Development of Sensitive Proteomic Approaches for Protein Tyrosine Phosphorylation Detection

A thesis submitted for the degree of

Doctor of Philosophy

as a combination of conventional narrative and portfolio of publications by

Mark Rocco Condina

Discipline of Microbiology and Immunology

School of Molecular and Biomedical Science

Adelaide Proteomics Centre

The University of Adelaide,

Australia

May 2011

Table of Contents

	Table of Contents	ii
	List of Figures	vii
	List of Tables	x
	Abstract	xi
	Declaration	xiii
	Acknowledgement of Help	xiv
	Acknowledgements	XV
	Publications	xvi
	Commonly-Used Abbreviations	xvii
1 Introductic	n	1 -
1.1 Prote	omics	1 -
1.1.1 F	Proteomics	1 -
1.2 Prote	in separation strategies	1 -
1.2.1 T	wo-Dimensional electrophoresis (2-DE)	1 -
1.2.	1.1 High performance liquid chromatography (HPLC) overview	2 -
1.2.	1.2 Ion-exchange chromatography (IEX)	3 -
1.2.	1.3 Size Exclusion chromatography (SEC)	4 -
1.2.	1.3 Affinity chromatography (AC)	5 -
1.2.	1.4 Reverse-Phase (RP) chromatography	6 -
1.3 Mass	spectrometry: Protein identification and characterisation	8 -
1.3.1 E	ESI	10 -
1.3.2 l	on Trap (IT) mass analyser	11 -
1.3.3 L	.C-ESI-MS/MS	12 -
1.3.4 N	/ALDI	13 -
1.3.5 N	/ALDI-TOF/TOF MS	15 -
1.3.6 L	.C-MALDI-TOF/TOF MS	18 -
1.4 Quan	titative LCMS-based proteomics	19 -

1.4.1 Cysteine specific isotopic labelling - ICAT	19 -
1.4.2 Amine specific isotopic labelling	20 -
1.4.2.1 Isobaric tags for relative and absolute quantitation (iTRAQ)	20 -
1.4.2.2 Stable isotope labelling of amino acids in cell culture (SILAC)	21 -
1.4.2.3 Isotope protein coded label (ICPL)	21 -
1.5 Phosphorylation	23 -
1.5.1 Phosphoprotein detection	24 -
1.5.2 Phosphopeptide enrichment strategies	25 -
1.5.2.1 Immobilised metal affinity chromatography (IMAC)	26 -
1.5.2.2 Titanium Dioxide (TiO2) phosphopeptide enrichment	27 -
1.5.2.3 HILIC	27 -
1.5.2.4 Combined strategies for phosphopeptide enrichment	28 -
1.6 Tyrosine phosphorylation	28 -
1.6.1 Proteomic methods for phosphotyrosine detection	28 -
1.6.2 Identification of phosphorylation sites by MS	29 -
1.6.3 Quantitation of tyrosine phosphorylation	33 -
1.7 Thesis Synopsis	33 -
1.8 Aims	34 -
Chapter 2: Background	35 -
Chapter 2	36 -
A Sensitive Magnetic Bead Method for the Detection and Identification	on of Tyrosine
Phosphorylation in proteins by MALDI- TOF/TOF mass spectrometry	36 -
STATEMENT OF AUTHORSHIP FOR CHAPTER 2	37 -
Abstract for Chapter 2	39 -
2.1 Introduction	40 -
2.2 Experimental	42 -
2.2.1 Materials	42 -
2.2.2 Peptides and Proteins	42 -

2.2.3 Protein digest/Peptide Mixture	
2.2.4 Lithium dodecyl sulphate-PAGE of in vitro phosphorylated β ic protein	44 -
2.2.5 In-gel Tryptic Digest	44 -
2.2.6 In-solution Tryptic Digest	44 -
2.2.7 Magnetic bead-IMAC (MB-IMAC Fe™)	45 -
2.2.8 MB-IAC Prot G™	45 -
2.2.9 MB-CovAC-Select™	45 -
2.2.10 MALDI-TOF-MS	45 -
2.2.11 TANDEM-MS ANALYSIS AND DATABASE SEARCH	46 -
2.3 Results and Discussion	47 -
2.3.1 Optimisation of the 4G10 affinity-coupled MB-IAC Prot G (Pro-GP) and cova 4G10 MB-CovAC-Select (Cov-P) procedures	lently-coupled 47 -
2.3.2 Phosphopeptide enrichment by Pro-GP and Cov-P procedures from phosphorylated GM-CSF receptor	the in vitro 54 -
2.4 Concluding Remarks	57 -
ACKNOWLEDGEMENTS FOR CHAPTER 2	58 -
Chapter 3: Background	59 -
Chapter 3	60 -
EZYprep LC - coupled MALDI-TOF/TOF MS: An improved matrix spray a phosphopeptide characterisation.	application for
STATEMENT OF AUTHORSHIP FOR CHAPTER 3	61 -
Abstract for Chapter 3	64 -
3.1 Introduction	65 -
3.2 Experimental	67 -
3.2.1 Materials	67 -
3.2.2 Peptides and Proteins	67 -
3.2.3 EGFR sample preparation	67 -
3.2.4 SDS-PAGE and Western Blotting	68 -
3.2.5 In-gel Tryptic Digest	68 -

3.2.6 In-solution Tryptic Digest	68 -
3.2.7 Magnetic Bead based Immunoaffinity Chromatography on Immo Prot G™)	bilised Protein G (MB-IAC
3.2.8 HPLC	69 -
3.2.9 LC Fraction Spotting	69 -
3.2.10 ImagePrep™ Station for Matrix Deposition	70 -
3.2.11 Matrix Deposition Strategies	70 -
3.2.12 MALDI-TOF-MS	71 -
3.2.13 MALDI TANDEM-MS ANALYSIS AND DATABASE SEARCH	71 -
3.2.14 LC-ESI-IT MS/MS and DATABASE SEARCH	72 -
3.3 Results and Discussion	73 -
3.3.1 EZYprep Optimisation	73 -
3.3.2 Phosphopeptide identification and characterisation using EZYprep following EGF stimulation of A431 cells	DHB LC-MALDI of EGFR
3.4 Concluding Remarks	87 -
ACKNOWLEDGEMENTS FOR CHAPTER 3	88 -
Chapter 4 Background:	89 -
Chapter 4	90 -
Phosphotyrosine quantitation and characterisation in insulin rece and an optimised strategy for phosphoproteome analysis	ptor signalling using ICPL - 90 -
Abstract for Chapter 4	- 91 -
4.1 Introduction	- 92 -
4 2 Experimental	- 95 -
4 2 1 Materials	- 95 -
4 2 2 R-veIR-A/ R-veIR-B Cell lines and culture	- 95 -
4 2 3 I DS-PAGE and Western blotting	- 95 -
4.2.4 Flow Cytometry - Fluorescence activated cell sorting (FACS)	- 96 -
4.2.5 ICPL™ protein labelling	- 97 -
4 2 6 In-solution digestion with trypsin	_ 97 _

4.2.7 ICPL™ peptide labelling	97 -
4.2.8 HILIC	97 -
4.2.9 4G10 column generation	98 -
4.2.10 Tyrosine phosphopeptide enrichment	98 -
4.2.11 Capillary HPLC for MALDI-TOF/TOF MS	98 -
4.2.12 LC Fraction Collecting	99 -
4.2.13 Matrix deposition strategies	99 -
4.2.14 MALDI-TOF MS	99 -
4.2.15 MALDI-TOF/TOF MS/MS analysis and database search	100 -
4.2.16 Ingenuity Pathways Analysis (IPA)	100 -
4.3 Results	102 -
4.3.1 ICPL labelling optimisation for peptide quantitation	102 -
4.3.2 Quantitative analysis of the tyrosine phosphoproteome after IR stimulation with ins	ulin 106 -
5 Discussion	118 -
5.1 Discussion for Chapter 2:	118 -
5.2 Discussion for chapter 3:	121 -
5.2.1 Matrix deposition for phosphopeptide analysis	121 -
5.2.3 LC-MALDI-TOF/TOF MS versus LC-ESI-IT-MS/MS	126 -
5.3 Discussion for Chapter 4:	130 -
5.3.1 ICPL Labelling Optimisation for Phosphopeptide analysis	130 -
5.3.2 Global pTyr analysis of R-IR-A/R-IR-B stimulated lysate	134 -
Chapter 5: Concluding Remarks:	143
6 Reference List	146
Appendix 7A	169
Appendix 7B	211 -
Tyrosine Phosphorylation Enrichment and Subsequent Analysis by MALDI-TOF/T	OF MS/MS
and LC-ESI-IT-MS/MS.	211 -
STATEMENT OF AUTHORSHIP FOR APPENDIX 7B	212 -

List of Figures

CHAPTER 1

FIGURE 1.1: An outline of AC utilising bound Ab for antigen (Ag) enrichment from a sample mixture.

FIGURE 1.2: Schematic outlining the hydrophobic interaction between proteins with a hydrophobic ligand on a stationary support.

FIGURE 1.3: Diagram outlining the basic components of Mass Spectrometers.

FIGURE 1.4: The formation of ions associated with ESI.

FIGURE 1.5: The ion trap mass analyser.

FIGURE 1.6: The MALDI Ion source.

FIGURE 1.7: The two operational modes of a MALDI-TOF mass spectrometer.

FIGURE 1.8: ICPL label molecular structure.

FIGURE 1.9: Enrichment strategies for phosphopeptides.

CHAPTER 2

FIGURE 2.1: MALDI-TOF MS spectrum of MIX 1 (Table 3) (10 pmol BSA digest +10 pmol peptide DP-Y179 (produced by tryptic digestion from BiotinyI-SGSGRASVFYpYEILNSK) ratio 1:1 after enrichment through Pro-GP protocol.

FIGURE 2.2: Comparative Analysis of MIX 2 (Table 3 -10 pmol BSA digest +1pmol peptide 6 [C*DFNGPpYLGPPH] +1 pmol peptide 8 [AEQAERpYDDMAAC*MK] +1pmol DP-Y179 [ASVFYpYEILNSK] ratio, 10:1:1:1) using IMAC, Cov-P and Pro-GP enrichment methods.

FIGURE 2.3: MALDI-TOF MS spectrum of MIX 3 (Table 3) (10 pmol BSA digest +50 fmol peptide DP-Y179 (produced by tryptic digestion of BiotinyI-SGSGRASVFYpYEILNSK) ratio 200:1 after enrichment through Pro-GP protocol obtained in A: Positive ion mode and B: Negative ion mode.

FIGURE 2.4: MALDI-TOF MS spectrum of MIX 4 (Table 3) (10 pmol BSA digest +50 fmol peptide 6 (C*DFNGPpYLGPPH) ratio 200:1 after enrichment through Cov-P protocol. A: Prior to enrichment and B: after enrichment through 4G10 conjugated MB-CovAC-Select protocol.

FIGURE 2.5: MALDI-TOF MS spectrum of an in-gel digest (0.75 μ g) of the β -subunit of the GM-CSF Receptor *in vitro*-phosphorylated in the presence of ATP and Lyn kinase A: prior to enrichment and B: after enrichment through Pro-GP protocol.

FIGURE 2.6: MALDI-TOF MS spectrum of an in-gel digest (1.5 μ g) of the β -subunit of the GM-CSF Receptor in vitro phosphorylated in the presence of ATP and Src kinase A: prior to enrichment and B: after enrichment through Cov-P protocol.

CHAPTER 3

FIGURE 3.1: EZYprep LC-MALDI-TOF/TOF MS Analysis of the EGFR.

FIGURE 3.2: (A-D) EZYprep LC-MALDI-TOF/TOF MS Analysis of the EGFR.

FIGURE 3.3: Tandem MS spectra of EGFR phosphopeptides. A-D are representative MS/MS spectra of peptides identified following Pro-GP or EZYprep DHB LC-MALDI-TOF/TOF MS.

(A) [M+H]*: 2066.047-LPQPPIC*TIDVpY(EGFR = 944, ERBB4 = 950)IVMVK (EZYprep DHB LC-MALDI-TOF/TOF MS analysis of EGFR after 3 min of stimulation. C* = carboxamidomethyl cysteine.

(B) [M+H]⁺: 1644.688-MHLPSPTDSNFpY(998)R (Pro-GP enrichment of EGFR after 3 min of stimulation.

(C) [M+H]*: 3558.549-pY(1069)SSDPTGALTEDSIDDTFLPVPEpY(1092)INQSVPK (EZYprep DHB LC-MALDI-TOF/TOF MS analysis of EGFR after 3 min of stimulation.

(D) [M+H]⁺: 2395.963-GSHQIpS(1166)LDNPDpY(1172)QQDFFPK (EZYprep DHB LC-MALDI-TOF/TOF MS analysis of EGFR after 3 min of stimulation.

CHAPTER 4

FIGURE 4.1: ICPL protein versus peptide labelling.

FIGURE 4.2: Proposed global pTyr phosphoproteome approach.

FIGURE 4.3: FACS analysis of R-IR-A and R-IR-B cells.

FIGURE 4.4: Western blot analysis of R-veIR-A and R-veIR-B stimulated and unstimulated lysate.

CHAPTER 5

FIGURE 5.1: The analysis of two phosphopeptides generated from a tryptic digest of β -casein using MALDI-TOF MS analysis with either DHB/PA matrix or CHCA matrix.

FIGURE 5.2: (A) DHB crystallisation after ImagePrep station deposition onto a tissue section slide. (B) MALDI CCTV shots of raster positions highlighting crystal formation using DHB DD deposition or EZYprep (using ImagePrep Station) DHB post sample matrix deposition.

FIGURE 5.3: The SurveyViewer (version 1.1, Bruker Daltonics) generated 2-D maps outlining the peptide chromatographic separation for each ICPL labelled (peptide or protein) sample after LC-MALDI-TOF/TOF MS analysis.

FIGURE 5.4: A summary of the proteomic workflows that can be utilised for protein and/or PTM quantitation.

FIGURE 5.5: A Timeline of key milestones in the analysis of the phosphoproteome.

List of Tables

CHAPTER 1

TABLE 1.1: Protein chromatographic separation strategies.

TABLE 1.2: Protein chromatographic separation methods.

CHAPTER 2

TABLE 2.1: Synthetic phosphotyrosine peptides used for validation of the proposed method.

TABLE 2.2: Proteins used for validation of the proposed method (with phosphopeptides identified from this study highlighted.

TABLE 2.3: Protein + peptide mixtures used for validation of the proposed method.

CHAPTER 3

- TABLE 3.1: Matrix preparation methods used in this study.
- TABLE 3.2: Comparison of matrix deposition strategies to evaluate novel EZYprep matrix application.

TABLE 3.3: EGFR inclusion list.

TABLE 3.4: Phosphopeptides characterised after 0-, 1-, 3- and 5-min EGF stimulation.

CHAPTER 4

TABLE 4.1: Proteins identified from ICPL peptide and/or protein labelling.

TABLE 4.2: Proteins identified from HFT, HE, HIE and HIFT fractions of insulin stimulated R-IR-A/R-IR-B lysate.

CHAPTER 5

TABLE 5.1: Overview of the phosphopeptides identified from chapter 2 using Pro-GP, EZYprep LC-MALDI-TOF/TOF MS and LC-ESI-IT-MS/MS.

Abstract

The elucidation of the complex array of cell signalling cascades is imperative for a deeper understanding of cell biology in both physiological and patho-physiological states. Extensive biochemical characterisation of signalling networks has revealed the importance of post-translational modifications (PTMs), particularly phosphorylation. Signalling via protein phosphorylation occurs across homeostatic proliferative, differentiative and anti-apoptotic events. Dysregulation of the kinase signalling pathways as well as mutations in kinases involved in phosphorylation have been implicated in a number of pathologies such as cancer or immune deficiencies. While it is estimated that 50% of all proteins are phosphorylated during their lifetime, phosphorylated proteins are present in relatively low abundance compared to their non-phosphorylated counterparts. The rarity of phosphorylation, which occurs on serine, threonine and tyrosine residues, has prompted the development of sensitive approaches to improve phosphorylation characterisation. Proteomic-based strategies offer novel approaches to overcome the limitations of currently available strategies for phosphoprotein analysis. The research presented within describes the development of proteomic-based methodologies for phosphotyrosine identification, quantitation and characterisation. These methods utilise the antiphosphotyrosine Antibody 4G10 along with other MS-compatible approaches for phosphotyrosine enrichment prior to MS analysis. Methods for more targeted phosphoprotein analyses involved coupling of 4G10 covalently to super para-magnetic beads or by affinity to super para-magnetic beads with protein G covalently attached. These 4G10-coupled beads successfully enriched tyrosine phosphopeptides derived from tryptic phosphoprotein digests for identification and characterisation of phosphopeptides using MALDI-TOF/TOF MS analysis.

The limited capacity of the magnetic bead approach for analysis of more complex samples necessetated the development of a more global proteomic strategy for tyrosine phosphorylation analysis. A global strategy that provides not only qualitative pTyr information but also shows quantitative changes that occur with pTyr signalling is imperative for detailed signalling cascade analyses. The global approach presented here utilised the 4G10 Ab/bead approach as well as Hydrophilic interaction chromatography (HILIC) for the enrichment of pTyr peptides from complex samples isotopically-labelled to quantify tyrosine phosphorylation after LC-MALDI-TOF/TOF MS analysis. Aspects of this approach were modified to improve phosphopeptide detection and characterisation, including the development of a novel optimised matrix-deposition strategy for LC-MALDI-TOF/TOF MS. The strategy, termed EZYprep LC, allowed the effective use of the atypical 2,5-

DHB matrix with phosphoric acid to improve phosphopeptide ionisation and subsequently identify and characterise more phosphorylation sites on phosphoprotein samples compared with LC-ESI-IT-MS/MS.

Another aspect of the global strategy was the development of a modified isotope protein coded label strategy (modified ICPL). The optimised ICPL approach ensured quantitative information from a larger sub-set of peptides after tryptic digest of complex samples. The improved ability to quantify using this approach was highlighted by a comparative analysis of complex cell lysates labelled using the conventional ICPL strategy and the modified ICPL strategy. The modified ICPL labelling strategy identified more proteins and provided more quantitative information that the conventional ICPL methodology. As such, the global phospho-tyrosine strategy, combined the modified ICPL labelling and 4G10 Ab/bead enrichment with peptide fractionation and MALDI-TOF/TOF MS analysis, was subsequently utilised to identify and quantify tyrosine phosphorylation occurring in insulin-stimulated insulin receptor A- and B-subtypes.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Mark Condina and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed in the publications list below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Mark Condina

.....

Acknowledgement of Help

I acknowledge the help of:

All co-authors named on each of the published journal articles comprised in this thesis, for evaluating manuscript drafts and suggesting changes during the revision process. In particular, Dr. Peter Hoffmann and Professor Shaun McColl, who have acted as co-authors, revised drafts with myself before submission and critical read sections of my thesis.

Professor John Wallace and Dr. Briony Forbes, who contributed with experimental design and critical reading of Chapter 4.

Mr Johan Gustafsson and Kolin Harinda Rajapaksha for technical assistance with large-scale experiments.

Acknowledgements

The undertaking of a PhD is said to be a great personal challenge that aims to highlight the ability of a person to successfully complete an indenpendent research project. In reality, however, the entire project is a collaborative effort, and without the following people I would not have been able to accomplish this endeavour.

Firstly, I acknowledge my supervisor Dr. Peter Hoffmann for all his support and help, not only with the project outline, experiment design and scientific discussion, but also for providing the friendship, support and trust to allow me to take control of the project and help prepare me for future research projects. I also thank my co-supervisor Professor Shaun McColl for his support with all aspects of the PhD, from experimental design to the other aspects, such as project co-ordination and scientific writing and presentation skill development. Importantly, thankyou both for creating a work environment that was 'easy-going' and enjoyable but still encouraged hard-work and learning.

A special thanks to everyone from the Adelaide Proteomics Centre for their invaluable assistance and friendship. In particular, Dr. Megan Penno, Johan Gustafsson, Dr. Sandra Hack, Dr. Alex Colella, Dr. Chris Bagley, Yin-Ying Ho and Chris Cursaro have all offered support and assistance with my project over the years and I consider myself fortunate to have been part of this facility. I also thank the entire Chemokine Biology Laboratory for their friendship and support.

Whilst conducting the thesis I was supported by a scholarship provided by the University of Adelaide. I would like to thank everyone at the Molecular Life Sciences Building for providing financial support and other resources relating to my project. I thank all staff members for their support and making the MLS building a great place to work (with special mention to the Thursday soccer sessions).

I thank all of my friends and family for your support over the years for providing me with encouragement. In particular, I thank my parents, brother, sister and Silvia's family for giving me the belief that I am capable of whatever I put my mind to and to never second-guess myself. Lastly, I thank my beautiful Silvia, who has been a loving and inspiring partner throught my PhD studies. The project would not have been possible without you.

"The larger the island of knowledge, the longer the shoreline of mystery." Unknown author

Mark Condina

Publications

Within Thesis:

Condina, M. R., Guthridge, M. A., McColl, S. R., Hoffmann, P., A sensitive magnetic bead method for the detection and identification of tyrosine phosphorylation in proteins by MALDI-TOF/TOF MS. *Proteomics* 2009, *9*, 3047-3057 – **Chapter 2**

Condina, M. R., Gustafsson, J. O. R., Klingler-Hoffmann, M., Bagley, C. J., McColl, S. R., Hoffmann, P., EZYprep LC-coupled MALDI-TOF/TOF MS: An improved matrix spray application for phosphopeptide characterisation. *Proteomics* 2010, 10, 2516-2530 – **Chapter 3**

Arising from Thesis:

Condina, M.R., Klingler-Hoffmann, M. and Hoffmann, P. Tyrosine Phosphorylation Enrichment and Subsequent Analysis by MALDI-TOF/TOF MS/MS and LC-ESI-IT-MS/MS. *Current Protocols in Protein Science* 2010, 62:13.11.1-13.11.26 – **Appendix 7B**

Commonly-Used Abbreviations

μL	Microlitre
µ-WPS	Micro-Well-plate-sampler
1-DE	one-dimensional poly-acrylamide gel electrophoresis
2-DE	two-dimensional poly-acrylamide gel electrophoresis
Å	Angstrom
AA	Amino acid
Ab	Antibody
Abs	Antibodies
AC	Affinity Chromatography
ACN	Acetonitrile
ACQA	Absolute quantitation
BS	Binding solution
BSA	Bovine Serum Albumin
C*	Carboxamidomeythl cycteine
CHCA	α-cyano-4-hydroxycinnamic acid
CHCA SMW	CHCA sample matrix wash
CID	Collision induced dissociation
Cov-P	Covalently-coupled 4G10 MB-covAC-Select
Da	Dalton
DD	Dried Droplet
DE	Delayed extraction
DHB	2,5-dihydroxybenzoic acid
DHB ML	DHB matrix layer
DIGE	Difference Gel Electrophoresis
DTT	Dithiothreitol
е	Elementary charge
ECD	Electron capture dissociation
EDTA	Ethylenediaminetetraacetic acid
EGF	Epidermal growth factor
EGFR	Epidermal growth factor receptor
E _k	Kinetic
ESI	Electrospray ionisation
ETD	Electron transfer dissociation
FA	Formic acid
FACS	Fluorescence activated cell sorting

Fc	Fraction Collector
fmol	Femtomole
FTICR	Fourier-transform ion cyclotron resonance
G-250	Colloidal coomassie
GFPB	Glufibronopeptide B
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HAP	Hydroxyapatite enrichment
HCI	Hydrochloric acid
HE	Hydrophobic eluate fraction
HFT	Hydrophobic flow through fraction
HIC	Hydrophobic interaction Chromatography
HIE	Hydrophilic eluate fraction
HIFT	Hydrophilic flow through fraction
HILIC	Hydrophilic Interaction Chromatography
HPLC	High performance liquid chromatography
I.D.	Inner diameter
IAA/IAM	lodoacetamide
IC ₅₀	The half maximal inhibitory concentration
ICAT	Isotope coded affinity tags
ICPL	Isotope coded protein labels
IDA	Iminodiacetic acid
IEX	Ion exchange Chromatography
IGF	Insulin-like growth factor
IGFBPs	IGF-binding proteins
IMAC	Immobilised metal affinity Chromatography
IP	Immuno-precipitation
IPA	Ingenuity pathways analysis
IR	Insulin Receptor
ISD	In-source decay
IT	Ion Trap
iTRAQ	Isotope tagging for relative and absolute quantitation
L	Length
LC	Liquid Chromatography
LDS	Lithium Dodecyl Sulphate
LDS	Lithium dodedyl sulphate
LIT	Linear Ion Trap
m	Mass

M*	Oxidised methionine
m/z	Mass-to-charge
MALDI	Matrix assisted laser desorption/ionisation
MAP	Mitogen-activated protein kinase
МАРК	MAP kinase
MB-covAC-Select	Magnetic bead based covalent affinity Chromatography for binding of freely selectable proteins
MB-IAC Prot G	Magnetic bead based immunoaffinity Chromatography on immobilised protein G
MB-IMAC Fe	Magnetic bead-IMAC Fe
МСР	Microchannel plate
MOAC	Metal oxide affinity Chromatography
Mr	Relative molecular mass
MRM	Multiple reaction monitoring
MS	Mass Spectrometry
MS/MS	Tandem MS
NaF	Sodium fluoride
nLC	Nano-LC
NP-40	Nonidet P-40
NTA	Nitriloacetic acid
OVA	Ovalbumin
PA	Phosphoric acid
PAGE	poly-acrylamide gel electrophoresis
PBS	Phosphate buffered saline
pl	Isoelectric point
PM1	Protein mix 1 (1 pmol BSA, 1 pmol OVA, 2 pmol β-cas)
pmol	Picomole
PMSF	Phenylmethanesulfonylfluoride
Pro-GP	4G10 affinity-coupled MB-IAC Prot G
PSD	Post-source decay
pSer	Phosphoserine
PTEN	Phosphatase and tensin homolog
pThr	Phosphothreonine
PTKs	Protein tyrosine kinases
PTMs	Post-translational modifications
PTPs	Protein tyrosine phosphatases
pTyr/pY	Phosphotyrosine
PVDF	Polyvinylidene fluoride

Q	Quadrupole
QQQ	Triple quadrupole
qTOF/QTOF	Quadrupole time of flight
Rf/RF	Radio frequency
RIPA	Radioimmunoprecipitation assay buffer
RP	Reverse Phase Chromatography
R ^{-ve}	IGF-1R-deficient mouse embryo fibroblast
SA	sinapinic acid
SAX	Strong anion-exchange
SCX	Strong cation-exchange
SD	Standard deviation
SDS	Sodium dodecyl sulphate
SEC	Size exclusion Chromatography
SF1	Sheath fluid containing 0.05% PA/0.05% TFA/50% ACN
SILAC	Stable isotope labelling by amino acids in cell culture
SILE	Stable isotope labelling experiment
SIMAC	Sequential elution from IMAC
SRM	Single reaction monitoring
t	Time
TBST	Tris-buffered saline Tween-20
TED	Tris(carboxymethyl)ethylenediamine
TFA	Trifluoroacetic acid
TiO ₂	Titanium Dioxide
TIS	Timed ion selector
TL	Thin-layer
TLC	Thin-layer Chromatography
TOF	Time-of-Flight
U	Voltage
V	Velocity
WAX	Weak anion-exchange
WCX	Weak cation-exchange
YAG	yttrium aluminium garnet
Z	Charge
β-cas	β-casein
βic	β-intracellular domain of the granulocyte-macrophage colony-stimulating factor