PUBLISHED VERSION

Mohais, Rosemarie; Xu, Chaoshui; Dowd, Peter Alan; Hand, Martin Phillip
Permeability correction factor for fractures with permeable walls
Geophysical Research Letters, 2012; 39(3):L03403

Copyright 2012 by the American Geophysical Union.

http://onlinelibrary.wiley.com/doi/10.1029/2011GL050519/abstract

PERMISSIONS

http://publications.aqu.org/author-resource-center/usage-permissions/

Permission to Deposit an Article in an Institutional Repository

Adopted by Council 13 December 2009

AGU allows authors to deposit their journal articles if the version is the final published citable version of
record, the AGU copyright statement is clearly visible on the posting, and the posting is made 6 months
after official publication by the AGU.

19" March 2013

http://hdl.handle.net/2440/73178



http://hdl.handle.net/2440/73178
http://onlinelibrary.wiley.com/doi/10.1029/2011GL050519/abstract
http://hdl.handle.net/2440/73178
http://publications.agu.org/author-resource-center/usage-permissions/

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L03403, doi:10.1029/2011GL050519, 2012

Permeability correction factor for fractures with permeable walls

R. Mohais,! C. Xu,' P. A. Dowd,” and M. Hand®

Received 12 December 2011; revised 31 December 2011; accepted 5 January 2012; published 7 February 2012.

[1] Enhanced Geothermal Systems (EGS) are based on the
premise that heat can be extracted from hot dry rocks
located at significant depths by circulating fluid through
fracture networks in the system. Heated fluid is recovered
through production wells and the energy is extracted in a
heat exchange chamber. There is much published research
on flow through fractures, and many models have been
developed to describe an effective permeability of a fracture
or a fracture network. In these cases however, the walls of
the fracture were modelled as being impermeable. In this
paper, we have extended our previous work on fractures
with permeable walls, and we introduce a correction factor
to the equation that governs fracture permeability. The
solution shows that the effective fracture permeability for
fractures with permeable walls depends not only on the
height of the channel, but also on the wall permeability
and the wall Reynolds number of the fluid. We show that
our solution reduces to the established solution when the
fracture walls become impermeable. We also extend the
discussion to cover the effective permeability of a system of
fractures with permeable walls. Citation: Mohais, R., C. Xu,
P. A. Dowd, and M. Hand (2012), Permeability correction factor
for fractures with permeable walls, Geophys. Res. Lett., 39,
L03403, doi:10.1029/2011GL050519.

1. Introduction

[2] In hot dry rock (HDR) geothermal energy extraction, a
thermal reservoir (or EGS) is created by hydrofracturing
high heat-producing granites located a few kilometres below
the surface of the Earth. These rocks are usually imperme-
able to flow in their natural state. Hydrofracturing results in
the opening of existing fractures as well as the propagation
of new fractures which enable fluid percolation through
the rock [Phillips, 1991]. Once the reservoir has been
established, cold water can be introduced through injection
wells, allowed to flow through the fracture network and be
extracted at a much higher temperature at recovery wells.

[3] A fracture may be described as a 3-d channel in which
obstacles of varying sizes may be irregularly distributed.
Although various flow regimes are used to study fluid flow
through fractures in an EGS [e.g., Witherspoon and Long,
1987], the model most widely used is that of flow between
parallel impermeable plates. This model, usually applied
to 1-d channels, neglects the non-linear terms in the flow
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equations, giving rise to the well-known cubic law which
describes Poiseuille flow within a wide channel with smooth
parallel plates as proportional to the cube of the aperture
[Sausse and Genter, 2005].

[4] The appropriateness of the cubic law to describe flow
within rock fractures has been debated [e.g., Brown, 1987,
1995], for although it has been useful in predicting fluid
transport in fractures, it does not take into account many
important characteristics. For example, flow experiments
conducted on natural fractures in granite cores show signif-
icant deviations from the cubic law [A4belin et al., 1985].
Experiments done by Raven and Gale [1985], in which
fractures were subjected to a series of loading and unloading
cycles, demonstrated that fracture aperture and flow rate
deviated significantly from predicted behaviour. Raven and
Gale [1985] attributed this behaviour to increasing contact
area and flow path tortuosity in fractures with increases in
normal stress. This view is supported by experimental and
numerical studies previously conducted by fwai [1976], who
showed that fracture permeability is a function of contact
area. Another possible cause of the differences between real
and predicted flow in fractures may be the alteration of the
properties of rock when subjected to temperature gradients.
When Westerly granite is heated to high temperatures,
porosity can increase by up to a factor of 3 [Darot et al.,
1992; Heard and Page, 1982]; permeability can decrease
when an aqueous fluid flows down an applied temperature
gradient; there is an increase in inter-crystalline crack den-
sity between 200°C and 300°C [Atkinson et al., 1994;
Fredrich and Wong, 1986]; and pores appear along existing
cracks [Vaughn et al., 1986].

[5] We endorse the view that flow through a fracture
bounded by granular rock walls can be modelled using flow
through a channel, however we posit that the walls of the
channel are not smooth and they may contain cracks and
fissures of varying sizes arising from the initial hydro-
fracturing process. Furthermore, when cool water enters the
propagated fracture, the walls will contract, leading to the
creation of more wall cracks [Christopher and Armstead,
1978]. The channel walls may therefore be considered to
have low permeability. Flow experiments have shown con-
clusively that when the walls of a channel are comprised of
permeable material, then slip boundary conditions should
be incorporated in the flow model [Beavers et al., 1970].
Further, imaging studies have revealed that a transition layer,
independent of the flow Reynolds number, exists between
a porous layer and an overlying fluid layer [Goharzadeh
et al., 2005]. In light of these studies, we have addressed
the difference between theoretical and experimental flows
by introducing the analytical limitation imposed by using
no-slip conditions at the fracture walls [Mohais et al., 2011].

[6] Earlier studies on Poiseuille flow in a fluid overlying a
porous medium used a two-layer approach in which the
governing equations in the separate Newtonian fluid and
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Darcy porous regions were coupled by appropriate interfa-
cial boundary conditions [Chang et al., 2006]. The focus of
these studies differs from the work that we present here;
Chang et al. [2006] studied the instability of the flow and
Liu et al. [2006] considered the same configuration with
Darcy’s law replaced by Brinkman’s law. The physical basis
for using Brinkman’s law in the work by Liu et al. [2006]
is unclear [Auriault, 2009], as Liu et al. [2006] acknowl-
edge. This does not diminish the intention of Liu et al
[2006]; studies have shown that wall permeability can sig-
nificantly destabilise flows in channels with permeable walls
compared to those with impermeable walls [Tilton and
Cortelezzi, 2006].

[7] Berman [1953] was the first to investigate the effects
of wall porosity in a channel, followed by Terrill and
Shrestha [1965], whose study included walls of different
permeability. However, Beavers and Joseph were the first to
account for the material properties of permeable walls in
fluid flow problems [Beavers and Joseph, 1967]. Beavers
and Joseph hypothesized that when a viscous fluid in a
channel flows parallel to the permeable medium, the effects
of viscous shear propagate across the interface and result
in a thin layer of streamwise moving fluid lying just below
the permeable layer. This fluid layer is pulled along by the
free fluid external to the permeable layer. The tangential
component the free fluid velocity, u; at the boundary of the
permeable material is considerably higher than the mean
filter velocity (seepage velocity), u,,, within the permeable
body. This is the Beavers-Joseph slip flow hypothesis which
is valid for common viscous liquids at low Reynolds number
[Neale and Nader, 1974]. Slip generally results from fluid
properties, interactions between the fluid and the wall, the
shear rate at the wall and surface roughness (for liquid flows)
[Ligrani et al., 2010]. The slip boundary condition [Beavers
et al., 1970] (Figure 1) can be defined as

duy  «
B = o~ ) (1)

[8] This condition is evaluated at a boundary limit point
from the exterior of the fluid. Here £ is the wall permeability
and « is a dimensionless quantity that characterizes the
structure of the permeable material within the boundary
region; « can be considered as a calibrating factor for dif-
ferent materials. Early experiments by Beavers and Joseph
[1967] provided qualitative support of the slip boundary
conditions; quantitative verification emerged later [Beavers
et al., 1970]. Using two main materials, foametal and alox-
ite, Beavers et al. [1970] determined a range of values for «
in flow experiments using channels of various widths and
porous media of various permeabilities. Foametal has a cel-
lular structure consisting of irregularly shaped interconnected
pores; the experimental value of a ranged from 0.78— 4.0 for
average pore sizes of 0.016 —0.045 inches. Aloxite is made
from fused crystalline aluminium oxide grains held together
with a ceramic bond; the experimental value of « is as low
as 0.1. Although « is independent of the fluid viscosity,
Sahraoui and Kaviany [1992] showed that it is dependent
on the flow direction at the interface, Reynolds number and
extent of clear fluid at the interface.

[9] The notion of permeable walls has been applied to a
limited extent to fractures. Berkowitz [1989] incorporated
Brinkman’s slip boundary conditions in 1-d modelling of
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fractures with permeable walls. He showed that the omission
of slip leads to underestimation of volumetric flow by as
much as 19%. Crandall et al. [2010] performed numerical
computations of flow within open fractures and confined
fractures surrounded by a permeable medium using an inter-
face condition and found an increase in flow volume of about
10%. However, apart from these two cases, there has been
very little attention to applying slip boundary conditions
to flow within fractures. Mohais et al. [2011] present an
analytical solution, incorporating the Beavers-Joseph slip
boundary conditions, which uses a similarity solution fol-
lowed by a perturbation expansion to determine flow and
heat transfer for coupled fluid flow and heat transfer in a
channel with permeable walls. We have shown that the axial
velocity within the channel is affected by «, k and the height
of the channel, 4, and the temperature distribution and tem-
perature gradient is affected by k. Based on this model, we
now extend our analysis to study the equivalent permeability
of a single fracture and of a system of parallel fractures.

2. Analysis

[10] We highlight the main details of the formulation as
given by Mohais et al. [2011]. We consider a fractured res-
ervoir located at 3—-5 kilometres below the surface. We
introduce pressurized water of density, p, and viscosity, 7,
into a single fracture. As the water flows through the frac-
ture, it is heated by the surrounding rock (=200°C) of which
the reservoir is comprised. The heated water is extracted via
a recovery well located some distance away from the injec-
tion well. We neglect end effects at the entry and exit points
and model the fracture as a channel with horizontal parallel
walls. We define the distance between the channel walls to
be 2h. Assume that both walls have a low permeability, £.
The effect of permeability enters through the slip boundary
conditions at y = £ 4. We define the non-dimensional dis-
tance y* = 7- We write the stream function in terms of the
entrance velocity, ug, a constant wall velocity, v, and a
similarity function, f, according to Terrill and Shrestha
[1965], ¥(x, y*) = [huy — v,,x]f(¥*). The velocity compo-
nents become

u(x,y*) = (uo - 7>f'(y*); v(y") = v/ (") )

We define a wall Reynolds number by, Re,, = %, where
V= g The Navier-Stokes equations reduce to:

AL ()G ) ) o

1 0P
ph oy*

Uy

w! =

v
Dy — )
Equation (4) is a function of y* only and so we have % =
0. This is a useful result which can be used in equation (3) to
give after integration

/74 Ren(~f+ (f)) =€ (3)

Here C is a constant of integration. This third order non-linear
ordinary differential equation together with the boundary
conditions will yield an exact solution for the equations of
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Figure 1. Velocity profile for coupled parallel flows within
a channel and bounding porous medium according to the slip
flow hypothesis of Beavers and Joseph [after Beavers and
Joseph, 1967; Neale and Nadar, 1974].

motion and the continuity equation. We have expanded the
function f(y*) and the constant of integration using the
wall Reynolds number, f( y*) Jo(¥*) + fi(y*)Re,, + fo( y*)
Ré + ...+ fi(y9Re, + ..., and, C = ¢y + ciRe,
&Re:, + ... + ¢,Re + .... Channel symmetry is used to
determine the boundary conditions:

Vk éu ou ou
u(x7 ]) = - Ol _(b r) * |y‘:0 = O,
ah Oy oy Oy

v(x,0)=0; v(x,1)=wv, (6)

The slip coefficient is defined as, ¢ = We obtained after

solving up to the first order:

ozh

o -l (3460
w="(zr7m) + (Gee) 7
_oT (3 N s 30+
=3 ((1 +3¢)2) i (280(3¢+ 1)3>
. 1 _ 3(76+1)
A (280(1+3¢)2 280(1+3¢)3) ®)
-3 9 3460\’
T340 Cl7140(1+3¢)3(7¢+1)+(2+6¢) ©)

Using the analysis of the channel flow problem proposed by
Terrill and Shrestha [1965], which is similar to ours except
for the incorporation of the Beavers-Joseph slip boundary
conditions at the walls, the coefficients are identical for ¢ = 0.
This provides validation of our solution for the limiting case
of no-slip at the walls. Also, as we have limited our study to
walls of low permeability, we have conducted our analysis up
to the first order only. Using equations (3) and (5), we can

now write,
VX
= (m-7)c

Using equations (2) and (10), we get,

h* OP
n ox

(10)

2
)

= 11
nC ox (1)
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[11] For the case of impermeable walls,

' . 73)}*2 3
f (y )|¢‘):0'Rew:0 = — 2 _‘_55

C|<§‘):0,Rew:0 =-3 (12)
[12] Substituting equation (12) in equation (11) for

. _ 2 n?
impermeable walls we get, u = —1 £ (—)7 + 7). The total

volumetric flux though the fracture with impermeable walls,
Qimp, for a width w in the y-direction [Zimmerman and
Bodvarsson, 1996; Brown et al., 1995], follows the well-

Wi 3
known result, Oy, = 2w f: udy = 7 ap . where hy= 2h.

-=Z
In the present case however, where slip velocity is con-
sidered at the permeable walls, the resulting volumetric flux,

Qperm is:

wh? op
4C7] ax

2wh? o°P
Cn ox

Qperm = (1 3)

[13] From Darcy’s law, for 1-d flow through porous
media, for a cross-sectional area A = wh, volumetric flux is

given by 0 = _7—/;“ 6—f [Zimmerman and Bodvarsson, 1996].
For a fracture with impermeable walls, the equlvalent per-

meability of the fracture, ks is represented by k; = 5. The
present analysis for fractures with permeable walls glves rise

to an equivalent permeability, kg, of k; = %, where C is
given by,
- 9 3+ 6¢)2
=——FRey| ————(To+ 1) + 14
T+36 (140(1+3¢)3(¢ ) (2+6¢ ) (4

[14] We therefore propose an updated equation for the
equivalent permeability of a fracture with parallel walls
through the introduction of a correction factor, (%3), as,

h2 3
12 (7)

[15] Equation (15) can be used to evaluate the effective
permeability of parallel-walled fractures with permeable
or impermeable walls. For permeable-walled fractures, the
equivalent fracture permeability for small Reynolds numbers
depends on Re,, and ¢. Once these parameters are deter-
mined, this equation can be used in a similar manner to
Berkowitz [1989], to determine estimation errors in the
evaluation of permeability of a given fracture.

[16] Figure 2 shows the variation of — %with ¢ fora=0.1,
Re,, = 0.004 and /& = 0.00001m. The plot shows a range
of ¢ for wall permeability values between 10~'° and
10~"®m?. The permeability correction factor, &, for a
fracture with wall permeabilities within this range varies
from about 1.01 to 1.19.

[17] Berkowitz [1989] considers the root of the ratio of the
wall viscosity to the fluid viscosity to be equivalent to the
Beavers-Joseph « value. Using an « value of 0.1, an aper-
ture of 10 m and k = 10~"°m?, he estimated a difference in
effective fracture permeability of 19%. On changing the
value of k to 10~ '%m?, the difference was 6%, and for an
aperture of 0.0001m and k = 10"""m?, the difference was

(15)

kﬁ'acture =
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Figure 2. The variation of the correction factor, — %, with
¢, for permeability values between 10~ "°m? and 10 '*m?,
h =0.00001m, Re,, = 0.004, o = 0.1. We have estimated ¢
values that correspond to Berkowitz [1989] solution; the
squares show two values of percentage error evaluated by
Berkowitz.

2%. We can use our present model to determine the differ-
ences in the effective fracture permeability using identical
values to Berkowitz [1989]. The Berkowitz [1989] « value is
stricto sensu only an approximation to our Beavers-Joseph
« value and our model includes a wall Reynolds number
for the first order term of the solution. Using a low wall
Reynolds number of 0.004, we found that the effective
fracture permeability varies by 19% (see Figure 2), 6%
(see Figure 2) and 5% respectively for the Berkowitz cases.
The Reynolds number was determined using estimates of
velocity and viscosity values of flow through fractures from
Rasouli and Hosseinian [2011].

[18] Crandall et al. [2010] used Fluent to determine a
numerical solution for flow in fractures within a perme-
able matrix. Using an aperture of 2 = 240 pm and
k=2 x 10" '"°m? they determined a difference in effective
permeability of 9.7%, and for k =2 x 10~ '*m? a value of
14.7%. The critical point to note is that in the Berkowitz
[1989] and the Crandall et al. [2010] studies, as well as
ours, the effective permeability of permeable-walled frac-
tures, especially narrow fractures in a moderately permeable
matrix, can be underestimated. We can further state that for
a system of parallel fractures with permeable walls, sepa-
rated by a distance /, assuming no interactions between the
flow regimes of different fractures, equivalent permeability
. —h?
of the system, ky,,, can be written as: kp,, = Té'

3. Discussion

[19] Successful generation of geothermal energy from
HDR depends on the initial hydrofracturing process con-
verting an impermeable mass of hot rock to a permeable
thermal reservoir. The fractures that result from hydro-
fracturing are commonly considered to be channels with
impermeable walls. The simple cubic law is widely used to
describe the flow through these channels. Brown et al.
[1995] considers the equation to be oversimplified and
unable to account for realistic fractures. Romm [1966] per-
formed laboratory studies on flow within fractures that were
fine (10 — 100 pm) and superfine (0.25 — 4.3 pum) and found
that the cubic law holds for fractures with apertures down
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to 0.2um. However, in direct studies of hydraulic fractures,
Warpinski [1985] observed that they are not the smooth,
parallel plates that they are usually modelled to be, rather,
that they possess surface roughness and waviness, en eche-
lon fracturing and multiple offsets. For narrow fractures, the
surface textures in fractures are seen as large scale waviness,
whereas, in wide fractures, the walls of the fracture appear
rough. Raven and Gale [1985] have shown that the flow rate
for rough fractures at high normal stress cannot be ade-
quately represented by a simple parallel plate model.

[20] We have previously presented an analytical solution
for the velocity through a 2—d channel with permeable walls
where we incorporated slip boundary conditions at the walls
of the fracture using the Beavers-Joseph boundary condi-
tions and retained the non-linear terms in the solution of the
Navier-Stokes equations [Mohais et al., 2011]. The solution
is valid for small Reynolds numbers. The solution showed
that the velocity profiles are affected by channel width, wall
permeability and «. Based on this solution, we now present
the idea of effective permeability of a fracture with perme-
able walls.

[21] Berkowitz [1989] provided an analytical solution for
fractures with permeable walls using the Brinkman solution;
in his solution, he attributes the root of the ratio of the
apparent viscosity in the permeable wall, to that in the free
fluid, to be equivalent to the « term in the Beavers-Joseph
analysis. Taylor [1971] commented that the Beavers-Joseph
condition can be deduced as a consequence of the Brinkman
equation, although he did not use these labels. The idea was
further developed by Neale and Nader [1974].

[22] Nield [2009] discussed the use of the Brinkman
equation versus the Beavers-Joseph condition. He opined
that many people believe that the Brinkman equation is
precise, rather than semi-empirical, as is the Beavers-Joseph
boundary condition. He further points out that in a single
domain treatment where the momentum transfer across the
interface is not the primary concern, the Darcy equation
should be used together with the Beavers-Joseph bound-
ary condition. This view was supported to a degree by
Chandesris and Jamet [2007], who state that although the
Brinkman equation is important in describing the boundary
layer of a porous region, it cannot be used to predict the
effective viscosity of a permeable layer. They state how-
ever, that the Beavers-Joseph condition also has limitations;
for instance, the exact location of the interface is necessary
to define «v and this is an inherent difficulty.

[23] Based on these findings, and as our current analysis is
concerned primarily with flow in the channel region, rather
than focusing on an apparent viscosity in the permeable
wall, or a stress jump at the boundary of the free fluid region,
we chose to use the Beavers-Joseph boundary condition to
arrive at a solution within the channel. Nevertheless, our
method produced results in line with the analytical solution
of Berkowitz [1989] and the numerical solution of Crandall
et al. [2010]. We also introduced a correction factor, which
has the potential to modify the solutions of permeabilities of
fractures with permeable walls, once the parameter « is
experimentally determined.

4. Conclusions

[24] We have extended our previous analysis [Mohais
et al., 2011] to determine the effective permeability of a
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fracture with permeable walls. The present solution shows
that the effective fracture permeability can be expressed as
a function of the wall Reynolds number, the height of the
channel, the wall permeability and the non-dimensional «
term. We have introduced a new equation for permeability of
fractures through the introduction of a correction factor for
fractures with permeable walls. We have also determined an
expression for a system of parallel fractures separated by a
distance /. We observe that the solution reduces to that of the
effective permeability of a fracture with impermeable walls
(when ¢ and Re vanish).
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