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An Upper Limit to Seasonal Rainfall Predictability?
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ABSTRACT

The asymptotic predictability of global land surface precipitation is estimated empirically at the seasonal

time scale with lead times from 0 to 12 months. Predictability is defined as the unbiased estimate of predictive

skill using a given model structure assuming that all relevant predictors are included, thus representing an

upper bound to the predictive skill for seasonal forecasting applications. To estimate predictability, a simple

linear regression model is formulated based on the assumption that land surface precipitation variability can

be divided into a component forced by low-frequency variability in the global sea surface temperature

anomaly (SSTA) field and that can theoretically be predicted one or more seasons into the future, and

a ‘‘weather noise’’ component that originates from nonlinear dynamical instabilities in the atmosphere and is

not predictable beyond ;10 days.

Asymptotic predictability of global precipitation was found to be 14.7% of total precipitation variance using

1900–2007 data, with only minor increases in predictability using shorter and presumably less error-prone

records. This estimate was derived based on concurrent SSTA–precipitation relationships and therefore

constitutes the maximum skill achievable assuming perfect forecasts of the evolution of the SSTA field.

Imparting lags on the SSTA–precipitation relationship, the 3-, 6-, 9-, and 12-month predictability of global

precipitation was estimated to be 7.3%, 5.4%, 4.2%, and 3.7%, respectively, demonstrating the comparative

gains that can be achieved by developing improved SSTA forecasts compared to developing improved SSTA–

precipitation relationships. Finally, the actual average cross-validated predictive skill was found to be 2.1% of

the total precipitation variance using the full 1900–2007 dataset and was dominated by the El Niño–Southern

Oscillation (ENSO) phenomenon. This indicates that there is still significant potential for increases in pre-

dictive skill through improved parameter estimates, the use of longer and/or more reliable datasets, and the

use of larger spatial fields to substitute for limited temporal records.

1. Introduction

Seasonal climate forecasting has been an active area of

research since Sir Gilbert Walker first discovered a re-

lationship between large-scale atmospheric variability in

the tropics and rainfall in many parts of the world (e.g.,

Walker 1923). Since then, there have been tremendous

developments in conceptual understanding of the climate

system (e.g., Lorenz 1963), availability of large climate

datasets obtained from in situ and remotely sensed sources,

and computational resources that enable the analysis

of large multivariate datasets or the simulation of the

dynamical equations that drive the various elements

of the climate system. Despite all these developments,

improvements in the predictive skill for precipitation,

probably the most important climate variable from a hu-

man impact perspective, has been frustratingly slow with

the most sophisticated dynamical models often still un-

able to outperform linear regression relationships be-

tween regional precipitation and one or several indices

that describe relevant modes of variability such as the

El Niño–Southern Oscillation (ENSO) phenomenon (e.g.,

Anderson et al. 1999; Quan et al. 2006; Rajeevan et al.

2007; Van den Dool 2007; Wilks 2008).

It therefore seems appropriate to ask the question: to

what extent is the global precipitation field predictable?

It is well known that individual weather patterns are not

predictable beyond a period of about 10 days because of

the nonlinear internal dynamics of the atmosphere that

effectively limits the predictability beyond individual syn-

optic systems (e.g., Palmer and Anderson 1994; Goddard

et al. 2001; Van den Dool 2007). Although in certain cases

the atmospheric general circulation is predictable beyond
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individual weather systems, at the seasonal time scale the

majority of predictability is derived from lower-boundary

forcing, which evolves on a much lower time scale than

these weather systems (Horel and Wallace 1981; Palmer

and Anderson 1994). These boundary conditions do not

allow specification of the exact timing of transitions be-

tween weather regimes that result largely out of internal

atmospheric variability. However, they can influence the

probability of their occurrence (Palmer and Anderson

1994), thereby allowing specification of the probability

of below- or above-average precipitation for longer lead

times as long as the relevant boundary forcing can be

predicted. This forms the basis for developing precipita-

tion forecasts for lead times up to a year (Goddard et al.

2001) or even longer (Ruiz et al. 2005).

The first step in seasonal prediction therefore is to

identify a set of external boundary forcing variables

relevant to a particular precipitation field and attempt to

describe the future evolution of these variables. A range

of variables relevant to seasonal forecasting have been

proposed, including sea surface temperature (SST), soil

moisture, vegetation, and snow and sea ice cover, al-

though these are not equally important. In particular,

SST anomalies have long been regarded as the principal

forcing variable of atmospheric circulation (Barnston

et al. 2005; Quan et al. 2006) and have been shown to

influence the probabilities of below- and above-average

precipitation in many parts of the world (e.g., Nicholls

1989; Ward and Folland 1991; Barnston 1994; Drosdowsky

and Chambers 2001; Hoerling and Kumar 2003; Rajeevan

et al. 2007).

Complete knowledge of the future evolution of all rel-

evant external boundary conditions does not, however,

imply a perfect precipitation forecast. In particular, a

conceptual breakdown of atmospheric circulation into a

predictable component driven largely by low-frequency

variations in external boundary conditions, and a ‘‘weather

noise’’ component that is unpredictable at the seasonal

time scale, implies that there exists some upper limit to the

seasonal predictability that cannot be improved upon even

with a perfect mathematical representation of the global

climate system and with perfect forecasts of the future

evolution of all the relevant boundary conditions. To this

end, Barnston et al. (2005) described an approach to

quantifying the upper limit to atmospheric predictability

by generating ensembles of different atmospheric general

circulation models (AGCMs) forced to historical bound-

ary conditions but with different initial conditions to iso-

late the relative influences of (potentially predictable)

boundary forcing and (largely unpredictable) internal at-

mospheric dynamics on response variables such as global

precipitation. Although in many ways this represents a

conceptually attractive approach able to capture the full

nonlinear dynamical relationship between all the relevant

external boundary variables and precipitation, the diffi-

culty in accurately representing the fine temporal- and

spatial-scale precipitation processes often leads to signifi-

cant biases (e.g., Tippett et al. 2005), which may remain

even after developing ensembles of multiple AGCMs

(Barnston et al. 2005).

In this paper we propose a simple alternative empirical

approach based on linear regression methods to directly

estimate the upper limit of predictive skill for global

precipitation. The upper limit of predictive skill, which we

will henceforth refer to as predictability, is defined within

the context of our regression modeling approach as the

unbiased estimate of predictive skill using a given model

structure assuming all relevant predictors are included.

This is a statistically tractable equivalent to that proposed

by Madden (1989; see also Kalnay 2003) who defined

potential predictability beyond the limit of deterministic

weather predictability to be ‘‘the total variance of the

anomalies averaged over a month or season, minus the

variance that can be attributed to weather noise.’’ We

make the assumption that the pool of relevant predictors

is contained within the global SSTA field, which can be

justified by the importance of this field as the dominant

lower-boundary forcing for precipitation (Barnston et al.

2005; Quan et al. 2006). A second assumption—that re-

lationship between the SSTA field and precipitation can

be represented by a linear statistical model—is more dif-

ficult to justify on theoretical grounds (e.g., see Hoerling

et al. 1997) and probably will require the type of dy-

namically based analysis suggested by Barnston et al.

(2005) to confirm. As we will show, however, the linear

assumption does have some grounding, and even if it

proves to be theoretically unjustified, it may well provide

a practical limit to seasonal prediction because of the high

dimensionality of the climate datasets and comparatively

short observational records (see discussion in Van den

Dool 2007).

The remainder of this paper is structured as follows. In

the next section we introduce the datasets to be used in

this paper and conduct a preliminary statistical analysis of

global precipitation using a representation of the ENSO

phenomenon to highlight aspects of statistical forecasting

relevant to the discussion that follows. In section 3, we

describe our proposed methodology and include a syn-

thetic example to illustrate the approach. Our estimates

of precipitation predictability are then described in sec-

tion 4, using both concurrent and lagged relationships

between the SSTA field and global precipitation. Section

5 contains a summary of our results and a description of

associated implications on seasonal forecasting as well as

some potential avenues for developing improved sea-

sonal rainfall predictions.
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2. Data and preliminary analysis

a. Global SST anomalies

A global sea surface temperature anomaly (SSTA) data-

set was obtained from the reconstruction of raw SST

values using an optimal smoother, as described in Kaplan

et al. (1998; available online at http://iridl.ldeo.columbia.

edu/SOURCES/.KAPLAN/). The data are available on

a 58 longitude by 58 latitude grid across the global ocean,

totaling 1207 grid points. In the temporal dimension, the

data comprise monthly data that we converted to sea-

sonal data by calculating overlapping three-month av-

erages [i.e., December–February (DJF), January–March

(JFM), February–April (FMA), etc.]. We use data from

1900 to 2007, such that we have a record of 1296 over-

lapping seasons.

To facilitate linear regression modeling, the data were

converted to a subset of orthogonal components using

principal component analysis (PCA; see Preisendorfer

1988 or Wilks 2006 for details). Unless indicated other-

wise in the paper, the global temperature trend was re-

moved by

1) deriving a global temperature trend series by calcu-

lating the weighted average temperature of the 1207

grid points separately for each month of record from

1900 to 2007, with the weighting based on the relative

area of each grid point (as a 58 longitude by 58 lati-

tude grid box has a larger surface area at lower lati-

tudes than at higher latitudes);

2) subtracting this series from the SSTA dataset sepa-

rately at each grid point.

Thus, the sea surface temperature data used here repre-

sent both anomaly (in the sense that the climatological

mean is removed from each grid point separately) and

detrended (in the sense that the global average trend is

removed from each grid point) data. This ensured that the

principal components (PCs) (time series) and eigenvec-

tors (‘‘loading vectors’’ or empirical orthogonal functions

representing spatial patterns) were both mutually or-

thogonal. We note that the sensitivity of our results to this

data preprocessing approach was tested at length and

found to be minimal, and the implications of keeping the

global temperature trend in the data are discussed in

section 4f.

The first two principal component time series (lower

panels) and maps representing the correlation coefficients

between the principal components and the original gridded

data (upper panels) are presented in Figs. 1 and 2. Cor-

relation coefficients, rather than eigenvectors, are pre-

sented because of the ease of interpretation and the

direct relationship between correlation coefficients and

the variance accounted for by each component at each

grid point, and it should be noted that visual inspection of

the eigenvector maps show qualitatively similar features.

The physical interpretability of the PCs of the global

SSTA field is generally well understood and reported in

numerous other publications (e.g., Richman 1986; Van

den Dool 2007; Westra et al. 2009); however, the first two

FIG. 1. Principal component 1 calculated over all months of record from 1900 to 2007 (1296

months), representing 18.8% of the global SSTA dataset variance. (top) Correlation co-

efficients between PC1 and SSTAs at individual grid points; (bottom) time series from 1900 to

2007 (thin black line) and 4-yr moving average (thick black line).
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PCs contain interesting attributes relevant to the remain-

ing analysis, so we therefore provide a brief review here.

As can be seen from Fig. 1, the first principal compo-

nent is representative of the ENSO phenomenon and is in

fact correlated with a well-known index of the ENSO

phenomenon, the Niño-3.4 time series (defined as the

seasonally averaged SSTA over the central Pacific Ocean

defined by the region 58N–58S and 1708–1208W; see

Trenberth 1997) with a correlation coefficient of 20.91.

The negative sign is due to the high negative weightings in

the central and eastern equatorial region of the Pacific

Ocean commonly associated with ENSO. This compo-

nent accounts for 18.8% of the global SSTA variance,

making it by far the single dominant global mode of SST

variability.

The second principal component presented in Fig. 2

accounts for 7.8% of global SSTA variance and indicates

a strong negative trend, with positive correlation coef-

ficients in the Pacific and North Atlantic Oceans and

negative coefficients in the Indian and South Atlantic

Ocean. Because of the detrending step conducted prior to

applying PCA, the trend represented by this PC can be

viewed as the warming of the Indian and South Atlantic

Oceans relative to the Pacific and North Atlantic Oceans,

with this feature being broadly consistent with the analysis

of Casey and Cornillon (2001) who find higher warming

trends in the Indian and Southern Oceans compared to the

North Atlantic and North Pacific basins for the period

1960–90.

For both PCs, a 4-yr moving average is calculated to

demonstrate the strong season-to-season persistence of

these representations of the SSTA field. As we will

show, this persistence is the basis for developing one or

more season-ahead statistical forecasts of the global

precipitation field.

b. Global precipitation anomalies

The Global Historical Climate Network version 2

(GHCN) gridded monthly precipitation dataset was

selected as the global precipitation field to be used for

this analysis (Peterson and Vose 1997; Peterson et al.

1997; available online at http://www.ncdc.noaa.gov/pub/

data/ghcn/v2) and represents the most comprehensive

available dataset of monthly precipitation covering the

entire twentieth century (New et al. 2001). The dataset

provides an extended coverage of global precipitation

from 1900 to 2007 on a 58 longitude by 58 latitude grid

and is derived from 2064 homogeneity adjusted pre-

cipitation stations from the United States, Canada, and

former Soviet Union, together with 20 590 raw precipi-

tation stations throughout the world. Prior to averaging

over a 58 by 58 grid, the raw precipitation data were

converted to anomaly data with respect to the 1961–90

base period. The final gridded data comprised 819 in-

dividual grid points covering the majority of the global

land surface area.

We converted the monthly precipitation data into

seasonally averaged data using the same approach that

FIG. 2. Principal component 2 calculated over all months of record from 1900 to 2007 (1296

months), representing 7.8% of the global SSTA dataset variance. (top) Correlation coefficients

between PC2 and SSTAs at individual grid points; (bottom) time series from 1900 to 2007 (thin

black line) and 4-yr moving average (thick black line).
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was adopted for the SSTA data. There were numerous

grid points, particularly over arid regions, in which a

significant portion of the record between 1900 and 2007

was not reported because of insufficient data to estimate

the anomaly over that grid box. To ensure consistency in

the analysis and ensure that only high-quality data were

included, all grid points that had more than 15% of the

record missing for a particular season were excluded.

Furthermore, to avoid statistical difficulties associated

with cases where a large number of zero values were

reported at a particular location and season, grid points

that contained zeros for more than 5% of the record

were removed. Although this process does not ensure

normality in the resulting precipitation record, the prev-

alence of highly skewed distributions is nonetheless re-

duced. In all cases the removal of grid points from the

dataset was conducted on a season-by-season basis, such

that if a location had more than 5% of zeros for JFM but

not for June–August (JJA), we only removed that loca-

tion for the analysis for JFM. The result of this filtering is

that, for each season, approximately 435 spatial gridded

locations were included in the response dataset, indicating

a reduction of around 50% (i.e., ;435/819) of the original

dataset.

The methodology discussed in the subsequent section

assumes that records at each precipitation grid point are

temporally uncorrelated. All analyses are conducted for

individual seasons in isolation, such that we are only

concerned with temporal correlation between a season

in a given year and the same season of the preceding and

following years. We estimated the autocorrelation co-

efficients for each season separately at all grid points and

found that the globally averaged autocorrelation co-

efficient was 0.05 and is therefore unlikely to signifi-

cantly impact on our estimates of predictive skill.

The spatial correlation between successive grid points

was also examined. We calculated the spatial correlation

in precipitation time series between all adjacent grid

points and found about 86% of adjacent sequences

reported correlation coefficients that were statistically

significant at the 5% significance level, with a globally

averaged spatial correlation coefficient of 0.44. Unlike

temporal correlation, we do not assume spatial indepen-

dence; rather, it is only necessary that the spatial correla-

tion is sufficiently low to ensure a high effective dimension

of the global precipitation dataset.

The regions retained for the season JFM are shown as

dots in Fig. 3, and as can be seen there is generally good

spatial coverage, with exceptions in northern North

America, Central America and Amazonia, parts of

Africa, central Asia, and Siberia. These largely comprise

locations that are either arid such that the record com-

prises a large number of months with no precipitation or,

alternatively, do not have complete precipitation records

over the period 1900 to 2007. For this reason we suggest

that the exclusion of precipitation at these grid points is

likely to provide more robust results in the sections that

follow.

c. Preliminary analysis

As a preliminary analysis, we evaluated the correlation

between precipitation time series at each location and

the first principal component, which corresponds to the

ENSO phenomenon. The large gray (black) dots in Fig. 3

comprise those grid points for which positive (negative)

statistically significant correlation with PC1 is observed at

the 5% significance level, which is equivalent to a corre-

lation coefficient of approximately 60.19. In total, 30%

of the global precipitation grid locations exhibited sta-

tistically significant correlation. At this significance level,

one would expect on average 5% of locations (or ap-

proximately 22 grid points) to report statistically signifi-

cant correlation by random chance; however, because of

the observed spatial correlation a more rigorous field

significance test is required to ensure that spurious cor-

relations are not reported (Wilks 2006).

We conducted a field significance test using a boot-

strapping with replacement procedure in which data were

randomly drawn from the PC1 time series to construct

a new series PC1* of the same length as PC1. This was

repeated to generate 10 000 samples of PC1* having the

same length and distributional characteristics as the orig-

inal PC1 but with each data point now occurring randomly

in time (see Efron and Tibshirani 1993 for more details on

the bootstrap). Each PC1* was regressed against the global

FIG. 3. Location of 58 longitude by 58 latitude gridded pre-

cipitation data points used in the analysis (all dots). Only grid

points having greater than 85% of months of data between 1900

and 2007 were included. The large gray (black) dots represent lo-

cations with significant positive (negative) correlation with PC1

(ENSO) at the 5% level for the season JFM, with remaining small

black dots representing locations that do not have statistically sig-

nificant correlation with PC1.
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precipitation data to obtain 10 000 bootstrapped correla-

tion coefficients, and this was used to estimate the value of

the correlation coefficient with given probability of being

exceeded. In this case we found that the 5% field signif-

icance level occurred when 6.7% of stations reported

statistically significant correlation, which as expected was

slightly higher than the estimate using a Binomial distri-

bution assuming spatial independence (Wilks 2006). The

field significance of the precipitation–ENSO relationship,

with 30% of the grid points exhibiting statistically sig-

nificant correlation coefficients, therefore cannot be at-

tributed to random chance.

In addition to the strong field significance score, the

individual regions exhibiting statistically significant cor-

relations is also consistent with what is presently under-

stood about ENSO–precipitation relationships. Specifically,

regions with statistically significant correlation comprise

North, Central, and South America, southern Africa,

Southeast Asia, and Australasia. The results are consis-

tent with other findings that anomalously dry conditions

are typically found during warm ENSO periods in the

tropical regions bordering the eastern Indian Ocean such

as Australia, Indonesia, and South Asia (large gray dots

in Fig. 3), and anomalously wet conditions over much of

North America (large black dots in Fig. 3; see also Dai

and Wigley 2000; Diaz et al. 2001). Interestingly, we ex-

amined other skill scores, notably the Spearman rank

correlation (Wilks 2006) and the linear error in prob-

ability space (LEPS; Potts et al. 1996) and found almost

identical results, both in terms of the statistical signif-

icance of the scores (with significance levels estimated

by bootstrapping PC1 with replacement 10 000 times

and estimating the 5-percentile skill score that would be

expected by random chance) and in terms of the geo-

graphic distribution of the statistically significant scores.

This lends qualified support to the assumption that the

relationship between PC1 and global precipitation can be

represented linearly, as significant nonlinearity in the

predictor–response relationship would result in rank cor-

relations being noticeably higher than the mean squared

error skill score (MSESS).

Results such as these form the basis of the assertion

that ENSO is the dominant source of predictability for

global precipitation (e.g., New et al. 2001). This is an

assertion that we will now examine more closely.

3. Methodology

As discussed in the introduction, the purpose of this

analysis is not to estimate the predictive skill by con-

sidering the influence of individual predictors, such as

those attributable to the ENSO phenomenon described

above, but to develop an unbiased estimate of the global

precipitation predictability. As we will show, provided

that certain necessary simplifying assumptions are made,

such an estimate is possible using very simple linear re-

gression techniques.

a. Overview of approach

The objective of this analysis is to develop an estimate

of the upper limit of predictability of global precipita-

tion at the seasonal time scale. To achieve this we con-

ceptually divide the seasonal precipitation variability into

two components: the first associated with variability

attributable to external boundary conditions and the sec-

ond associated with internal variability in the atmosphere.

This second quantity is generally considered to be unpre-

dictable beyond a period of approximately 10 days (Van

den Dool 2007), such that at the seasonal time scale it

can be considered to be random weather noise (Barnston

et al. 2005).

We propose that, at any location or grid point, the

rainfall time series can be partitioned into these two com-

ponents, with the relationship represented by the equation

y 5 b
0

1 f (X) 1 e, (1)

where y represents the time series of precipitation of

length n at any location or grid point, b0 represents the

sample mean precipitation at that location and can be

viewed as an estimate for the location climatology (i.e.,

the long-term mean), and e represents the random weather

noise component. Beyond climatology, the predictable

component of y is contained in the term f(X), where X

represents an n 3 p matrix, p is the dimension of the

predictor matrix and is assumed to contain all the rel-

evant information concerning the variability in the exter-

nal boundary conditions, and f represents some function

relating X to y, such that the expected value of f(X) equals

zero.

In addition to the assumption that precipitation at any

location can be separated into a potentially predictable

component related to fluctuations in external boundary

conditions and a nonpredictable component related to

internal atmospheric variability, we make two further

assumptions. These assumptions are 1) that the function

f is linear and 2) that the matrix representing the ex-

ternal boundary conditions can be represented as a zero-

mean orthogonal representation of the SSTA dataset.

Thus, Eq. (1) can be simplified to yield

y 5 b
0

1 �
p

i51
b

i
x

i
1 e, (2)

where bi represents the regression coefficients, and X 5

[x1, . . . , xp] represents the PCA-transformed time series

representation of the SSTA dataset. The PCA transform
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ensures that X is orthogonal and that successive com-

ponents maximize variance of the data in a least squares

sense. The cumulative variance accounted for by the

principal components is shown in Fig. 4 for up to 80

components, at which exactly 100% of the variance of

the global SSTA field is accounted for. The upper limit

of 80 components is due to the approach adopted by

Kaplan et al. (1998) in deriving the reconstructed SSTA

dataset, as this was based on an optimal interpolation in

the subspace of the first 80 empirical orthogonal func-

tions. As can be seen, PCA efficiently represents the

variance of the data, with more than a quarter of the

variance of the full 1207-dimensional global SSTA data-

set accounted for by just the first two components, ap-

proximately half of the variance accounted for by the first

eight components, and 90% accounted for by the first

42 components.

To estimate the maximum predictability of the precipi-

tation data, we use the MSESS defined as (Wilks 2006)

MSESS 5 1�
MSE

pred

MSE
clim

, where (3a)

MSE
pred

5
1

(n� 1� p)
�

n

i51
(y

i
� ŷ

i
)2 and (3b)

MSE
clim

5
1

(n� 1)
�

n

i51
(y

i
� y

i
)2, (3c)

where n represents sample length indexed by i, ŷ
i

repre-

sents the least squares estimate for y in Eq. (2), and y
i

represents the sample mean of y and is used to represent

climatology. The MSESS can be interpreted as the fraction

of the observed variance accounted for by the forecasts

using a particular model compared to a reference clima-

tology model, with a score of 1 representing a perfect

model [i.e., the error term e in Eq. (2) is reduced to zero]

and a score of 0 representing no improvement over cli-

matology. Furthermore, a negative score indicates an

inferior result compared to the reference climatology

‘‘forecast,’’ with the variance of residuals in Eq. (3b)

being greater than the variance of residuals from the

climatology model in Eq. (3c). Dividing the model and

climatology residual squared error terms in Eqs. (3b)

and (3c) by (n 2 1 2 p) and (n 2 1) ensures that the

estimates are unbiased, which means that adding a ran-

dom predictor to the model will not change the expected

value of MSEpred. In the remainder of this paper we ex-

press the MSESS as a percentage, by multiplying the

MSESS in Eq. (3a) by 100.

We have now presented all the theory we intend to use

for estimating the predictability for global precipitation.

The model in Eq. (2) is fitted to estimate y from X, where

X is of dimension p and constitutes a dimension-reduced

version of the full 80-dimensional orthogonal repre-

sentation of the global SSTA dataset. This allows the

MSESS to be estimated separately for each y using Eq. (3).

To estimate global predictability, this process is repeated

separately for each precipitation grid point, and the

globally averaged MSESS is calculated.

At first glance, the empirical approach described here

appears overly simplistic, in particular when compared

against the approach proposed by Barnston et al. (2005),

which involves using a suite of GCMs that represent

the dynamical equations relating slow-moving boundary

conditions to global precipitation. Much of the simplicity

in the approach stems from necessity. In particular, even

though the SSTA dataset may only represent one of the

boundary conditions that are likely to drive long-term

precipitation variability, with other drivers including soil

moisture, vegetation, snow cover, sea ice extent, and so

on, to our knowledge it is the only such variable for which

a long-term global dataset is available. Furthermore, as

we will discuss in more detail in section 4a, we intend to

apply the model in Eq. (2) such that the majority of

variance of the global SSTA is accounted for, which

makes the use of a nonlinear model for the application

proposed in this paper difficult. This is because adopting

a nonlinear model will significantly increase the effective

dimension of the predictor pool, which for the sample

sizes considered here (i.e., slightly over 100 years of data)

would prevent the development of a statistical model that

explains a sufficiently large portion of the variance of the

SSTA dataset to estimate predictability.

Despite the simplicity, we believe each of the as-

sumptions is justified to an approximation, and we will

FIG. 4. Cumulative percentage variance accounted for by each

principal component of the global SSTA dataset. Principal com-

ponents were calculated over the full monthly dataset from 1900 to

2007, totaling 1296 data points.
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return to this during our discussion in section 5. To il-

lustrate the proposed approach, we have developed the

following simple synthetic example.

b. Synthetic example

The objective of this research is to estimate the maxi-

mum prediction performance achievable from a particular

model structure. The focus on predictability is therefore

distinct from the actual predictive skill available from

a finite sample and represents the unbiased estimate of

predictive skill assuming all relevant predictors are in-

cluded in the model.

We construct a simple synthetic model with p predic-

tors, X 5 [x1, . . . , xp], by generating independently p

samples of x each of length n by sampling from a normal

(Gaussian) distribution with mean zero and unit variance

[;N(0, 1)]. We assume that the predictor pool X com-

prises the full set of predictors available to estimate y and

is therefore analogous to the orthogonal SSTA dataset in

which each principal component plausibly influences the

variance of any given precipitation grid point. We then

generate the response variable y as a linear function of

the first two of these predictors:

y 5 b
0

1 b
1
x

1
1 b

2
x

2
1 e, (4)

where b0 5 0, b1 5 0.2, b2 5 0.05, and e ; N(0, 1). The

value of b0 has been set to zero to ensure that the ex-

pectation of y is also zero, and the values of b1 and b2

have been set to small values such that the variance of

y is dominated by the variance of the error term e. Fur-

thermore, the remaining predictors x3, x4, . . . , xp have not

been included in the generative model and are therefore

spurious predictors.

The formulation of the model in Eq. (4) is analogous to

Eq. (2) for the case where there are only two predictors

and all the model coefficients are known. The objective of

statistical seasonal forecasting in this linear framework is

to develop an empirical relationship between X and y

by identifying the predictors that are relevant for the

model—in this case X 5 [x1, x2], together with the model

parameters b. Finally, the error term e is analogous to the

weather noise component described in the introduction

and is by definition unpredictable. It should be emphasized

that we are using a linear model to keep the analysis as

simple as possible, and we temporarily ignore the issue of

lagged predictor–response relationships as would be nec-

essary in a true forecast setting.

As in this case we know the structure and parameters

of the model in Eq. (4), we can estimate the theoretical

predictive skill using the MSESS. Given that each of the

predictors x and the error term e were generated from

a normal distribution with zero mean and unit variance,

we can estimate the theoretical MSESS provided in Eq.

(3) as

MSESS 5 1� s2
«

b2
1 1 b2

2 1 s2
«

, (5)

where s«
2 5 1 by construction. Thus, for X 5 [x1, x2], the

MSESS 5 1 2 12/(12 1 0.22 1 0.052) 5 4.08%. Further-

more, in the case where we fit the model in Eq. (4) using

only a single predictor X 5 [x1], the residual term be-

comes e9 5 b2x2 1 e and the variance associated with this

term becomes s2
«9 5 b2

2 1 s2
«. Thus, the theoretical MSESS

for the case where we only use x1 is 1 2 (12 1 0.052)/

(12 1 0.22 1 0.052) 5 3.84%, slightly lower than when

both predictors are used. Addition of the remaining pos-

sible predictors [x3, . . . , xp] will not affect the theoretical

predictive skill as by construction the response y is gen-

erated using only the first two predictors.

We now wish to estimate the true skill score empiri-

cally from the data. To prevent reporting artificial skill,

the usual approach is to cross validate or apply some

other complexity penalty criterion to estimate forecast

skill. We illustrate the implications of using a range of

complexity penalty approaches, including leave-one-out

cross validation and parametric approaches such as the

adjusted R2, Mallow’s Cp statistic, and the Bayesian

information criterion (BIC) (see Hastie et al. 2001 for

details). Each of these complexity penalty criteria affect

the MSESS via the MSEpred, by providing an additional

penalty to the MSE to account for increasing p.

To see how this affects the estimate of the MSESS,

we add predictors sequentially such that for the one-

parameter case the predictor vector becomes X 5 [x1],

and the p-parameter case the predictor matrix becomes

X 5 [x1, x2, . . . , xp]. A total of 100 000 samples of X, e,

and y were then randomly generated for different

values of p up to p 5 20, and for sample lengths n 5 100

and n 5 1000. For each sample, the b parameters in Eq. (4)

were estimated using linear regression, and the MSESS

calculated using the bias-adjusted version of the MSEpred

in Eq. (3b), together with each of the complexity penalty

versions described above. Thus we have 100 000 values of

the MSESS for each n and p. The results of this analysis are

presented in Fig. 5, with the MSESS presented in this fig-

ure representing the mean value over the 100 000 samples.

The upper line in Fig. 5 represents the theoretical

MSESS as calculated by Eq. (5) above, with a value of

3.84% for p 5 1, and 4.08% for the remaining p [for p $

2 both predictors in Eq. (4) are included in X]. As can be

seen, each complexity penalty criterion results in an

underestimation of the true MSESS, with the magnitude

of the underestimation being a function of both n and p.

Interestingly, for n 5 100, the maximum MSESS for
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each of the complexity penalty criterion occurs for the

one predictor model, such that x2 generally would be

excluded from the forecast model. This is important, as

complexity penalty approaches such as cross validation

are commonly used in predictor selection for statistical

seasonal forecasting of precipitation (e.g., Wilks 2006).

As such, the application of such approaches for the es-

timation of asymptotic predictive skill would most likely

result in the underestimation of the number of climate

predictors (e.g., principal components of the SSTA field)

that influence precipitation variability.

For n 5 1000, the maximum MSESS occurs for the two

predictor model for each of the complexity penalty cri-

teria except for the BIC, which applies the most severe

penalty. It is therefore clear that an approach for esti-

mating forecast skill based on some complexity penalty

criteria, including a cross-validation approach in which

part of the sample is withheld, cannot be used to esti-

mate the theoretical MSESS, with the magnitude of the

underestimation particularly notable for relatively short,

high-dimensional datasets such as is the case for most

statistical seasonal forecasting applications.

Finally, we turn to the unbiased estimators for MSEpred

and MSEclim and compute the MSESS as defined in Eq. (3),

represented as gray triangles in Fig. 5 for both n 5 100

(solid line) and n 5 1000 (dotted line). These lines are

difficult to visualize in the figure, as they lie just below the

theoretical MSESS, thereby indicating that they provide

a good estimate of the true MSESS. In particular, the use

of the unbiased MSEpred shows an increase in the MSESS

up to p 5 2, followed by a constant MSESS for higher

values of p. This is desirable for the subsequent analysis

using the SSTA field to forecast seasonal precipitation, as

in reality we do not know which predictors should be

included, and therefore we want to know what the as-

ymptotic predictive skill might be if we maximize the pool

of plausible predictors.

It needs to be emphasized that although the MSESS

provides a good approximation, it is not exact, since even

though it is possible to provide an unbiased represen-

tation of MSEpred and MSEclim, the MSESS calculated via

Eq. (3a) is slightly biased. This is because assuming we are

drawing independent observations from a normal distri-

bution, Cochran’s theory shows that s2 (the sample vari-

ance) follows a chi-squared distribution, which approaches

a normal distribution only when n is large (Stuart and Ord

1987). This causes an underestimation of the true MSESS,

with the magnitude of the underestimation increasing as

n decreases. Importantly, the bias is only a function of n

and the magnitude of the theoretical MSESS (since if

MSEpred 5 MSEclim, the distributional form of either is of

no concern and MSESS 5 1) and not a function of the

dimensionality p of the predictor dataset.

We estimated the bias as a function of both n and the

value of the true MSESS using only a single predictor x

and present this in Fig. 6. To allow for different values of

the true MSESS we have modified the model formula-

tion given in Eq. (4) to y 5
ffiffiffiffiffi

m
p

x 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1�m)
p

e, where x

and e are N(0, 1) as before, as this will ensure that the

theoretical (true) MSESS becomes equal to m. This is

because, by substituting into Eq. (5), one has

MSESS 5 1� [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1�m)
p

]2

[
ffiffiffiffiffiffiffiffi

(m)
p

]2
1 [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1�m)
p

]2
5 m. (6)

The results are given as a percentage of the true MSESS

and show underestimation in all cases, with the most

significant bias occurring for small sample sizes and low

values of the true MSESS. Returning to our synthetic

example, given the true MSESS for p 5 2 predictors is

4.08% and n 5 100, the expected value of the MSESS is

3.92%, which constitutes a downward bias of approxi-

mately 2%. This bias can be observed in Fig. 5 by com-

paring the theoretical MSESS (black circles) with the

MSESS calculated using the unbiased MSEpred (gray tri-

angles) for sample size n 5 100. For the application de-

scribed in this paper we consider this bias to provide a

negligible influence on the final predictability estimates.

4. Results

In the previous section we described a method for

developing an estimate of the predictive skill (measured

using the MSESS) that would be achievable assuming

FIG. 5. Implications of different values of sample length n and

predictor dimension p on the MSESS. The theoretical (true)

MSESS (upper black line, circles), the MSESS calculated using the

unbiased estimator MSEpred (located just below upper black line;

gray triangles), and four alternative complexity penalty approaches

(cross validation, adjusted R2, Mallows Cp statistic and the BIC)

are shown.

3340 J O U R N A L O F C L I M A T E VOLUME 23



a linear predictor–response relationship and that all pos-

sible predictors are included in X. In particular we pointed

out that although the variance associated with the MSESS

calculated by regressing a high-dimensional predictor

matrix X against a single precipitation grid point y is likely

to be high, the MSESS is approximately unbiased and

therefore on average would yield the true value of pre-

dictive skill. Calculation of the global average MSESS

after regressing X separately against a large number of

response variables (i.e., separately for each precipitation

grid point and each season) reduces the variance of this

estimate, so that the best estimate of asymptotic MSESS

can be achieved by considering the complete global pre-

cipitation record. Unfortunately, the focus on the globally

averaged skill score in the ensuing analysis obscures in-

teresting regional details; however, as we shall see, the

consideration of global precipitation allows for some ro-

bust conclusions that would not be possible by taking

a more regional approach.

a. Estimating the global asymptotic MSESS

The asymptotic MSESS can be estimated by fitting the

model described in Eq. (2) separately for each precipi-

tation grid point y using a common p-dimensional pre-

dictor pool X comprising the principal components of the

SSTA field. The globally averaged MSESS is derived by

computing the weighted average MSESS calculated at

each grid point via

MSESS
global

5 �
q

j51
w

i
MSESS

j

,

�
q

j51
w

i
, (7)

where wi represents a weight that accounts for de-

creasing grid size with increasing latitude calculated as

cos(latitude). Furthermore, j indexes the grid point and

q represents the total number of grid points, which as

described in section 2b is approximately equal to 435

depending on the season. Similar to our synthetic ex-

ample, we construct the p-dimensional predictor pool X

comprising the principal components of the SSTA field

by adding components sequentially in order of the var-

iance accounted for by the PCs. Thus, for p 5 1, X only

contains the first PC and so on.

The globally averaged MSESS for p 5 1, 10, and 48 is

presented in Fig. 7, with the predictor pool accounting for

18.8%, 55.7%, and 92.8% of the variance of the global

SSTA dataset, respectively. The MSESS was calculated

separately for each season (consisting of 3 months refer-

enced by the center month) using the full record from

1900 to 2007, such that n ranged from 90 to 108 (with the

lower limit of 90 based on the filter that only seasons with

more than 85% of the full record available are permissi-

ble). The maximum value of p was therefore selected to be

48, which is approximately half of n while representing the

vast majority of the variance of the global SSTA dataset.

These results show that, despite the high level of

emphasis of ENSO in the climate literature, this mode

represented by the first PC only appears to result in a

global annually averaged MSESS of 3.0%. Increasing the

dimension of X results in large increases in the MSESS,

up to an annually averaged MSESS of 13.6% for p 5 48.

Furthermore, there is clear seasonality in the MSESS, with

maximum predictability occurring in the northern winter

(approximately spanning November through February)

and lowest predictability in the summer. Interestingly,

this seasonality appears remarkably consistent for dif-

ferent dimensions of X.

FIG. 6. Estimating the bias of the MSESS, using a simple model

given by y 5
ffiffiffiffi

m
p

x 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1�m)
p

e where x and e are both generated

random sequences of length n with 0 mean and a unit variance. The

model is equivalent to the model represented by Eq. (4) for a single

predictor, except that the coefficient m now can be interpreted as the

fraction of the variance of y accounted for in x (with the remaining

fraction accounted for by the error term e necessarily being 1 2 m).

FIG. 7. Globally averaged MSESS by season for 1, 10, and 48 PCs.

Each season is represented by the center month, such that ‘‘Jan’’

represents the season DJF.
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These results also show that predictability increases

with the dimension of X. We confirm the statistical sig-

nificance of these results by comparing these results with

skill scores obtained by bootstrapping X with replacement

to generate multiple realizations of X* and substituting

this into Eq. (2). As expected from the synthetic example

presented earlier, this analysis confirms that the global

MSESS using the first 48 bootstrapped PCs is on average

zero with a standard deviation of about 1.5%, such that

skill scores reported in Fig. 7 represent genuine improve-

ments in predictive skill as a consequence of introducing

higher-order PCs into the model.

To develop a better understanding of how predictability

increases as a function of variance accounted for in the

global SSTA dataset, we compute the annually averaged

MSESS (calculated by averaging over all seasons) for

values of p ranging from 1 to 48. This is shown as the black

line in Fig. 8 (left axis) and suggests a monotonic increase

in the MSESS with the number of PCs included in X. This

monotonic increase differs from the results of the syn-

thetic example in which the MSESS plateaus after in-

cluding the first two predictors, highlighting that even very

high-order PCs contribute to observed global precipi-

tation variability. The likelihood that a monotonic in-

crease for all 48 PCs would occur by random chance is

exceptionally low because of the mutual orthogonality

of each of the PCs.

An interesting result is that the largest increase in the

MSESS is associated with the first PC, followed by the

second PC, and so on. This implies that there might be

a direct link between the increase in globally averaged

asymptotic MSESS and the variance of the global SSTA

dataset contained in X. To test this assertion, we also

plot the variance accounted for by successive PCs as

a solid line in Fig. 8 (right axis). We adjusted the axes

such that the variance accounted for by the first 48 PCs

lines up with the asymptotic MSESS at this dimension.

The close alignment between the two curves in Fig. 8 is

striking and suggests that the improvement in the MSESS,

which is interpreted as the percentage reduction in vari-

ance resulting from the fitted model relative to a baseline

climatology model, is directly proportional to the fraction

variance accounted for by each individual PC relative to

the global SSTA field. Considering that the asymptotic

global MSESS is 13.6% when using 48 PCs, which to-

gether account for 92.8% of SSTA variance, a small ex-

trapolation to the point where 100% of the SSTA variance

is accounted for brings the asymptotic MSESS accounted

for by the full global SSTA dataset to 14.7% (i.e., 13.6%/

0.928). This forms the basis for our estimate for the global

predictability of seasonal precipitation.

How robust is this relationship? A simple test is to use

an alternative orthogonal representation of the global

SSTA dataset and ascertain whether the relationship

between SSTA variance accounted for in the individual

components and the globally averaged MSESS holds.

We use independent component analysis (ICA) for this

purpose (Lee 1998; Hyvarinen et al. 2001). The basis of

ICA is that some orthogonal rotation of the principal

component matrix X can be found that maximizes the

statistical independence of the components, with this

being a more stringent constraint than PCA, which only

ensures that the covariance (correlation) matrix is di-

agonal. The most common applications of ICA are in

signal processing and image processing, although ICA

recently has been used to analyze the global SSTA field

(Aires et al. 2000; Westra et al. 2009).

ICA was selected as this technique provides a differ-

ent variance breakdown compared to PCA while still

maintaining temporal orthogonality. The physical in-

terpretability of the individual components is therefore

not relevant here. We perform the ICA rotation of X for

p 5 6 because of instabilities associated with the ICA

algorithm when the dimension becomes high. The re-

sults are presented in Fig. 9, with the variance accounted

for using the PCA representation shown for reference.

The scale of the vertical axes is the same as for Fig. 8 to

maintain consistency.

As before the cumulative variance accounted for by ICs

(solid line, triangles) increases with p; however, the vari-

ance maximizing property of PCA is now lost, with IC5

accounting for more variance of the SSTA data than any

other component. The cumulative variance accounted for

at p 5 6 is the same for the ICA and PCA representations

by construction, since the independent components (ICs)

are simply a linear combination of the PCs.

FIG. 8. Globally averaged MSESS (dotted line, left axis) calcu-

lated as the average over all seasons and cumulative percentage

variance accounted for by successive PCs included in X (solid line,

right axis).
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The global MSESS was calculated for different num-

bers of ICs and the results once again show a monotonic

increase in MSESS with increasing dimension of X; how-

ever, the shape of the curve now clearly follows the ICA

breakdown of variance among successive components.

This adds weight to the assertion that the improvement in

MSESS is a direct function of the variance in the total

SSTA field accounted for by individual components.

b. Relation to actual predictive skill

To place the previous results in context, we estimate

the cross-validated MSESS using leave-5-out cross vali-

dation to estimate the predictive skill for different

dimensions of X. We use leave-5-out rather than leave-

1-out cross validation in this case as this reduces any effects

associated with the autocorrelation of X. We maintain

a simple approach where, given a predictor matrix X of

dimension p, we estimate the model parameters in Eq. (2)

after withholding a portion of the sample, and then we

apply the estimated parameters to the withheld portion to

estimate ŷ�k. Here, the superscript 2k indicates that the

response ŷ was estimated with the kth portion of the data

removed, with this being repeated by sequentially with-

holding portions of data such that our final ŷ�k is of length

n (see Hastie et al. 2001 for more details on cross vali-

dation). We note that in this case we do not use cross

validation to select the optimal number of predictors at

each location. Rather, we use the same approach that was

used in section 4b where we gradually increase p from 1

to 48 and use this to estimate the cross-validated MSESS

at all locations.

The results are provided in Fig. 10, and show a cross-

validated MSESS for p 5 1 of 1.86%, which is considerably

below the unbiased estimate of 3.0% computed for p 5 1

in section 4a and highlights the penalty that cross valida-

tion places on the skill score results. A marginal im-

provement (i.e., increase) can be observed for p 5 2, with

a cross-validated MSESS of 2.11%, with a deterioration

(i.e., decrease) in predictive skills for higher dimensions of

X. Although 2.11% appears to be a very low skill score, it

should be remembered that it constitutes a global average

and is much higher for certain seasons and regions, most

notably for those regions indicated in Fig. 3 to be influ-

enced by the ENSO phenomenon.

Although improved model formulations can be pro-

posed that would likely result in greater predictive skill

than our simple cross-validated linear regression model,

this result does highlight the difficulty in engaging higher-

order principal components in developing a predictive

model. The reason for this is obvious; the marginal im-

provement in predictive skill for the addition of higher-

order principal components as indicated in Fig. 8 is

smaller than the penalty imposed by cross validation

shown in Fig. 5. This result shows the challenge of using

a 48-dimensional (or higher) predictor pool to estimate

seasonal precipitation at any given location, and high-

lights why so much of the statistical seasonal forecasting

literature concerns the derivation and/or identification of

climate ‘‘indices’’ that efficiently represent the variance

of the SSTA dataset most relevant to the region being

analyzed (e.g., see Goddard et al. 2001). Nevertheless, it

is clear that significant variability will be missed by using

these reduced-dimension approaches, as all the relevant

SSTA variability necessarily is only captured by engaging

the full SSTA dataset.

FIG. 9. Globally averaged MSESS (dotted line, left axis) calcu-

lated as the average over all seasons and cumulative percentage

variance accounted for by successive ICs (solid line, triangles, right

axis) and PCs (solid line, circles, right axis) included in X.

FIG. 10. Leave-5-out cross-validated MSESS plotted as a func-

tion of the dimension of X and calculated as the average over all

seasons.
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c. Implications of data length

The previous results were computed using precipita-

tion data from 1900 to 2007. A potential limitation of

using such an extended dataset is that, particularly for the

earlier parts of the record, significant measurement and

sampling errors may impact on the results. We therefore

repeat the preceding analysis by only considering the

global SSTA and precipitation data after a particular start

date, which we gradually shift forward year by year from

1900 to 1970. We maintain the preprocessing step that no

more than 15% of the sample may be missing at any lo-

cation and season, such that the minimum value of n when

the start year is 1970 is 38 3 0.85 5 32. The results for p 5 1

and 20 are shown as solid lines in Fig. 11; we did not

evaluate the case with p 5 48 as p becomes greater than n.

The results show a slight gradual increase in the MSESS

as sample size decreases, with maximum MSESS occur-

ring when only post-1950 data are considered. The im-

provements are relatively small, however, with a 35%

increase in MSESS for p 5 1 and a 16% increase for p 5

20. Applying the 16% increase in MSESS to the global

precipitation predictability estimate of 14.7% derived in

section 4a yields a revised predictability estimate of ap-

proximately 17.0%.

In section 3b we highlighted that the MSESS is a mildly

biased estimator for the true MSESS, with this bias be-

coming significant as n becomes small. We therefore es-

timated the MSESS for different sample lengths by

randomly withholding a fixed percentage of data from the

analysis, with the percentage of data withheld being

related to the available sample length corresponding to

each start date. The results are presented as dashed lines in

Fig. 11 and show a slight decrease in MSESS, with a max-

imum decrease when using the smallest sample lengths.

This result is consistent with the results developed during

the synthetic study, and therefore also indicates that the

estimator of MSESS for the full sample size from 1900 to

2007 is likely to only slightly underestimate the true

MSESS.

We have identified three possible reasons that might

explain the increase in MSESS with decreasing sample

length shown in Fig. 11. The first is that improved in-

strumentation and higher recording density in global

SSTA and precipitation fields could result in a decrease in

variance in the error term e. The second and third pos-

sible reasons are that nonstationarity in the SSTA dataset

due to low-frequency natural variability or anthropogenic

climate change, respectively, might cause changes in the

SSTA–precipitation relationship. The ultimate explana-

tion is difficult to confirm and may comprise a combina-

tion of all three explanations. However, the results point

to a relatively strong consistency in MSESS estimates for

different sampling periods and do not show any evidence

that anthropogenic climate change is degrading the re-

lationship between SST anomalies and precipitation at

the global scale. Furthermore, the improvement in as-

ymptotic MSESS is less than 20% when using the shorter

and presumably more reliable data, which in most cases

will be outweighed by the statistical benefits of using

longer sample sizes to train the parameters of a statistical

forecasting model.

d. Implications of temporal and spatial scale

Thus far we have adopted a seasonal (3 month) time

scale for this analysis, based on the premise that variance

in the boundary conditions influence the probability of

different weather outcomes, such that the maximum

predictive skill is likely to occur when averaging across

multiple synoptic systems (e.g., see Barnston 1994). This

premise is tested here by repeating the analysis of sec-

tion 4b using monthly rather than seasonal averages. We

once again plotted the MSESS against the dimension of

the predictor matrix p (figure not shown) and found that

the MSESS increases incrementally with p in a similar

way to the seasonal case provided in Fig. 8, except that

now the maximum MSESS when p is 48 is only 8.9%.

Given that for the monthly case the first 48 PCs account

for 90.3% of the variance of the global SSTA field, we

extrapolate to the case where 100% of the SSTA vari-

ance is accounted for and get an asymptotic MSESS of

9.9% (i.e., 8.9%/0.903). This represents about two-thirds

of the MSESS when averaging over seasonal (3 month)

FIG. 11. Implications on globally averaged MSESS after re-

moving earlier parts of the global SSTA and precipitation datasets

from the analysis. Solid lines represent the MSESS considering

only data after the start year indicated in the x axis. Dotted lines

represent the MSESS after randomly removing years from the full

1900–2007 data such that the sample length corresponds to the

sample length for the solid lines.
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blocks, suggesting that seasonal forecasting at the sea-

sonal time scale results in an improved signal-to-noise

ratio, which is probably mostly due to the reduction in

the weather noise component of Eq. (2) due to the av-

eraging out of multiple individual weather systems over

the 3-month time frame.

We also examine the implications of spatial scale on the

analysis. To this end, we use an alternative global gridded

land surface precipitation dataset prepared by the Cli-

mate Research Unit (CRU) and described in Hulme and

Osborne (1998), which has been derived using 11 880 sep-

arate time series across global land areas from 1900 to 1998

(http://www.cru.uea.ac.uk/;mikeh/datasets/global/). This

dataset is available on both a 58 latitude by 58 longitude

resolution and a 2.58 latitude by 3.758 longitude resolution

grid. The finer-resolution data comprise 1520 separate

grid boxes and therefore allow for the representation of

additional detail in global precipitation variability. Al-

though the station data for this dataset were also derived

from the GHCN (version 2) database and therefore con-

tain some overlap with the GHCN precipitation gridded

dataset, these data are derived using a smaller number of

total precipitation stations and are based in a Theissen

polygon weighting to construct the individual gridded

time series (see also discussion in New et al. 1999). We

used the same filtering approach as was conducted for the

GHCN data (refer to section 2); for the finer grid time

scale we retained on average 1250 grid points.

We computed the MSESS for different numbers of

PCs in an identical manner to the earlier analysis with

the GHCN data and found the shape of the MSESS

curve to be qualitatively similar to Fig. 8. The MSESS at

48 PCs was found to be 14.98% and 14.15% for the 58

by 58 and 2.58 by 3.758 gridded data, suggesting slightly

improved performance for the lower-resolution data. We

extrapolated to 100% variability accounted for in the

SSTA field by dividing by percentage variance accounted

for using the first 48 PCs and found an asymptotic MSESS

of 16.1% and 15.4% for the larger and smaller grid sizes,

respectively. We interpret this result using similar logic to

the temporal resolution issue discussed in the previous

section: climate variability at the seasonal time scale

typically operates over large spatial areas, with the impact

of averaging individual synoptic events over larger spatial

scales being a slight increase in the signal-to-noise ratio.

e. Implications of lag

In the previous sections we estimated the asymptotic

predictability of global precipitation that can be derived

from the global SSTA dataset, assuming that the relation-

ship between global SSTA and precipitation can be rep-

resented by the formulation in Eq. (2). The analysis used

concurrent relationships between the SSTA and precipi-

tation data, with the implicit assumption that precipitation

variability is driven by the instantaneous variability in the

boundary conditions and that any predictability over longer

time horizons is derived from low-frequency variability of

the boundary forcing. How valid is this assumption? And

how is the SSTA–precipitation relationship expected to

change if a lag was to be introduced?

We have already suggested that the importance of the

global SSTA dataset in providing atmospheric boundary

forcing is derived largely from the fact that the oceans

contribute to approximately 85% of water vapor in the

atmosphere (Bigg et al. 2003), and that the recycling rate

(defined as the proportion of water that precipitates out

because of local evaporation compared horizontal trans-

port) is less than 10% and 20% at spatial scales of 500 and

1000 km, respectively (Trenberth 1998). This implies that

the majority of land surface precipitation would be ul-

timately derived from evaporation from the ocean sur-

face. Furthermore, it has been estimated that residence

times of water in the atmosphere are relatively short, with

an e-folding residence time of atmospheric moisture

calculated to be just over 8 days (Trenberth 1998). This

suggests that the best results in terms of predictability

should be derived from concurrent SSTA–precipitation

relationships, with any predictability when using lagged

relationships due almost exclusively to the persistence

structure of the boundary forcing.

To test this hypothesis, we first examine the persis-

tence structure of the SSTA field. To this end we eval-

uate the level of persistence in each of the individual

principal component time series by calculating the lag-k

autocorrelation coefficients with k ranging from 3 to

12 months. The results are provided in Fig. 12 for up to

FIG. 12. Autocorrelation coefficient against principal component

for lags ranging from 3 to 12 months.
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48 principal components, and they show that, as expected,

the level of autocorrelation decreases with increased lag.

The interesting result is that the level of autocorrelation

generally also decreases with the order of the principal

component. For example, the first principal component,

which is representative of the ENSO phenomenon, shows

the maximum autocorrelation at the 3 month lag, with the

level of autocorrelation gradually decreasing with the

order of the PC. A spike in the autocorrelation coefficient

is observed for the second principal component, which we

attribute to the significant trend exhibited by this com-

ponent as shown in Fig. 2. This trend ensures high levels

of persistence can be observed even at the 12 month lag.

For the remaining PCs the level of autocorrelation ap-

pears to largely decrease with the order of the PC, with

autocorrelation for 6 months or longer eventually falling

below the 95% statistically significant level of 0.2. The

implications of this result for seasonal forecasting are

significant, since it shows that not only does PCA provide

the most efficient (in a least squares sense) representation

of a multivariate dataset, but it also represents the per-

sistence structure of global SSTAs efficiently by the lower-

order components.

The benefit of considering the lag-k autocorrelation

coefficient is that its squared value can be interpreted as

the variance of the principal component at time t 1 k

accounted for by the same principal component at time t.

We can use this to calculate the cumulative variance

accounted for by the full-dimensional PCA representa-

tion of the SSTA dataset at any given lag by multiplying

the cumulative variance shown in Fig. 4 by the square of

the autocorrelation coefficient as shown in Fig. 12. The

cumulative variance curves for lags from 3 to 12 months

are presented in Fig. 13, with the 0 lag (concurrent)

curve reproduced from Fig. 4 for reference.

The interpretation of these curves is that they repre-

sent the cumulative variance of the SSTA field at time t,

accounted for by the first p PCs at time t 1 k. These

curves show that, as expected, the cumulative variance

accounted for by the lagged PCs decreases with in-

creasing lag. Continuing the calculations for autocorre-

lation up to the full 80-dimensional SSTA field shows

that the 3, 6, 9, and 12 month lagged SSTAs represent

approximately 60%, 35%, 26%, and 24% of the vari-

ability of the original SSTA field, respectively.

If our hypothesis is that the predictable portion of the

precipitation variance is due to the instantaneous state of

the SSTA field and that seasonal predictability is derived

from the low-frequency evolution of this field, then the

curves presented in Fig. 13 should align with the MSESS

values generated using lagged SSTA–precipitation re-

lationships for each value of p. We test this for each lag,

with results shown in Fig. 14. In all cases we display both

the theoretical curves (solid line) and the MSESS curves

(dotted line) using the same axis scales as was used in Fig. 8.

Although the relationship is not perfect, the proximity

of the fit is once again remarkable. For lags of between 6

and 12 months, the MSESS is slightly higher than would

be expected based on the preceding calculations, while

for a lag of 3 months the MSESS indicates a somewhat

more significant underestimation. We are unable to provide

FIG. 13. Cumulative variance accounted for by individual PCs

multiplied by the variance accounted for when introducing a lag.

FIG. 14. Globally averaged MSESS obtained using a lagged re-

lationship between SSTA and precipitation (dashed line, left axis),

and the PCA variance accounted for in the original SSTA field

multiplied by the square of the autocorrelation coefficient at the

relevant lag (solid line, right axis). Lags are (a) 3, (b) 6, (c) 9, and

(d) 12 months.
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definitive reasons for these divergences, with possible

explanations including complex interactions between

SSTA and other boundary conditions such as soil mois-

ture, vegetation, and snow extent, or they might simply be

due to sampling variability. Despite these minor de-

partures, both the asymptotic MSESS for all 48 PCs

and the breakdown of the improvement in MSESS by

dimension p (in particular the ‘‘plateauing’’ of the

MSESS with higher-order PCs for 6-month and longer

lags) can only be explained by the conclusion that it is the

instantaneous structure of the SSTA field that provides

the lower-boundary forcing for global precipitation var-

iability, and it is the persistence structure of the SSTA

field that allows the global precipitation field to be fore-

cast into the future.

The plateauing of the MSESS with higher-order PCs

means that it is possible to find the asymptotic MSESS for

each lag directly from the results in Fig. 14. This is ach-

ieved simply by reading the MSESS at the point where

p 5 48, as the improvements (increases) in the MSESS

beyond this point are likely to be marginal. We therefore

estimate the asymptotic MSESS at 3-, 6-, 9-, and 12-month

lags to be 7.3%, 5.4%, 4.2%, and 3.7%, respectively.

f. Implications of a global trend

We finally turn to the issue of estimating the impli-

cations of the global warming trend. In section 2 we

discussed the removal of the global trend by subtracting

the global mean SSTA time series from the SSTA time

series at each grid point, such that the final predictor

data represent both anomaly (in the sense that the mean

at each grid point is removed) and detrended (in the

sense that the global mean time series is removed at each

grid point) data. This preprocessing was conducted for

statistical reasons to ensure orthogonality of both the

principal components and the eigenvectors.

By regressing the trend time series against each of the

SSTA grid points of the original SSTA dataset (i.e.,

before detrending), we calculate that this trend accounts

for 6.1% of the variance of this original SSTA dataset.

As discussed, this trend was removed from the SSTA

field before performing the PCA operation, and there-

fore up to now the implications of the trend have been

ignored. How is this likely to affect our estimate of

global precipitation predictability?

In section 4a we showed that 100% of the global de-

trended SSTA variability accounted for 14.7% of the

global precipitation variability. Thus, assuming that we

had left the trend in the data, and also assuming that the

MSESS is a direct function of the variance of the SSTA

dataset, we would expect an increase in the MSESS of

about 0.9% (i.e., 14.7% 3 6.1%/100%). To test whether

this is the case, we use the linear regression formulation

in Eq. (2) to regress precipitation at each grid point

against the trend time series xT. The outcome of this re-

gression is a globally averaged MSESS of 1.3%. Although

this diverges slightly from the 0.9% we expected based on

simple variance accounting, it is sufficiently close to pro-

vide additional support that the predictability of global

precipitation can be described as a function of the vari-

ance of the SSTA dataset. Furthermore, these results

suggest that the short-term variability in the SSTA field

dominates the precipitation variability at the seasonal

time scale, with the trend imparting some long-term per-

sistence that would make statistical forecasting using the

SSTA field at time scales greater than a year theoretically

possible (although with limited skill).

This analysis provides qualified support to the conclu-

sions of New et al. (2001) that the global warming trend

contributes a significant, but thus far relatively small,

component of the variance of the global precipitation

dataset. However, we do not propose that the method-

ology and results provided here can be used to separate

the variability due to ‘‘natural’’ climate variability and the

variability due to anthropogenic greenhouse gas emis-

sions, since the implications of global warming are likely

to be felt in part through the modulation of natural cli-

mate modes (for example, see the discussion on the im-

plications of climate change on ENSO variability in

Meehl et al. 2007).

As discussed earlier, the results provided here support

the conclusion that the relationship between global

SSTA variance and global precipitation variance is

likely to remain relatively stationary at the global scale

into the foreseeable future, although such a conclusion

may not be valid when considering precipitation vari-

ability at smaller regional scales.

5. Discussion and conclusions

In the preceding analysis, we presented a simple ap-

proach based on linear regression to estimate the upper

bound of predictability of global precipitation at the sea-

sonal time scale. We defined predictability as the unbiased

estimate of maximum predictive skill, calculated through

an appropriately specified statistic, which can be achieved

if all the relevant predictors are included in the model.

We proposed that the MSESS represents a sensible sta-

tistic to measure predictability, as it represents the per-

centage reduction in variance achieved by a given model

compared to a climatology model estimated using the

sample mean. We then presented a simple synthetic ex-

ample to show that an estimate of predictability can be

achieved using a dataset of finite length and demonstrated

that the estimation of the globally averaged MSESS pro-

duces an approximately unbiased estimate for the true

predictability.
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In the analysis, we used PCA to derive an orthogonal

representation of the global SSTA dataset and use this as

the model predictors. The globally averaged MSESS was

estimated by fitting a linear model separately at each

precipitation grid point using the same p-dimensional pool

of predictors, calculating the MSESS at each grid point,

and deriving the global MSESS by taking the weighted

average accounting for the surface area of each grid point.

Our estimates of the globally averaged MSESS are

summarized in Table 1 and have been derived using two

different precipitation datasets, a range of analysis pe-

riods, two spatial scales, and two temporal scales. The

majority of the analysis was conducted using concurrent

SSTA–precipitation relationships to reflect the relatively

instantaneous (at the seasonal time scale) relationship

between precipitation variability and variability in the

external boundary forcing. The implication of lagging

the SSTA–precipitation relationship was also tested by

introducing lags of up to 12 months. The results of the

analysis are summarized as follows:

1) There exists a direct relationship between the total

variability accounted for by the principal compo-

nents of SSTA and the globally averaged MSESS.

This result was tested by using an alternative repre-

sentation of the variability of the SSTA field using

ICA and was found to be robust.

2) Using the first 48 principal components of SSTA

field, which accounted for 92.8% of the total SSTA

variance, the globally averaged MSESS is 13.6%, and

a small extrapolation suggested that, if we could ac-

count for all the variance of the global SSTA field in

our model, the asymptotic predictability would be

14.7%. This result only varied slightly using an al-

ternative global gridded precipitation dataset.

3) The influence of record length was tested by in-

crementally removing the earlier parts of the record.

The results showed that the MSESS increased by 35%

for p 5 1 and by 16% for p 5 20 when considering only

the post-1950 record, relative to the full 1900–2007

record. Although the relative contributions of de-

creasing measurement errors and nonstationarity due

to low-frequency variability and/or anthropogenic

climate change are difficult to separate, the results do

not suggest any breakdown in the SSTA–precipitation

relationship in the more recent record due to an-

thropogenic climate change at the global scale.

4) The hypothesis that the predictable component of

precipitation is due to (approximately) instantaneous

variability in the external boundary conditions, and

that any seasonal predictability is due to the persis-

tence structure of the boundary conditions, was con-

firmed for lags from 3 to 12 months.

5) Because of the relatively small percentage SSTA

variance accounted for by the global warming trend

compared to total seasonal SSTA variability, this trend

accounts for only about 1.3% of total precipitation

predictability. Caution is required when interpreting

this as representing the fraction of variability attrib-

uted to anthropogenic global warming, since the im-

pacts are unlikely to be expressed solely through the

trend component. Furthermore, the use of global data

obscures regional changes that may be much more

significant. Nevertheless, the results highlight the im-

portance of natural SST variability in accounting for

temporal variability in precipitation data.

These results have numerous implications on the future

of seasonal forecasting that we will describe below. First,

however, we will review the assumptions on which the

results were based.

a. Validity of model assumptions

As with any study, the validity of the conclusions is

predicated on the validity of the underlying assumptions.

In our case the principal assumptions were 1) that the

global SSTA field is the dominant driver of long-term

precipitation variability, 2) that precipitation variance

can be partitioned between an unpredictable ‘‘weather

noise’’ component and a more predictable externally

TABLE 1. Summary of predictability estimates using a combination of alternative precipitation datasets, analysis periods, grid scales,

temporal scales, and lags.

Precipitation dataset Analysis period Grid scale (lat 3 lon) Temporal scale Lag Asymptotic MSESS

GHCN 1900–2007 58 3 58 Seasonal Concurrent 14.7%

CRU 1900–98 58 3 58 Seasonal Concurrent 15.4%

CRU 1900–98 2.58 3 3.758 Seasonal Concurrent 16.1%

GHCN 1900–2007 58 3 58 Monthly Concurrent 9.9%

GHCN 1950–2007 58 3 58 Seasonal Concurrent 17.0%

GHCN 1900–2007 58 3 58 Seasonal 3 month 7.3%

GHCN 1900–2007 58 3 58 Seasonal 6 month 5.4%

GHCN 1900–2007 58 3 58 Seasonal 9 month 4.2%

GHCN 1900–2007 58 3 58 Seasonal 12 month 3.7%
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forced component, and 3) that the relationship between

SSTA variability and global precipitation variability is

linear and additive as suggested in Eq. (2). A pragmatic

reason for these assumptions is that they made the anal-

ysis tractable, with the major alternative approach being

the application of multiple AGCMs forced to historic

SSTA variability but with differing initial conditions as

proposed by Barnston et al. (2005). As we show below,

however, these assumptions may not be unreasonable.

In the case of the first assumption, in addition to the sea

surface temperatures field, external boundary conditions

that are likely to be relevant for driving precipitation

variability at the seasonal time scale include soil moisture,

vegetation, snow cover, and sea ice. Nevertheless, SSTAs

are generally regarded as the dominant boundary con-

dition for precipitation predictability at the seasonal

time scale (e.g., Charney and Shukla 1981; Palmer and

Anderson 1994; Gershunov and Cayan 2003; Barnston

et al. 2005). The relative dominance of the SST field for

driving land surface precipitation is explained by the es-

timate that 85% of global evaporation occurs from the

ocean surface and from the result that the level of re-

cycling of moisture within a spatial region is small even

for spatial areas of 1000 km or greater (Trenberth 1998;

see also Shelton 2009), thereby indicating that water

evaporated from the ocean is transported large distances

before returning as precipitation. Furthermore, we pro-

pose that variability in the other proposed external

boundary conditions such as soil moisture is largely driven

by precipitation variability integrated over some previous

time scale, such that much of the variability of these

boundary conditions is likely to be highly correlated with

variability in the SSTA dataset. Thus, the first assumption

is likely to represent a reasonable reflection of reality.

The remaining assumptions, pertaining to the model

structure in Eq. (2), are more difficult to justify physi-

cally. One approach to test the assumptions is to adopt

the methodology proposed by Barnston et al. (2005) de-

scribed above and examine the model outputs to estimate

the proportion of precipitation variability that can be

explained by variations in the boundary conditions. Such

an approach would hopefully shed further light on re-

lationship between the (potentially predictable) external

forcing and the largely random internal atmospheric var-

iability, including the question of whether the linear

approximation is realistic. Limitations to this dynamical

approach, however, include the likelihood that averaging

across multiple AGCMs will not result in unbiased rep-

resentations of precipitation and that the scale of pre-

cipitation processes are usually smaller than the scale

of individual AGCM grids. Therefore, we suggest that

this approach also would be limited by its own set of

assumptions.

In the absence of the AGCM approach described above,

our primary evidence that the assumptions underlying

Eq. (2) are approximately valid are derived from the

results presented in this paper. The first indication that

the linearity assumption was approximately valid was

presented in section 2, in which a range of skill scores

including the MSESS, the Spearman rank correlation co-

efficient, and the linear error in probability space (LEPS)

score were found to provide almost identical results for

precipitation predictability using an index of ENSO as

the predictor. This would not be expected to occur if

the ENSO–precipitation relationship exhibited signif-

icant nonlinearity. A second, perhaps more convincing,

line of evidence is that if the SSTA–precipitation re-

lationship was highly nonlinear, then the relationship

between variance accounted for by the PCs of the SSTA

field and the MSESS would be expected to be much more

complicated than that found in Fig. 8. For example, the

PCs that represent variability in the tropics (e.g., PC1)

might account for a disproportionate amount of the var-

iance in global precipitation compared to PCs that more

evenly account for variance across all latitudes (e.g., PC2).

We emphasize that we do not suggest that the SSTA–

precipitation relationship is linear; rather, we conclude

that the relationship appears to be well approximated by

a locally linear (i.e., linear within the bounds of variability

implied by the historical record) relationship when av-

eraged over the global scale.

Finally, we emphasize that, even if the underlying as-

sumptions of Eq. (2) are not correct (e.g., see Hoerling

et al. 1997) and the asymptotic predictability presented in

this paper significantly underestimates true predictability,

the additional predictability may not be accessible in a

practical sense. For example, the cross-validation results

described in section 4b highlight that the actual predictive

skill that can be derived from regression modeling is

substantially lower than our estimate of the asymptotic

predictive skill because of the difficulty in correctly esti-

mating model parameters from a finite training sample.

Although our statistical formulation is very simple, the

example highlights the necessity of making simplifying

assumptions in order to generate a statistically robust

result. This issue may not be as valid for dynamical ap-

proaches as it is for statistical forecasting; however, the

difficulty in generating dynamical seasonal forecasts that

outperform statistical forecasts suggests that our asymp-

totic estimate is likely to represent a practical upper

bound for the foreseeable future.

b. Implications and future directions

How do our results align with our present under-

standing of climate variability? As discussed in the in-

troduction, much of the research into climate variability
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has focused on the ENSO phenomenon. Our results both

confirm the importance of ENSO in seasonal forecasting

and diminish it: confirm, because we show that the ENSO

mode is the single most significant mode in the global

SSTA field that also has high levels of seasonal persistence

and therefore would logically be considered to be the most

important climate mode for many regions around the

world; diminish, because more than 80% of the total

SSTA variance is not attributable to ENSO, suggesting the

presence of significant non-ENSO-related predictability,

which has yet to be fully exploited.

Beyond ENSO, much of the research into statistical

forecasting has involved identifying stable climate modes,

which usually are represented by climate ‘‘indices.’’ The

advantage of using indices is that they often account for

a large proportion of the SSTA variance (either regionally

or globally) and exhibit a persistence structure that allows

for the generation of forecasts with lead times of one or

more seasons. This approach also can be justified with

reference to the cross-validated MSESS presented in

Fig. 10 and discussed in section 4b. In that case the best

cross-validated forecast performance was obtained using

only the first two principal components, with the contri-

bution of higher-order principal components to the pre-

dictive skill being outweighed by the penalty that cross

validation places on model complexity. In consequence,

when one wishes to develop operational seasonal fore-

casts, the focus must be on the one or several climate

modes that account for the greatest amount of variance

in the response dataset rather than on the variability of

the full SSTA field, which can only be accounted for by

using a high-dimensional predictor dataset.

How might the limitations of short data length be over-

come to develop improved seasonal prediction models?

From a statistical perspective the use of larger spatial

fields can to some degree substitute for short temporal

records, which justifies the widespread use of multivariate

statistical techniques such as canonical correlation analysis

(CCA; e.g., Barnston and Ropelewski 1992; Bretherton

et al. 1992). Furthermore, although in section 4c we show

some small improvement in predictability by using only

the more recent and presumably higher quality data, this

must be weighed against the benefits of using a longer

train dataset to develop the statistical model (e.g., see

discussion in Wilks 2008).

From a dynamical perspective, by generating a large

ensemble with differing atmospheric initial conditions,

GCMs provide a tool that ultimately may overcome data

limitations associated with empirical techniques. Cur-

rently, statistical and dynamical approaches exhibit com-

parable forecast skill (Coelho et al. 2006; Wilks 2008),

and the question of whether such dynamical approaches

will be capable of exceeding empirically based methods

remains a subject of active debate (e.g., Anderson et al.

1999; Van den Dool 2007). Recently, there also has

been research on the development of hybrid approaches

that combine the advantages of empirical and dynamical

modeling methods. Such approaches include a Bayesian

forecast assimilation procedure that combines empirical

and dynamical approaches and has been shown to out-

perform empirical or coupled multimodel predictions

in isolation when applied to South American rainfall

(Coelho et al. 2006) and the development of statistical

correction procedures to account for biases in atmospheric

general circulation model outputs (Tippett et al. 2005).

Such hybrid approaches hold considerable promise in

developing the next generation of seasonal forecasts.

Regardless of approach, our estimate of 14.7% pre-

dictability at the global scale suggests that, on average,

85.3% of the variability in seasonal precipitation field is

due to random variations or weather noise (Barnston et al.

2005), which is not predictable beyond the deterministic

weather predictability barrier. Specific regions and sea-

sons may exhibit predictability significantly higher than

this, and the value of even small amounts of predictive

skill to decision makers is often high (e.g., Hamlet et al.

2002). The ultimate conclusion, however, is that estimates

of future seasonal precipitation throughout most of the

world will be dominated by a term that can best be de-

scribed as random.
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