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Axial force between a thick coil and a cylindrical
permanent magnet: optimising the geometry of an

electromagnetic actuator.
Will Robertson, Ben Cazzolato, and Anthony Zander

School of Mechanical Engineering, The University of Adelaide, Australia

Abstract—In this paper a variety of analytical/integral meth-
ods are compared for calculating the axial force between a
cylindrical magnet and a ‘thick’ solenoid that consists of many
turns both radially and axially. Two newly developed techniques
are introduced: one being numerical integration-based and the
other completely analytical. These are compared to two other
techniques, each shown to have various advantages in different
contexts. One method in particular is introduced that is shown to
be the most computationally efficient in the majority of actuator
designs. This method is then used to optimise a typical ‘sleeve-
type’ magnet–coil actuator based on the cost function of peak
force, and it is shown that optimal values of wire thickness
and magnet–coil geometry can be chosen based on desired coil
impedance and magnet volume.

I. INTRODUCTION

The theory discussed in this paper is based around an
integral expression that can be efficiently numerically im-
plemented for calculating the axial force between a coaxial
cylindrical magnet and a ‘thick’ solenoid that consists of many
turns both radially and axially. This integral expression is
compared against a variety of other methods.

The motivation for this work is the optimisation of the
geometry of a coil–magnet actuator. We consider a ‘sleeve
coil’ design in which a magnet of a certain volume moves
inside a fixed coil of a certain impedance, and wish to optimise
the geometric parameters to maximise the peak force of the
actuator (although other metrics are also possible). Only the
quasi-static force/displacement characteristics are considered;
in other words, we neglect any inductance effects caused by
the moving magnet, which could affect the high-frequency
behaviour of the device.

When considering the literature for calculating the force
between an electromagnetic coil and a cylindrical perma-
nent magnet, expressions for both magnet–magnet and coil–
coil forces are applicable since magnets and coils are elec-
tromagnetically equivalent according to the surface current
density model of a permanent magnet. In early work in
this field, Cooper et al. [1] presented an integral expression
for calculating the force between two cylindical magnets.
Later, Furlani [2] published expressions for calculating the
force between axially magnetised ring magnets, which with
zero internal radius collapse to an expression for cylindrical
magnets. However, this expression used an algorithm that
requires discretising the magnet volumes into a large number
of ‘magnetic charge’ point sources and summing the contri-

butions between each interacting pair; this is equivalent to a
numerical integration in terms of computational efficiency.

More recently Babic et al. [3] and Ravaud et al. [4]
presented closed form expressions for calculating the force
between pairs of thin coils (in which there are many turns
axially but the coil is modelled as having zero radial thick-
ness). The expressions of Ravaud et al. [4] were simplified
further in a recent publication by the present authors [5]. Babic
et al. [6] has also published an equation for the axial force
between a thin and thick coil under axial displacement, which
is considered in more detail in this work.

A. Reproducibility
In order for the work in this paper to be easily reproduced

and verified, the software implementation of the theory is
available for public use at 〈http://github.com/wspr/magcode〉.
Refer to the file ‘examples/Thick-Coil-Magnet-Forces.nb’ for
the source of the graphs in this publication. While this file
is written for the Mathematica programming language, the
software available is written for both Matlab and Mathematica
and contains numerical implementations for not just this work
but also a variety of other permanent magnet calculations.

II. GEOMETRY

The system under investigation is shown in Figures 1 and 2.
In this work there is no restriction on the size or geometry of
the magnet or coil. To describe the geometry of the magnet–
coil configuration, two aspect ratios are defined for the magnet
and coil respectively. The ‘magnet ratio’ is given by the ratio
between length and radius for the magnet, α = lm/Rm, and
the ‘coil ratio’ similarly by the ratio between coil length and
inner radius, β = lc/rc. The clearance (or gap) between the
inner coil and magnet radii is denoted rg = rc−Rm.

The coil may have many turns in both axial and radial
directions; denote Nz the number of turns axially and Nr the
number of turns radially. Such a coil will have N = Nz×Nr
turns in total, and assuming the turns are packed equally in
both directions the coil will have a volume current density
of NI/[lc [Rc− rc]], where I is the current passing through the
coil.

The permanent magnet is assumed to have a sufficiently
large coercivity such that its magnetisation strength will not
be affected by the magnetic field of the coil. The permanent
magnet is also assumed to be homogeneous with a constant
magnetisation strength Br in the axial direction only.

http://github.com/wspr/magcode
examples/Thick-Coil-Magnet-Forces.nb
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Fig. 1. Three-dimensional sketch of the system composed of a permanent
magnet (unshaded, left) and thick coil (shaded, right). The magnet can be
modelled as an equivalent cylindrical surface current density, and the coil as
a volumetric current density.
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Fig. 2. Schematic of a ‘sleeve coil’ magnetic actuator. This geometry can
be described in terms of magnet ratio α = lm/Rm and coil ratio β = lc/rc.

III. THICK-COIL/MAGNET AXIAL FORCE METHODS

In this section we will discuss the theory for calculating
the interaction force between the thick coil and permanent
magnet configuration shown in Figure 1. In the first two force
calculation methods, ‘filament’ and ‘shell’, the coil and/or
magnet are modelled in terms of discrete elements (such as
single-turn or thin coils) for which the interaction forces may
be summed through superposition of each combination of
elements. The final method uses a single integral expression
to calculate the force, and two formulations and solutions for
this integral are discussed.

A. The filament method

For two circular coaxial loops (i.e., a single turn of a
solenoid) carrying currents I1 and I2 respectively, the axial
force between them is given by [7, e.g.]

(1)Ff (r1,r2,z) = µ0I1I2z
√

m
4r1r2

[
K(m)− m/2− 1

m− 1
E(m)

]

(2)m =
4r1r2

[r1 + r2]
2 + z2

where r1 and r2 are the coil radii and z is the axial distance
between them. The functions K(m) and E(m) are the complete

Fig. 3. The filament and shell models (left and right, respectively). In the
filament model, the magnet and thick coil are modelled with individual current
loops. In the shell model, the magnet is modelled as a cylindrical surface
current density and the thick coil is modelled as a number of individual
concentric surface current densities to represent multiple windings in the radial
direction.

first and second elliptic integrals respectively with parameter
m. These functions can also be referred to with notation K(k)
and E(k) in terms of a modulus k, where m = k2.

Using the ‘filament method’, equations (1) and (2) can
be used to calculate the force between any arrangement of
coaxial solenoids by representing each turn of the solenoid as
a separate coil, and summing the forces through superposition
for every pair-wise combination of coil interaction forces.
Figure 3 shows such a filament model for the interaction
between a thin coil (representing a permanent magnet) and a
thick coil. Using this technique, the total force between them
is given by

(3)Fz1 =
Nm

∑
nm=1

Nr

∑
nr=1

Nz

∑
nz=1

Ff (r(nr),Rm,z + L(nm,nz)) ,

(4)r(nr) = Rc +
nr − 1
Nr − 1

[Rc − rc] ,

(5)L(nm,nz) = −
1
2
[lm + lc] +

nz − 1
Nz − 1

lc +
nm − 1
Nm − 1

lm ,

where Rm is the magnet radius, rc and Rc are the inner and
outer coil radii, lm and lc are the magnet and coil lengths,
z is the axial distance between their centres, Nr and Nz are
the number of turns in the thick coil in the radial and axial
direction, and Nm is the number of turns in the thin coil. The
filament current I1 = I is the current in the thick coil. The
arrangement of ‘turns’ used to model the permanent magnet is
related to an equivalent surface current density with current per
turn of I2 = Brlm/[Nmµ0] and permanent magnet strength Br.
The number of ‘turns’ Nm used to model the permanent magnet
should be chosen to be sufficiently large such that the resultant
force converges to a stable value.

B. The shell method

In the ‘shell method’, a thick solenoid and a magnet may
be modelled by representing each radial layer of turns as
a separate thin coil with surface current density 1/Nr the
volume current density. The force between them is calculated
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by summing the forces through superposition of the forces
between each thin coil and the magnet.

(6)Fz2 =
1
Nr

Nr

∑
nr=1

Fs(Rm,r(nr), lm, lc,z)

(7)r(nr) = rc +
nr − 1
Nr − 1

[Rc − rc]

where Fs(Rm,r, lm, lc,z) is the force between a permanent
magnet and a thin coil, given by [5]

(8)Fs(Rm,r, lm, lc,z) =
J1J2

2µ0

{1,−1}2

∑
e1,e2

e1e2m1m2m3 fs .

J1 = Br is the strength of the permanent magnet and J2 =
µ0NzI/lc where I is the current in the coil. The intermediate
expression in equation (8) is given by

(9)fs = K(m4)−
1

m2
E(m4) +

[m2
1

m2
3
− 1
]

Π

(
m4

1− m2
|m4

)
,

with parameters

m1 = z− 1
2 e1lm− 1

2 e2lc, m2 =
[Rm− r]2

m2
1

+1, (10)

m3 =

√
[Rm + r]2 +m2

1, m4 =
4Rmr
m3

. (11)

The function Π(n |m) is the complete elliptic integral of the
third kind with parameter m.

C. An integral method

An integral expression for the force between a solenoid and
magnet is derived using the theory of Furlani [8]. Here we
have assumed that the solenoid can be modelled as a volume
current density and the permanent magnet is modelled as a
surface current density around its circumference. A solenoid
with current volume density J generates a magnetic field B at a
displacement d1 given by the integral over the coil volume Vc

(12)B(d1) =
µ0

4π

∫
Vc

J(d2)× [d2 − d1]

|d2 − d1|3
dvc ,

where d2 is the distance vector to the differential coil vol-
ume dvc. The force due to that field on a permanent magnet
with magnetisation vector M is given by the integral over the
magnet surface Sm with normal vector n̂

(13)F =
∮

Sm

[M× n̂]× B(d1)dsm ,

where d1 is the distance vector to the differential magnet
surface dsm. Following the magnetic field expression in polar
coordinates shown by Ravaud et al. [9] and taking only the
axial component of the force results, equation (13) is written
in full as a function of axial displacement z as

(14)
Fz3(z) =

BrNI
lc [Rc − rc]

∫ lc/2

−lc/2

∫ 2π

0

∫ Rc

rc

∫ z+lm/2

z−lm/2

∫ 2π

0

r1r2 [r2 − r1]cos(φ2 − φ1)

|d2 − d1|3
dφ1 dz1 dr2 dφ2 dz2

TABLE I
MAGNET–COIL PARAMETERS FOR VERIFYING THIN-COIL FORCE

EQUATIONS (FIGURE 4). COIL THICKNESS IS USED FOR THE THICK COIL
EQUATION ONLY.

Magnet radius Rm 9mm
Magnet length lm 10mm
Magnet ‘turns’ Nm 100
Magnet remanence Br 1T
Coil inner radius rc 10mm
Coil thickness Rc − rc 0.5mm
Coil length lc 20mm
Coil turns Nz 40
Coil current I 1A

where

|d2 − d1| =
√

r2
1 + r2

2 − 2r1r2 cos(φ1 − φ2) + [z2 − z1]
2 .
(15)

Analytically integrating this equation in variables φ1, φ2,
and z1 yields

(16)Fz3 =
BrNI

lc [Rc − rc]

∫ lc/2

−lc/2

∫ Rc

rc

{1,−1}
∑
e1

[
e1m6 fz3

]
dr2 dz2 ,

where
(17)fz3 =

[
1− 1

2 m5
]

K(m5)− E(m5) ,

m5 =
4Rmr2

m2
6

, m2
6 = [Rm + r2]

2 +
[
z+ 1

2 e1lm− z2
]2
. (18)

Note that z2 and r2 in equation (18) are variables of integration.
Computing equation (16) using a numerical integration is an

efficient means to calculate the axial force between a coaxial
magnet and solenoid. This method is here referred to as the
‘integral’ method.

D. The integral method of Babic et al.

Babic et al. [6] presented a different solution for the
integral of equation (14). Their solution consists of an entirely
analytical component with one separate term requiring a single
numerical integration. Corrected for a typographical error and
rewritten slightly, their expression is shown in equation (30)
in Appendix A and herein is refered to as the ‘Babic’ method.

E. Comparison of these methods

The filament model with a single radial turn (Nr = 1) can be
used to verify the thin-coil magnet force, and an initial verifi-
cation of the integral solution can be performed by comparing
the thin-coil results for a thick-coil with coil thickness equal
to the wire diameter. Force versus displacement calculations
are performed with these three techniques (equations (3), (6)
and (16)) using the physical parameters defined in Table I;
these calculations are shown in Figure 4 and it can be see
that the three models produce comparable results. The results
due to the filament model have a small discrepancy around
the trough of the curve due to the discretisation of the magnet
that this technique requires.

Having verified the filament, shell and integral methods for
calculating the force between a thin coil and a magnet, we
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Fig. 4. Comparison between three methods for calculating the force versus
axial displacement between a coaxial thin coil and magnet. For the filament
and shell methods, the thin coil is modelled as having zero thickness. The
thick coil force equation models the coil as a volumetric current density in
this case with a radial thickness equal to the wire diameter.
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Fig. 5. Comparison between four methods for calculating the force versus
axial displacement between a coaxial thick coil and magnet. The discretisation
of the filament method incurs a small deviation from the expected results.

wish to now perform a similar comparison for calculating the
force for a thick coil instead. A similar set of calculations
are performed, including Babic et al.’s integral approach
(equation (30)), using the same set of parameters as in Table I
except with a thick coil instead with a thickness Rc−rc = 5mm
with Nz = 20 turns in the axial direction and Nr = 5 turns in
the radial direction. The force versus displacement results for
the thick coil/magnet calculations are shown in Figure 5, and
again the four techniques compare closely to one another. In
particular, the equation by Babic et al. [6] produces consistent
results with the integral expression introduced in this work.
The discrepancy due to the discretisation of the filament model
is larger here than for the results of Figure 4.

The four methods compared in Figure 5 all use different
algorithms, and their execution speed varies significantly as
a result. The shell method is more efficient than the filament
method, since its execution time is linear with the number of
radial layers of turns Nr due to a single summation term. The
filament method is the slowest to execute of the four methods,
as it has computation time proportional to Nz×Nr×Nm, which
is approximately cubic with the number of turns in total.
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Fig. 6. Illustrative computation times for evaluating the results shown in
Table II. Integration precision refers to the minimum number of accurate
significant figures.

Of the two latter methods, for calculations requiring less
stringent accuracy (say, to four significant figures precision) it
is more efficient to use the ‘integral’ method (equation (16))
rather than the ‘Babic’ method (equation (30)) due to the
mathematical complexity of the latter, despite it requiring a
lesser amount of numerical integration. This is illustrated in
Figure 6, in which it can be seen that increasing the integration
precision when performing calculations using Mathematica
causes the time for numerical evaluation of the integral to
increase exponentially, whereas the ‘Babic’ method has a
constant execution speed as its single term requiring numerical
integration is only a small component of the overall equation.
Nonetheless, as shown in the numerical results (Table II), the
integral solution will generally produce results to a sufficient
level of accuracy even with low integration accuracy thresholds
and will therefore may be the preferred solution to evaluate in
some cases, such as for optimisation studies.

In contrast, the shell method is much more efficient than
either of the integral methods; it executes faster than the Babic
method by up to two orders of magnitude. In comparison to
the 40ms time shown in Figure 6, the shell method executes
in around 0.26ms per radial turn with a result differing
by 0.0125% from the most accurate of Table II. The large
improvement in execution speed of the shell method is due
to the mathematical simplicity of its solution which does
not require numerical integration. Despite the presence of
small variations in the results due to the discretisation of
the algorithm, this method will be significantly faster with
comparable results than the other techniques discussed in this
section for analysing thick coils with up to around 102 number
of radial turns.

While the computational times given in this section are
specific to the platform used to perform the calculations,
their relative differences should be comparable across different
computers and numerical implementations.

IV. OPTIMISATION OF A SLEEVE COIL MAGNETIC
ACTUATOR

In the previous sections, we have presented equations for
calculating coil forces with arbitrary examples for verification.
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TABLE II
NUMERICAL OUTPUT WITH INCREASING INTEGRATION PRECISION.

GREYED DIGITS INDICATE INACCURACY IN THE RESULT AFTER
ROUNDING TO THAT MANY SIGNIFICANT FIGURES.

Method

Prec. Babic, eq. (30) Integral, eq. (16)

1 2.4544407879895993 2.4744006907978187
2 2.4544407879895993 2.4548594892044457
3 2.4544407879895993 2.4548594892044457
4 2.4544438306124783 2.4544392729491915
5 2.4544438306124783 2.4544410458278520
6 2.4544438296675000 2.4544437864466280
7 2.4544438300939190 2.4544438175568843
8 2.4544438300903315 2.4544438299997147
9 2.4544438300903315 2.4544438301061358

10 2.4544438300903230 2.4544438300904050

These equations can be used for design optimisation for
magnetic actuator design; for example, to choose geometric
parameters for an inertial shaker to maximise the peak force
or to maximise the stroke length. In this section, a common
‘sleeve coil’ configuration is investigated in which a cylindrical
magnet moves axially within a hollow coil, such that the inner
coil radius is greater than the magnet radius; rc > Rm. A
schematic of this system is shown in Figure 2.

A. Relationship between coil impedance and outer diameter

When attempting to optimise the force output of a
coil/magnet design, it is important to carefully consider the pa-
rameters to be varied so that comparisons between difference
cases are fair. In the theory developed in Section III, the force
is calculated using coils of a given current density and coil
thickness. When designing a coil, however, it is instead more
applicable to fix the coil resistance and wire thickness and
calculate the number of turns and outer coil radius from these
values. In this way, comparisons between different geometries
will be indicative of force for some fixed electrical input power
as each coil variation will draw the same amount of current
for a given driving voltage.

The resistance of the coil R directly infers the length of the
wire winding, lw, through the relation

(19)lw = Raw/ρ,

for wire of cross sectional area aw (assumed here as having
circular cross section aw = π

[ 1
2 dw
]2

), and resistivity ρ .
The fixed parameters of the coil are driving voltage, resis-

tance, wire thickness and material, which in turn fix the total
length of wire. Given a total length of wire, it is possible to
derive a relation between the coil length, lc, and the coil radii,
rc and Rc. Assuming that each turn of wire sits directly above
or adjacent to its neighbours, an approximate expression for
the total wire length is given by

lw = Nz

Nr−1

∑
n=0

2π

[
rc + dw

[
n + 1

2

]]
= 2πNrNz

[
rc +

1
2 Nrdw

]
,

(20)

where Nr = [Rc− rc]/dw and Nz = lc/dw are the number of
turns in the axial and radial directions respectively. While this

relationship does not model any wire coating or the packing
effect of how tightly-wound coils will sit, this equation is
simple and allows some conservatism in the quality of the
construction of the electromagnet.

Therefore, an expression for the outer radius of the coil for
a coil of fixed inner radius and fixed total wire length is

(21)Rc =

√
lwd2

w

πlc
+ r2

c .

B. Notation

From Section III, the axial force versus displacement for a
coil/magnet system can be expressed as a function of its gross
geometric parameters (defined in Figure 1) as

(22)Fz(Br, I,Nz,Nr,Rm, lm,rc,Rc, lc|z) ,

with electromagnetic parameters (Br, I, Nz, Nr) defined pre-
viously and Fz calculated with any of the filament, shell, or
integral methods (equations (3), (6), (16) and (30), resp.).

The magnet radius Rm can be expressed in terms of the
magnet ratio α and magnet volume Vm with

Rm =

[
Vm

πα

]1/3

, (23)

from which the magnet length lm = αRm, coil inner radius
rc = Rm + rg, and coil length lc = β rc are inferred directly
from the geometric ratios and clearance between the coil and
magnet rg.

As discussed in Section IV-A, the outer coil radius Rc
and the coil turns Nz and Nr can be calculated from the
coil resistance R, wire diameter dw and wire resistivity ρ .
Therefore, the force function of equation (22) can be expressed
in terms of the following different set of parameters which are
more useful for design optimisation:

(24)Fz(Br, I,ρ,Vm,R,dw,α,β ,rg|z) .

Of these parameters, the magnet strength is set to be Br = 1T,
the radial clearance is fixed at rg = rc−Rm = 0.5mm, and the
resistivity of copper of ρ = 1.7×10−8

Ωm is used. Initially
the normalised force per unit current F̂z is considered, which
is calculated by evaluating the force for a current of I = 1A.
Removing these fixed parameters from equation (24) produces

(25)F̂z(Vm,R,dw,α,β |z) .

In the sections to come, the coil-magnet force Fz will be
discussed as a function of magnet volume Vm, coil resistance
R, wire diameter dw, magnet ratio α , coil ratio β , and axial
displacement z. The goal of the analysis will be to derive
optimum values for certain of these parameters.

At the outset it is assumed that increasing the magnet
volume Vm will result in greater forces since there will be
a greater amount of magnetic energy in the system; this is not
then a parameter to be varied but instead to be selected as
necessary.
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C. Optimisation of magnet and coil geometry

To perform the optimisation of magnet and coil geometries,
the shell method, equation (6), is used to calculate the force
as a function of displacement with varying magnet and coil
ratios.

For sake of example, a wire diameter dw = 1mm was
selected to produce the initial results; wire diameter is varied
in Section IV-D. The volume of magnetic material is held
constant at Vm = [20mm]3 and the coil impedance at R = 4Ω.
Therefore the normalised force per unit current is calculated
for this case as

(26)F̂z(α,β |z) = F̂z

(
[20mm]3 ,4Ω,1mm,α,β |z

)
.

The effects on the force–displacement characteristic of
equation (26) of varying the magnet ratio α and coil ratio β

independently are shown respectively in Figure 7. For each it
can be seen that the peak force and the shape of the curve
varies quite significantly as the geometry of the magnet and
coil changes. It can also be seen that an optimal α and β

could be chosen to satisfy a particular cost function such as
peak force, integral of force over displacement, displacement
over which at least 95% of the peak force is achieved, linearity
over a certain displacement range, and so on, according to the
requirements of the actuator being designed. For simplicity,
in the examples to follow we shall consider peak force as
the metric to be maximised but the methodology for design
optimisation holds regardless of the cost function.

The magnet and coil ratios α and β were considered over
a range from 0.1 to 10 and the normalised peak force over
displacement calculated as a function of these two varying
parameters. The normalised peak force was calculated as

(27)F̂peak(Vm,R,dw,α,β ) = max
z

{
F̂z(Vm,R,dw,α,β |z)

}
,

where magnet volume Vm, coil resistance R, and wire diameter
dw were fixed as described earlier.

Figure 8 shows an example of the surface produced after
evaluating the normalised peak force with equation (27) over a
discretisation of the magnet and coil ratio ranges. This surface
can be seen to be concave, and therefore a single value for α

and β can be chosen to maximise the normalised peak force
for a given magnet volume, coil impedance, and wire diameter.

D. Optimisation of wire diameter

In Section IV-C, the peak force results were normalised
against coil current and the effect of wire diameter has not
been taken into account. However, the wire diameter is a
particularly important parameter, as it directly infers the length
of wire to be used but more importantly restricts the current
carrying capacity of the coil. A larger diameter wire will
produce a lower resistance per unit length, and hence for a
given input impedance a longer wire length in total. Depending
on the geometry of the coil, having a longer wire length could
cause the coil to become unnecessarily thick, moving magnetic
energy away from where it is required, which is as close as
possible to the permanent magnet. Having shown a method
by which an optimal magnet and coil geometry can be chosen
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(e.g., as shown in Figure 8) it is now possible to introduce
the wire diameter as a variable parameter, which will allow
an optimal wire diameter to be chosen.

First consider the case of optimising the normalised peak
force per unit of current over magnet and coil ratios and a
range of wire diameters using the equation

(28)F̂max(Vm,R,dw) = max
α,β

{
F̂peak(Vm,R,dw,α,β )

}
.

Rather than gridding the parameter space for α and β into
discrete values as in Figure 8, which has limited precision,
this optimisation was performed using a two-dimensional local
maximum search function (Mathematica’s FindMaximum).
The results from evaluating equation (28) as a function of wire
diameter over a range of coil resistances is shown in Figure 9.
As the wire diameter increases, the resistance per unit length
decreases and a larger coil is required; past a certain point,
this decreases the amount of force per unit current that the
coil can achieve.

Figure 9 is noisy at small wire diameters due to quantisation
errors in calculating the number of turns of the coil. When
calculating the outer radius of the coil with equation (21), a
non-integer number of radial turns is required to achieve an
exact wire length, and discrepancies result as the number of
radial turns in quantised. These errors are greater at lower wire
diameters as each individual coil turn contributes a greater
proportional of the total coil resistance.

E. Consideration of maximum current rating

As the wire diameter increases, the amount of force per unit
of current decreases. However, as the wire diameter increases
the maximum current rating increases as well; larger wire
diameters can be driven with a larger input voltage.

There is a general relationship relating wire diameter and its
maximum current rating [10], denoted Imax(dw) and shown in
Figure 10; note that although this relationship is conservative it
does not take into account factors such as thermal loading due
to tightly-wound coils or high-frequency current oscillations.
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As the maximum current rating data is applicable only for
bare wire, a safety factor must be used for coils with many
turns; a value of 20% is chosen for illustrative purposes here.
Using this data, an estimate of the maximum peak force (after
optimising the magnet and coil geometries individually) can
be calculated for a range of wire diameters scaled according
to their maximum current rating.

An upper estimate of the maximum force obtainable with
a coil of certain wire diameter is found by multiplying the
normalised maximum peak force by the maximum current rat-
ing, Fmax(Vm,R,dw,S) = F̂max(Vm,R,dw)× Imax(dw)×S, using
a safety factor S to account for unmodelled thermal effects.
This produces the curves of maximum peak force shown
in Figure 11, which each show a global maximum against
wire diameter, although as the wire diameter increases the
achievable peak force remains largely flat.

It is important to consider that these results can only be
considered an upper limit on the possible forces achievable
as the maximum operating temperature will be greatly limited
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due to thermal effects. The shape of these curves, and hence
the value of suitable wire diameter, is not affected by the safety
factor chosen. Primarily, the curves in Figure 11 indicate that
increasing the wire diameter is not effective past a certain
point for the chosen constraints, being a maximum diameter
of around 1mm to 1.5mm.

F. Trends in the optimisation results

It is interesting to consider the parameters chosen for the
optimal values of magnet and coil ratios (Figure 12). As
discussed earlier, due to quantisation errors in the calcula-
tion of radial turns, the optimal magnet and coil ratios are
not smooth with wire diameter. Secondly, the accuracy of
the numerical methods used to calcute these optimal values
introduces numerical error into the results, and improving this
accuracy is prohibitive in terms of calculation time.

Despite this, two broad characteristics can be seen. The
magnet ratio is bound in most cases by around 1≤ lm/Rm ≤ 2.
Secondly, as the wire diameter increases so does the coil ratio
in an approximately linear relationship. The implication of this
trend is that as the wire resistance per unit length decreases
and the total length of wire increases (requiring more turns),
it is advantageous to extend the length of the coil rather than
to extend its outer radius. As shown in Figure 9, however, as
the length of the coil exceeds the magnet length significantly,
the normalised amount of force produced quickly decreases;
driving the coil with a larger current is the only way to achieve
parity with the shorter coils with smaller wire diameter.

G. Effects of magnet volume and coil resistance

Finally, while the results from Figure 11 indicate that in-
creasing the coil resistance will lead to an increased maximum
peak force for a given magnet volume, this increase leads to
diminishing returns as the resistance increases past a certain
point. This is shown in Figure 13 as a plot of maximum peak
force versus coil resistance over a range of magnet volumes
according to the function

(29)Fmax(Vm,R) = max
dw

{
Fmax(Vm,R,dw,S)

}
,

using a safety factor of S = 20% to accommodate unmodelled
thermal effects.

Qualitatively, this diminishing return in the maximum peak
force can be explained by the fact that the larger the total coil
resistance the longer the length of wire needed and the less
compact the coil can be, resulting in a movement of the magnet
field away from the permanent magnet. Therefore, despite the
larger electrical energy input, this can only be achieved with a
less efficient geometric design of the electromagnetic system.
As added disadvantages to increasing the force in this way, the
larger the resistance the greater the electrical power required to
drive the coil at a certain current, the more windings required
to construct the coil, and the greater the chance of thermal
difficulties with the cooling of bulkier coils. Increasing the
volume of the permanent magnet will generally be a more
suitable approach to generating larger forces.
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The overall outcome of this modelling is to conclude
that after choosing a magnet volume and coil impedance, it
is possible to optimise the force–displacement characteristic
according to some cost function to choose the wire diameter,
magnet shape, and number of coil turns. Designing a device
to achieve a certain peak force, say, then requires simply
choosing an appropriate magnet size and coil impedance,
both of which depend on additional considerations including
cost, availability of amplifier specifications, requirements for
compact design, and so on.

V. CONCLUSION

In this paper we have summarised and compared the theory
for analytically calculating the force generated between a thick
coil of varying dimensions and a cylindrical permanent magnet
with relative displacement in the axial direction. Despite
the integral equation for this system being solved by other
researchers almost entirely analytically, in some cases such
a solution is computationally more expensive than numerical
integration. An alternative solution using iteration over ‘shells’
of infinitely thin surface current densities is numerically
cheaper again for coils with a relatively small number of radial
turns.

This theory is suitable for optimising a wide range of
actuator designs and in particular the general case of designing
a magnetic actuator for peak force has been shown to reduce
to choosing a coil impedance and magnet volume from which
all geometric parameters are implicitly calculated. This de-
sign methodology can also be used to optimise the system
parameters using other cost functions such as stroke length or
linearity.

The numerical implementation of the equations in this paper
are freely available and may be used to verify and extend this
work.

APPENDIX

Corrected for a typographical error and rewritten slightly,
the following is Babic et al.’s solution to equation (14) for
calculating the force exerted on a permanent magnet by a
thick coil. The sign of the result has been reversed over
the original expression to ensure consistency with the results
presented in this paper. Parameters are as described earlier in
this publication.

(30)Fz4 =
NIBrR3

m

6lc [Rc − rc]

{1,−1}3

∑
e1,e2,e3

[e1e2e3 t fz4 ]

where

(31a)fz4 = ψ1
√

ρm7 +
πψ2

2 |t| + 6ψ3 ,

(31b)t =
z + 1

2 e1lm + 1
2 e2lc

Rm
,

(31c)ρ =
rc + Rc + e3 [Rc − rc]

2Rm
,

(31d)m7 =
4ρ

[ρ + 1]2 + t2
, m8 =

√
t2 + 1 ,

(31e)
ψ1 = K(m7)

[
m8 + 2
m8 + 1

[
t2 − 2

]
+ ρ

2 + ρ + 2− 2
ρ + 1

]
− 4ρ

m7
E(m7)

(31f)

ψ2 = ρ sgn(ρ − 1)
[
ρ

2 − 3
][

Λ0

(
|ξ1| ,m7

)
− 1
]
+

m8
[
t2 − 2

][
Λ0

(
|ξ2| ,m7

)
− 1

+ sgn(ρ − m8)
[
Λ0

(
|ξ3| ,m7

)
− 1
]]

(31g)ψ3 =
∫

π/2

0
arcsinh

 ρ + cos(2ϕ)√
sin(2ϕ)2 + t2

 dϕ ,

(31h)ξ1 = arcsin

(
ρ − 1
ρ + 1

√
1

1− m7

)
,

(31i)ξ2 = arcsin
(

t
m8 + 1

)
,

(31j)ξ3 = arcsin

(
t

m8 + 1

√
1

1− m7

)
,

where Λ0 is the Heuman Lambda function defined by

(32)Λ0(φ ,m) =
2
π

[
F(φ |1− m) [E(m)− K(m)]

+ E(φ |1− m)K(m)
]

,

and sgn(·) represents the sign function

sgn(x) =


−1 x < 0,

0 x = 0,
+1 x > 0.

(33)

When implementing equation (30), note that t fz4 = 0 when
t = 0 and the inner term fz4 , which would otherwise contain
a numerical singularity in this case, does not need to be
evaluated.
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