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Abstract 
 

Measurement of very slow flows in environmental 

engineering 
 

Many of the flow metering techniques used in industrial applications have finite 

limits at slow fluid velocities in the order of 10 mm/s.  By comparison, many 

environmental flow rates occur two or more orders of magnitude below this, examples 

being the rate of sap flow in plants, the percolation rate of rainfall into soil and through 

the landscape, flows in the benthic boundary layer of lakes, the movement of water 

through sandy river banks or in the swash zone of beaches, or the seepage rate of 

groundwater into river beds. 

Unlike well-defined industrial flow measurement systems, nature is extravagant 

with her variability. To counter this, sensor systems in environmental engineering have to 

be widely flung, inexpensive and highly matched. ‘Smart’ sensors must therefore be 

simple designs having calibration techniques that can be highly automated. Additionally, 

such sensors must be able to compute real data locally, apply temperature corrections, 

compensate for inherent non-linearity and integrate without fuss into environmental 

logging systems. This thesis describes the development of sensors and experimental 

techniques in five very slow flow rate applications in environmental engineering via three 

published papers and two papers in submission: - 
1Gravitational flows in a large stratified water body were identified using smart 

temperature strings; these sensors demonstrated new techniques for low-cost but high-

precision thermistor temperature measurements, sensor temperature matching, the 

generation of complex algorithms within a simple sensor and a method for obtaining two-

point calibrations for non-linear sensors. Field work with these sensor strings identified 

‘short-circuiting’ of an urban reservoir during a storm event over the catchment which led 

to denser cold-water inflows moving along the bottom boundary layer of the lake. 
2The movement of ‘wetting fronts’ in the soil below plants mobilizes toxic salts 

left behind in the soil profile by crop evapotranspiration processes that take up only fresh 

water. These problems are exacerbated in semi-arid areas under crops irrigated with 

                                                      
1 Skinner, A.J. and Lambert, M.F. (2006). ‘Using smart sensor strings for continuous monitoring 
of temperature stratification in large water bodies.’ IEEE Sensors, Vol. 6, No. 6, December 2006 
 
2 Skinner, A.J. and Lambert, M.F. (2009). ‘An automatic soil salinity sensor based on a wetting 
front detector.’ IEEE Sensors, in submission, July 2009 
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brackish water. Automatic recording of soil salinity levels is possible using an instrument 

based on the combination of an EC (electrical conductivity) sensor with a platinum 

resistance temperature sensor within a funnel-shaped ‘wetting front detector’ buried in the 

soil. These two combined sensors extend the usage of the low-cost 16-bit charge-balance 

analog-to-digital converter developed for use in stratification measurements. 
3Measurement of sap flow in irrigated agriculture for determining when to irrigate 

crops was found to be of limited use for determining ‘when to water’ because the flow 

signal is masked by the plant’s genetically-coded regulatory systems. A new ‘double 

bridge’ analog control circuit for a self-heating thermistor was designed and described as 

a thermal diffusion sensor to study plant water status and the onset of irrigation stress in 

grapevines once sap flow had ceased. A laboratory experiment on a cut vine cane 

demonstrated that this thermal diffusion sensor was sensitive enough to track the response 

of the living cane to external forcing events that changed its plant water status. 
4The same double-bridge thermistor control circuit was used to investigate the 

lower limits of very slow upward flow measurement for use in the funnels of automatic 

seepage meters designed to monitor groundwater flows into the bottom of rivers and 

lakes. Theoretical, CFD (computational fluid dynamics) and two different experimental 

studies showed that flows between 0.03 mm/s and 3 mm/s could be measured in the 

presence of buoyant thermal plumes from the self-heated spherical sensor in free water.  
5A new type of null-buoyancy thermal flow sensor is described; it is designed 

specifically for the measurement of downward flows below 3 mm/s using a single 

thermistor. A typical application of such flow meter technology would be in the 

measurement of the hydraulic conductivity of soil to determine the rate at which rainfall 

can enter the landscape without run-off and erosion. The thermistor power dissipation is 

adjusted so that the upward thrust of the buoyant thermal plume from the warm thermistor 

sensor exactly counter-balances the downward bulk fluid velocity, resulting in flow 

stagnation at the sensor tip characterized by a corresponding local peak in the sensor’s 

                                                                                                                                                               
 
3 Skinner, A.J. and Lambert, M.F. (2009). ‘A log-antilog analog control circuit for constant-power 
warm-thermistor sensors – Application to plant water status measurement.’ IEEE Sensors, Vol. 9, 
Issue 9, September 2009 
 
4 Skinner, A.J. and Lambert, M.F. (2009). ‘Evaluation of a warm-thermistor flow sensor for use 
in automatic seepage meters.’ IEEE Sensors, Vol. 9, Issue 9, September 2009 
 
5 Skinner, A.J. and Lambert, M.F. (2009). ‘A null-buoyancy thermal flow meter: Application to 
the measurement of the hydraulic conductivity of soils.’ IEEE Sensors, in submission, August 
2009. 
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temperature response. Power dissipation must increase with the square of an increasing 

flow velocity to maintain this null-point.  
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