepts).

Model k LL wAICc D (%)

Hue (H)

tr-H ; (1 j reef/site) 4 1490.78 1 46.38
tr-H ; (1 j reef ) 3 1336.01 0 31.19
NULL 3 1018.42 0 0

Saturation (S)

tr-S ; (1 j reef/site) 4 1606.78 1 86.47
tr-S ; (1 j reef ) 3 1468.77 0 70.46
NULL 3 861.67 0 0

Value (V)

tr-V ; (1 j reef/site) 4 1886.09 1 21.01
tr-V ; (1 j reef ) 3 1747.61 0 12.13
NULL 3 1558.57 0 0

Notes: Abbreviations are: k, number of parameters; LL, log
likelihood; wAICc, weight given by the Akaike’s information
criterion corrected for small sample size; D, percentage deviance
explained. Model notation follows that of the lme4 package in
the R programming language; (1 j reef ) denotes a ‘‘reef’’
random effect, and (1 j reef/site) denotes a ‘‘site-within-reef’’
random effect.
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and reef scales was present in the AICc top-ranked

models for both R and N (Appendices B and C).

The 10-fold cross-validation showed that the top-

ranked fitted models according to AICc resulted in a

mean prediction error of 7.6% for R and 10.6% for N,

with 74.4% and 69.2% of the variance in the predictions

explained by the observations (R2), respectively (Ap-

pendix D). We found evidence for autocorrelation at all

distance classes in observations of both response

variables, but only at the first distance class for model

residuals (Appendix E), indicating that our hierarchical

models accounted for most spatial dependence via the

nested spatial design.

Similar to the univariate results for R and N, reef

hierarchical structure accounted for 60% of the variation

in the fish community matrix, including 25% from MIG

at the reef (7%), site (6%), and transect (12%) scales,

with ,1% overlap among these variance components

(Fig. 3). The hierarchical clustering of transects based on

fish data vs. MIG from all scales resulted in 53% of

transects being classified in the same cluster for a three-

cluster classification, 49% for four clusters (Fig. 4), 54%
for five clusters, and 41% for six clusters. There was

strong evidence that these percentages were all higher

than those expected from a null model (P , 0.001).

DISCUSSION

Our results provide the first multi-scale evidence that

patterns of coral reef fish biodiversity can be reasonably

predicted from a combination of reef habitat complexity

indices derived from the spectral signal of digital

(camera and satellite) images, together with information

on the hierarchical structure of the data set. Andréfouët

et al. (2010) previously established partial links between

unprocessed red-green-blue bands and fish communities

in New Caledonia. We have developed this method

further using a hierarchical framework to account for

the complex spatial structure of coral reef ecosystems

(MacNeil et al. 2009, Mellin et al. 2009).

Having incorporated hierarchical spatial effects into

our models, habitat complexity as estimated by MIG

accounted for an additional 29% of the null deviance in

fish species richness, 33% in fish abundance, and 25% in

fish assemblage structure. At least for community

structure, this accords well with recent work reporting

that ;22% of variance is explained for these same fish

communities by reefs nested within habitat (i.e., cross-

shelf position) and region (i.e., latitudinal sector;

Burgess et al. 2010), suggesting that the simple MIG

metric performs well in capturing this within-reef

FIG. 3. Venn diagram partitioning the percentage of
variation in the fish community matrix as a function of image
mean information gain variables (H, hue; S, saturation; V,
value) at reef, site, and transect scales.

TABLE 3. Summary of hierarchical linear models of fish abundance (N ) as a function of mean
information gain variables (HSV; coordinates for hue, saturation, and value) at the reef (rf ) and
transect (tr) scales, on original and randomized data sets.

Model k LL wAICc D

Original

N ; A þ tr-HSV þ tr-HSV 3 rf-HSV þ (1 j reef ) 10 �33 810 1 75.43
N ; A þ rf-HSV þ tr-HSV þ (1 j reef ) 10 �34 078 0 75.24
N ; tr-HSV þ (1 j reef ) 6 �34 088 0 75.23
N ; A þ rf-HSV þ (1 j reef ) 7 �34 250 0 75.11
N ; (1 j reef ) 3 �34 259 0 75.1
NULL 3 �137 608 0 0

Randomized

N ; A þ rf-HSV þ tr-HSV þ (1 j reef ) 10 �92 441 1 32.82
N ; A þ rf-HSV þ (1 j reef ) 7 �95 604 0 30.52
N ; A þ tr-HSV þ tr-HSV 3 rf-HSV þ (1 j reef ) 10 �95 844 0 30.35
N ; tr-HSV þ (1 j reef ) 6 �124 988 0 9.17
N ; (1 j reef ) 3 �128 259 0 6.79
NULL 3 �137 608 0 0

Notes: Reef area (A) is used as a controlling factor. Other abbreviations are: k, number of
parameters; LL, log likelihood; wAICc, weight given by the Akaike’s information criterion
corrected for small sample size; D, percentage deviance explained. Model notation follows that of
the lme4 package in the R programming language.
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variation in community structure. Although this per-

centage of deviance explained is much lower than for

some terrestrial ecosystems (e.g., 58% deviance ex-

plained in bird species richness in arid landscapes; St-

Louis et al. 2006), it agrees with other studies that used

both remotely sensed and field data for understanding

biodiversity patterns (Estes et al. 2008). Indeed, a key

advantage of remote sensing is its ability to provide

information over a species’ entire range, but models

incorporating remotely sensed data might be limited by

the ability of remote sensing to detect important habitat

features (Estes et al. 2008). In coral reefs, and on the

Great Barrier Reef in particular, major correlates of fish

diversity patterns include distance to the coast and to the

barrier reef, sea surface temperature (Mellin et al.

2010a), and reef size and isolation (MacNeil et al.

2009, Mellin et al. 2010b). Therefore, incorporating

these factors in models based on image-derived habitat

complexity should result in improved predictive power.

Of the total deviance explained in fish species richness,

abundance, and assemblage structure, 17%, 30%, and

13% (respectively) were explained by MIG at the reef

and/or site scales directly estimated from the Landsat

ETMþ mosaic. In previous studies using habitat maps,

the best predictive performance was achieved using an

11-class habitat map derived from aerial photography

(i.e., 38% of variation in fish species richness; 28% of

variation in abundance) and obtained from a series of 12

landscape metrics related to patch configuration in

Moreton Bay, Queensland, Australia (Pittman et al.

2004). Although that approach was comparable in its

explanatory power to our own, the method required

considerable image pre-processing, labeling, and

ground-truthing. In contrast, where images are avail-

able, MIG can be calculated for the three channels of a

regular JPEG format without any pre-processing and in

only a few seconds per image on a desktop computer,

providing substantial cost savings. The MIG methodol-

ogy presented here and applied on the Great Barrier

Reef now needs to be applied to other regions and

ecosystems to enable cost–benefit comparisons among

methods for predicting biodiversity patterns.

Both fish biodiversity and MIG of the digital habitat

images at the transect scale displayed strong spatial

variation reflecting the data set’s transect-within-site and

site-within-reef hierarchical patterns. Furthermore, we

found latitudinal and cross-shelf effects on MIG at the

transect scale. These results reflect the gradient of

benthic assemblages, which consist of both biotic (e.g.,

live coral, macroalgae) and abiotic (e.g., dead coral, bare

substratum) components. As a result, the similarity of

fish and benthic assemblages was higher among sites

within the same reef (i.e., 250 m to 1 km apart) than

among different reefs (i.e., 3 to 1000 km apart), with the

turnover (i.e., b diversity) in benthic communities

increasing along latitudinal and cross-shelf gradients.

This contrasts with observations of Caribbean reef

systems in which differences in fish and coral diversity

were observed among geomorphological classes within

reefs, but with little difference among reefs along a 400-

km latitudinal gradient (Arias-Gonzáles et al. 2008). On

the Great Barrier Reef, conditions such as water quality,

temperature, and biological productivity follow latitu-

dinal and cross-shelf gradients associated with variation

in the structure of fish (Burgess et al. 2010, Mellin et al.

2010a) and benthic communities (Burgess et al. 2010,

De’ath and Fabricius 2010, Emslie et al. 2010). The

hierarchical structure of fish diversity and habitat

complexity as estimated here by MIG thus reflects the

combination of environmental and geographical influ-

ences on the b diversity of fish and benthic communities

on the Great Barrier Reef.

The performance of MIG in predicting fish biodiver-

sity was robust to the choice of spatial scale and

resolution, suggesting that this approach could be

transferrable to other reef systems and could allow

cross-system comparisons. Although the predictive

performance of MIG was consistent across image

resolutions, image resolution influences the absolute

FIG. 4. Clustering based on (A) the fish community matrix
and (B) mean information gain variables at the reef, site, and
transect scales. For each reef, only the most frequent cluster is
shown, with each color indicating a particular cluster. Identity
of the clusters is irrelevant; only the grouping is important.

CAMILLE MELLIN ET AL.800 Ecological Applications
Vol. 22, No. 3



value of MIG, necessitating image pretreatment to

standardize resolution, white balance, and color models

across sites prior to analyses. Therefore, images com-

bined within a study should be of approximately equal

spatial extent to give comparable MIG values and avoid

scale-dependent artifacts. Ideally, uncompressed images

in RAW format should be used if feasible. In our study,

however, the large number of files used and the

normalized mosaic of satellite images compiled for the

entire study area, made the compressed (JPEG) format

necessary for facilitating image storage and manipula-

tion.

Although the predictive performance of image-de-

rived indices of habitat complexity on their own might

still be insufficient to support large-scale conservation

planning, they can complement existing methods for

studying biodiversity and can contribute to improve-

ments in survey design methods. For example, broad-

scale, long-term monitoring programs are commonly

stratified with respect to spatial factors based on a priori

visual examination of a map of the region of interest. In

this case, all sampled sites were similarly positioned on

the reefs examined, which were themselves stratified

across the shelf and latitudinally based on the premise

that such gradients would be reflected in assemblage

structure (Sweatman et al. 2008). We suspect that a

design based on continuous environmental gradients

derived from remotely sensed images (Dalleau et al.

2010) could lead to more discerning process-based

modeling with potentially higher predictive perfor-

mance. For instance, habitat complexity estimated from

remotely sensed imagery has been used in the design of

the monitoring program for World Heritage Sites on

New Caledonian reefs (Andréfouët and Wantiez 2010).

Therefore, image-derived indices of habitat complexity

could support the design of monitoring programs based

on ecological gradients of habitat complexity and the

collection of additional (biological and physical) data,

eventually to provide inputs for more sophisticated and

powerful species distribution models.

Efficient, streamlined, and cost-effective methods for

biodiversity mapping are needed, especially in develop-

ing countries where the effects of declining natural

resources are often acute and where data, facilities, and

expertise are often sparse (Fisher et al. 2011). Methods

such as those presented here show much promise as they

require little processing, no labeling of geomorphology

or habitat structure, and no accuracy assessment or

ground-truthing. Capacity-building for biodiversity

conservation can therefore be promoted through the

dissemination of spatial products for research and

environmental management in these jurisdictions (An-

dréfouët 2008). Although the methods presented here

could benefit from further refinement and validation

across a broader range of ecosystems before they can be

applied routinely, they will ultimately be constrained to

some extent by the need for consistent image quality,

specifications, and normalization among study sites. In

spite of these constraints, these methods can now be

consistently applied among multiple sites and regions of

the world. For example, both remotely sensed and in

situ habitat images are readily available worldwide for

many ecosystems including coral reefs (e.g., photo

transects generated by the Reef Check program,

PLATE 1. Shallow coral habitat at Myrmidon Reef, Great Barrier Reef, Australia. Photo credit: Ray Berkelmans.
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available online).7 This wealth of historical records

remains under-exploited. When used in conjunction

with field-based surveys, spectral signals from such

digital images could prove invaluable for assessing the

extent of habitat degradation effects on biological

communities.
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Andréfouët, S., C. Payri, M. Kulbicki, J. Scopélitis, M.
Dalleau, C. Mellin, M. Scamps, and G. Dirberg. 2010.
Mesure, suivi et potentiel économique de la diversité de
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New Caledonia.
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