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[1] Continuous simulation for design flood estimation is increasingly becoming a viable
alternative to traditional event-based methods. The advantage of continuous simulation
approaches is that the catchment moisture state prior to the flood-producing rainfall event is
implicitly incorporated within the modeling framework, provided the model has been
calibrated and validated to produce reasonable simulations. This contrasts with event-based
models in which both information about the expected sequence of rainfall and evaporation
preceding the flood-producing rainfall event, as well as catchment storage and infiltration
properties, are commonly pooled together into a single set of ‘‘loss’’ parameters which
require adjustment through the process of calibration. To identify the importance of
accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-
runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood
peaks derived using the historical daily rainfall record are compared with those derived
using resampled daily rainfall, for which the sequencing of wet and dry days preceding the
heavy rainfall event is removed. The analysis shows that there is a consistent
underestimation of the design flood events when antecedent moisture is not properly
simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are
considered, compared to 5% when this is extended to 60 days of prior rainfall. These results
show that, in general, it is necessary to consider both short-term memory in rainfall
associated with synoptic scale dependence, as well as longer-term memory at seasonal or
longer time scale variability in order to obtain accurate design flood estimates.

Citation: Pathiraja, S., S. Westra, and A. Sharma (2012), Why continuous simulation? The role of antecedent moisture in design flood

estimation, Water Resour. Res., 48, W06534, doi:10.1029/2011WR010997.

1. Introduction
[2] Flood estimation is arguably one of the most impor-

tant tasks in engineering hydrology, and constitutes a nec-
essary element for a diversity of planning and engineering
design decisions, ranging from the zoning of new land in
and around floodplains, through to the design and manage-
ment of infrastructure such as storm water systems, roads
and bridges, flood protection works, and reservoirs. In
many cases such decisions are made using a design flood
value, which is defined as a hypothetical flood event—
usually measured in terms of a single attribute such as its
peak flow, level, volume, or response time—which will be
equaled or exceeded with a given frequency [Pilgrim and
Cordery, 1993]. The use of a design flood, as opposed to an
observed (historical) event, can then feed into a risk-based

decision making framework, in which the likelihood that a
flood of given magnitude will occur can be considered
alongside the expected consequences of such an event. This
can then provide a sound basis for optimally allocating the
investment required to manage such floods.

[3] There are a number of alternatives available for the
estimation of a design flood, ranging from a frequency
analysis of observed streamflow data through to the use of
rainfall-runoff models using generated continuous rainfall
sequences or a specified design storm [Beven, 2002;
Boughton and Droop, 2003]. Probably the most common
class of methods in-use today take as their starting point
the estimation of a design rainfall event, which is then
translated to a design runoff value of the same exceedance
probability through the use of a rainfall-runoff model. The
features of this class of methods include: (1) the availabil-
ity of long historical rainfall records, which at least in the
preanthropogenic climate change period can be assumed to
be approximately stationary (although see Ropelewski and
Halpert [1987] for a discussion on the influence of natural
variability) ; (2) the widespread translation of this historical
data into design rainfall estimates, typically referred to as
intensity-frequency-duration (IFD) relationships, which are
often presented as spatial maps in guidance documents
such as Australian Rainfall and Runoff [Pilgrim, 1987]
or the United States National Oceanic and Atmospheric
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Administration (NOAA) Atlas 14, and thus can be used
even in locations where gauged records are unavailable;
and (3) the diversity of well-established methods for trans-
lating design rainfall to design runoff, ranging from simple
models such as the rational method [Kuichling, 1889;
Mulvaney, 1851] which translates the design rainfall to a
design flow rate, through to more complex event-based
rainfall-runoff models which seek to capture various physi-
cal processes involved in the transformation from rainfall
to runoff and often can be used to estimate the complete
flood hydrograph.

[4] An important objective of any rainfall-runoff model
used for the purposes of design flood estimation is therefore
the maintenance of exceedance probability neutrality
between rainfall and runoff, such that by inputting design
rainfall of a given exceedance probability, it is possible to
obtain the design runoff value of the same exceedance
probability [Kuczera et al., 2006]. Given the complexity of
the physical processes involved in translating rainfall to
runoff, achievement of exceedance probability neutrality
invariably requires the adjustment of model parameters
through the process of calibration, in which the parameters
of a rainfall-runoff model are optimized such that the mod-
eled hydrographs match a set of observed hydrographs as
closely as possible over the set of calibration events [e.g.,
see Beven, 2002]. It should be noted that this applies
equally in gauged and ungauged catchments, with calibra-
tion in ungauged basins usually taking place using data
from nearby locations or from catchments with ‘‘similar’’
physiographic characteristics [Bloschl, 2005]. As a result of
this calibration step, a large range of both physiographic
catchment features and climate features become implicitly
embedded within the model parameters, including the
expected value of antecedent catchment moisture content
[Bloschl, 2005], with this latter feature having a significant
bearing on catchment infiltration properties and the fraction
of rainfall which makes its way into the flood hydrograph.

[5] Understanding the role of antecedent conditions on
runoff therefore represents an important consideration in
flood modeling, particularly in arid areas in which there is
a large difference in terms of catchment discharge proper-
ties between dry and wet periods, as well as for catchments
with large storages such as those with large reservoirs or
multiple smaller on-farm dams or storm water detention
basins. To illustrate this issue, consider catchment 401210,
a small (407 km2) catchment located in the southeast of
Australia, with a mean annual rainfall value of 1212 mm
and a coefficient of variation of 2.4 (see Figure 1). This is
an unregulated catchment which has not undergone signifi-
cant changes over the period of record, such that changes in
runoff behavior over time can be largely attributed to the
influence of atmospheric processes (notably rainfall and
evapotranspiration) acting on the catchment. In reviewing
the historical record for this catchment, it can be seen that
two very similar peak rainfall events lead to markedly dif-
ferent peak runoff events (Figures 2a and 2b), with the dis-
tinguishing feature between these two events being the
rainfall falling in the days prior to the ‘‘flood producing’’
rainfall event. If the model parameters were calibrated to
only one of these events without explicitly considering the
antecedent rainfall, there will be a high likelihood that
the model parameters will not yield outputs which are

exceedance-probability neutral across the full range of
events. This is of particular concern when extrapolating to
much rarer floods, as the expected value of the antecedent
moisture might not be the same for smaller floods (that are
typically used for model calibration) as they would be for
larger floods (that are often of most interest for design pur-
poses). To add to this issue, a recent study by Pui et al.
[2011] using data from eastern Australia found evidence of
interdecadal variability in the antecedent rainfall preceding
the flood producing rain event, this variability being the
primary cause of variability in the estimated design flood
values. Other climatic influences on soil moisture memory
have also been noted by several researchers, for instance,
the variation of soil moisture memory with seasonality of
the atmospheric state [Douville et al., 2007; Koster and
Suarez, 2001], as well as the tendency for soil moisture
memory to extend for longer time periods in drier climates
than warm wet climates [Wu and Dickinson, 2004]. Conse-
quently, the issue of the relationship between antecedent
moisture conditions and the intensity of the flood-produc-
ing rainfall event is becoming of increasing interest in the
context of anthropogenic climate change [e.g., Cameron
et al., 2000], as mean annual rainfall and evaporation,
which in combination have a significant influence on ante-
cedent catchment wetness, are not expected to change by
the same magnitude or even in the same direction as the
extreme flood-producing rainfall events in most parts of the
world [Bates et al., 2008].

[6] Some effort has been placed in explicitly modeling
antecedent moisture in the event-based rainfall-runoff mod-
eling process. For example, initial loss parameters in cer-
tain models might be linked to an antecedent precipitation
index (API) [Cordery, 1970], which is made up of a
weighted sum of the rainfall in the hours and days leading
up to the event, with greater weighting for rainfall immedi-
ately preceding the design rainfall event. An alternative
approach involves embedding the design rainfall event of
duration equal to the time of concentration within a longer
duration design storm [Rigby and Bannigan, 1996; Rosso
and Rigby, 2006]. In both these cases, determining the
appropriate period for which antecedent precipitation
should be explicitly factored into the rainfall-runoff model
is difficult. For example, it is common to assume a period
of only 5–14 days prior to the design rainfall event for the
API [Heggen, 2001], which is generally regarded as suffi-
cient to capture synoptic-scale dependence of rainfall [Van
den Dool, 2007]. However, in the case of the example
catchment described above, it can be seen that the magni-
tude of the flood-producing rainfall for two events shown
in Figures 2c and 2d are very different, even though both
the runoff response, and the antecedent rainfall in the week
prior to the event are very similar. In fact, a frequency
analysis on the rainfall show that the daily rainfall for this
day was equivalent to the 1% AEP and 50% AEP storm for
Figures 2c and 2d, respectively, whereas the runoff for both
events had an annual exceedance probability of approxi-
mately 60%. The primary difference between these two
events was found in the rainfall in the month prior to the
event (but not including the week immediately prior), in
which the rainfall is well under half for Figure 2c compared
with Figure 2d. Although the results in this figure do not pro-
vide conclusive evidence of the importance of antecedent
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moisture, it does point to the often complex interaction
between the flood-producing rainfall event upon which the
design storm concept is based, and a longer period of rainfall
and evaporation which influences the catchment moisture
state prior to this event.

[7] An alternative, and conceptually simpler, approach
to accounting for antecedent moisture is to use a continuous
rainfall-runoff modeling framework [Blazkova and Beven,
2002; Cameron et al., 1999; Lamb, 1999; e.g., Lamb and
Kay, 2004]. Unlike event-based models for design flood
estimation in which design rainfall is used as the primary
input, continuous rainfall-runoff models use continuous
rainfall sequences at daily or subdaily time scales as the
input. Such rainfall sequences may be based on point-based
or catchment-averaged continuous rainfall measurements
(for lumped models) derived from one or more rainfall
gauges over a sufficiently long time. Alternatively, they
can be based on synthetically generated continuous rainfall

sequences that capture the statistics of the historical rainfall
[Cameron et al., 1999; Cowpertwait et al., 2002; Heneker
et al., 2001; Mehrotra and Sharma, 2007; Sharma and
Mehrotra, 2010; Westra et al., 2012], and simulate the
type of low-frequency variability that appears to modulate
the decadal variability noted in extreme floods [Pui et al.,
2011]. The output from this modeling system is a continu-
ous sequence of modeled runoff, and a frequency analysis
is then performed on this modeled sequence to derive the
design runoff values [Blazkova and Beven, 2002].

[8] In this paper we examine the implications of antecedent
moisture on flood quantiles by using a continuous rainfall-
runoff modeling framework. A nonparametric resampling
approach is used to infer the flood magnitude which would
have occurred assuming the dependence was lost between the
magnitude of the flood-producing rainfall event and the rain-
fall sequence leading up to that event. The aim is not only to
highlight the importance of both short-memory (day-to-day

Figure 1. Location of the 45 catchments in the Murray Darling Basin considered in the study. The
catchment numbers in the figure correspond to the IDs in Table 1. The two representative catchments
catchment 401210 (1) and catchment 402204 (2) are highlighted. The inset shows the location and size
of the Murray Darling Basin.
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dependence) and long-memory (seasonal or longer) rainfall
processes in influencing the magnitude of the design flood
event, but also to highlight the potentially significant biases
which could arise if the joint probability between the design
rainfall event and the antecedent wetness conditions were not
properly taken into consideration. The antecedent rainfall is
used as a surrogate measure of antecedent soil moisture as it
is the primary factor (other than potential evapotranspiration)
controlling soil moisture at depths which impact on rainfall to
runoff conversion. This allows soil moisture to be accounted
for using a relatively simple conceptual rainfall-runoff model-
ing framework, since explicit modeling of soil moisture will
require accounting of soil and vegetation properties within a
much more complex physical modeling approach. Given that
the sources of large-scale climate variability which drive soil
moisture variability at synoptic and seasonal time scales are
the same as those which drive rainfall variability at those time
scales [Dirmeyer et al., 2009; Douville, 2003], the use of an-
tecedent rainfall is likely to reasonably capture such persist-
ence. Finally, in order to discern when a more demanding
continuous methodology should be invoked, we aim to exam-
ine whether certain catchment attributes render the runoff
response especially sensitive to the antecedent wetness state.

[9] The remainder of this paper is structured as follows.
In section 2 we describe the data and catchments used for
the study, along with an overview of the methodology used
for resampling daily rainfall in order to evaluate the role of
persistence in observed rainfall sequences. Section 3 sum-
marizes the findings over all the test catchments, focusing
particularly on the heavy events which are most important
from a design perspective. The role of different objective
functions in calibrating the rainfall-runoff model, as well as
the role of different physiographic catchment characteris-
tics in influencing the time period for which antecedent
moisture is important, is also considered in this section.
Finally, we conclude with a discussion of the implications
of these results for the practice of design flood estimation.

2. Data and Methodology
2.1. Data

[10] The data for this study has been selected from a set
of daily rainfall, potential evapotranspiration (PET) and
gauged streamflow records from 240 catchments through-
out the Murray Darling Basin (MDB). Catchment-averaged
daily rainfall was used for each of the catchments, and was

Figure 2. Selected observed flood events for a representative catchment (see catchment 401210 in
Figure 1) indicating the importance of antecedent moisture. Although the magnitude of the flood produc-
ing rain is similar in (a) and (b), the resulting flood peak differs by almost a factor of 10, due largely to
the difference in the week-long antecedent rainfall. However, (c) and (d) indicate that a doubling of the
flood producing rain, with little variation in the cumulative week-long antecedent rainfall, can lead to a
very similar magnitude of peak runoff. By and large, this is due to the combination of heavy (light)
month-long antecedent rainfall with a smaller (larger) flood producing rain event. This indicates the
need to consider a period of antecedent rainfall longer than the traditional 1–2 weeks in some cases.
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based on the 5 km � 5 km gridded daily rainfall SILO
database [Jeffrey et al., 2001]. Monthly average PET data
was based on the evapotranspiration maps published by the
Australian Bureau of Meteorology as part of their Climate
Atlas Series (see http://www.bom.gov.au/climate/how/
newproducts/IDCetatlas.shtml), and both the rainfall and
PET records have no missing values. The streamflow data
set was obtained from work by Vaze et al. [2011], and com-
prises a quality-controlled set of gauged records in catch-
ments that are largely unregulated and thus do not have any
major storages or irrigation schemes. More than half the
gauges have been recording since the early 1970s, with
only 10% of catchments starting in the early 1980s or later.
For the present study a subset of 45 catchments were ulti-
mately selected as they have the most lengthy and complete
records (all selected runoff records have less than 6% miss-
ing data), with record lengths ranging from 17 to 33 years.
Figure 1 shows their locations in the MDB and Table 1

outlines other catchment details of interest. Despite a rela-
tively low variability between catchments in the mean annual
rainfall (coefficient of variation ¼ 27%), the mean annual
runoff varies considerably (coefficient of variation ¼ 93%).
The sensitivity of these catchments to small changes in
annual rainfall is well known [Chiew, 2006], due to the
high potential evaporation rates and comparatively low
runoff coefficients particularly in the more northerly and
inland parts of the domain. The catchment sizes range
from 65 to 1629 km2, and thus the response times for
most of these catchments are shorter than one day. Never-
theless, daily averaged streamflow was used to ensure
consistency with the rainfall data; this might result in an
underestimation of the peak instantaneous flow rate, but is
unlikely to have a significant bearing on the subject of
this analysis which is the influence of antecedent rainfall
in the days and months prior to the flood event on the
flood hydrograph.

Table 1. Details of the 45 Catchments Considered for the Study

Station Location Area (km2)
Mean Annual
Rainfall (mm)

Mean Annual
Runoff (mm)

Record
Length (yrs)

1 401210 Snowy Ck below Granite Flat, VIC 407 1212.4 463.9 33
2 402204 Yackandandah Ck at Osbornes Flat, VIC 255 1099.2 185.2 32
3 402206 Running Ck at Running Creek, VIC 126 1260.8 260.3 33
4 403213 Fifteen Mile Ck at Greta South, VIC 229 1138.7 254.0 33
5 403214 Happy Valley Ck at Rosewhite, VIC 135 1200.8 184.4 33
6 403217 Rose R at Matong North, VIC 154 1288.9 358.1 33
7 403224 Hurdle Ck at Bobinawarrah, VIC 155 983.0 178.9 33
8 404208 Moonee Ck at Lima, VIC 90.9 963.2 201.0 33
9 405205 Murrindindi R above ‘‘Colwells,’’ VIC 108 1358.1 475.2 33
10 405209 Acheron R at Taggerty, VIC 619 1342.8 450.2 33
11 405214 Delatite R at Tonga Bridge, VIC 368 1143.4 291.4 33
12 405219 Goulburn R at Dohertys, VIC 694 1275.7 440.5 33
13 405226 Pranjip Ck at Moorilim, VIC 787 635.6 68.9 33
14 405228 Hughes Ck at Tarcombe Road, VIC 471 773.1 156.9 33
15 405229 Wanalta Ck at Wanalta, VIC 108 513.4 31.8 33
16 406213 Campaspe R at Redesdale, VIC 629 756.9 117.5 32
17 406214 Axe Ck at Longlea, VIC 234 583.5 56.3 32
18 407236 Mount Hope Ck at Mitiamo, VIC 1629 448.0 14.4 33
19 410044 Muttama Ck at Coolac, NSW 1025 659.3 42.1 32
20 410057 Goobarragandra R at Lacmalac, NSW 673 1172.5 413.6 32
21 410061 Adelong Ck at Batlow Road, NSW 155 1031.3 252.4 32
22 410141 Micaligo Ck at Michelago, NSW 190 738.4 38.1 23
23 410731 Gudgenby at Tennent, ACT 670 942.3 93.9 32
24 411003 Butmaroo Ck at Butmaroo, NSW 65 720.4 75.4 26
25 416008 Beardy River at Haystack, NSW 866 793.3 68.7 31
26 416020 Ottleys Ck at Coolatai, NSW 402 743.0 39.5 26
27 416023 Deepwater River at Bolivia, NSW 505 860.9 71.2 26
28 416036 Campbells Ck at Near Beebo, NSW 399 650.4 22.4 17
29 418005 Copes Ck at Kimberley, NSW 259 868.4 91.6 32
30 418017 Myall Ck at Molroy, NSW 842 737.5 33.3 27
31 418021 Laura Ck at Laura, NSW 311 803.2 79.9 27
32 418025 Halls Ck at Bingara, NSW 156 760.9 39.0 27
33 418027 Horton River at Horton Dam Site, NSW 220 904.3 176.5 31
34 419029 Halls Ck at Ukolan, NSW 389 759.0 42.3 27
35 419035 Goonoo Goonoo Ck at Timbumburi, NSW 503 802.6 50.1 24
36 419053 Manilla River at Black Springs, NSW 791 721.8 46.4 32
37 420010 Wallumburrawang Ck at Bearbung, NSW 452 696.2 21.3 22
38 421018 Bell River at Newrea, NSW 1620 717.9 60.9 32
39 421026 Turon River at Sofala, NSW 883 772.4 88.3 32
40 421048 Little River at Obley No.2, NSW 612 657.0 63.7 19
41 421055 Coolbaggie Ck at Rawsonville, NSW 626 587.6 34.6 25
42 421056 Coolaburragundy R at Coolah, NSW 216 690.3 58.0 18
43 421066 Green Valley Ck at Hill End, NSW 119 797.2 121.7 26
44 421101 Campbells River at Ben Chifely Dam, NSW 950 791.9 75.2 23
45 426504 Finniss River at 4 km east of Yundi, SA 191 834.0 128.0 32
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2.2. Model Calibration

[11] In this study, the Australian water balance model
(AWBM) [Boughton, 2004] is used as the rainfall-runoff
model. The AWBM is a lumped conceptual water balance
model that takes in rainfall and PET at daily or subdaily
resolution, and uses three bucket storages. The model
requires eight parameters to be specified, which are esti-
mated during the calibration procedure.

[12] Fundamental to the study is the determination of
flood response to variations in antecedent wetness. It is thus
important to ensure that the parameters in the AWBM, par-
ticularly relating to catchment storage capacity are somewhat
realistic. In order to achieve this, it is deemed necessary to
calibrate on the full rainfall record, instead of just the peak
flows which is common practice in design flood estimation.

[13] A calibration procedure is adopted which produces
a single nominally global optimum parameter set. A good-
ness of fit measure is first chosen which places emphasis on
simulating peaks since we are interested in the implications
of antecedent moisture on the simulation of heavy flood
events. The widely used Nash Sutcliffe coefficient of effi-
ciency (NSE) is adopted as the objective function:

NSE ¼ 1�
Pn

i¼1 ðQ̂ i �QiÞ2Pn
i¼1 ðQi �QiÞ2

(1)

where Q̂ is the vector of simulated flows, Q is the vector of
observed flows, Q is the mean of the observed flows, and n
is the length of record. Although several limitations of this

objective function have been highlighted in the literature
(see for instance [Jain and Sudheer, 2008]), it is probably
the most commonly used objective function in rainfall-
runoff modeling for flood estimation applications due to the
emphasis on high flows. Furthermore, a second objective
function is considered so as to ensure that the results are not
affected by calibration deficiencies (see section 3.3). The
shuffled complex evolution algorithm (SCE-UA) [Duan
et al., 1993] is used as the search algorithm, with 10 differ-
ent randomly generated parameter sets used to initialize the
algorithm. Of the 10 resulting optimum parameter sets, the
one corresponding to the highest NSE is chosen as repre-
senting the estimate of the global optimum.

[14] Figure 3 summarizes the calibration performance of
all of the catchments, indicating that approximately 50%
have an NSE greater than or equal to 0.7. The poor per-
formance among some catchments could not be correlated
to any basic catchment descriptor such as location or catch-
ment size. It is likely that this is due to the often irregular
response behavior associated with semiarid catchments,
and the inability of the model to properly simulate this
behavior. Although more complex dynamical modeling
approaches are better equipped to consider the spatiotem-
poral resolution of the data [see for instance [Salamon
and Feyen, 2009], and more detailed procedures exist to
allow modeling of input [Chowdhury and Sharma, 2007;
Kavetski et al., 2006] and structural model uncertainty
[Marshall and Sharma, 2006; Renard et al., 2010], we do
not consider these approaches since calibration is not the

Figure 3. Distribution of calibration performance for all 45 catchments. A reasonable Nash Sutcliffe
efficiency (NSE) is obtained across most catchments, with approximately half of the catchments having
a NSE greater than or equal to 0.7.
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focus of the study. This level of overall performance among
the catchments is deemed acceptable, and any parameter
uncertainties have been dealt with through the use of a
large sample of catchments and multiple objective func-
tions (for details see section 3.3). However, it is still neces-
sary to determine whether the calibrated model will
produce reasonable simulations when resampled rainfall is
used. In order to determine model performance on noncali-
bration data, split sample validation is carried out on two
representative catchments, catchment 401210 and catch-
ment 402204. Table 2 shows that the NSE for calibration is
within 60.1 of the NSE for the validation period for both
catchments and for various calibration/validation splitting.
We can thus be fairly confident that the model is suitably
calibrated to take resampled rainfall inputs.

2.3. Estimating the Influence of Antecedent
Conditions

[15] Having calibrated the AWBM for each catchment,
we examine the importance of antecedent moisture in
design flood estimation. To this end we use a method which
is capable of determining the change in peak flow rate
when antecedent moisture is not properly accounted for.
We achieve this via a bootstrapping methodology to create
rainfall sequences which maintain the same statistics of his-
torical rainfall, except that the exact sequencing of rainfall
leading up to the flood-producing rainfall event is rear-
ranged to eliminate any serial dependence that might be
present otherwise. This is done by ensuring that rainfall de-
pendence at daily to interannual time scales is removed, by
resampling the rainfall across all years for each day of the
year. The specifics of the resampling algorithm are dis-
cussed in greater detail in the remainder of this section.

[16] The first step in the resampling process involves
generating a full flow sequence from the historical rainfall
data using the calibrated hydrologic model. Records for
each variable (rainfall, PET and simulated runoff) are rep-
resented as 365 by n matrices (R, P, and Q

_
, respectively),

where the hat notation is used to indicate that the stream-
flow sequence is derived from the calibrated model. Each
row represents a calendar day indexed by i (ignoring leap
days) and each column represents the year of record
indexed by j, up to a total of n years of record. Here and in
the remainder of this paper we use lower case italics for
scalar quantities, upper case for vectors, and upper case
bold for matrices. From the simulated flow sequences, a
vector of annual maximum flows for each year j, repre-

sented as M
_

j, is estimated as

M
_

j ¼ maxfQ
_

1; j; . . . ;Q
_

365; j g: (2)

[17] We then proceed to resample the rainfall sequence
prior to each day corresponding to the annual maximum

runoff event. To do this we start by rewriting the sequence
of rainfall prior to the annual maximum event as

Wj ¼ frmax; j�z; . . . ; rmax; jg; (3)

where rmax,j represents the rain day coinciding with M
_

j for
each year, and z represents the number of years prior to
rmax,j for which we want to consider the antecedent rainfall
pattern. In this study we use z ¼ 3 years (1095 days), which
when used as an input to AWBM results in reproducing Q

_

almost exactly. We use z ¼ 3 years in order to be able to
determine if low frequency variability at an interannual
scale impacts on the design flood.

[18] For the remainder of this paper we use an equivalent
way of expressing equation (3) as follows:

Wj ¼ fw1; j; . . . ;w1095; jg; (4)

where the series w1, j, . . . , w1095, j represents a continuous
sequence of rainfall up to 1095 days (three years) prior to

the annual maximum runoff event M
_

j.
[19] The next step is to generate a new rainfall ma-

trix R*b, which is given by

R�bj ¼ fR�b1 ; . . . ;R�b365g
T
; (5)

where R�bj is a vector forming the jth column of the matrix
R*b, the superscript T indicates the transpose operator and
the notation indicates that the resampling is performed sep-
arately for each day i. The resampling is carried out with
replacement from the pool of n years. Implicit in any boot-
strapping methodology is the need to create multiple real-
izations, and the same is done here by creating a total of
b ¼ 1, . . ., 100 bootstrap replicates R*b. By doing this we
obtain flood estimates by considering the full distribution
of antecedent moisture values, instead of just one single an-
tecedent moisture state. A new sequence W �b

j is then devel-
oped from R*b, similar to equation (4) but drawing from
R*b instead of R.

[20] The algorithm can thus be summarized as follows:
[21] (i) For each simulated annual maximum runoff

event (M
_

j), construct a sequence of rain days leading up to
this event, given by equation (4). Similarly, construct the
100 bootstrapped replicates Wj

�b.
[22] (ii) Input the following rainfall sequence: fw�b1; j; ... ;

w�b1095�k�1; j;w1095�k; j; ... ;w1095; jg to the rainfall-runoff model,
where the notation indicates that the first 1095�k days
have been generated using the bootstrap with replacement
procedure, with the last k days prior to the annual maxi-
mum runoff event being fixed. This is repeated for k ¼
0, . . . , 1095 days such that an increasing number of days
are being held fixed prior to the observed runoff event.

Table 2. Split Sample Calibration (C)/Validation (V) Results for Catchment 401210 and Catchment 402204

Catchment 401210 Catchment 402204

Calibration/Validation % NSE(C) NSE(V) Calibration/Validation % NSE(C) NSE(V)

30/70 0.874 0.797 30/70 0.680 0.634
50/50 0.832 0.729 50/50 0.663 0.704
70/30 0.833 0.778 70/30 0.669 0.673
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[23] (iii) Input each sequence to the model individually,
after which the last day of simulated runoff is extracted and
given as Mj

k�b.
[24] Having carried out these steps, we end up with a

total of 100 replicates of the annual maximum runoff series
M� for any particular k, where M� is a vector of values of
Mj

k�b, for j ¼ 1 to n. A flood frequency analysis is then per-
formed on the annual maximum runoff series to obtain
design flood estimates resulting from the use of resampled
rainfall. Since the distribution of M� is unknown, we work
with the empirical cumulative distribution function to avoid
having to assume a particular form of a distribution. The
flood frequency analysis is also carried out on the ‘‘true’’
simulated annual maxima series M.

[25] We then summarize the multitude of data by taking
the median of the x % AEP runoff over all trials for all k ¼
1, 2, . . . , 1095. A relative error statistic given below is then
used to quantify the change in flood estimates for various
exceedance probabilities :

relative error ð%Þ ¼ Qr � Qa

Qa

� �
� 100; (6)

where Qr ¼ median runoff (over all trials) for the x% AEP
and given k and Qa ¼ runoff for the x% AEP when the con-
tinuous historical rainfall sequence is used. It can be seen
from the equation that negative values of the relative error
indicate an underestimation of the runoff, while positive
values indicate an overestimation.

3. Results and Discussion
3.1. Role of Antecedent Precipitation

[26] Initially we consider the flood frequency relation-
ships that result from various lengths of the rainfall
sequence held fixed prior to the annual maximum flow
day; in other words, different values of k. This is docu-
mented for a single representative catchment (catchment
402204, see Figure 1) in Figure 4, which clearly indicates
that the design flood values are underestimated when the
period of antecedent rainfall considered is too short (that is,
the value of k is too small). As expected, the amount of
underestimation reduces as k increases. This does not occur
equally for all catchments due to a high degree of variability
across trials and a high sensitivity to day-to-day variations
in the input rainfall sequence. The amount and direction of
change to the flood frequency curves from the different
input rainfall sequences (as described by the relative error
statistic detailed in section 2.3) also varies across catch-
ments. As a result, we turn to summarizing the change in
the flood frequency curves by considering the mean over all
catchments examined in the MDB for the 2%, 5%, 10%,
and 20% AEP event.

[27] Figure 5 shows the result for k ¼ 0, 1, 2, . . . , 250,
where convergence to zero is attained at roughly k ¼ 250
days. The data has been smoothed to remove random noise
using a Savitzky-Golay moving average (a least squares
polynomial smoothing, for details see Savitzky and Golay
[1964]), with a polynomial of degree 2. We used this more
sophisticated moving average instead of a simple moving
average because of its ability to preserve higher order
moment characteristics in the data, including the position

of peaks. In order to preserve the sharper reduction in rela-
tive error for very small k values, the smoothing has not
been carried out on data points corresponding to k ¼ 0 to 4.

[28] Figure 5 clearly shows that on average there is a
consistent underestimation of the design flood across all
exceedance probabilities when antecedent moisture is not
properly accounted for. This can be attributed to the de-
pendence structure in rainfall, in which wet days tend to
follow wet days and dry days tend to follow dry days. The
resampling removes this dependency, so that the antecedent
catchment moisture is reduced thus leading to less runoff
from the flood-producing rain event. The exceedance prob-
ability contours also indicate that accounting for antecedent
moisture becomes less important as the exceedance proba-
bility of the event decreases. This conforms to our expecta-
tion that in general, for higher runoff events, the impact of
antecedent moisture on the resulting runoff is diminished
because of the size of the event relative to the catchment
storage. This is contrary to smaller runoff (and thus more
frequent) events, where the magnitude of the runoff may be
comparable to the size of the storages, and thus can be more
significantly affected by antecedent moisture conditions.

[29] We also note that the exceedance probability con-
tours in Figure 5 all have a relatively steep gradient
between k ¼ 0 and k ¼ 4 (particularly between k ¼ 0 and
k ¼ 1). This behavior is attributed to the low order Marko-
vian dependence (order 1 and 2) in rainfall, which is com-
monly assumed to be the dominant and thus most important
means of capturing persistence [Sharma and Mehrotra,
2010]. This is reinforced here with improvements in accu-
racy of around 20% attained when two days of antecedent
rainfall are considered compared to none. However, these
results indicate that higher order dependencies in rainfall
must also be considered, with underestimation of flood
magnitudes still occurring at seasonal time scales. In fact,
more than 50% of catchments require in excess of three
months of prior rainfall to be considered in order to reduce
the relative error to less than 5%, as shown in Table 3. In
contrast, the impact of lower frequency (interannual and
longer time scale) variability in rainfall on antecedent
moisture is not all that apparent since flood estimates with
a negligible reduction in accuracy can be achieved by con-
sidering less than a year of antecedent rainfall.

3.2. Relationship With Catchment Attributes

[30] We now consider whether certain catchment charac-
teristics render the runoff response especially sensitive to
antecedent moisture. The formation of such relationships
will be advantageous in that a more complex continuous
simulation methodology can be adopted only when neces-
sary, based on the catchment’s characteristics. Hence we
consider the implications of a range of physiographic and
antecedent precipitation characteristics on the sensitivity to
antecedent moisture, as detailed in Table 4. Here our catch-
ment characteristics are a combination of measurable quan-
tities (e.g., size) as well as model parameters (e.g., base
flow index). Although such model parameters do not corre-
spond to any single physically measurable attribute, they
provide a way for quantifying the impact of a combination
of physiographic characteristics on a complex process,
such as the soil type, vegetation cover, and so on that will
impact on the conversion of excess rainfall to runoff.
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[31] We begin by regressing the impact of catchment
size on various measures of the magnitude of runoff under-
estimation. This is done because we expect the longer time
of concentration associated with larger catchments to lead
to the runoff response being more sensitive to longer time
scales of antecedent rainfall. A linear regression framework
is used throughout this analysis as visual inspection of the
relationships did not indicate any strong supporting evi-
dence of nonlinear behavior, with model residuals being
approximately normally distributed and homoskedastic.

[32] Surprisingly, we do not find any statistically signifi-
cant relationships between catchment size and the underesti-
mation of runoff, possibly due to the majority of catchments
having times of concentration well under a day. As a result,
we consider a larger range of predictor variables given in
Table 4 in a multiple linear regression which allows us to
determine which predictors impact most significantly on a
catchment’s sensitivity to antecedent moisture at various
time scales. The statistical significance of the resulting linear

relationships is determined through a standard t-distribution-
based hypothesis test. These results are summarized in
Figure 6, along with the sign of the correlation for each of
the predictors.

[33] First, we note that it is mainly the antecedent rainfall
predictors (MR_30, MR_60, and MR_120) which impact
on the relative error (described by the R0 and R1 statistics).
They are in general positively correlated, indicating that
increases in the expected value of antecedent rainfall lead
to a decrease in the degree to which the flood peaks are
underestimated. In other words, the necessity to consider
antecedent rainfall in the flood estimation process reduces
as the amount of rainfall prior to the flood producing event
increases. This phenomenon is due mostly to the correlation
between antecedent rainfall and the flood producing event
(see Figure 7), meaning that greater antecedent rainfall is
linked with larger flood producing storms which tend to
dominate the runoff response and dampen the impact of ante-
cedent moisture conditions. Cordery [1970] also established

Figure 4. Flood frequency relationships from bootstrapped sequences of various k values for a repre-
sentative catchment (see catchment 402204 in Figure 1). Note how the flood frequency curves approach
the thick line (i.e., when the full rainfall sequence is used) as k increases. The figure in the inset repre-
sents an example of a single bootstrapped rainfall sequence for k ¼ 50. Here the 50 days prior to the day
of the annual maximum flow are equivalent to the historical record, while the remaining portion is a
resampled sequence.
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a link between rainfall and sensitivity to antecedent moisture,
stating that the assumption that antecedent wetness is unim-
portant ‘‘is reasonable for areas where the mean annual rain-
fall exceeds 50 inches [1270 mm].’’

[34] We also notice that across the range of exceedance
probabilities, the routing parameters (KBF and KSURF)
consistently control the length of antecedent rainfall that
is required for an accurate flood estimate (described by
the K5 and K10 statistics). The results indicate that as
the routing parameters increase toward 1 (which indicates
increased lagging of the base flow or surface runoff), the
number of days of antecedent rainfall (k) that needs to be
considered increases. If a catchment’s runoff response is
characterized by significant lagging, then it is likely that

the larger flood events will have had a sizable contribution
from earlier rainfall events. This then justifies the need to
include a longer period of antecedent rainfall to better char-
acterize the state of the catchment storages, including the
base flow stores which contribute slower moving ground-
water to streamflow. Since these routing parameters embed
a range of physical catchment characteristics (such as area,
drainage density, soil type, catchment roughness, slope), it
is difficult to isolate the impacts of such physically real
catchment attributes on the sensitivity to antecedent mois-
ture. Instead, we can conclude that if it is expected that the
arrival of the flood peak experiences significant lag, then it
would be wise to consider a continuous simulation method-
ology which is capable of accounting for a lengthy period
of antecedent rainfall.

[35] Unfortunately, the results of Figure 6 indicate that
we can only make qualitative conclusions regarding when
continuous simulation should be invoked. This is because
the variation in predictors across exceedance probabilities
and response statistics makes it difficult to arrive at a gen-
eral set of important catchment attributes and how these
interact to govern the rainfall-runoff relationship. In partic-
ular, there is a difficulty in representing the interconnected
rainfall-to-runoff conversion mechanisms, many of which
are not fully understood, through simple relationships
involving catchment characteristics. Several studies into
regionalization techniques, which inherently assume a link
between hydrologic and physical similarity, have identified
this issue [see for instance [Oudin et al., 2010; Reichl
et al., 2009] thus explaining the lack of clear relationships

Table 3. Percentage of Catchments Which Fall Into Various
Ranges of k (Days) Needed for the Relative Error to Reduce to
Less Than 5% for Various Exceedance Probabilitiesa

k (days) at RE < 5%

Annual Exceedance Probability

2% 5% 10% 20%

Short memory 0–7 18.8% 21.9% 15.6% 0
Long memory 8–90 56.3% 53.1% 65.6% 75%

91–180 6.3% 12.5% 9.4% 9.4%
181þ 18.8% 12.5% 9.4% 15.6%

aAcross all exceedance probabilities more than 50% of catchments
require several months (up to 3 months) of prior rainfall to be considered
to properly simulate the antecedent profile, demonstrating the importance
of considering long-memory processes in rainfall.

Figure 5. Relative error (%) versus number of days prior to the annual maximum flow day held fixed
(k), taking the mean over all catchments (with inset showing the first 10 days only). There is a clear
underestimation of all flood events when antecedent moisture is not considered. It can also be seen that
the extent of underestimation reduces as the frequency of the event reduces.
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from the regression analysis. As a result, based on catch-
ment characteristics alone, it is difficult to determine a
priori which catchments are more likely to be heavily influ-
enced by antecedent moisture, and thus this will need care-
ful examination on a case-by-case basis.

3.3. Implications of Assumptions

[36] It is important to note that the results presented ear-
lier are based on simulated runoff as opposed to observed
flow values. We selected this approach to ensure internal

consistency in evaluating the difference between the origi-
nal rainfall sequences and the resampled sequences. To
evaluate the implications for different sets of ‘‘optimal’’
model parameters on the results presented in Figure 5, we
now calibrate the model using an alternative objective
function. This is done by repeating the analysis described
in section 2, but this time using a peak over threshold cali-
bration. This method involves calibrating only on flows
above a threshold (determined so that there are on average
roughly five flood peaks per year), thus placing greater

Table 4. Predictor and Response Variables Used in the Multiple Linear Regression

Predictor Variables Response Variables

Name Definition Name Definition

Antecedent Rainfall Statistics MAR Mean Annual Maximum Rainfall R0 Relative Error (%) for k ¼ 0
MR_30 Mean 30 days prior Rainfalla R1 Relative Error (%) for k ¼ 1
MR_60 Mean 60 days prior Rainfall a R30 Relative Error (%) for k¼ 30
MR_120 Mean 120 days prior Rainfall a K10 k (days) when Relative Error ¼ 10%

Catchment Attributes AREA Catchment Area K5 k (days) when Relative Error ¼ 5%
CAS Catchment Average Storageb ¼

X3

i¼1

Ci:Ai

where Ci ¼ storage capacity, Ai ¼ partial
area fraction

BFI Baseflow Indexb

KBF Baseflow Recession Coefficientb

KSURF Surface Runoff Recession Coefficientb

aMean of the values prior to the annual maximum flow day.
bParameter in AWBM.

Figure 6. Optimum sets of predictors for various response variables for (a) 2% AEP, (b) 5% AEP,
(c) 10% AEP, and (d) 20% AEP. The black circles indicate response variables for which no statistically
significant relationship was found. The hatched pattern indicates a negative correlation with that predic-
tor, while the solid fill indicates a positive correlation.
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emphasis on ensuring the peaks are simulated correctly as
shown in Figure 8. The remainder of the analysis follows
the same procedure as described earlier, and the results are
presented in Figure 9.

[37] As can be seen, Figure 9 is very similar in appear-
ance to the relative error for various k values when the orig-
inal parameter sets are used. First, it shows the same
consistent underestimation of runoff across all exceedance
probabilities, when antecedent moisture conditions are not
properly accounted for. The magnitude of underestimation
for corresponding exceedance probabilities is also quite
similar, along with the time scales of antecedent rainfall
which are needed for accurate flood estimates (negligible
relative error is achieved for the same k ¼ 250 in the origi-
nal case). It also shows a similar trend of increasing abso-
lute value of the relative error as the exceedance probability
increases, which was evident in Figure 5. The remarkable
similarity of the results obtained when a different objective
function is used for calibration adds confidence to our
conclusions.

[38] In section 3.1 we noted that the underestimation of
the design flood demonstrated in Figure 5 was a result of
the resampling method removing the dependence structure
in the rainfall. In order to fully justify this statement, we
consider a second resampling technique which considers
the day to day dependence in the rainfall, but still does not
capture less frequent modes of variability. Specifically, a
nonparametric k-nearest neighbor conditional bootstrap
scheme assuming Markov order 1 dependence is used (for
full details, see Lall and Sharma [1996]). In this method,
resampling for day t is conditional on day t þ 1, with a
moving window of 615 days across all years (as recom-
mended by Mehrotra and Sharma [2007]). We aim to

reproduce Figure 5, using the same methodology described
earlier except with rainfall sequences from this nearest
neighbor resampler.

[39] Figure 10 shows the results from this exercise, along
with the results from Figure 5 superimposed for the pur-
poses of comparison. It is clear that for all k, the magnitude
of the relative error is smaller when the conditional resam-
pler is used. This is in accordance with the statement that
the underestimation seen in Figure 5 was due in large part
to the dependence structure in the rainfall sequence being
removed. Furthermore, both resamplers require roughly the
same k until convergence of the relative error to zero
(approximately k ¼ 250). This again confirms the impor-
tance of long memory in rainfall (discussed in section 3.1)
since although the conditional bootstrap maintains day-to-
day dependence, it still removes the interannual variability
(as does the original bootstrap method). Lastly, the conclu-
sion that antecedent wetness plays a more important role in
more frequent events is affirmed, as Figure 10 also shows
the magnitude of relative error reduces as the AEP reduces
when the k-nearest neighbor resampler is used.

[40] We also note that several simplifications have been
employed in order to arrive at these conclusions, although
it is not expected that they would impact dramatically on
our results. For instance, the results presented above have
been obtained using only a single rainfall-runoff model,
namely the AWBM. We would expect that using multiple
model structures and more complex semidistributed or dis-
tributed models (which consider spatial variations in the
input variables), might result in quantitative differences in
the degree to which flood runoff is underestimated by not
properly accounting for antecedent moisture. Nevertheless,
an underestimation of the heavy events when antecedent

Figure 7. Correlation between mean of the annual maximum rainfall event and antecedent rainfall sta-
tistics (mean 30, 60, and 120 days prior to the annual maximum event). All three plots indicate that
increases in the antecedent rainfall statistics lead to, on average, increases in the expected annual maxi-
mum event.
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moisture is not properly simulated, along with the impor-
tance of considering short- and long-memory dependencies
in rainfall, would still be expected across most models.
Overall, the necessity for a continuous simulation method-
ology to correctly model antecedent moisture would still be
apparent.

4. Conclusions
[41] By considering a resampling methodology which

removes the dependence structure in rainfall, we examined
the importance of antecedent moisture in determining the
magnitude of the design flood. The study showed that the
magnitude of heavy events (2%, 5%, 10%, and 20% AEP)
in the test catchments is on average underestimated when
the joint dependence between the flood-producing rain
event and antecedent wetness state is not considered. Given
the increasing concern about nonstationarity in rainfall
sequences [Milly et al., 2008; Westra and Sisson, 2011;
Westra et al., 2010] and likely changes to both average an-
nual rainfall and rainfall extremes [Bates et al., 2008], the
study also highlights the need to carefully consider future
changes in the joint probability between antecedent wet-
ness and the flood-producing rain event, which would be
difficult to capture in traditional event-based modeling
approaches. This draws attention to an important limitation
in traditional design flood estimation methods and the need

to move toward approaches which more accurately model
antecedent moisture.

[42] The study also demonstrated the importance of both
short-memory (day-to-day) and long-memory (monthly and
seasonal) time scales in rainfall and its impacts on anteced-
ent moisture and the resulting flood peak. We noted that, as
expected, short-memory had the greatest impact on the
resulting flood, due to the accuracy of flood estimates
improving by roughly 20% when 2 days of prior rainfall
are considered compared to none. However, there was on
average a 5% underestimation of flood flows even when
simulating several months of antecedent rainfall, highlight-
ing that catchment moisture conditions can exert a long-
term control on flood frequency. This also reinforces the
importance of ensuring stochastic rainfall generation tech-
niques capture not only day-to-day dependence (as is done
by low order Markov models), but also seasonal and longer
term persistence [e.g., Mehrotra and Sharma, 2007]. Fur-
ther support to this hypothesis is provided by Pui et al.
[2011] who found that low-frequency variability in the
rainfall preceding annual maximal events is a direct cause
of similar low-frequency variability in the ensuing flood
values. A continuous simulation approach which considers
persistence structures in rainfall at such time scales is thus
likely to offer some important benefits for design flood esti-
mation through its ability to derive exceedance probability
neutral estimates of design flood values.

Figure 8. Calibration performance for the peak over threshold calibration (POT) and the original full
series calibration (NS) for catchment 401210 (as shown in Figure 1). (a) to (d) are examples of heavy
events for which the peak over threshold calibration clearly outperforms the full series calibration.
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Figure 9. Relative error (%) versus k, taking the mean over all catchments, using the peak over thres-
hold calibration. The same trends identified in Figure 5 are also apparent here.

Figure 10. Relative error (%) versus k, taking the mean over all catchments using the two resampling
techniques. The red lines indicate the results from the k-nearest neighbor conditional bootstrap, while the
blue lines indicate the results from the original bootstrapping technique described in section 2.3. The
magnitude of the relative error is clearly reduced for all k when the day to day dependence is accounted
for (i.e., the conditional bootstrap is used).
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