
THE APPLICATION OF TIKHONOV REGULARISED INVERSE FILTERING
TO DIGITAL COMMUNICATION THROUGH MULTI-CHANNEL ACOUSTIC

SYSTEMS

Pierre M. Dumuid

School of Mechanical Engineering
The University of Adelaide

South Australia 5005

Submitted for the degree of Doctor of Philosophy, 26th August 2011.
Accepted subject to minor amendments, 22th November 2011.

Submitted with minor amendments, 3rd February 2012.

Abstract

Communication between underwater vessels such as submarines is difficult
to achieve over long distances using radio waves because of their high rate of
absorption by water. Using underwater acoustic wave propagation for digital
communication has the potential to overcome this limitation. In the last 30
years, there have been numerous papers published on the design of com-
munication systems for shallow underwater acoustic environments. Shallow
underwater acoustic environments have been described as extremely difficult
media in which to achieve high data rates. The major performance limita-
tions arise from losses due to geometrical spreading and absorption, ambient
noise, Doppler spread and reverberation from surface and seafloor reflections
(multi-path), with the latter being the primary limitation. The reverberation
from multi-path in particular has been found to be very problematic when
using the general communication systems that have been developed for radio
wave communication systems.

In the early 1990s, the principal means of combating multi-path in the
shallow underwater environment was to use non-coherent modulation tech-
niques. Coherent techniques were found to be challenging due to the diffi-
culty of obtaining a phase-lock and also that the environment was subject
to fading. Designs have since been presented that addressed both of these
problems by using a complex receiver design that involved a joint update
of the phase-lock loop and the taps of the decision feedback filter (DFE). In
recent years a technique known as time-reversal has been investigated for use
in underwater acoustic communication systems. A major benefit of using the
time-reversal filter in underwater acoustic communication systems is that it
can provide a fast and simple method to provide a receiver design of low
complexity.

A technique that can be related to time-reversal and possibly used in un-
derwater acoustics is Tikhonov regularised inverse filtering. The Tikhonov
regularised inverse filter is a fast method of obtaining a stable inverse fil-
ter design by calculating the filter in the frequency domain using the fast
Fourier transform, and was originally developed for use in audio reproduc-
tion systems. Previous research has shown that the Tikhonov regularised
inverse filter design outperformed time-reversal when using a Dirac impulse

i

ii

transmission within a simulated underwater environment. This thesis aims
to extend the previous work by examining the implementation of Tikhonov
regularised inverse filtering with communication signals. In addressing this
goal, two topics have been examined: the influence of the sensitivities in
the filter designs, and an examination of various design implementations for
Tikhonov regularised inverse filtering and similar filtering techniques.

The influence of transducer sensitivities on the
Tikhonov regularised inverse filter
During the implementation of the Tikhonov regularised inverse filter it was
observed that both the Tikhonov regularised inverse filter and the time-
reversal filter were influenced by the sensitivity of the transducers to the
acoustic signals, which is determined by the transducer design and the amp-
lifying stages. Unlike single channel systems, setting the sensitivities of the
transducers to their maximum value for multi-channel systems does not al-
ways maximise the coherence between the input and output of the entire sys-
tem consisting of the inverse filter, the sensitivities and the electro-acoustic
system where the channel is the electro-acoustic transfer function between the
transmitter and receiver. The influence the sensitivities have on the perform-
ance of the multi-channel Tikhonov regularised inverse filters and the time-
reversal filter was examined by performing a mathematical examination of
the system. An algorithm was developed that adjusted gains to compensate
for the decrease in performance that results from the poor sensitivities. To
test the algorithm, a system with an inappropriate set of sensitivities was
examined. The performance improvement of the communication system was
examined using the generated gains to scale the signal. The algorithm was
found to reduce the signal degradation and cross-talk. If the gains were used
in the digital domain (after the analog to digital and before the digital to
analog converters) then the quality of the signal was improved at the expense
of the signal level.

During this examination it was found that the time-reversal filter is equi-
valent to the Tikhonov regularised inverse filter with infinite regularisation.

Variations of the Tikhonov regularised inverse
filter and performance comparisons
In this thesis, various design structures for the implementation of the Tik-
honov inverse filter were proposed and implemented in an experimental di-
gital communication system that operated through an acoustic environment
in air. It was shown that the Tikhonov inverse filter and related filter design

iii

structures could be classified or implemented according to three different
classifications. The Tikhonov inverse filter was implemented according to
each of these classifications and then compared against each other, as well
as against two other filter designs discussed in the literature: time-reversal
filtering, and the two-sided filter developed by Stojanovic [2005]. Due to
the number of parameters that could be varied, it was difficult to identify
the influence each parameter had on the results independently of the other
parameters. A simulation was developed based on a model of the experiment
to assist in identifying the influences of each parameter. The parameters ex-
amined included the number of transmitter elements, carrier frequency, data
rate, and the value of the regularisation parameter.

When the communication system consisted of a signal receiver, the Sto-
janovic two-sided filter generally outperformed the Tikhonov regularised in-
verse filter designs when communicating. However, at higher data rates,
the Stojanovic two-sided filter required the addition of a regularisation para-
meter to allow it to continue to operate. However, given an appropriately
selected regularisation parameter, the difference between the performance of
the Tikhonov filter and the Stojanovic two-sided filter was minimal.

When performing multi-channel communications, the full MIMO imple-
mentation of the Tikhonov regularised inverse filter design was shown to have
the best performance. For the environment considered, the Tikhonov regu-
larised inverse filter was the only design that was able to eliminate all symbol
errors.

Statement of originality

This work contains no material which has been accepted for the award of
any other degree or diploma in any university or other tertiary institution
to Pierre Dumuid and, to the best of my knowledge and belief, contains no
material previously published or written by another person, except where
due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University
Library, being made available for loan and photocopying, subject to the
provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained
within this thesis (as listed in Section 1.3) resides with the copyright holder(s)
of those works.

I also give permission for the digital version of my thesis to be made
available on the web, via the University’s digital research repository, the
Library catalogue, the Australasian Digital Theses Program (ADTP) and
also through web search engines, unless permission has been granted by the
University to restrict access for a period of time.

Pierre M. Dumuid

v

Acknowledgements

I would like to acknowledge a number of people without whom this thesis
would have never been finished. I firstly wish to acknowledge God who has
given me a love and peace I have felt in my life. I am also very thankful to
my parents, Bernard and Anthea Dumuid who have encouraged me with my
technical interest, and comforted me with emotional, moral, and financial
support. I am also very thankful to my sister, Sarah who has been a great
sibling, and put up with my moodiness as a house-mate, and helping me to
grow into the person I have become.

I wish to also thank my supervisors, Ben Cazzolato, and Anthony Zander,
who have had to read though revision after revision of my work, attempting
to decipher incomprehensible sentences. Barbara Brougham also provided
professional editorial advice in regards to language, completeness and con-
sistency of this work.

Finally, I wish to thank my wife, Kylie and her parents Deb and Barry
Foreman who let me use their holiday house to work on my thesis. As well as
proof reading my thesis, Kylie has been a great support and encouragement
to me as I finished writing up this thesis.

vii

Contents

Abstract i

Statement of originality v

Acknowledgements vii

Contents viii

List of Figures xiii

1 Introduction 1
1.1 Aim of this research . 2
1.2 Thesis overview . 3
1.3 Published material . 4

2 Background Theory 5
2.1 Underwater acoustics . 5

2.1.1 Sound absorption . 5
2.1.2 The wave equation . 7
2.1.3 Sound propagation modelling 8

2.1.3.1 Ray theory 8
2.1.3.2 Normal mode theory 11
2.1.3.3 Fast-field modelling 14

2.2 Digital communication theory 14
2.2.1 Introduction . 14
2.2.2 Coding . 15
2.2.3 Modulation . 17

2.2.3.1 Base-band and pass-band signals 17
2.2.3.2 The base-band channel response 20

2.2.4 Communication signals 20
2.2.5 Receiver structures . 24

2.2.5.1 Carrier phase recovery 24
2.2.5.2 The matched filter and the noise whitening

filter . 26

viii

CONTENTS ix

2.2.5.3 Channel compensation 27
2.2.5.4 Channel compensation for time-invariant chan-

nels . 27
2.2.5.5 Adaptive equalisers – Channel compensation

for time-variant channels 28

3 Literature Review 33
3.1 Digital underwater acoustic communication 33
3.2 Channel compensation . 36

3.2.1 Time-reversal . 36
3.2.1.1 Further developments of time-reversal 52

3.2.2 Inverse filtering . 54
3.2.3 Comparisons between time-reversal and inverse filtering 60

3.3 Channel compensation techniques used in acoustic communic-
ation systems . 63
3.3.1 Passive time-reversal in underwater acoustic commu-

nication . 63
3.3.2 Active time-reversal in underwater acoustic communic-

ation . 67
3.3.3 Other time-reversal investigations in underwater acous-

tic communication . 68
3.3.4 Inverse filtering in underwater acoustic communication 70

3.4 Conclusion and Gap Statement 71

4 Influences of amplifier sensitivities on Tikhonov inverse
filtering 73
4.1 Introduction . 73
4.2 Theory . 74

4.2.1 Introduction . 74
4.2.2 Influence of transducer sensitivities on the performance

of the Tikhonov regularised inverse filter 75
4.2.2.1 An “equally responsive system” 75
4.2.2.2 Influence of transducer sensitivities on the

total system 76
4.2.2.3 Examination of the transfer matrix singular

values . 77
4.2.3 Calculation of desirable transducer sensitivities 78

4.2.3.1 Sensitivities for an “equally responsive system” 78
4.2.3.2 Sensitivities to reduce the condition number

of the system 79
4.2.4 Implementations of preconditioning in digital systems . 81

4.3 An example analysis . 82
4.4 Conclusion . 91

x CONTENTS

5 Experiment and Simulation 95
5.1 Overview . 95
5.2 Inverse filtering performed in a sound channel 95

5.2.1 Introduction . 95
5.2.2 Experiment configuration 96
5.2.3 Characteristics of the system components 97

5.2.3.1 Speaker amplifier characterisation 99
5.2.3.2 Speaker characterisation 99
5.2.3.3 Microphone amplifier characterisation 101
5.2.3.4 Microphone characterisation 102
5.2.3.5 Concluding remarks on system component char-

acterisation 103
5.2.4 The computer program code 104
5.2.5 Experimental procedure 105
5.2.6 Results from experiment 109
5.2.7 Conclusion from the experiment 114

5.3 Computer simulations . 115
5.3.1 Introduction . 115
5.3.2 Implementation . 116

5.3.2.1 The Condor system 116
5.3.2.2 MATLAB scripts that interact with Condor . 116

5.3.3 The executing computer script 117
5.3.3.1 Overview . 117
5.3.3.2 Generation of the communication signal . . . 118
5.3.3.3 Generation of the inverse filters 119
5.3.3.4 Testing of the inverse filter 119

5.3.4 Conclusions . 121

6 Performance of Tikhonov regularised inverse filter design
structures 123
6.1 Introduction . 123
6.2 The filter designs . 124

6.2.1 Design classifications 124
6.2.2 The Tikhonov regularised inverse filter 126
6.2.3 Regularisation of Stojanovic’s two-sided filter for no

inter-symbol interference 128
6.3 Performance comparisons . 129

6.3.1 Procedure . 129
6.3.2 Sensitivity to noise . 131

6.4 Results . 133
6.5 Conclusion . 141

7 Conclusions and Future Work 157

CONTENTS xi

7.1 Conclusions . 157
7.1.1 Influence of amplifier gain on Tikhonov inverse filter

performance . 157
7.1.2 Implementation of Tikhonov inverse filtering for a com-

munication system . 158
7.2 Recommendations for future work 160

7.2.1 Methods for adapting the regularisation parameter . . 160
7.2.2 Adaptive channel estimates update using the symbol

errors . 161
7.2.3 Using the DORT technique to focus on each receiver . 161
7.2.4 Variable range focusing 162
7.2.5 Automatic channel MIMO reduction 162
7.2.6 Using the adjoint operator to eliminate cross-talk . . . 162

References 165

Appendices 177

A Program developed for the experiment and simulation 179
A.1 The dSpace development system 179
A.2 Code used for the experiment using inverse filter designs in an

air-acoustic channel . 180
A.2.1 DuctExperimentDSPACEProgram.c 180

A.2.1.1 Program listing 180
A.2.1.2 Program description 186

A.2.2 DuctExperimentCreateTransmissionSignal.m 189
A.2.2.1 Program listing 189

A.2.3 DuctExperimentPlayAndPostprocess.m 192
A.2.3.1 Program listing 192

A.2.4 Helper Scripts . 201
A.2.4.1 DuctExperimentRunAdaptiveTests.m 201
A.2.4.2 GetDS1104VariableDescriptions.m 204
A.2.4.3 GetFakeIRFs.m 205
A.2.4.4 GetIRFsDS1104.m 205
A.2.4.5 PlotScatter.m 208
A.2.4.6 RunDS1104Chkspk.m 208
A.2.4.7 RunDS1104MIMO.m 210

A.3 Code used for the simulation 212
A.3.1 The Condor submitter scripts 212

A.3.1.1 DuctSimulationManager.m 212
A.3.1.2 DuctSimulationSubmitJobsAndFetchResults.m215
A.3.1.3 DuctSimulationResultViewer.m 218

A.3.2 Functions for the Condor submitter script 226

xii CONTENTS

A.3.2.1 SubmitCondorJob.m 226
A.3.3 The Condor job script 229

A.3.3.1 The Condor job executor: CondorJobExecutor.bat229
A.3.3.2 The main Condor job: CondorJobMainScript.m230
A.3.3.3 CondorJobCreateModulatedSignal.m 231
A.3.3.4 CondorJobRunFilterTests.m 232

A.4 Thesis MATLAB library . 245
A.4.1 BasebandToPassband.m 245
A.4.2 BitSequenceToBlockValues.m 246
A.4.3 BitSequenceToComplexSequence.m 246
A.4.4 CentralPeakSignalTrim.m 247
A.4.5 ComplexSequenceToSignal.m 247
A.4.6 CreateInverseFilter.m 248
A.4.7 DetectorAdaptiveMSE.m 251
A.4.8 DetectorAdaptiveRLS.m 252
A.4.9 DetectorAdaptiveZF.m 254
A.4.10 DetectorNonAdaptive.m 255
A.4.11 FindSignalFirstPeak.m 255
A.4.12 GetConstellationValues.m 255
A.4.13 GreyDecodeMap.m . 256
A.4.14 GreyEncodeMap.m . 256
A.4.15 MatrixConvolve.m . 257
A.4.16 PassbandToBaseband.m 257
A.4.17 RaisedCosineFrequencySpectrum.m 259
A.4.18 ResampleIRFs.m . 259
A.4.19 SignalPhaseEstimatorPassbandToBaseband.m 259

B Figure Attributions 261

List of Figures

2.1 Attenuation coefficient of sound in sea-water from the formula
given in Equation 2.2. 6

2.2 Experimental measurements of transmission loss (in dB) with re-
spect to range for a shallow environment. The depth of the source
and receiver depth are denoted by S and R on sub-figure (a). [Et-
ter 1996, Fig. 5.5,5.6a] . 7

2.3 The change in angle and wavelength for a ray propagating between
two media (Adapted from Etter [1996, Fig. 3.6]). 9

2.4 The trajectory of a ray in an environment where sound increases
linearly as a function of depth. (Adapted from Tolstoy and Clay
[1987, Fig.2.15]). 10

2.5 Examples of ray tracing for a number of profiles [Jensen et al.,
2000, Figs. 1.11-1.14] . 11

2.6 Sound speed profile and selected modes of the Pekeris sound-speed
profile. The dashed lines are lossy modes that decay with range.
[Jensen et al., 2000, Fig. 5.8] . 13

2.7 Sound speed profile and selected modes of the Munk sound-speed
profile for a source frequency of 50Hz. [Jensen et al., 2000, Fig.
5.10] . 13

2.8 General overview of a communication system. (Adapted from Sk-
lar [2001, Fig. 1.2]) . 15

2.9 Fourier representation demonstrating base-band to pass-band con-
version. 18

2.10 Fourier representation demonstrating the pass-band to base-band
conversion. 19

2.11 Structures for the hetero-dyne operation to (a) convert from base-
band to pass-band, and (b) convert from pass-band to base-band 19

2.12 Signal space diagrams for a number of modulation techniques . . 21
2.13 Examples of base-band and pass-band signals for PAM, PSK, and

PAM-PSK. The top plot shows the base-band with the solid and
dashed lines representing the real and imaginary components re-
spectively, whilst the lower plots show the corresponding pass-
band signals, for fc = 500 Hz. 22

xiii

xiv List of Figures

2.14 Two signals, s1(t) and g(t), that may be used to generate the
base-band signal. 22

2.15 Impulse response of the ideal spectral shaping filter 24

2.16 Impulse and frequency response of the raised co-sine spectral
shaping filter . 24

2.17 Example of base-band and pass-band signals as per the PAM-
PSK example shown in Figure 2.13 using a raised co-sine spectral
shaping filter with β = 0.2 truncated at ±6T . The crosses and
circles indicate the sampling instances. 25

2.18 Schematic of a QAM receiver [Proakis, 2001, Fig. 6.1-4] 26

2.19 Adaptive filtering structure . 29

2.20 Schematic for the decision-feedback MSE equaliser [Proakis, 2001,
Fig 11.2–1] . 30

3.1 Phase conjugation holography [Fink, 1992, Fig. 10] 37

3.2 Beam steering as performed by a time-reversal mirror [Jackson
and Dowling, 1991, Fig. 3] . 39

3.3 Sound intensity for frequencies ranging from 445Hz to 465Hz
for a simulation of a 140m deep shallow water environment with
source and receiver depth of 40 m and 50 m respectively. The
curves have been displaced by 2 dB increments for each curve.
[Song et al., 1998, Fig 5] . 42

3.4 Sound intensity for range and depth for a time-reversal having an
original focal point at a range of 6.2 km and depth of 70 m with
(a) no frequency shift, (b) a frequency shift of -20Hz, and (c) a
frequency +20Hz. [Song et al., 1998, Fig 3] 43

3.5 Mirror images resulting from a wave-guide [Roux et al., 1997, Fig.
6] . 45

3.6 Iterative time-reversal with pulse excitation. [Prada et al., 1991] 46

3.7 Inter-element impulse response. [Prada et al., 1995] 47

3.8 Sound intensity for phase conjugate (single frequency) mirror from
a simulation for a probe source located at a depth of 40 m and
range of 6.3 km in a shallow underwater acoustic environment.
[Kuperman et al., 1998, Fig. 4b] 52

3.9 Room configurations for the application of inverse filtering. 57

3.10 Generic inverse filter system schematic [Kirkeby et al., 1998]. . . 58

3.11 Improved focusing obtained through the use of time-reversal in
conjunction with amplitude compensation [Thomas and Fink, 1996]. 61

List of Figures xv

3.12 Two methods of using time-reversal in acoustic communication.
(a) Active time-reversal consists of the target emitting a signal
that is recorded at an array. The time-reverse of the recorded
signals at the array are then used as filters to transmit sound to
the target. (b) Passive time-reversal consists of a source emitting
an initial pulse, during which time the array records the response.
After some time, the source transmits data and the array uses the
time-reverse of the records to filter the received signals. 64

4.1 Diagonal preconditioning systems: (a) no diagonal precondition-
ing; (b) digital preconditioning; (c) analog preconditioning; and
(d) scaled version of the Tikhonov inverse filter. 82

4.2 The impulse responses crs(n) of the system (replica of Kirkeby
et al. [1998, Fig. 3]), showing the response amplitudes versus sample,
n. In this figure, the sub-figure at row i, column j corresponds to
the IRF of the channel between transmitter j and receiver i. . . . 83

4.3 The impulse responses c(n). In these figures, the subplot at
row i, column j corresponds to the IRF of the channel between
transmitter j and receiver i. 85

4.4 The singular values of C(ω). 85
4.5 Optimal values of α and β with respect to frequency, calculated

using the preconditioning algorithm. x1, x2, x3,
x4 where x = α and β respectively. 86

4.6 The singular values of the HTIF(ωn) for κ = 0.008, with
regularisation, without regularisation, singular value
limit, 1

2
√
κ
. 87

4.7 Influence of regularisation of singular values. σIF = 1
σC

,

σTIF =
σ2
C

(σ2
C+0.008)σC

. 89

4.8 The impulse responses of the filters for κ = 0.008. The unit on the
x-axis is samples. In these figures, the subplot at row i, column j
corresponds to the IRF of the filter between virtual source j and
transmitter i. These impulse responses have been normalised such
that the largest peak value of each filter is ±1. 90

4.9 The impulse responses of the complete system for κ = 0.008. The
unit on the x-axis is samples. In this figure, the subplot at row i,
column j corresponds to the IRF of the entire system between
virtual source j and receiver i. 92

4.10 The frequency responses of the complete system for κ = 0.008.
The unit on the abscissa is kHz, and the unit on the ordinate is dB.
In these figures, the subplot at row i, column j corresponds to the
FRF of the entire system between virtual source j and transmitter i. 93

xvi List of Figures

5.1 Experiment schematic . 97
5.2 Images of the waveguide equipment 98
5.3 Measured bode plot for speaker amplifiers. 100
5.4 Equipment setup used to characterise the speakers. 100
5.5 Magnitude, phase and coherence measurements for the speakers.

The magnitude of the response for each speaker has been norm-
alised such that the average between 8 kHz and 13 kHz is 1. . . . 101

5.6 Measured bode plot showing the magnitude and phase for a mi-
crophone amplifier. 102

5.7 Equipment setup used to characterise the microphones. 103
5.8 Magnitude, phase and coherence measurements for the micro-

phones. The results have been normalised such that the average
magnitude of each microphone measurement between 5 kHz and
10 kHz is 1. 104

5.9 Average frequency response between six transmitters and two re-
ceivers from one of the experiments conducted. 105

5.10 Scatter plot of the sampled signal at the target receiver and non-
target receiver. The filters examined are the Stojanovic two-sided
filter design [Stoj. 2-S], time-reversal [T.R.], Tikhonov inverse fil-
tering using full [T.I.F. (full)], channel [T.I.F. (channel)], and path
[T.I.F. (path)] structures. 111

5.11 Scatter plots of the filtered target receiver signal after applying
the different adaptive filtering algorithms to each of the signals
received by the inverse filter designs. The adaptive filters are no
filtering [none], the zero-forcing equaliser [ZF], the mean-square
error equaliser [MSE], the fractionally-spaced mean square er-
ror equaliser [MSE-FS], the recursive least square error equal-
iser [RLS], and the fractionally-spaced recursive least square error
equaliser [RLS-FS]. 112

5.12 The history of the symbol error after each iteration of the various
adaptive filter algorithms. The values shown on the abscissas are
the step-sizes used for each iteration of the equalisers, and the
ordinate value is the symbol error after the iteration. The step
size was kept constant for each iteration of the RLS equalisers. . . 113

5.13 The magnitude of the filter tap after each sample of the adaptive
filters for the Tikhonov inverse filter using the full structure. . . 114

5.14 Schematic of the Condor distributed computing system. The pool
of execution computers contained around 200 computers. 116

5.15 Schematic of the program execution. 118
5.16 Schematic of the simulation executed on each computer.

Whilst the schematic and the computer code show the implementation of
fractional sampling, and RLS adaptive equalisers, these were turned off dur-
ing the main simulations due to computation limitations. 120

List of Figures xvii

6.1 Schematic of filter connections. 124
6.2 Schematic of filter design classifications. Solid lines denote trans-

mission paths considered when developing filters. Dashed paths
are additional paths which contribute to cross talk. 126

6.3 Scatter of standard deviation versus symbol error for all filter
designs. The light curve shows the expected average for a Gaus-
sian distributed symbol spread. 133

6.4 Average frequency responses between all 6 transmitters and re-
ceivers 1 and 2. The vertical dashed lines show the region in
which the simulations occurred, and the horizontal dashed line
indicates the chosen operational level. 134

6.5 Transmitter power for the parameter ranges presented in Table 6.1.
Results for κ = 0 are presented in the plots in the top row of pixels
above the dashed line. 142

6.6 Power at the target receiver for the parameter ranges presented
in Table 6.1. Results for κ = 0 are presented in the plots in the
top row of pixels above the dashed line. 143

6.7 Average amplitude of sampled signal prior to compensation of the
phase / amplitude for the parameter ranges presented in Table 6.1.
Results for κ = 0 are presented in the plots in the top row of pixels
above the dashed line. 144

6.8 Ratio of the receiver power to the cross-talk power for the para-
meter ranges presented in Table 6.1. Results for κ = 0 are presen-
ted in the plots in the top row of pixels above the dashed line.
. 145

6.9 Symbol error without any adaptive filters for the parameter ranges
presented in Table 6.1. Results for κ = 0 are presented in the plots
in the top row of pixels above the dashed line. 146

6.10 Estimate of symbol error derived from the standard deviation for
the parameter ranges presented in Table 6.1. Results for κ = 0 are
presented in the plots in the top row of pixels above the dashed
line. 147

6.11 Increase in standard deviation required to achieve an error rate of
1 in 400 for the parameter ranges presented in Table 6.1. Results
for κ = 0 are presented in the plots in the top row of pixels above
the dashed line. 148

6.12 Channel noise required to achieve a standard deviation that res-
ults in an error rate of 1 in 400 for the parameter ranges presented
in Table 6.1. Results for κ = 0 are presented in the plots in the
top row of pixels above the dashed line. 149

xviii List of Figures

6.13 Estimate of symbol error derived from the standard deviation with
the addition of cross-talk for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top
row of pixels above the dashed line. 150

6.14 Increase in standard deviation required to achieve an error rate of
1 in 400 after the addition of cross-talk for the parameter ranges
presented in Table 6.1. Results for κ = 0 are presented in the
plots in the top row of pixels above the dashed line. 151

6.15 Channel noise required to achieve a standard deviation that res-
ults in an error rate of 1 in 400 after the addition of cross-talk for
the parameter ranges presented in Table 6.1. Results for κ = 0 are
presented in the plots in the top row of pixels above the dashed
line. 152

6.16 Symbol Error using LMS adaptive equaliser and no training se-
quence for the parameter ranges presented in Table 6.1. Results
for κ = 0 are presented in the plots in the top row of pixels above
the dashed line. 153

6.17 Symbol error using LMS adaptive equaliser and a training se-
quence of 40 symbols for the parameter ranges presented in Table 6.1.
Results for κ = 0 are presented in the plots in the top row of pixels
above the dashed line. 154

6.18 Symbol error using the zero-forcing adaptive equaliser and no
training sequence for the parameter ranges presented in Table 6.1.
Results for κ = 0 are presented in the plots in the top row of pixels
above the dashed line. 155

6.19 Symbol error using the zero-forcing adaptive equaliser and a train-
ing sequence of 40 symbols for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top
row of pixels above the dashed line. 156

1 Introduction

The most common mechanism used to achieve wireless communication is ra-
dio waves. This can be attributed to the fact that radio waves travel in the
earth’s atmosphere extremely quickly, and with little absorption. In the un-
derwater environment however, radio waves are absorbed by the ocean at a
much greater rate, and are thus only able to be used for very short ranges (of
the order of tens of metres). In order to transmit sound over longer distances,
a different mechanism needs to be used. The predominant mechanism that
has been considered to date is acoustic wave propagation. Acoustic wave
propagation has been considered a useful means by which to communicate
underwater because the waves travel over large distances with low levels of
attenuation. However, using acoustic waves for digital communication sys-
tems has a number of short-comings relative to radio waves, particularly
slower propagation speed, smaller bandwidth, high level of reverberation,
and temporal and spatial variation of the transmission paths [Dunbar, 1972].
Despite these short-comings, increasing interest in underwater communica-
tion is evident [Baggeroer, 1984, Catipovic, 1990, Stojanovic, 1996, Kilfoyle
and Baggeroer, 2000, Chitre et al., 2008].

The propagation of sound waves in the underwater acoustic environment
varies considerably depending on the environmental conditions. The condi-
tions that affect the propagation include the depth, temperature, chemical
composition, sea floor composition and also the weather condition. An en-
vironment that has been particularly challenging to perform communication
in is the shallow water environment. In a shallow water environment sound
is subject to multiple reflections from both the surface and the seafloor (of-
ten termed reverberation) [Etter, 1996]. When using general communication
theory to develop communication systems, these reflections are very prob-
lematic. A number of techniques have arisen to overcome the high level of
reverberation, and in some cases take advantage of it.

In the literature two groups of researchers have examined the imple-
mentation of digital underwater acoustic communication systems for shallow
water environments. One group investigated underwater acoustic commu-
nication from the basis of general digital communication theory [Baggeroer,
1984, Catipovic, 1990, Stojanovic, 1996, Kilfoyle and Baggeroer, 2000, Chitre

1

2 Chapter 1 Introduction

et al., 2008]. The second group have looked at using an acoustic technique
known as time-reversal and investigated means of integrating this techno-
logy with digital communication systems presented [Jackson and Dowling,
1991, Kuperman et al., 1998, Hodgkiss et al., 1999, Kim et al., 2001a]. The
time-reversal technique arose from an investigation by Parvulescu [1995] that
found that the underwater environment itself could be used to compensate
for the reverberation, thus avoiding the need for computationally complex
electronic systems that would otherwise be required. Time-reversal has seen
much development, and is shown to have many other beneficial properties
that shall be discussed further in Section 3.

Another channel compensation technique related to time-reversal is the
Tikhonov inverse filter. Tikhonov inverse filtering is a technique that was
investigated by Kirkeby et al. [1996a] for use in human listening environ-
ments to compensate for room acoustics. Whilst other inverse filter designs
exist, the Tikhonov inverse filter provided a means to drastically reduce the
computational complexity by performing the calculations in the frequency
domain. Cazzolato et al. [2001] compared time-reversal with Tikhonov in-
verse filtering for use in the underwater environment. The investigations
performed by Cazzolato et al. showed that the Tikhonov inverse filter had
better spatial and temporal focusing than the time-reversal technique. The
work presented by Cazzolato et al. [2001] was an initial investigation of the
use of Tikhonov inverse filters for underwater acoustic communication. The
purpose of this thesis is to continue the investigation and examine the integ-
ration of Tikhonov inverse filters with digital communication systems.

1.1 Aim of this research

The aim of this research is to investigate the implementation and perform-
ance of Tikhonov inverse filtering in conjunction with digital communication
systems with specific application to shallow water environments. Prior to the
commencement of this research, the only previously known work to examine
Tikhonov inverse filtering for application in underwater acoustic communic-
ation was the work published by Cazzolato et al. [2001]. Cazzolato et al.
examined the transmission of a single pulse through a simulated underwa-
ter environment. This thesis aims to extend the investigation by examining
the implementation of Tikhonov inverse filtering with actual communication
signals.

When implementing Tikhonov inverse filtering and time-reversal in com-
munication systems, a number of adjustable parameters exist that include
the transducer placement, sensitivity of the transducers, parameters of the
inverse filters, design structure of the inverse filter, data rate, and carrier
frequency. This research aims to investigate the influence these parameters

1.2 Thesis overview 3

have on the system design and its performance.
Two novel contributions have resulted from this research. The first contri-

bution was the finding of a relationship between the transducer sensitivities
and performance of the Tikhonov inverse filters, and the second contribution
was to provide alternate implementations of the Tikhonov inverse filter along
with a comparison of their performance.

As part of this research, an algorithm is also presented that provides a
suitable choice of amplifier gains for a given environment. It is also shown
that a relationship exists between time-reversal and inverse filtering, whereby
time-reversal can be considered equivalent to Tikhonov inverse filtering with
a specific choice of the filter parameters.

1.2 Thesis overview

The development of underwater acoustic communication systems requires an
understanding of both the propagation of sound in the underwater envir-
onment and the theory of digital communication. To assist the reader, the
relevant background theory on underwater acoustics and digital communica-
tion theory is outlined in Chapter 2. Section 2.1 examines the propagation of
sound, and methods used to model underwater acoustics; and Section 2.2 in-
troduces the theory of digital communication, describing how digital data is
coded and modulated / demodulated to transmit digital information through
an analog channel. Some commonly used receiver structures are also intro-
duced.

Chapter 3 contains a review of the literature that provides a context for
the current research. Section 3.1 examines the development of general digital
communication for underwater environments, and Section 3.2 examines the
development of time-reversal and inverse filtering along with the use of these
filters within underwater communication systems.

To investigate the ability to implement Tikhonov inverse filtering in di-
gital communication systems, several experiments were conducted. During
these experiments, it was realised that the performance of the Tikhonov in-
verse filtering was influenced by the magnitude of the gains used at the source
and receiver amplifiers. A theoretical analysis of the influence the amplifier
gains have on Tikhonov inverse filter designs is described in Chapter 4. A
mathematical analysis is provided, along with an algorithm to find the most
desirable gains.

The experiments conducted to investigate and validate the implementa-
tion of Tikhonov inverse filtering are described in Chapter 5. The purpose
of this chapter is to describe the experimental apparatus, computing archi-
tecture and computer code and to provide evidence of working code. The
details of the theory and the main results obtained from the experiments

4 Chapter 1 Introduction

and simulations are presented in Chapter 6. A number of design structures
for the implementation of the Tikhonov inverse filter are presented, and the
performance for each of these structures is compared along with the time-
reversal filter, and the Stojanovic [2005] two-sided filter.

Chapter 7 contains the main conclusions that can be drawn from this
thesis. Included in this chapter are a number of topics that could be invest-
igated for future research.

1.3 Published material
The published materials resulting from this research are:

Journal papers:

• Transducer sensitivity compensation using diagonal precon-
ditioning for time reversal and Tikhonov inverse filtering in
acoustic systems
Pierre M. Dumuid, Ben S. Cazzolato, and Anthony C. Zander,
Journal of the Acoustical Society of America, Volume 119, Issue 1,
pp. 372-381, 2006.

• A comparison of filter design structures for multi-channel acous-
tic communication systems
Pierre M. Dumuid, Ben S. Cazzolato, and Anthony C. Zander,
Journal of the Acoustical Society of America, Volume 123, Issue 1,
pp. 174-185, 2008.

Conference presentation:

• Experimental results of time reversal and optimal inverse fil-
tering performed in a one dimensional waveguide
Pierre M. Dumuid, Ben S. Cazzolato, and Anthony C. Zander
146th Meeting of the Acoustical Society of America
Austin, Texas, USA, November 10th - 14th, 2003.
Abstract available in Journal of the Acoustical Society of America Volume 114,
Issue 4, pp. 2407-2408, October 2003.

2 Background Theory

The development of underwater acoustic communication systems requires an
understanding of both the propagation of sound in the underwater environ-
ment and the theory of digital communication. The purpose of this chapter
is to provide the reader with an introduction to the relevant background
theory on acoustic propagation in underwater environments and the theory
of digital communications to assist the reader with the relevant literature
review (Chapter 3) and the work developed in this research presented in the
following chapters. Much of the information in this section has been sourced
from a number of textbooks that cover these topics, and are listed at the
beginning of each section.

2.1 Underwater acoustics
In order to develop an underwater acoustic communication system, know-
ledge of the means by which sound travels is required to understand the
environment in which the system must operate. This section provides an
overview of the propagation of sound in the underwater environment. The
material contained in this section is obtained from Etter [1996], Tolstoy and
Clay [1987], and Jensen et al. [2000].

2.1.1 Sound absorption

The transmission of sound within the underwater environment is generally
limited to frequencies less than 100 kHz for ranges over a kilometre. The
reason for this is due to the increasing absorption of sound by the ocean
with frequency. The absorption of a harmonic signal with frequency, f ,
can be understood by considering the energy, E(f), received from a source
with a radiation flux, S(f). The energy is given by [Skretting and Leroy
1971, Equation 3]

E(f) = S(f)− T (f)− α(f)R (2.1)

where T (f) is the geometric spreading loss, α(f) the attenuation coefficient
in dB / km and R is the range in kilometres. The attenuation coefficient

5

6 Chapter 2 Background Theory

0.1 0.2 0.5 1 2 5 10
0.01

0.02

0.05

0.1

0.2

0.5

1

Frequency (kHz)

α
 d

B
/k

m

Figure 2.1: Attenuation coefficient of sound in sea-water from the formula
given in Equation 2.2.

represents the signal energy being absorbed into the medium. A number of
authors have proposed formulae that describe α(f). A formula developed by
Thorpe [1967], valid for frequencies below 50 kHz is

α = 1.094

[
0.1f 2

1 + f 2
+

40f 2

4100 + f 2

]
dB/km (2.2)

where f is the frequency in kHz. Figure 2.2 shows the attenuation coeffi-
cient using this formula for frequencies between 100Hz and 10 kHz. From
this figure, it is apparent that sound is absorbed at a considerable rate for
frequencies above 10 kHz limiting the use of high-frequency transmissions to
short ranges.

The geometric spreading loss, T (f), is the attenuation that results from
the geometry and is generally derived from the sound speed profile. An
example of transmission loss is shown in Figure 2.2b for the shallow water
environment with a sound speed profile as per Figure 2.2a. It can be observed
that the attenuation across all frequencies is relatively similar at distances up
to 20 km. However at extended ranges, the optimal frequency of operation
is around 200Hz and frequencies below 50Hz and above 500Hz are highly
attenuated.

The geometric spreading loss and absorption by the medium limits the fre-
quency bandwidth over which acoustic communication systems can be used.
Sound absorption is the primary limitation for communication at various fre-
quencies and distances. However, even when there is little geometric loss and

2.1 Underwater acoustics 7

0

1490

D
E

P
T

H
 (

m
) 40

80

120

1500 1510
SOUND SPEED (m/s)

S
R

(a) Sound Speed Pro-
file

3200

1600

800

400

200

100

50

62 64 66 68

72
74

76

78

82

84

86
88

82
84
86

92
94 96

88

92
94

96
98 102

104
106 108

60

70 80
90

100

90

0 10 20 30 40 50 60 70 80
RANGE (km)

F
R

E
Q

U
E

N
C

Y
 (

H
z)

(b) Transmission Loss

Figure 2.2: Experimental measurements of transmission loss (in dB) with
respect to range for a shallow environment. The depth of the source and
receiver depth are denoted by S and R on sub-figure (a). [Etter 1996,
Fig. 5.5,5.6a]

absorption, it is generally difficult to communicate due to the distortion of
the transmitted signal that occurs within the ocean.

2.1.2 The wave equation

The propagation of acoustic waves in the underwater environment is governed
by the scalar wave equation [Tolstoy and Clay, 1987],

∇2Φ =
1

c2

δ2Φ

δt2
(2.3)

where ∇2 is the Laplacian operator, Φ the potential or pressure field, c
the speed of sound, and t the time. For short intervals of time, the sound
speed profile can be considered stationary, and the system considered a time
independent system. Under such assumptions, the response of the system to
a harmonic source excitation with frequency ω is given by

Φ = φe−iωt (2.4)

where φ is the time independent potential function. Substituting Equa-
tion 2.4 into Equation 2.3 results in the well known Helmholtz equation

∇2φ+ k2φ = 0 (2.5)

where k = ω/c is the wave number. The Helmholtz equation is also com-
monly expressed in a cylindrical co-ordinate system as

δ2φ

δr2
+

1

r

δφ

δr
+
δ2φ

δz2
+ k2(z)φ = 0 (2.6)

8 Chapter 2 Background Theory

where z denotes the depth and r the range. The solutions to the wave and
Helmholtz equations are used in the modelling methods described in the
following section.

2.1.3 Sound propagation modelling

There are five commonly used models based on the Helmholtz equations given
in Equations 2.5 and 2.6, being ray theory, normal mode, multi-path expan-
sion, fast-field and parabolic equation techniques [Etter, 1996]. Regardless
of the model used to solve the Helmholtz equation, the environmental prop-
erty that determines the sound propagation is the speed of sound, c(x, y, z).
The influence the speed of sound has on acoustic wave propagation is best
understood by observing the paths of rays resulting from the ray model-
ling method. Whilst the ray modelling method is helpful to understanding
the propagation of acoustic waves, it is unsuitable for accurate modelling
as it is primarily applicable to higher frequency transmissions and / or deep
water environments. Thus fast-field modelling, a more practical modelling
technique, will also be discussed.

2.1.3.1 Ray theory

Ray theory is developed by taking the solution of the Helmholtz equation to
be of the form

φ = A(x, y, z)eiP (x,y,z) (2.7)

where A(x, y, z) is an amplitude function, and P (x, y, z) a phase function.
After substituting Equation 2.7 into Equation 2.5, and performing a separ-
ation of variables according to the real and imaginary parts, the following
equalities are obtained:

1

A
∇2A− [∇P]2 + k2 = 0 (2.8)

2[∇A.∇P] + A∇2P = 0. (2.9)

Assuming that the variation of the amplitude function is smaller than the
wave-number (known as the geometrical acoustic approximation) then it fol-
lows that 1

A
∇2A� k2, and thus

[∇P]2 ' k2. (2.10)

When c(x, y, z) is known, Equation 2.10 can be used to determine the phase,
P (x, y, z), at any location given that k(x, y, z) = ω/c(x, y, z). The lines of
constant phase are known as wave-fronts, and the lines normal to these are
called rays.

2.1 Underwater acoustics 9

Although ray tracing can be performed in an environment where the
sound speed varies in three dimensions, solving Equation 2.10 in three di-
mensional environments is computationally expensive and thus ray tracing
is generally performed for environments where the sound speed only varies
with depth (known as horizontally stratified environments,) or both depth
and range. For horizontally stratified environments, rays adhere to Snell’s
law,

sin θ

c
= a (2.11)

where a is a constant, c is the speed of sound, and θ is the angle of the ray
with respect to the z-axis. It is of interest to examine the application of
Snell’s law in two scenarios. The first scenario is that of sound propagating
from a medium with a sound speed of c1 into a medium having a sound speed
of c2. The second scenario is that of sound propagating in a medium where
the sound speed varies linearly as a function of depth (i.e. c(z) = pz).

When sound propagates from a medium having a sound speed of c1 into
another medium having a sound speed of c2, Snell’s law can be used to arrive
at the following relationship:

sin θ1

c1

=
sin θ2

c2

(2.12)

where θ1 and θ2 correspond to the angles of the rays in media 1 and 2 as
shown in Figure 2.3. The change of angle shown in Figure 2.3 occurs when
c1 < c2. As the wave-fronts travel through the boundary, the wavelength
changes according to λ2 = c2

c1
λ1.

Figure 2.3: The change in angle and wavelength for a ray propagating
between two media (Adapted from Etter [1996, Fig. 3.6]).

The second scenario of interest is where the speed of sound is linearly
related to the depth (i.e. c(z) = pz where p is a constant). Tolstoy and Clay
[1987] show that rays in such an environment follow the trajectory given by

x2 + z2 =
1

a2p2
(2.13)

10 Chapter 2 Background Theory

where a = sin θ
c
. This equation is observed to be a circular trajectory with a

radius of 1/ap centred at the depth where c = 0. An example of such a ray
is shown in Figure 2.4.

Figure 2.4: The trajectory of a ray in an environment where sound increases
linearly as a function of depth. (Adapted from Tolstoy and Clay [1987,
Fig.2.15]).

Ray tracing is commonly performed by splitting the sound speed profile
of an environment into multiple stacked layers, each layer having a sound
speed that is either constant or varies linearly with depth and calculating
the trajectory using Equations 2.12 or 2.13. From Figures 2.3 and 2.4 it
should be noted that the rays bend towards regions of lower sound speed.
Example ray traces are shown in Figure 2.5. These ray traces show the
trajectory of rays over a number of departure angles.

Figure 2.5a shows an example of the propagation that occurs for sound
emitted in a sound channel, being a local minimum of a sound speed profile.
It is evident that most of the energy is trapped within the regions nearest
the central axis of the channel, whilst few of the rays reach the deep depths
of the ocean, or the surface of the water.

Figure 2.5b shows an example of sound propagation that occurs in an en-
vironment known as a surface duct. The surface duct is formed when a local
minimum in the sound speed profile is near the surface. As sound propag-
ates through the environment, the rays are refracted towards the surface due
to the slower sound speed, and upon hitting the surface, are reflected and
then refracted back towards the surface again. The local maximum for this
example is at 150m. The rays that reach the maximum are refracted down-
wards, causing a region of space that sound originating from a specific source
location does not enter. Such a region is known as a shadow zone.

Finally, Figure 2.5c shows an example of sound propagation in a shal-
low water environment. Sound is reflected at both the surface and the sea
floor. Whilst the entire environment is observed to be acoustically excited,
the acoustic density of sound is considerably influenced by the sound speed
profile.

Whilst ray theory is useful for visualising how sound propagates in the
underwater environment, this modelling method is less suited to determining

2.1 Underwater acoustics 11

(a) A typical deep water sound speed profile. (b) A surface duct.

(c) A shallow water environment.

Figure 2.5: Examples of ray tracing for a number of profiles [Jensen et al.,
2000, Figs. 1.11-1.14]

underwater acoustic channel responses. In particular, ray tracing is limited
by the geometrical acoustic approximation, which requires that the variation
of the amplitude function be much smaller than the wave-number [Etter,
1996]. This approximation results in ray tracing being limited to solving
higher frequency problems. The regions where the rays become close together
(known as caustics) have also been found to be particularly problematic when
estimating the amplitude at these locations. Ray tracing is computationally
complex as a large number of rays are required to obtain a valid estimate of
the sound at certain locations.

2.1.3.2 Normal mode theory

Another means of modelling the underwater environment is by the use of
normal modes. The normal mode method of modelling underwater envir-
onments was developed by Bucker [1970], and has been described here by
relating the solution to the cylindrical Helmholtz equation (Equation 2.6) as
described by Jensen et al. [2000] and Etter [1996]. Normal modes are cal-
culated assuming cylindrical symmetry, where the solution to the Helmholtz
equation given by [Jensen et al., 2000, Fig. 4.10]

φ(r, z) = Φ(r)Ψ(z). (2.14)

12 Chapter 2 Background Theory

Substituting this equation into the cylindrical Helmholtz equation (Equa-
tion 2.6) results in

Ψ
d2Φ

dr2
+

1

r
Ψ
dΦ

dr
+
d2Ψ

dz2
Φ + k2ΦΨ = 0 (2.15)

which can be re-arranged using the separation of variables to form

1

Ψm

[
d2Ψm

dz2
+ k2Ψm

]
=
−1

Φm

[
d2Φm

dr2
+

1

r

dΦm

dr

]
= k2

rm (2.16)

where Φm(r) and Ψm(z) are the solution for the range and depth functions
for each horizontal propagation constant, k2

rm, m ∈ [1,∞]. Inserting Equa-
tion 2.16 into Equation 2.15 results in [Etter, 1996, Eqns. 4.11 and 4.12]

d2Ψm

dz2
+
(
k2(z)− k2

rm

)
Ψm = 0 (2.17)

and
d2Φm

dr2
+

1

r

dΦm

dr
+ k2

rmΦm = 0. (2.18)

Equation 2.17 is known as the depth equation (also called the normal mode
equation), and is used to calculate Ψm(z), whilst Equation 2.18 is known
as the range equation, used to calculate Φ(r). The range equation is a zero
order Bessel differential equation having the solution, H(1)

0 (krmr) the zero-
order Hankel function. The depth equation is a Sturm-Liouville eigenvalue
problem that can be solved for each krm. Jensen et al. [2000] described a
boundary value problem with conditions

Ψ(0) = 0, dΨ
dz

∣∣
z=0

= 0, (2.19)

representative of zero pressure at the surface (typical of an air-water inter-
face), and zero vertical derivative of pressure at the ocean floor (typical of a
hard bottom environment). Under these conditions, m represents the num-
ber of zeros in the function Ψ(z) over the depth z = [0, D], where D is the
depth of the ocean. Jensen et al. [2000] showed that under the boundary
conditions given in Equation 2.19, the pressure for a single harmonic source
at depth, zs, is given by [Jensen et al., 2000, Eqn. 5.13]

p(r, z) =
i

4ρ(zs)

∞∑
m=1

Ψm(zs)Ψm(z)H
(1)
0 (krmr) (2.20)

where ρ(z) is the density function. It can be observed that the energy con-
tribution for each mode is determined by the product of the magnitudes of
the mode shape, Ψm(z), at the source depth and receiver depth. Figures 2.6

2.1 Underwater acoustics 13

Figure 2.6: Sound speed profile and selected modes of the Pekeris sound-
speed profile. The dashed lines are lossy modes that decay with range.
[Jensen et al., 2000, Fig. 5.8]

Figure 2.7: Sound speed profile and selected modes of the Munk sound-speed
profile for a source frequency of 50Hz. [Jensen et al., 2000, Fig. 5.10]

and 2.7 show the mode shapes for two different sound speed profiles: a shal-
low water model, known as a Pekeris profile, and deep water model known
as a Munk profile.

Kuperman et al. [1998] noted that the mode functions form a complete
set such that ∑

all modes

Ψm(zs)Ψm(z)

ρ(zs)
= δ(z − zs) (2.21)

and also satisfy the orthonormal condition,∫ ∞
0

Ψm(z)Ψm(z)

ρ(z)
dz = δnm (2.22)

where δnm is the Kronecker delta function.
There also exist lossy modes which are modes that decay with range. The

Pekeris model shown in Figure 2.6 includes lossy modes that are denoted by
the dashed lines. Lossy modes will not be covered in this thesis, and the
interested reader is referred to Jensen et al. [2000].

 NOTE:
 This figure is included on page 13 of the print copy of
 the thesis held in the University of Adelaide Library.

 NOTE:
 This figure is included on page 13 of the print copy of
 the thesis held in the University of Adelaide Library.

14 Chapter 2 Background Theory

2.1.3.3 Fast-field modelling

Fast-field modelling is a simple fast evaluation of normal modes using the
Fast Fourier Transform (FFT). Fast-field modelling involves solving the wave
equation by approximating the zero-order Hankel function as

H
(1)
0 (krmr) '

√
2

πkrmr
eikrmr (2.23)

in Equation 2.20. This approximation is valid when kmrr � 1, and Equa-
tion 2.20 then becomes

p(r, z) =
i

4ρ(zs)

∞∑
m=1

Ψm(zs)Ψm(z)

√
2

πkrmr
eikrmr (2.24)

and the solution to p(r, z) may then be evaluated by means that utilise the
fast Fourier transforms [Etter, 1996].

2.2 Digital communication theory

2.2.1 Introduction

The theory of digital communication is a vast topic, with the first digital com-
munication system being the well known Morse code, developed by Samuel
Morse in 1837. Morse code performed communication by the transmission of
pulses. Since that time, communication systems have undergone extensive
development.

Figure 2.8 shows the general structure of a digital communication sys-
tem. A digital communication system involves a transmitter and a receiver.
The transmitter converts the incoming information into a form suitable to
transmit through a physical channel, whilst the receiver converts the sig-
nal received from the physical channel and tries to determine the original
information that was fed into the transmitter.

The information source consists of a sequence of values. These values
are passed into a coder that compresses the data to reduce the amount of
digital data transmitted through the channel and / or adds redundant data to
improve error resilience. The digital data stream, consisting of a sequence of
bits, is then passed into a symbol mapper that maps blocks of bits to a specific
symbol in an alphabet, where each symbol denotes a particular waveform
that is transmitted. A pulse modulator then converts these symbols into
a waveform, having a spectrum that is generally centred around 0Hz. This
waveform is known as a base-band signal. The base-band signal is then passed
into a bandpass modulator that shifts the centre frequency of the signal to
a frequency more suited for transmission through the channel known as the

2.2 Digital communication theory 15

Figure 2.8: General overview of a communication system. (Adapted from Sk-
lar [2001, Fig. 1.2])

carrier frequency. The signal at the output of the bandpass modulator is
a real-valued signal that is transmitted and received through the physical
environment through the means of transducers.

The receiver consists of blocks similar to the transmitter that perform
the complementary operation of the transmitter. The receiver converts the
signal to a base-band signal, resolves the symbols, maps the symbols into
a bit stream, and performs a decoding of the bit sequence to resolve the
transmitted data stream.

The following section will examine each of the operations shown in the
block diagram in Figure 2.8 in more detail.

2.2.2 Coding

The coder is used in a communication system to modify the incoming data
stream prior to transmission. The data stream is generally modified to either
compress the data (known as compression) by taking advantage of any re-
dundancy in the information stream, or improve error resilience through the
addition of redundancy in the data-stream. By introducing error resilience,
and enabling the receiver to notify the transmitter of an erroneous data
transmission, a communication system can correct for errors. Some systems
incorporate coding that increases error resilience to the point that errors can
be corrected at the receiver. Such a technique is known as error recovery.
By allowing a communication system to operate in a manner which permits
errors to occur, the data rate can be increased.

An example of compression is variable-length code encoding. Variable-
length encoding involves assigning a different number of bits to each state to
be transmitted, based on the probability of each state occurring in the data-
stream. Variable-length encoding can be most easily demonstrated by an

 NOTE:
 This figure is included on page 15 of the print copy of
 the thesis held in the University of Adelaide Library.

16 Chapter 2 Background Theory

example given by Proakis [2001]. If the states are given by a1, a2, a3, a4 and
the probability of each state is P (a1) = 1

2
, P (a2) = 1

4
, P (a3) = 1

8
, P (a4) = 1

8
,

then assigning the bit sequences, a1 = 0, a2 = 10, a3 = 110, a4 = 111 to
each of the states results in an average of (1 ∗ 1

2
+ 2 ∗ 1

4
+ 3 ∗ 1

8
+ 3 ∗ 1

8
) =

1.75 bits used for the transmission of each state, which is less than 2, being
the number of bits that a binary encoded transmission would use. This
reduction of the average number of bits required to transmit data results
in a 14.3% increase in the amount of data that can be transmitted in a
given period. A method that is often employed to arrive at a variable-length
encoding scheme is the Huffman algorithm. Further information concerning
the Huffman algorithm and other forms of compression can be found in most
communication textbooks, such as Proakis [2001] and Sklar [2001].

An example of coding that allows the detector to determine whether a
received data stream contains an error is known as the parity check. The
parity check involves grouping the incoming bit stream into blocks of equally
sized bits, and adding an extra bit to each block, known as a parity bit. The
value of the parity bit is chosen so that there is an even (or odd for odd
parity encoding) number of 1’s within each block. The receiver examines
the blocks and can determine if an error has occurred based on the number
of 1’s within each block. It should be noted that if an even number of bits
are flipped within a block, a false negative occurs (i.e. the decoder considers
there to be no error, when in fact there is).

A type of coding that allows for error recovery is linear-block coding.
Linear-block codes map blocks of bits in the input stream (a message vector)
to a corresponding bit sequence from an alphabet of code vectors, where
the number of bits in the code vector is greater than the number of bits in
each block. If the code vectors are well chosen, the receiver, being able to
determine that an error has occurred when a received code vector is not in
the alphabet, is able to resolve the received vector to the closest matching
vector. If the probability of an error is great, the number of bits in the
code vectors would need to be increased to ensure that the vector is resolved
appropriately. An example of a Linear Block Code is given is Table 2.1. A
single bit error can easily be detected, and resolved to the correct symbol.

2.2 Digital communication theory 17

Table 2.1: (6,3) Linear Block Code example [Sklar, 2001, Table 6.1]

Coding has been shown as a means of reducing the data rate through
the use of compression, and increasing the error resilience through redund-
ancy. Both techniques can allow for either a smaller bandwidth or a reduced
signal-to-noise ratio to transmit the same information. Many other forms
of coding techniques exist and the interested reader is referred to standard
communication textbooks, such as Proakis [2001] and Sklar [2001], for a more
thorough discussion of these topics.

Whilst coding is useful to improve the performance of transmitting data
through a channel, the theory of coding has been considered as an area of
research outside the scope to which this thesis is devoted. This thesis is aimed
at improving the performance of the transmission of the digital information,
when it is emitted from the coder and enters into the decoder.

2.2.3 Modulation

2.2.3.1 Base-band and pass-band signals

In order to transmit digital information through a physical channel (such
as radio or acoustic wave guides), the digital data is converted into signals
that suit the channel so that the signals pass through the environment with
minimal signal loss and degradation. As an example, the most appropriate
signal for transmission for the environment shown in Figure 2.2 would be a
signal that is centred around 200Hz, particularly for distances greater than
30 km.

The conversion of a digital signal into an analog waveform suitable for
transmission in a communication channel is known as modulation. In many
communication channels, the frequency at which information is transmitted
is generally high, particularly in the case of radio wave communication where
the frequencies are of the order of MegaHertz and GigaHertz. To generate
such high frequency signals, the signal generation is performed in two stages.
The first stage of the modulator generates a complex-valued low frequency

 NOTE:
 This table is included on page 17 of the print copy of
 the thesis held in the University of Adelaide Library.

18 Chapter 2 Background Theory

Baseband

Passband

Figure 2.9: Fourier representation demonstrating base-band to pass-band
conversion.

signal according to the digital information to be transmitted, known as a
base-band signal. The second stage shifts the central frequency of the wave-
form to the carrier frequency fc to create a signal for transmission through
the environment. This signal is known as a pass-band signal. By splitting
the modulation into two separate stages, the low frequency signal generation
can use low-cost electrical devices that operate at low sampling rates. The
separate stages also enable the transmission frequency to be easily modified
independently of the base-band signal generator.

The conversion of a base-band signal, sl(t), to the pass-band signal, s(t),
is given by [Proakis, 2001, Eq. 4.1–14]

s(t) = Re[sl(t)e
j2πfct]. (2.25)

The frequency shift performed in this equation can be confirmed through the
rule regarding convolution and Fourier transforms whereby multiplication
of two functions in time is equivalent to convolution within the frequency
domain. Since ej2πfct is a delta at −fc in the frequency domain, the multi-
plication in Equation 2.25 is a simple shift of sl(t) in frequency. Given the
bandwidth of sl(t) is much smaller than fc, the real portion is used as a trans-
mission signal without any loss of information. A graphical representation
of this concept is shown in Figure 2.9.

The conversion of a pass-band signal, r(t), to the base-band signal, rl(t),
is given by

rl(t) = LPF[r(t)e−j2πfct] (2.26)

This conversion involves multiplying the received signal by e−j2πfct resulting
in a frequency shift of fc, and a low-pass filter (LPF) is used to remove the
portion of the spectra centred at 2fc. A graphical representation of this
concept is shown in Figure 2.10.

The conversion of signals to and from the pass-band signal is generally
achieved through a process known as hetero-dyning. A hetero-dyne is the

2.2 Digital communication theory 19

Baseband

Passband

Figure 2.10: Fourier representation demonstrating the pass-band to base-
band conversion.

(a) Transmitting hetero-dyne

LPF

LPF

(b) Receiving hetero-dyne

Figure 2.11: Structures for the hetero-dyne operation to (a) convert from
base-band to pass-band, and (b) convert from pass-band to base-band

multiplication of a signal by a sinusoidal signal generator. Expressing sl(t)
as x(t) + y(t)i where x(t) and y(t) are the real and imaginary components of
sl(t) respectively, Equation 2.25 can be re-arranged to

s(t) = x(t) cos 2πfct− y(t) sin 2πfct (2.27)

which can be used to develop the structure shown in Figure 2.11a. Similarly,
the structure to obtain a base-band signal from a pass-band signal is shown
in Figure 2.11b.

By expressing sl(t) in the exponential form a(t)eθ(t) the transmission sig-
nal, s(t), may also be expressed as

s(t) = a(t) cos [2πfct+ θ(t)] . (2.28)

Assuming that the bandwidth of the signal is much smaller than the carrier
frequency, fc, then a(t) can be seen as the amplitude function, and θ(t) the
phase function.

20 Chapter 2 Background Theory

2.2.3.2 The base-band channel response

Most communication channels, including the underwater acoustic environ-
ment, can be considered as LTI (Linear Time Invariant) for short time inter-
vals. Such channels can be modelled as an FIR (Finite Impulse Response)
filter with the addition of noise to the system, and the relationship between
the transmitted signal, s(t), and the received signal, r(t), given by

r(t) = s(t) ∗ h(t) (2.29)

where h(t) is the channel response. In the frequency domain, this equates to

R(f) = S(f)H(f) (2.30)

A similar relation can be obtained between the low-pass transmitted and
received signal. Proakis [2001] showed that an equivalent low-pass response
is given by

Rl(f) = Hl(f)Sl(f) (2.31)

where

Hl(f) =

{
H(f + fc) f ≥ −fc
0 f < −fc

(2.32)

which is known as the base-band frequency response of the system, having
a corresponding time domain response, hl(t), which is complex valued. It
should be noted however that the signals being transmitted are generally
band-limited to B � fc and thus the channel response is only required to be
known for the spectrum over which it is transmitted,

Hl(f) =

{
H(f + fc) |f | ≤ B

0 |f | > B
(2.33)

2.2.4 Communication signals

The two most common waveforms used to transmit information are frequency
shift keying (FSK) and phase / amplitude modulation.

FSK modulation involves transmitting a sinusoidal waveform having a
different frequency according to the data to be transmitted. The base-band
waveforms for an equally spaced (in terms of frequency) set of waveforms
commonly used to implement FSK are given by

si(t) = ejωit 0 ≤ t ≤ T
i = 1, . . . ,M

(2.34)

where ωi = 1
2
∆ωIn, and In = ±1,±3, . . . ,±(M − 1).

2.2 Digital communication theory 21

Re

Im

Re

Im

Re

Im

Im

Re

(a) PAM (b) PSK (d) QAM(c) PAM−PSK

Figure 2.12: Signal space diagrams for a number of modulation techniques

Phase / amplitude modulation encompass a number of modulation wave-
forms that include Pulse Amplitude Modulation (PAM), Phase Shift Key-
ing (PSK), the combination of both of these (PAM-PSK), and Quadrature
Amplitude Modulation (QAM). For each of these modulation techniques, the
base-band waveforms are defined as

si(t) = Aie
jωig(t)

0 ≤ t ≤ T
i = 1, . . . ,M

(2.35)

where g(t) is a spectral shaping filter that will be discussed in Section 6.
For PAM, the phase is fixed and the amplitude for each waveform is Ai =
1
2
∆AIn where In = ±1,±3, . . . ,±(M − 1), and M is an even integer. For

PSK, the amplitude is fixed and the phase is given by ωi = 1
2
∆ωIn, where

In = ±1,±3, . . . ,±(M − 1), and M is an even integer. PAM-PSK encom-
passes modulation techniques where the phase and amplitude are varied in
fixed steps. A number of other signal-space constellations are also used that
are called QAM. Figure 2.12 shows some examples of each of these modu-
lation techniques, and Figure 2.13 shows example base-band and pass-band
waveforms for PAM, PSK, and PAM-PSK when the spectral shaping filter,
g(t), is given by

g(t) =


0 t < −T

2

1 −T
2
≤ t ≤ T

2

0 T
2
≤ t

(2.36)

To convert a sequence of symbols, I(n), transmitted at a symbol rate of
1/T , to a base-band signal, the following formula can be used

sl(t) = s1(t) ∗ g(t) (2.37)

where
s1(t) =

∑
n

I(n) ∗ δ(t− n ∗ T − T/2). (2.38)

The waveforms sl(t) and g(t) used for the PAM-PSK example shown in Fig-
ure 2.13 are presented in Figure 2.14.

0 0.005 0.01 0.015 0.02

−1

−0.5

0

0.5

1

PAM

0 0.005 0.01 0.015 0.02

−1

0

1

Time (seconds)

0 0.005 0.01 0.015 0.02

−1

−0.5

0

0.5

1

PSK

0 0.005 0.01 0.015 0.02

−1

0

1

Time (seconds)

0 0.005 0.01 0.015 0.02

−1

−0.5

0

0.5

1

PAM−PSK

0 0.005 0.01 0.015 0.02

−1

0

1

Time (seconds)

Figure 2.13: Examples of base-band and pass-band signals for PAM, PSK,
and PAM-PSK. The top plot shows the base-band with the solid and dashed
lines representing the real and imaginary components respectively, whilst the
lower plots show the corresponding pass-band signals, for fc = 500 Hz.

0 0.005 0.01 0.015 0.02

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

Real

Imaginary

(a)

−0.0025 0 0.0025

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

(b)

Figure 2.14: Two signals, s1(t) and g(t), that may be used to generate the
base-band signal.

22

2.2 Digital communication theory 23

In Figure 2.13 it can be seen that many discontinuities exist. These
discontinuities result in excess bandwidth use. To reduce the bandwidth used,
one can choose an alternate function for g(t). Assuming that the decoder
samples the signal at t = nT+T/2, then to ensure that the waveform for each
symbol does not interfere with the other symbols at their sampling instances,
the function must be constrained so that

g(nT) =

{
1 n = 0

0 n 6= 0
(2.39)

The functions that satisfy this condition are known as Nyquist filters. The
Nyquist filter that provides the smallest bandwidth (W = 1

T
) is given by

g(t) =
sin (πt/T)

πt/T
= sinc(

πt

T
) (2.40)

and is shown in Figure 2.15. The impulse response for this filter is difficult to
implement as it takes some time to decay in both the forward and negative
time. Such a long decay requires that the symbols to be transmitted are
known far in advance of transmission. The long decay time also increases the
inter-symbol interference that results if the signal is sampled at an incorrect
time. To avoid such a long decay, a raised-co-sine filter was developed, that
is given by

g(t) =
sin (πt/T)

πt/T

cos (πβt/T)

1− 4β2t2/T 2
(2.41)

where β is known as the roll-off factor and is set within the range 0 ≤ β ≤ 1.
This filter is a Nyquist filter, and has a frequency response

G(f) =


T 0 ≤ |f | ≤ 1−β

2T

T
2

{
1 + cos

[
πT
β

(
|f | − 1−β

2T

)]}
1−β
2T
≤ |f | ≤ 1+β

2T

0 1+β
2T

< |f |
. (2.42)

The roll-off factor increases the rate of decay at the expense of using more
bandwidth, and the corresponding bandwidth is (1 + β) 1

T
. When β = 0

the raised co-sine filter is the optimal Nyquist filter given by Equation 2.40.
Figure 2.16 shows the impulse and frequency response for various values of
β.

Figure 2.17 shows the base-band and corresponding pass-band signals
when a raised co-sine spectral shaping filter is employed with β = 0.2, and
the filter is truncated at ±6T . It may be observed that discontinuities no
longer exist for both the base-band and pass-band signals. At the sampling
instances (given by the crosses and circles) the signal measured is the same
as that given in Figure 2.13.

24 Chapter 2 Background Theory

−6T −5T −4T −3T −2T −1T 0T 1T 2T 3T 4T 5T 6T
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

A
m

p
lit

u
d
e

Figure 2.15: Impulse response of the ideal spectral shaping filter

−6T −5T −4T −3T −2T −T 0 T 2T 3T 4T 5T 6T
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

A
m

p
lit

u
d
e

←β=0
β=0.25→

β=0.5→

β=0.75→

β=1→

−1/T −0.5/T 0 0.5/T 1/T

0

0.2T

0.4T

0.6T

0.8T

T

Frequency

A
m

p
lit

u
d
e

β=0→

β=0.25→

β=0.5→

β=0.75→

β=1→

Figure 2.16: Impulse and frequency response of the raised co-sine spectral
shaping filter

2.2.5 Receiver structures

In the previous sections it has been assumed that the receiver signal was the
same as the transmitted signal, such that there was no delay, or degradation
of the signal. Such channels rarely exist in practise, and extra operations are
required to compensate for the channel response in order to obtain the base-
band signal. The following section will examine some of these operations.

2.2.5.1 Carrier phase recovery

Most channels contain a considerable delay. A delay can be modelled as

h(t) = δ(t− τ) ∗ h′(t) (2.43)

where ∗ is the convolution operator, τ the delay and h′(t) the impulse re-
sponse of the channel without the delay. In the frequency domain, this

2.2 Digital communication theory 25

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−1.5

−1

−0.5

0

0.5

1

1.5
Base−band Signal

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−1.5

−1

−0.5

0

0.5

1

1.5
Pass−band Signal

Time (seconds)

Figure 2.17: Example of base-band and pass-band signals as per the PAM-
PSK example shown in Figure 2.13 using a raised co-sine spectral shaping
filter with β = 0.2 truncated at ±6T . The crosses and circles indicate the
sampling instances.

relationship can be represented as

H(f) = e−j2πfτH ′(f). (2.44)

Substituting this into Equation 2.33 the low-pass channel response is

Hl(f) =

{
e−j2π(f+fc)τH ′(f + fc) |f | ≤ B

0 |f | > B
. (2.45)

Now

e−j2π(f+fc)τ = e−j2πfτe−j2πfcτ (2.46)

and thus

hl(t) = e−j2πfcτδ(t− τ) ∗ h′l(t) (2.47)
= e−j2πfcτh′l(t− τ) (2.48)

which can be observed as a delayed version of the base-band impulse response
with the addition of a phase shift. In most communication systems, the phase
and delay are compensated independently so that the channel is modelled as

hl(t) = e−j2πfcφh′(t− τ) (2.49)

where φ represents the phase, and τ represents the delay estimate.

26 Chapter 2 Background Theory

Figure 2.18: Schematic of a QAM receiver [Proakis, 2001, Fig. 6.1-4]

Assuming that h′(t − τ) ' δ(t), there are a number of methods used to
recover the carrier phase. One method involves multiplexing a pilot signal
within the transmission stream. The receiver can then use a phase-locked
loop (PLL) on this pilot signal to determine and track the phase of the carrier.
Another technique is to use a carrier phase estimator that uses the received
signal and determines the optimal phase that closely matches the expected
response.

Figure 2.18 shows an example receiver structure that employs carrier
phase recovery. The signal initially passes through an Automatic Gain Con-
trol (AGC) which is used to compensate for variations in the amplitude of
the received signal. The phase recovery block is then used to phase shift the
hetero-dyne so that the correct base-band signal is attained.

2.2.5.2 The matched filter and the noise whitening filter

In order to detect the symbols that are transmitted, a filter is used to max-
imise the signal at each sampling instant. For a signal transmitted with
a spectral shaping filter, g(t), in an environment that consists of additive
Gaussian noise, the filter that maximises the signal is known as the matched
filter and is given by [Haykin, 2001, Eq. 4.16]

f(t) = g∗(−t). (2.50)

However when implementing a filter, it cannot be defined for negative time.
To create a filter that can be implemented, a delay can be included and only
a portion of the duration is used to form the matched filter. Such a filter is
given by

f(t) =

{
g∗(τ − t) 0 ≤ t ≤ τ

0 elsewhere
(2.51)

 NOTE:
 This figure is included on page 26 of the print copy of
 the thesis held in the University of Adelaide Library.

2.2 Digital communication theory 27

where τ is known as the duration of this filter and is generally chosen such
that the impulse response is negligible after the time τ , and the sampling
instant at which the maximum signal to noise ratio is achieved is t = τ.

Whilst the matched filter maximises the SNR at the sampling instance,
the noise from the channel is also filtered. If the noise at the input to the
matched filter is Gaussian, the noise at the output of the matched filter will
have a spectrum similar to that of the matched filter, F (f). This filtering can
possibly result in errors when detecting the symbol. To retain the maximal
SNR at the sampling instant and flatten the spectrum, a filter known as
a noise-whitening filter can be used. The noise-whitening filter is derived
by observing that the symbol and the matched filter combined is the auto-
correlation function,

X(z) = F (z)F ∗(z−1) (2.52)

A property of the auto-correlation function is that if ρ is a root of X(z) then
1/ρ∗ is also a root, thus if there is a root of X(z) that is within the unit
circle, a corresponding root exists outside the unit circle. If F (z) is chosen
such that all the roots are outside the unit circle, then the filter given by
1/F ∗(z−1) is stable and known as the noise-whitening filter, and when used
in conjunction with the matched filter, results in the noise-whitened matched
filter.

2.2.5.3 Channel compensation

In the previous sections the channel has been modelled as a delay with ad-
ditive Gaussian noise. Such a model is inadequate for correctly modelling
the underwater environment, and the model typically used is a LTI system
that is stationary for short periods of time. When transmitting a sequence of
waveforms for each symbol in a LTI channel, the channel response distorts the
signal such that each waveform overlaps the subsequent transmitted wave-
forms. Such over-lapping is known as ISI (Inter-Symbol Interference). To
compensate for the more complex LTI model, more complex systems may be
required to both track the phase of the signal, and also to undo the ISI.

If the channel response were time-invariant, then the response of the chan-
nel could be measured, and a fixed filter used to compensate for the channel
response. However, when the channel is time-variant, an adaptive form of
channel compensation is required to continually track and compensate the
variations of the channel response.

2.2.5.4 Channel compensation for time-invariant channels

The linear equalisers One means by which ISI can be compensated is
through the use of linear equalisers. A number of linear equalisers exist.
In this thesis, the design of an equaliser by the mean-square-error (MSE)

28 Chapter 2 Background Theory

criterion shall be discussed. The MSE equaliser is designed on the basis of
minimising the mean square error of

ε = Ik − Îk (2.53)

where Ik is the symbol transmitted, and Îk is the estimate at the output of
the equaliser. The equaliser filter for the combination of the channel and a
matched filter, designed from the MSE criterion, is given by [Proakis, 2001,
Eq. 10.2–33]

C(z) =
1

X(z) +N0

(2.54)

where N0 is the spectral density of the noise from the channel, and X(z)
is the auto-correlation function of the channel response. Depending on the
channel, such an inverse can require an infinite number of taps. In practise
only limited number of taps are available, and thus a finite-length equaliser
is used. A method of obtaining suitable coefficients for a finite number of
taps is given by [Proakis, 2001, Sec. 10.2.2].

2.2.5.5 Adaptive equalisers – Channel compensation for
time-variant channels

Time-variant channels can generally be modelled as a stationary channel for
short periods of time, where “short periods of time” refers to a duration of
at least tens of symbol intervals. To compensate for such a time-invariant
channel, a filter known as an adaptive equaliser is generally used.

The general structure of an adaptive equaliser is shown in Figure 2.19.
The input signal to the adaptive filter structure is a sampled sequence of
values from the low-pass signal sampled at the symbol rate or a fraction of
the symbol rate. The signal is then filtered by a feed-forward filter. If the
sample rate of the input signal was a fractional sampling rate of the symbols,
the signal is re-sampled at the symbol rate and combined with a signal from
the feed-back filter that operates on the previously detected symbols. The
mixed signal is then used on a decision device that determines the most
likely symbols that were transmitted. The error between the detected symbol
and the measured symbol is used to adjust the filter taps within both the
feed-forward and feed-back path. When the channel is unknown, a training
sequence is often used instead of the detected symbols to provide an error
signal to initially adjust the filters. It should be noted that some adaptive
filter configurations do not include the feed-back filter.

Zero forcing algorithm A filter designed for use in a static channel having
negligible noise is the zero-forcing equaliser [Proakis, 2001]. The zero-forcing

2.2 Digital communication theory 29

Feedforward Filter

Training

Sequence

Decision Device
Input Signal

Sampling

Symbol−Rate

Detected Symbols

Feedback Filter

Figure 2.19: Adaptive filtering structure

filter has a corresponding adaptive implementation that can be used in sys-
tems involving dynamically varying channels. The input sampled signal, vk,
is passed through an FIR filter to obtained a filtered signal

Îk =
K∑

j=−K

c
(k)
j vk−j (2.55)

where cj, j ∈ [−K,K] are the co-efficients of the feed-forward filter. The
filtered signal is then used with a detector and results in a detected sequence,
Ĩk. The zero-forcing algorithm updates the co-efficients such that the cross
correlation between the error sequence, εk = Ĩk − Îk, and the detected in-
formation sequence,

{
Ĩk

}
, over the range of tap filters is zero. The taps of

the filter are updated according to the formula [Proakis, 2001, Eq. 11.1–5]

c
(k+1)
j = c

(k)
j +4εkĨ∗k−j. (2.56)

Since the future symbols are unknown, it follows that ˜Ik−j is only known
provided that j ≥ 0. Thus the adaptive filter co-efficients, cj, are only
defined for j ≥ 0 and the filter can only operate over the current and past
sampled signal values.

The decision-feedback least-mean square (LMS) algorithm A filter
designed for use in a static channel having noise is the mean square error
(MSE) equaliser [Proakis, 2001]. The static MSE filter has a corresponding
adaptive filter implementation known as the least mean square (LMS) adapt-
ive equaliser. The structure of the decision-feedback LMS algorithm adaptive
filter is shown in Figure 2.20. The filtered signal, Îk, used to estimate the
transmitted symbols is the result of filtering from both the sampled signal,
vk, and the past detected symbols, Ĩk−j. The value for the sampled signal,
Îk, at the sampling instance, k, is given by [Proakis, 2001, Eq. 10.3–1]

Îk =
0∑

j=−K1

c
(k)
j vk−j +

K2∑
j=1

c
(k)
j Ĩk−j (2.57)

30 Chapter 2 Background Theory

Figure 2.20: Schematic for the decision-feedback MSE equaliser [Proakis,
2001, Fig 11.2–1]

where cj, j ∈ [−K1, 0] are the co-efficients of the feed-forward filter, and
cj, j ∈ [1, K2] the co-efficients of the feedback filter. The LMS algorithm
uses the steepest descent algorithm to minimise the MSE, resulting in a co-
efficient update equation [Proakis, 2001, Eq. 11.1-11]

C̃k+1 = C̃k +4εkV∗k (2.58)

where

C̃k = [c
(k)
−K1

c
(k)
−K1+1 · · · c

(k)
0 c

(k)
1 · · · c

(k)
K2

],

Vk = [vk+K1 vk+K1−1 · · · vk Ik−1 · · · Ik−K2],

4 is the parameter that controls the speed of adaption, and εk = Ik − Îk is
the error signal between the filtered and detected signal.

Whilst the MSE adaptive filter is a commonly implemented adaptive
equaliser, other improved algorithms have been proposed that help speed up
the adaption of the equaliser, however they will not be included here.

The recursive least-square (RLS) algorithm The steepest-descent LMS
algorithm has slow convergence. An algorithm that has faster convergence
is the recursive least-square (RLS) algorithm. The RLS algorithm achieves
faster convergence by using an algorithm that minimises a time-average of the
error rather than the instantaneous error. The algorithm used to compute
the RLS is as follows (taken from Proakis [2001]):

1. Compute the output of the feed-forward and feedback filter:

Î(k) = V′(k)C(k − 1) (2.59)

 NOTE:
 This figure is included on page 30 of the print copy of
 the thesis held in the University of Adelaide Library.

2.2 Digital communication theory 31

where Ck = [c
(k)
−K1

c
(k)
−K1+1 · · · c

(k)
0 c

(k)
1 · · · c

(k)
K2

] are taps of the
feed-forward and feedback filter, and

Vk = [vk+K1 vk+K1−1 · · · vk Ik−1 · · · Ik−K2]

are input values and detected symbol values.

2. Perform the detection:

Ĩ(k) =

{
I(k) training

E{Î(k)} non− training
(2.60)

where E {} denotes a function to find the closest symbol using the
closest Euclidean distance method.

3. Compute the error:

e(k) = Ĩ(k)− Î(k) (2.61)

4. Compute the Kalman gain vector, and update the matrix, P(k):

K(k) =
P(k − 1)V∗(k)

w + V′(k)P(k − 1)V∗(k)
(2.62)

P(k) =
1

w
[P(k − 1)−K(k)Y′(k)P(k − 1)] (2.63)

where K(k) is a gain vector used when updating the filter taps, w is a
weighting factor and P(k) is a matrix that is introduced in the deriva-
tion of the algorithm, and reduces the number of inversions required by
being updateable from the previous state of the matrix. The weighting
factor, w, is an exponential weighting of the past error values and is
required to be in the range 0 < w < 1.

5. Update the filter co-efficients:

C(k) = C(k − 1) + K(k)e(k) (2.64)

The algorithm can be initialised with the matrix, P(0) = I.

Concluding Statement
The background theory presented in this chapter provides a platform for
the concepts presented in the literature review (Chapter 3), and for further
development of the theory in Chapters 4 to 7. The content presented in this
chapter is indirectly related to the work performed in this thesis in that it
provides relevant background theory required to better understand literature
related to and the works conducted for this thesis.

3 Literature Review

This chapter provides a review of the literature pertinent to the work under-
taken in the subsequent chapters of this thesis on the design and development
of underwater acoustic communication systems using Tikhonov regularised
inverse filtering. The literature on the development of underwater commu-
nication systems has been examined in the literature from two angles, that
using general digital communication theory, and that which has used chan-
nel compensation techniques such as time-reversal. In Section 3.1, the lit-
erature concerning the development of underwater acoustic communications
using general digital communication theory is described. The literature con-
cerning the development of channel compensation techniques is presented
in Section 3.2, and Section 3.3 describes the literature concerned with the
application of channel compensation to acoustic communication systems.

3.1 Digital underwater acoustic
communication

Over the years, a number of papers [Baggeroer, 1984, Catipovic, 1990, Sto-
janovic, 1996, Kilfoyle and Baggeroer, 2000, Chitre et al., 2008] have sum-
marised the development of underwater acoustic communication, a branch of
telemetry dealing with the transmission of data through water. Each review
has provided an overview of the state of development at that point in time,
often accompanied by a theoretical description of some particular problem.

The overview by Kilfoyle and Baggeroer [2000] in particular provides a
good historical perspective of the development in this field. Kilfoyle and Bag-
geroer [2000] point out that prior to technological developments in the 1970s
there were few published reports of underwater telemetry, and that those
reports that were provided essentially described an underwater loudspeaker
because of the inability to mitigate multi-channel sound dispersion. It was
not until the late 1970s that developments in digital signal processing resul-
ted in telemetry systems that could perform error correction, and compensate
for channel reverberation in underwater communication systems.

Baggeroer [1984] discussed developments in underwater acoustic commu-

33

34 Chapter 3 Literature Review

nication up until that time. The implementation of communication systems
in underwater environments was found to have many problems, such as path
losses, ambient noise, reverberation and Doppler effects.

Of these problems, reverberation was found to be the most challenging
to overcome. Frequency shift keying (FSK) and single level amplitude mod-
ulation were the primary means used to overcome reverberation in the early
communication systems. FSK was reliable but suffered from high power re-
quirements and was also inefficient at utilising the available bandwidth. In
particular, to avoid the influence of multi-path, guard times (time of silence
between transmissions) had to be used. Amplitude modulation was found to
be suitable in a few environments when the channel was ’clean’ and rever-
beration was low.

Advances in microprocessors to allow the use of fast Fourier transforms
(FFT) to perform processing were seen as a means of providing improved
performance in the future. In some instances, transmission via a spread spec-
trum was used to overcome fading. To avoid multi-path dispersal of sound, a
suggestion was made that very narrow beams be used to transmit or receive
along a single path. However such beam-forming requires a large array, high
transmitter power, and exhibits pointing error when the transmitter array
and receiver array beams do not match.

The highest data rates reported by Baggeroer [1984] were from systems
using FSK and/or parametric arrays to transmit along very narrow beams.
Mention was made of other developments in the classified literature, but no
details were given.

Following Baggeroer [1984], Catipovic [1990] discussed the developments
of acoustic communication systems up until 1990. Transmission loss model-
ling techniques had emerged that helped calculate the expected sound fields.
The models of the sound field showed that for most underwater environments
there was a large variation in the sound intensity, and it was suggested that
telemetry designers needed to carefully consider the placement of the trans-
mitters and receivers. They also needed to remain alert to the fact that
systems might need to be designed to account for expected failure as the
underwater environment changed.

Catipovic [1990] discussed the performance of data transmissions for long-
range (typically 20-20,000 km), medium (1-10 km) and short range channels
(less than 200m). Several short range channels had been implemented and
it had been concluded that complex communication techniques were not re-
quired. For long range deep water channels, however, large pressure signals
were required to obtain coherent communication between 200Hz and 10 kHz.
In some cases, coherent communication was not possible due to the degraded
quality of the received signal, and incoherent techniques were used to provide
a communication system since incoherent techniques can operate in more dif-
ficult environments.

3.1 Digital underwater acoustic communication 35

Medium range channels were generally shallow water channels. The op-
timal frequency of operation for shallow water environments was found to be
between 10 kHz and 100 kHz. Shallow water environments were found to be
particularly difficult environments in which to operate because the principal
arrival signal is obscured amongst the signals coming from the many other
transmission paths.

Catipovic [1990] noted that synchronisation, equalisation, multi-path pro-
cessing, modulation, signal design, and coding were active areas of research
for underwater acoustic systems at the time. Two particular processes that
underwent considerable development in subsequent years were synchronisa-
tion and multi-path processing. By performing synchronisation in conjunc-
tion with multi-path processing, Stojanovic et al. [1993] were able to achieve
phase-coherent communication in more complex environments, particularly
shallow water environments. A number of papers that followed [Stojanovic
et al., 1994, 1993, 1995] showed how phase coherent communication could be
implemented through the design of a receiver structure which jointly updated
both the phase-locked-loop (PLL) and the equaliser.

Stojanovic [1996] considered the developments of acoustic communication
up until 1996. The work presented by Stojanovic et al. [1993] had enabled
coherent communication and thus higher data rates, and was considered a
major breakthrough. It allowed for new fields of research to emerge such as
distributed networks and designs for autonomous oceanographic telemetry
networks. An interesting observation was made concerning the influence of
multi-path dispersal of sound on the adaptive equaliser: as the data rate in-
creased, the inter-symbol interference (ISI) increased, requiring greater com-
putational complexity at the receiver; however as the symbol rate is increased,
the rate becomes much greater than the rate at which the channel changes,
which can allow the adaptive equalisers to perform better.

Stojanovic [1996] noted that to perform phase coherent communication,
a system was required to use joint synchronisation and equalisation. Im-
plementing joint synchronisation and equalisation is computationally intens-
ive and methods to reduce this complexity were being investigated. Other
areas of research reported as under investigation included real-time imple-
mentations, techniques for interference suppression, multi-user systems, self-
optimising systems and systems suitable for mobile autonomous underwater
devices. Kilfoyle and Baggeroer [2000] and Chitre et al. [2008] have dis-
cussed some of these developments, in particular sparse equalisation, blind
equalisation, and alternate designs for estimating the phase.

36 Chapter 3 Literature Review

3.2 Channel compensation
In the past few decades, considerable research has been reported on two tech-
niques known as time-reversal and inverse filtering as methods for filtering
signals in order to compensate for channel distortions. In this section, a re-
view is made of the development of both of these techniques, and comparisons
that have been made between them.

3.2.1 Time-reversal

Early work by Parvulescu

Time-reversal is a technique that involves using the channel through which a
signal is emitted to compensate for distortions that result from transmitting
through the channel. The process of time-reversal was first performed by
Parvulescu in 1961 [Parvulescu, 1995]. Parvulescu was investigating the use
of the correlation operator to determine the relationship between a source
and multiple receiver locations.

At the time, correlation calculations were computationally expensive and
impractical. To reduce the computational requirements, it was proposed
that the channel be used to determine the correlations. An impulse was
transmitted from a source location into a channel and the signal recorded at
a receiver location as h1(t). The signal, h1(t), was then played in reverse at
the source location. The process of playing a recorded response in reverse is
referred to as time-reversal (TR). The signal received as a result of playing
the reversed signal and neglecting the noise in the system is given as

r(τ) =

∫
h1(−t)h2(τ − t).dt (3.1)

where h2(t) is the impulse response of the channel during the second trans-
mission. If the channel response does not change considerably between both
measurements, then h1(t) ' h2(t) and r(τ) is the auto-correlation of the
channel response. If a channel impulse response is sufficiently non-repetitive
the auto-correlation function consists of a large spike surrounded by smaller
side-lobes.

Parvulescu conducted a number of experiments performing this operation
in air in a reverberant room, and also in a shallow underwater environment.
In both environments, the response at the receiver location consisted of a
large spike, as expected of an auto-correlation function. Experiments in air
in the presence of noise demonstrated that the operation continued to result
in a spike, even at signal-to-noise ratios of -30 dB.

Parvulescu also examined the temporal and spatial stability of time-
reversal in the ocean. The repeated playback of the measured impulse re-
sponses in reverse continued to result in spikes being detected for up to eight

3.2 Channel compensation 37

Figure 3.1: Phase conjugation holography [Fink, 1992, Fig. 10]

hours after the initial recording. It was also found that variations in the
receiver range and depth from the source had an influence on the correlation
results. In particular, small variations in the receiver depth were found to
cause the peak to vary considerably in magnitude, whilst large variations in
range were required to similarly vary the peak magnitude. The size of the
region at which the signal is present is known as the focus of time-reversal.

The time-reversal mirror

Time-reversal was also investigated by Prada et al. [1991] as a means of
focusing ultrasonic waves for medical applications. The time-reversal tech-
nique was simultaneously performed using an array of transducers, which was
termed a time-reversal mirror (TRM). The application of the TRM to un-
derwater acoustics was examined by Jackson and Dowling [1991], and related
to another process known as a phase conjugate mirror (PCM).

Time-reversal mirror and phase conjugate mirrors

Phase conjugation involves performing the conjugate reflection of harmonic
signals over a surface referred to as the phase conjugate mirror (PCM). The
PCM was initially implemented in optics, and Prada et al. [1991] describe a
number of techniques used to achieve phase conjugations in that field. One of
the methods for performing optical phase conjugation is known as phase con-
jugate holography. Figure 3.1 shows the method by which phase conjugated
holography is performed. The technique involves exposing a photo-refractive
film to a wave field, along with a uniform reference wave. After processing
the film, the reverse illumination of the film with the reference wave results
in the re-emission of the original wave field [Fink, 1992].

When the wave field recorded on the PCM is from a single source, then
the re-emitted wave will generate a wave that focuses on the source location
[Prada et al., 1991]. The use of phase conjugation in underwater acoustics
was investigated by Clay [1966] and Ikeda [1989]. Clay [1966] described the
acoustical response with respect to numerous modes of the ocean. As the
ocean is dispersive, conventional beam-steering using time delays was found

 NOTE:
 This figure is included on page 37 of the print copy of
 the thesis held in the University of Adelaide Library.

38 Chapter 3 Literature Review

to be ineffective. Clay therefore used the normal mode model of an under-
water environment and proposed that the transmission and reception of a
harmonic source can be maximised by adjusting the phase of the transmis-
sion array based on the phase of the modes, particularly for the modes having
the least attenuation.

Phase conjugation was found to be related to the TRM by both Jack-
son and Dowling [1991] and Prada et al. [1991]. The TRM is equal to the
PCM when the bandwidth of a TRM is reduced to a single frequency. Con-
versely, phase conjugation is equivalent to time-reversal when simultaneously
performed at all frequencies over the bandwidth of operation.

Multi-path compensation

A particular feature of time-reversal is multi-path compensation (MPC).
Multi-path describes the behaviour of a signal emitted in an environment
which exhibits features that cause the signal to reach a target location via
a number of different paths, each having a different delay and direction of
arrival. The multiple arrivals of the signal cause problems such as fading and
inter-symbol interference. Fading is the reduction of the signal level that
results from the paths destructively interfering with each other.

A common technique used in signal processing is beam-steering. Beam-
steering involves the use of an array of transducers in conjunction with delay
taps to emit or receive signals from a single direction. Jackson and Dowling
[1991] reported that a TRM effectively performs beam-steering for every
path. Multi-path compensation through beam-steering can be explained with
reference to the two path system shown in Figure 3.2. In the first step, a
short pulse is emitted and the signal arrives at the TRM, arriving from a
different direction for each path, with a delay related to the path length.
The signal received by each element for a pulse originating from a certain
direction will be delayed according to the spatial location of the element, and
the direction of arrival of the wave.

In the second step, the signal is played back in reverse on each element
of the array. The reversal of the signals for a single pulse received from a
specific direction results in the appropriate delay between elements (being
the reverse of the received) to steer the pulse in the direction from which it
arrived. The time-reversal also allows each pulse received on the array to be
re-emitted in such a way that the pulses originating from each path arrive at
the original source location at the same time, regardless of the original time
gap between them.

Focusing: time-reversal and the wave equation

Prada et al. [1991] were able to show that it was theoretically possible to

3.2 Channel compensation 39

Figure 3.2: Beam steering as performed by a time-reversal mirror [Jackson
and Dowling, 1991, Fig. 3]

recreate a sound field through the time-reversal process. Examining the
process with respect to the wave equation,

∇2p− 1

c2(r)

d2

dt2
p = 0 (3.2)

where p is the pressure field, and c(r) is the speed of sound, then if p(r, t)
is the field for the first part of the time-reversal, it must satisfy the wave
equation, and p(r,−t) must also be a solution of the wave equation since the
terms involving time have an even derivative. If p(r, t) is the pressure field
resulting from a point source emitted at t = 0 then it is theoretically possible
to create an environment with a field defined as p(r, T − t), such that all the
waves will propagate back to the source location, culminating in exciting the
point source at t = T . It should be noted that if there is no device to absorb
all the energy at the source location, then the waves will continue to again
propagate outwards.

If the field, p(r, t), is a solution to the wave equation, then the field,
p(r, T − t), must also be a solution of the wave equation, and thus be physic-
ally realisable. The creation of such a field requires that p(r, t) along with its
temporal and spatial derivatives, be recorded at a specific instance. The sub-
sequent field generated with the opposite derivatives initiates field p(r, T−t).
Recording and generating the field and spatial derivative of the field are prac-
tically unrealisable as recording can only be done during a finite time interval
over a finite region of space. Prada et al. [1991] have shown that when using
TRM during a finite time interval and over a finite region of space, the focus
continues to be evident even through inhomogeneous media. However, nu-
merical simulations show that the length of the mirror has to be sufficiently
large for time-reversal to produce a focal point.

 NOTE:
 This figure is included on page 39 of the print copy of
 the thesis held in the University of Adelaide Library.

40 Chapter 3 Literature Review

Fink [1992] also addressed the problem of the recreation of an entire pres-
sure field, using Huygens principle. Huygens principle states that the wave
field in a volume can be predicted from the field and the normal derivat-
ive on a 2-D surface surrounding the volume [Porter and Devaney, 1982].
Thus, time-reversal only needs to be performed on a single surface. When
time-reversal is performed on a surface, the enclosed volume is known as
a time-reversal cavity . Cassereau and Fink [1992] have been able to use
time-reversal cavity theory as a means of studying the limitations of a TRM.
They note that the field generated by a time-reversal cavity excited by a
point source is a field that is the superposition of a converging wave and a
diverging wave. The superposition of these two waves results in a limitation
of the size of the focal spot to λ/2 when the excitation signal is a harmonic
source with wavelength, λ. Cassereau and Fink [1993] observed that this
limitation is transferable to the TRM in that the size of the array has some
bearing on the size of the focal region. Jackson and Dowling [1991] examined
the performance of a PCM with respect to the size of the array (known as the
aperture), and found that the field produced at the source location had an
amplitude proportional to the integral of the intensity of the sound received
at the array during the recording stage. Thus, in some instances, a smaller
array can outperform a much larger array, depending on the intensity of the
signal recorded at the array. This significant discovery contradicts the ori-
ginal idea that the focus and compensation of the distortion were dependent
on having a large aperture.

Focus steering

Whilst time-reversal has been observed to focus sound at an original source
location, it is often desirable to use the recordings made in the time-reversal
procedure to reproduce sound at a region away from the initial source loca-
tion. Several authors have investigated different methods of achieving this.

Dorme and Fink [1996] have studied a method of steering the focal point
away from the target zone for an environment that consists of an abbera-
tion layer that is between the array and a homogeneous environment. The
research used a time-reversal method to excite the environment with a pulse
from the array. This pulse passes through the layer and arrives at a reflective
object. The object then reflects the wave back through the layer to the array
where the pressure signal is recorded.

The recorded signal can then be time-reversed to focus back on the re-
flector. This form of time-reversal is known as the pulse-echo mode of oper-
ation. By implementing delays on the signals received from the first stage
of the process, similar to that performed in beam-steering, Dorme and Fink
found it was possible to shift the focal point away from the original reflector.
However the temporal and spatial side-lobes increased as the desired focal

3.2 Channel compensation 41

point shifted further from the initial reflector. To improve the focal point
when steering, Dorme and Fink developed a method that involves numeric-
ally calculating the field on a planar surface on the other side of the layer,
based on the signal recorded at the TRM. By applying the delays at this
surface and back-propagating the wave form to the array, Dorme and Fink
improved the performance of the focal steering. This method was later ex-
tended by Tanter et al. [1998] through back-propagation to a curved surface,
specifically a human skull, to provide focal steering within the brain.

Shifting of the focal zone within the underwater environment was ex-
amined by Song et al. [1998], who developed a technique that used a property
of the ocean waveguide to enable the interference structure to be character-
ised by the existence of lines of maximum intensity having a fixed slope, given
by

β =
r

ω
(
∆ω

∆r
) (3.3)

where r is the range, and ω is the frequency. This relationship has been
termed the wave-guide invariant . Numerical simulations that demonstrate
this property are shown in Figure 3.3, where it can be observed that the
amplitude response is approximately linearly shifted in the frequency domain
for a change in range. A similar relationship is also observable for the phase
response.

The technique examined by Song et al. [1998] to shift the focal zone uses
the wave-guide invariant relationship to estimate the frequency response at
ranges surrounding the original focal zone. Figure 3.4 shows simulated results
of focal zone shifting for a given environment. The sound intensity is shown
for the depths and ranges for standard time-reversal, and time-reversal with
a frequency shift of -20Hz and +20Hz. The focal zone has been moved
300m inwards and outwards respectively for each case, having a similar focal
structure to the original time-reversal focal zone. Hodgkiss et al. [1999]
have presented experimental results that confirm this simulation. Kim et al.
[2001a] examined the possibility of using the wave-guide invariant to create
nulls at the same time as creating a signal to focus at the focal zone.

Matched field processing

Another area of research that is particularly related to time-reversal ismatched
field processing (MFP). Matched field processing is a source localisation
method. The process involves using signals received on an array in an envir-
onment to determine the location of a target that is either emitting sound
(for passive detection) or is able to reflect sound (for active detection). MFP
requires that the environment can be effectively modelled. The model is
used in conjunction with the signals recorded on an array to determine the
most likely source location of the target. Matched field processing involves

42 Chapter 3 Literature Review

Figure 3.3: Sound intensity for frequencies ranging from 445Hz to 465Hz
for a simulation of a 140m deep shallow water environment with source and
receiver depth of 40 m and 50 m respectively. The curves have been displaced
by 2 dB increments for each curve. [Song et al., 1998, Fig 5]

simulating the emission of the time-reversal of the received signals using the
model and calculating the sound pressure at various points in the environ-
ment. The location displaying the largest magnitude is then considered to
be the location of the original source. The first implementation of MFP was
by Bucker [1976] who performed MFP using a single harmonic source. Clay
[1987] demonstrated that harmonic sources could be replaced with wide-
band transmissions of transient or random signals. The position estimate
was found to improve dramatically as a result of using a wider bandwidth.
Given that the MFP technique essentially uses the time-reversal operator,
it can be observed to have the same focal size as using time-reversal in real
environments [Kim et al., 2001b].

Focusing improvement by reflections

In section 3.2.1 discussing multi-path compensation, it was shown that a
time-reversal mirror effectively transmits the signals received so that they
propagate back through the paths through which they came. Dowling and
Jackson [1992] investigated this phenomenon and found that media contain-
ing a large number of reflectors had a tighter focal point compared to that
observed from performing time-reversal in a free-space environment.

Derode et al. [1995] also examined the focal size with and without reflect-
ors for ultrasonic environments. For a linear array operating in a homogen-
eous media, the smallest size of the focal region was given by the diffraction
limit, λz/a where λ is the wavelength, z the distance from the array, and a
the size of the array. When scattering was included in the media, the size

 NOTE:
 This figure is included on page 42 of the print copy of
 the thesis held in the University of Adelaide Library.

Figure 3.4: Sound intensity for range and depth for a time-reversal having
an original focal point at a range of 6.2 km and depth of 70 m with (a) no
frequency shift, (b) a frequency shift of -20Hz, and (c) a frequency +20Hz.
[Song et al., 1998, Fig 3]

43

 NOTE:
 This figure is included on page 43 of the print copy of
 the thesis held in the University of Adelaide Library.

44 Chapter 3 Literature Review

was reduced to 1
6
λz/a. The improvement in the focal size can be attributed

to the fact that each reflector effectively operated as a source, enlarging the
virtual aperture of the array. It was also found that when the duration of
the reverberation was long, shorter recordings of the reverberation that did
not necessarily encompass the initial direct wave could be used to produce a
wave that also focused on the target location.

Carsten et al. [1999] considered the case of a single transmitter and re-
ceiver in a chaotic cavity. This scenario differs from a time-reversal mirror,
particularly as the receiver location is placed within the reverberant envir-
onment rather than on the surface. Time-reversal focused the sound at the
original location with good spatial and temporal compression. When time-
reversal was performed using a variety of finite duration recordings of the
response, it was observed that the time-reversal process continued to focus
sound at the target location having the same peak magnitude regardless of
the time at which the recording started. The duration of the response that
was recorded was found to be linearly related to the magnitude of the peak
for short durations of recording.

Roux et al. [1997] examined the focusing of time-reversal in a wave-guide
that consisted of a media bounded by two surfaces. It was anticipated that
such a wave-guide could provide some insight into how time-reversal might
perform in a shallow water underwater acoustic environment that was simil-
arly bounded by two surfaces: the air-water interface and the sea floor. The
focusing size was found to be increased due to the reflections resulting from
the boundaries. By unwrapping the propagation paths due to reflections at
the surfaces, the transmission paths could be seen as coming from virtual im-
ages of the TRM array, as shown in Figure 3.5. This also demonstrates the
idea of increasing the virtual aperture of the array. Roux and Fink [2000]
later showed that the number of effective virtual images of the array was
limited by the reflectivity of the grazing angle on the boundaries, and also
the directivity pattern of the source transmitter. In underwater experiments
Kuperman et al. [1998] obtained focal zones at large distances of the order of
100 times that of the aperture of the TRM. These experiments confirmed the
assumption that the focusing was improved as a result of the large number
of reflections.

Derode et al. [1999] made the interesting observation that the large num-
ber of reflections allowed the number of bits used in the time-reversal to be
reduced. By reducing the number of bits to a single bit, very low cost, but
high energy equipment could be used to generate the signals.

Iterative focusing

Time-reversal has also been investigated as a means of focusing sound energy
on a desired target within a human body where it is not possible to place a

3.2 Channel compensation 45

Figure 3.5: Mirror images resulting from a wave-guide [Roux et al., 1997,
Fig. 6]

source at the target location, for example, to conduct the acoustic rupture of
a kidney stone. When the target is reflective, a probe signal can be used to
excite the environment, so that the target reflects a signal back to the array.
The signal received at the array can then be time-reversed and transmitted
to create an acoustic focus at the target. By boosting the energy during the
time-reversal stage, a large acoustic pulse can be sent to the target location
whilst at the other locations, the signal should be much smaller. If, however,
there are a number of reflective targets in the environment, the time-reversal
process actually focuses energy back to each reflector in proportion to the
energy reflected from each scatterer. To achieve focusing only on the largest
reflector, Ikeda [1989] and Prada et al. [1991] demonstrated that both the
phase conjugation and time-reversal methods could be made to focus on
the largest scatterer through the iterated application of time-reversal. This
operation is shown in Figure 3.6. After the first transmission, the reflective
objects return a signal according to their reflectivity. The time-reversal of
the received signal at the array can be seen to consist of the summation
of a number of signals that will each focus back on the reflective objects.
The magnitude of each of these signals is determined by the reflectivity of
the object. After emitting the time-reversal signal, the objects will receive
a signal according to their reflectivity, and thus reflect a signal having a
magnitude of their reflectivity squared. At each iteration, the magnitude of
the signal for each receiver in the time-reversal signal is multiplied by the
reflectivity of the reflective object. If the time-reversal signal is normalised,
then the magnitude of the signal for the object with the largest reflection will
remain constant, whilst the magnitude of the signal for the other reflectors
will reduce.

The process of iterative time-reversal was also examined by Fink [1992].
Fink found that the iterative process only focused on the strongest reflector
when the scatterers where sufficiently spatially separated. In such a scenario,
the odd iterations tended to focus on the strongest target whilst reducing the
energy at the less reflective targets; but on the even iterations, energy was
focused at both targets equally. Prada and Fink [1994] and Prada et al.

46 Chapter 3 Literature Review

Figure 3.6: Iterative time-reversal with pulse excitation. [Prada et al., 1991]

[1995] explained this observation by expressing the process as a sequence of
matrix operations. Referring to Figure 3.7, the inter-element impulse re-
sponse between elements m and l shall be denoted as klm(t), the relationship
between the transmitted signals, em(t), and the signals received, rl(t), can
then be represented as

r1(z)
r2(z)
...

rm(z)

 =


k11(z) k12(z) · · · k1m(z)
k21(z) k22(z) · · · k2m(z)

...
...

km1(z) km2(z) · · · kmm(z)



e1(z)
e2(z)
...

em(z)

 (3.4)

where the signals and impulse responses have been converted to their z-
transform equivalent. If the z-transforms are converted to the Fourier equi-
valent, then for each frequency, the matrix relation can be given by

R0(ω) = K(ω)E0(ω) (3.5)

where the superscript 0 has been added to indicate the initial recording at the
time-reversal array. The next set of excitation E1(ω) is then the time-reversal
of R0(ω), and is thus given by

E1(ω) = R0∗(ω) (3.6)
= K∗(ω)E0∗(ω). (3.7)

where the super-script ∗ denotes the complex-conjugate operator, being the
result of phase-conjugation of the frequency response function. It can then

 NOTE:
 This figure is included on page 46 of the print copy of
 the thesis held in the University of Adelaide Library.

3.2 Channel compensation 47

Figure 3.7: Inter-element impulse response. [Prada et al., 1995]

be observed that for each iteration, the excitation signals for the even and
odd iterations is given by

E2n(ω) = [K∗(ω)K(ω)]n E0(ω) (3.8)

E2n+1(ω) = [K∗(ω)K(ω)]n K∗(ω)E0∗(ω) (3.9)

Many environments are considered to maintain reciprocity. Environments
that maintain reciprocity have the same impulse response between two po-
sitions regardless of which source the signal originates from. In such envir-
onments the matrix K(ω) is symmetric, and thus K∗(ω)K(ω) is Hermetian,
and can be diagonalised with orthogonal eigenvectors having positive real
eigenvalues. If the initial excitation vector, E0(ω), is decomposed into the
eigenvectors of K∗(ω)K(ω),

E0(ω) = F1(ω) + F2(ω) + · · ·+ Fp(ω) (3.10)

then Equations 3.8 and 3.9 result in

E2n(ω) = λn1 (ω)F1(ω) + λn2 (ω)F2(ω)

+ · · ·+ λnp (ω)Fp(ω) (3.11)

E2n+1(ω) = λn1 (ω)K∗(ω)F∗1(ω) + λn2 (ω)K∗(ω)F∗2(ω)

+ · · ·+ λnp (ω)K∗(ω)F∗p(ω) (3.12)

where λi, i ∈ [1, p] are the eigenvalues of K∗(ω)K(ω) with λ1 > λ2 > · · · >
λp. It is worth noting that the eigenvalues of K∗(ω)K(ω) are the square of
the singular values of K(ω). After a number of iterations of the process, n
is large, and thus

E2n(ω) ' λn1 (ω)F1(ω) (3.13)

 NOTE:
 This figure is included on page 47 of the print copy of
 the thesis held in the University of Adelaide Library.

48 Chapter 3 Literature Review

E2n+1(ω) ' λn1 (ω)K∗(ω)F∗1(ω) (3.14)

demonstrating the different results for the odd and even iterations. If the
environment is modelled as an environment consisting of multiple point scat-
terers with no inter-scatterer reverberation, Prada et al. [1995] have shown
that the matrix K(ω) can be given by

K(ω) = H(ω)TC(ω)H(ω) (3.15)

where H(ω) is the transfer matrix describing the response between each ele-
ment and each scatterer, and C(ω) is a diagonal matrix containing the re-
flectivitys of the scatterers.

For well-separated targets, the eigenvectors of K∗(ω)K(ω) are related to
the vectors to focus on each scatterer individually. Under such conditions,
it is possible to focus on individual scatterers by transmitting the different
eigenvectors of the time-reversal operator. The technique is called DORT
(French acronym for Decomposition of the time-reversal operator). A thor-
ough description and analysis of the process is given by Prada et al. [1996].
Decomposition is particularly effective when many iterations of time-reversal
are required to focus on the strongest target due to similar reflectivity’s.

In some situations, such as symmetric environments, where the eigen-
vectors do not correspond to each target in a one-to-one relationship, the
DORT failed. However, it was found that by transmitting combinations of
eigenvectors the targets could be targeted separately. The assumption that
each scatterer results in a single eigenvector was shown to be false by Cham-
bers and Gautesen [2001], where it was theoretically shown that spherical
scatterers can have up to four eigenvectors. However, when the reflectors are
made from hard material, only a single eigenvector dominates.

Mordant et al. [1999] examined the eigenvectors with respect to frequency
and observed that the singular values corresponding to each reflector can
often be related between frequencies. Using such relationships, wide-band
signals can also be used to target each reflector.

Several authors have extended the eigenvalue iteration technique:

• Prada and Fink [1998] examined DORT for an air filled cylinder in
water. The DORT method was used to isolate waves known as Lamb
waves that travel around the cylinder. These waves resulted in the
observation of two eigenvalues for the clockwise and anti-clockwise
propagation.

• Mordant et al. [1999] examined the performance of the DORT method
for a scatterer as it moved close to an interface having a reflectivity close
to −1 (as is the case for a water/air interface). Under such conditions,
the reflection from the scatterer and the surface was found to be hard

3.2 Channel compensation 49

to resolve due to the reflected and direct waves cancelling each other
out. The distance at which the scatterer was no longer detectable was
λ/5 at a range of 400λ.

• Kim et al. [2001a] used the concept of the wave-guide invariant (see
Equation 3.3) to alter the time-reversal process to create null locations
in the underwater environment. Using this technique it was possible
to selectively focus on two targets and obtain identical eigenvectors as
would be obtained from the DORT technique.

• Lingevitch et al. [2002] altered the DORT technique used in the ocean
to use the entire array to transmit the initial excitation for underwater
environments to achieve better excitation when locating targets.

• Kerbrat et al. [2003] used the DORT technique as a means to find
cracks within material. The DORT technique in general outperformed
the transmit/receive focusing and also a time-reversal technique.

Time-reversal and the matched filter

Time-reversal is closely related to matched filtering, described in a previ-
ous subsection. A matched filter is formed from the time-reversal of the
transmission symbol. However, time-reversal differs from matched filtering
due to the fact that the entire channel response is time-reversed and used
as a filter. Fink [1992] notes that matched filtering is inherently different
from time-reversal since time-reversal involves performing the time-reversal
at the transmitter, and allowing the ocean to perform the convolution. Using
time-reversal at the transmitter results in the focusing of the sound at the
receiver.

Time-reversal may also be implemented at the receiver, as done by Dowl-
ing [1994]. When time-reversal is implemented at the receiver, it is often
called a passive phase conjugate filter . The implementation involves meas-
uring the channel response at the receiver and using the time-reversal of the
response as a filter for subsequent communication signals. Dowling [1994]
showed that the filter was able to provide vast improvements over matched
filtering.

There is some confusion over the term ’matched filter’ however, as com-
munication theory textbooks sometimes refer to it as the filter obtained from
time-reversing the general symbol waveform; whilst some authors, such as
Clay [1987], Li and Clay [1987] and Kuperman et al. [1998] have used the
term ‘matched filter’ to refer to the signal that results from the time-reversal
of the wave-guide response. Of particular note is that Dowling [1994] who
introduced the passive phase conjugation process compared time-reversal of

50 Chapter 3 Literature Review

the wave-guide with the matched filter (described as the time-reversal of the
pulse waveform).

Another distinction between time-reversal and matched filtering is that
time-reversal is generally implemented without consideration for the noise
spectrum. In communication theory, the matched filter is often implemented
along with a noise-whitening filter. It is interesting to note that the paper
by Clay [1966], being one of the earliest papers on phase conjugation, takes
into account the noise spectra. Clay observed that if the amplitude of the
source excitation of each mode was am and the array response was Um and
the noise spectrum for that mode was Nm, then the gain at the receiver,
bm, that maximises the signal-to-noise ratio for the reception of that mode
is given by

bm =
a∗mU

∗
m

N2
m

(3.16)

This equation is similar to a matched filter (bm = a∗mU
∗
m) as described by

Proakis [2001] with the addition of a noise-whitening filter, 1
N2

m
.

Time-reversal and ocean acoustics

In the subsection on underwater acoustics, the propagation of acoustic waves
in the ocean was introduced. The propagation of acoustic waves is largely
influenced by the sound speed profile and the surface and sea-floor character-
istics. The current study is focused on the shallow water environment which
is a highly reverberant environment where sound propagates via many reflec-
tions with the sea surface and the sea floor, resulting in many paths, a pro-
cess known as multi-path transmission. Multi-path transmission lengthens
the duration of the ocean response between two locations which makes ana-
lysis of this environment computationally expensive. An example of the
duration of the ocean response versus range is given in Sabra et al. [2002]
where the duration of the response for a distance of 10 km was 0.1 second.
Time-reversal presents a method to compensate for the long duration using
a low-complexity method. However, time-reversal has been formulated for
environments having a fixed sound-speed profile, whereas in the underwater
environment, the sound speed profile changes with time. Kuperman et al.
[1998] showed that time-reversal could still be used for short periods of time,
over which sound-speed can be assumed to remain sufficiently static.

The earliest known work that involved using time-reversal in the under-
water environment was performed by Parvulescu in 1961. The experiments
conducted demonstrated time-reversal working with a single source and re-
ceiver. Following this initial work, several authors [Jackson and Dowling,
1991, Roux et al., 1997] described theoretical concepts associated with the use
of time-reversal in underwater acoustics, however it was not until 1996 that
Kuperman et al. [1998] performed time-reversal experiments in the ocean.

3.2 Channel compensation 51

The experiments conducted by Kuperman et al. [1998] examined the focal
zone of the time-reversal process, and the stability of the focal zone for ex-
tended durations. A second set of experiments were performed in 1997 to
investigate further developments on the TRM applied in underwater acous-
tics. The results of these experiments are presented by Hodgkiss et al. [1999].

Many of the underwater acoustics experiments conducted by Kuperman
et al. [1998] investigated the advances of time-reversal that had been de-
veloped in ultrasonic research. It is of interest to note that the distance
between the TRM and the focal point in ultrasonics was an order of half the
size of the aperture of the array, whilst in contrast, the underwater exper-
iments conducted by Kuperman et al. examined the focus at distances of
around 100 times the aperture of the TRM [Hodgkiss et al., 1999]. The size
of the focal zone at 30 km was observed to be 25m high, and estimated to
be 800m wide. The ability to focus at such great ranges was attributed to
images that are formed due to the reflections at the sea-surface and sea-floor.
The duration which time-reversal continued to focus was found to depend on
the fluctuation of the sound-speed profile at the focal location. In one of the
experiments, time-reversal targeting a depth of 81m continued to create a
focal zone after 10 days, whilst for another case targeting a depth of 47m the
focal zone had degraded considerably after 15minutes, presumably because
the sound speed profile is more stable at the sea floor.

Kuperman et al. [1998] described the focusing of time-reversal in the
ocean through the use of normal modes and ray tracing theory. Whilst the
discussion with respect to normal modes was based on a harmonic solution of
a PCM, the solution can be extended to a broadband application to under-
stand the TRM. If an array spans the entire water column, then all modes
are excited, and the field due to a PCM can be approximated by [Kuperman
et al., 1998, Eq. 9]

Ppc(r, z;ω) '
∑
m

um(z)um(zps)

ρ(zps)km
√
rR

exp(ikm(r −R)) (3.17)

where Ppc(r, z;ω) is the pressure field at depth, z, and range, r, from the
array for the source frequency ω. In this equation, um(z) are the mode shape
functions, zps is the depth of the probe source, ρ(z) the density function, km
the modal wave number and R the distance between the probe source and
the PCM. At the focal range (r = R), the exponential term equates to 1, and
the remaining portion is a scaled spatial correlation function having a peak
at z = zps. By summing over the modes, the peak is reinforced resulting
in a stronger focus and reduction in the side-lobes. The vertical size of the
focal zone can then be related to the mode having the smallest vertical wave
length. The vertical size of the focal point can be roughly estimated by depth
divided by the wavelength of the highest order mode. Figure 3.8 shows results

52 Chapter 3 Literature Review

Figure 3.8: Sound intensity for phase conjugate (single frequency) mirror
from a simulation for a probe source located at a depth of 40 m and range
of 6.3 km in a shallow underwater acoustic environment. [Kuperman et al.,
1998, Fig. 4b]

from a simulation that demonstrates the strong vertical focus that occurs at
the source location. Roux and Fink [2000] showed that the highest effective
mode is dependent on the attenuation with respect to the grazing angle, and
the spacing of the elements of the TRM contributed substantially to the side-
lobes present in the response. The influence of the bottom attenuation was
confirmed by Kim et al. [2001b], who termed it mode stripping .

The ability for time-reversed signals to maintain a focus for considerable
time from the initial excitation can be attributed to the stability of the
mode shapes. As the sound speed profile is known to vary considerably
at the surface, so also are the mode shapes subject to variability at the
surface, whilst at lower depths, the modes can be considered more stable,
thus explaining the difference in the temporal stability of the focusing for
the 81m depth and 47m depth.

3.2.1.1 Further developments of time-reversal

Further developments that have been made involving time-reversal in the
ocean include:

• Song et al. [1999] examined the DORT iteration process in the ocean.
The technique was found to provide minor spatial focusing improve-
ments. It was found that for multiple scatterers, the reflecting strength
of the scatterer alone did not determine which scatter would be the fo-
cus. The environment also had an influence. The iterations of the
time-reversal procedure also narrowed the bandwidth of the signals to
the most effective frequencies.

 NOTE:
 This figure is included on page 52 of the print copy of
 the thesis held in the University of Adelaide Library.

3.2 Channel compensation 53

• Rose et al. [1999] showed that time-reversal mirrors continue to work
when used in the underwater environment, regardless of the surface
wave height. A technique was proposed that could determine the height
of the surface waves from the TR and a measure of the surrounding
field. The technique was validated in an ultrasonic experiment.

• Whilst examining matched field processing, Yoo and Yang [1999] ob-
served that some of the modes coupled between the transmitter and
receiver array are distorted through the internal waves in the ocean.
By eliminating these modes, a technique was developed that improved
the likelihood of determining the target location at the expense of a
reduction in the spatial resolution.

• Performance of TR for noisy (or low signal level) environments was
examined by Sabra et al. [2002]. The signal to noise ratio at the focal
point was found to be related to the signal bandwidth and the duration
of the signal pulse. Time-reversal was found to reject noise better in
reverberant environments than in free-space due to the multi-path.

• Sabra and Dowling [2004] developed a method that was able to perform
blind deconvolution in an ocean environment. The technique used the
spatial diversity of an array to obtain estimates of the Greens functions
due to an unknown source transmission, and then utilise these Greens
functions in conjunction with time-reversal and a non-regularised in-
verse filter to determine the original transmission.

Time-reversal has also had considerable development in medical research.
Fink et al. [2003] provides a useful overview of such research. Of particular
interest:

• Time-reversal has been used as a means of improving lithotripsy, be-
ing the non-invasive damaging of kidney stones through focused high-
intensity acoustic pulses. Thomas et al. [1996] showed that time-
reversal can be used to move the focus and track the stone during
lithotripsy treatment.

• Time-reversal has been used in a process known as ultrasonic medical
hyperthermia which is a form of brain therapy. Ultrasonic medical hy-
perthermia involves exciting body tissue with high intensity ultrasound
so that it is absorbed and converted to heat, destroying the cancerous
tissue. Tanter et al. [1998] investigated the use of time-reversal fo-
cusing to steer through the skull, and Pernot et al. [2004] tested the
method using sheep skulls. Time-reversal improved the focusing, and
also provided the ability to steer the signal up to 2 cm away from the
initial focal point.

54 Chapter 3 Literature Review

• Time-reversal has also been used to improve ultrasonic imaging, through
the use of an environment containing scatter media to increase the ef-
fective aperture. A draw-back compared to conventional beam-steering
techniques is that the entire field needs to be mapped [Roux et al.,
2000].

Time-reversal has also been examined for application to solids. Time-reversal
in solids is somewhat different to that in fluids as both longitudinal and
transverse waves result from the excitation of the media [Draeger et al.,
1997]. Several researchers [Kerbrat et al., 2002, Leutenegger and Dual, 2002,
2004, Park et al., 2007, Goursolle et al., 2008] have investigated the use of
time-reversal in solids to perform non-destructive testing to locate cracks and
air gaps in a variety of scenarios.

3.2.2 Inverse filtering

History

In the late 1970s, several researchers investigated the ability to replicate a
desired sound at the ears of a listener sitting some distance from a set of
loudspeakers. The acoustic waves propagating from the loudspeakers to the
listener are generally distorted as a result of the speaker characteristics and
the reflections from the room. In a two-speaker scenario, where it is desired
that the sound from each speaker is heard only at the corresponding ear (i.e.
left speaker for left ear, right speaker for right ear), the sound that each ear
hears from the opposite speaker is known as cross-talk. Researchers have
investigated systems to compensate for the distortion and reduce the cross-
talk to perfectly reproduce a recorded signal. A related problem is being able
to record audio from a source in a reverberant environment using multiple
microphones. Both of these problems require systems to be designed that
can compensate for distortion resulting from sound propagation in a room:
in the former case, the compensation is performed prior to the transmission
of sound; and in the later case, the compensation is performed after the
reception of the sound.

The designs employed by Flanagan and Lummis [1970], Damaske [1971]
and Allen et al. [1977] to compensate for the signal distortion (or the cross-
talk), pass the signals through phase shifters. A more thorough method
of achieving compensation is to pass the signals through filters that alter
both the phase and amplitude of the signals to perfectly compensate for the
channel response and cancel out the cross-talk. Such a filter is known as an
inverse filter.

The schematic for the two designs of the inverse filter are shown in Fig-
ure 3.9. Figure 3.9a illustrates the scenario when a pre-recorded stereo sound

3.2 Channel compensation 55

is being reproduced and Figure 3.9b illustrates the scenario for the perfect re-
cording of a sound source. The mathematical description of the multi-channel
inverse filtering problem is to find a set of filters, hi,j(t), for an environment
with propagation paths, cj,i(t). From Figure 3.9a, it can be observed that
signal, rj(t), reproduced at ear j ∈ [1, 2] is given by

rj(t) =
∑
i

ti(t) ? cj,i(t) (3.18)

where ti(t) is the signal transmitted by speaker i and ? is the convolution
operator. If the signals, ti(t), emitted by the speaker are created as filtered
versions of the recorded signals, sj(t), then

ti(t) =
∑
j

sj ? hi,j(t). (3.19)

Equation 3.18 and 3.19 can be presented in matrix notation,


r1(t)
r2(t)
...

rJ(t)

 =


c1,1(t) c1,2(t) · · · c1,K(t)
c2,1(t) c2,2(t) · · · c2,K(t)

...
...

...
cJ,1(t) cJ,2(t) · · · cJ,K(t)



?


h1,1(t) h1,2(t) · · · h1,J(t)
h2,1(t) h2,2(t) · · · h2,J(t)

...
...

...
hK,1(t) hK,2(t) · · · hK,J(t)



?


s1(t)
s2(t)
...

sK(t)

 (3.20)

where ? represents the matrix-wise convolution operator.
In a similar fashion, the matrix representation for the impulse response

function between a sound source, s1(t), and the output of the filters, r1(t),
for the recording scenario shown in Figure 3.9b is given by

[r1(t)] =
[
h1,1(t) h1,2(t) · · · h1,J(t)

]
?


c1,1(t)
c2,1(t)

...
cJ,1(t)

 ? [s1(t)] (3.21)

56 Chapter 3 Literature Review

Representing the matrices as H(t), C(t), the purpose of inverse filtering is
to find H(t) such that

C(t) ?H(t) = ∆(t) (3.22)

for the sound reproduction scenario, and

H(t) ?C(t) = ∆(t) (3.23)

for the recording scenario, where

∆(t) =


δ(t) 0 · · · 0

0 δ(t)
...

... . . . 0
0 · · · 0 δ(t)

 (3.24)

and δ(t) is the Dirac delta function.
Neely and Allen [1979] showed that for certain rooms, the filter model for

a single input / single output system was non-minimum phase, meaning that
a stable exact inverse filter cannot be realised. However, by using multiple
transmissions for a single output, Miyoshi and Kaneda [1988] first showed
that an exact inverse filter could be achieved using multiple transmitters and
receivers in a technique that was called MINT. In order to be able to per-
form the inverse filtering in-situ, Nelson et al. [1992] developed a means of
determining the multi-channel inverse filters using an adaptive LSE (Least
Square Error) method to perform both an inverse filter and cross-talk can-
cellation. Both the MINT and LSE methods were shown by Nelson et al.
[1995] to result in the same co-efficients when the system channel responses
were minimum phase.

Fast inverse filter design using FFT - the Tikhonov inverse filter

The direct inversion of measured IRFs (Impulse Response Functions) using
time domain techniques (see for example Nelson et al. [1995]) are particularly
complex and require considerable computational effort. To speed up the
calculations, Kirkeby et al. [1996a] developed a method that reduced the
computational effort required to design the inverse filter by performing the
inversion within the frequency domain. The technique involves the use of a
regularisation parameter to ensure causality so that wrap-around does not
occur on the conversion back to the time domain.

The design of the Tikhonov regularised inverse filter is based on the sys-
tem presented in Figure 3.10. A set of signals, s(z), are transformed by the
filter, A(z), to produce a set of signals, d(z), that are to be replicated by
the signals, r(z), being the output of the electro-acoustic system denoted by
C(z). In order to achieve this, a filter, H(z), is designed given that C(z) and

3.2 Channel compensation 57

(a) Sound Reproduction

(b) Sound Recording

Figure 3.9: Room configurations for the application of inverse filtering.

A(z) are known. When applied to the transmission signals, s(z), the filter
produces another set of signals, t(z), that, when played through the channel
C(z) result in the signals r(z) at the receivers.

Often the transfer matrix, A(z), is a delay to ensure causality, i.e. A(z) =
z−mI, or in the case of a communication system, the channel spectral shaping
filter response, A(z) = g(z)I. This problem can be expressed as

r(z) = C(z)t(z) (3.25)

with the objective that

r(z) = A(z)s(z). (3.26)

Given that
r(z) = C(z)H(z)s(z), (3.27)

the filter H(z) is designed so that C(z)H(z) approximates A(z). Kirkeby
et al. [1998] proposed a cost function to achieve this, along with a term to

58 Chapter 3 Literature Review

regulate the energy of the transmitted signal. The cost function is given by

J(z) = eH(z−1)e(z) + κtH(z−1)t(z) (3.28)

where e(z) = d(z) − r(z) is the error signal, and κ is a weighting term
applied to the energy of the transmitted signal known as the regularisation
parameter . The solution to this equation is given by [Kirkeby et al., 1998]

H(z) =
(
CH(z−1)C(z) + κI

)−1
CH(z−1)A(z) (3.29)

and its frequency domain equivalent,

H(ω) =
(
CH(ω)C(ω) + κI

)−1
CH(ω)A(ω). (3.30)

which was observed by Kirkeby et al. [1998] to be the Tikhonov regularised
inverse filter design. An extensive discussion of the Tikhonov inverse of a
matrix can be found in Hansen [1998].

Figure 3.10: Generic inverse filter system schematic [Kirkeby et al., 1998].

Kirkeby et al. [1998] observed that if the regularisation parameter, κ, was
large enough then the temporal wrap-around was negligible, allowing a causal
filter to be calculated in the frequency domain using the fast Fourier trans-
form. Calculation of the filter by this technique proved to be considerably
faster than equivalent calculations performed using time domain techniques.

Other methods of obtaining an inverse filter

An alternative approach to obtaining the inverse filter solution has been de-
veloped by Montaldo et al. [2004], where an approximation of the inverse filter
may be obtained experimentally through iterating a time-reversal technique.
This iterative method was developed for use in an ultrasound application
where it was found that iterative time-reversal was faster than performing
any direct calculation of the inverse filter. For underwater acoustic commu-
nication however, the transmission times are much longer and the iterative

 NOTE:
 This figure is included on page 58 of the print copy of
 the thesis held in the University of Adelaide Library.

3.2 Channel compensation 59

technique becomes impractical due to the long propagation time within the
ocean. However, the iteration could be implemented in software as discussed
by Higley et al. [2006], who showed that when implemented in software the
technique was mathematically equivalent to the Neuman matrix inverse ap-
proximation.

Applications of inverse filtering

Some of the applications for inverse filtering that have been investigated
include:

• A number of authors investigated the use of inverse filtering to rep-
licate a plane-wave acoustic field for a 2-D surface using various con-
figurations of discrete sources surrounding the surface in a free field
environment. In particular, Kirkeby and Nelson [1993] found that the
size of the array, and the angle between the sources with respect to the
2-D surface were critical to providing a good replication of the desired
field; Nelson [1994] described various signal processing techniques in-
cluding the inverse filter to achieve sound reproduction, and Kirkeby
et al. [1996b] showed good reproduction of a sound field using only a
few loudspeakers.

• Nelson et al. [1995] and Kim and Nelson [2003] examined the spatial
extent of the zone of equalisation. The zone of equalisation was found
to be related to both the wavelength of the maximum frequency and
also the arrangement of the sensor array.

• Kim and Nelson [2004b] examined the influence of the geometrical ar-
rangement of the microphones and speaker on the condition number.
An optimally arranged sensor array was developed that was far superior
to that of a planar array spanning equivalent dimensions.

• Kim and Nelson [2004b] compared two techniques to obtain an appro-
priate regularisation parameter. The techniques compared were the
General Cross-validation (GCV) method developed by Golub et al.
[1979], and the L-curve method described by Hansen [1998] for solving
matrix inverse problems. Neither method was found to be the best as
each method was suited to different environmental conditions.

• A number of authors investigated the use of inverse filtering to determ-
ine the source strength of acoustic sources. Nelson and Yoon [2000]
investigated the conditioning of the inverse problem with regard to
the geometry and the number of sources and measurement positions.
Nelson and Yoon found that the inverse problem became badly con-
ditioned when the wavelength of the radiated sound becomes large

60 Chapter 3 Literature Review

compared with the distance between the sources. However altering
the position of the measurement points improved the conditioning of
the system being the result of small singular values. Kim and Nelson
[2004a] examined the estimation of acoustic source strength in a cyl-
indrical duct. The small singular values were found to relate to the
evanescent modes. The conditioning of the system could be increased
by locating the measurements close to the acoustic sources in order to
increase the singular values related to the evanescent modes.

• Kim et al. [2006] examined the use of inverse filtering to perform cross-
talk cancellation for multiple listeners and also examined the robustness
to head movement. A system was examined that used four sources
and four receiver locations (i.e. two listeners). Source locations were
chosen along an array that resulted in the smallest condition number
in different frequency bands. Simulations showed that it was possible
to achieve cross-talk cancellation. It was found that the frequencies
having a well conditioned transfer matrix had a larger spatial extent
and less ringing than those having an ill-conditioned transfer matrix.

3.2.3 Comparisons between time-reversal and inverse
filtering

Both time-reversal and inverse filtering techniques have been compared on a
number of occasions. Clay and Saimu [1988] used a deconvolution in matched
field processing, which is similar to inverse filtering without regularisation.
The deconvolution resulted in a high frequency resonance that was eliminated
using filtering. The MFP results showed that the deconvolution method gave
fewer false source locations when compared to using time-reversal; however,
the deconvolution was found to be less robust at instances when the inverse
filters performed poorly, resulting in ringing that could not be eliminated.

As described in an earlier subsection, the ability for time-reversal to
provide focusing assumes that the medium is loss-less [Dorme and Fink,
1995]. However, Thomas and Fink [1996] desired to perform time-reversal
through a human skull which consists of a lossy media. Experiments were
performed that incorporated compensation for the amplitude variations on
each transducer induced by an abberation layer within the environment. The
compensation involved applying a gain on each transducer that matched the
attenuation observed when comparing the homogeneous media (water only)
to the inhomogeneous media, thus effectively resulting in an inverse filter.
The results are shown in Figure 3.11. Thomas and Fink [1996] proposed
that the method could be improved by performing amplitude compensation
for each frequency. The method was also employed by Tanter et al. [1998] to

3.2 Channel compensation 61

Figure 3.11: Improved focusing obtained through the use of time-reversal in
conjunction with amplitude compensation [Thomas and Fink, 1996].

steer the focus away from its main target and also discussed in greater detail
by Tanter et al. [2000].

Cazzolato et al. [2001] performed a comparison between time-reversal and
Tikhonov inverse filtering in order to produce a pulse in a simulation of a
145 m deep shallow water at ranges between 2 and 5 km. By using the Tik-
honov regularised inverse filters, Cazzolato et al. [2001] achieved greater spa-
tial and temporal focusing than time-reversal. The performance improvement
obtained using the Tikhonov regularised inverse filters over time-reversal was
attributed to the impulse response of the time-reversal system being similar
to the auto-correlation of the impulse response of the channel. The similarity
arises because time-reversal uses the time-reversal of the channel response as
a filter for the channel. Similarly, the autocorrelation of a channel response
can be calculated by the convolution of the time-reversal of the channel
response with the channel response itself. The difference between the auto-
correlation and the time-reversal process impulse response is that the channel
in the time-reversal process differs from that which is used to design the filter
and the channel response may also generate additional noise. The frequency
response of the auto-correlation of a channel is the frequency response of the
channel squared. The squaring operation results in a positive definite fre-
quency response and thus where there is destructive interference there will
be significant “dropouts”. By using time-reversal with an array, these dro-
pouts can be reduced by ensuring that the destructive interference is not at
common frequencies for each channel response between the transmitter and
receiver locations. However, this cannot always be ensured and destructive
interference can still occur. The flatness of the system frequency response is

 NOTE:
 This figure is included on page 61 of the print copy of
 the thesis held in the University of Adelaide Library.

62 Chapter 3 Literature Review

thus dependent on all the time-reversal responses averaging out to provide a
flat frequency response. In contrast, the Tikhonov inverse filter uses a cost
function to achieve a flat response provided it does not consume too much
power to do so.

Yon et al. [2003a] examined and compared the time-reversal process with
a spatio-temporal inverse filter to focus sound in rooms using a loudspeaker
array. Whilst previous work presented in Yon et al. [2003b] had shown that
time-reversal is able to create a focal zone, the loss of information during
the time-reversal process was considered to degrade the quality of the fo-
cus. A spatio-temporal inverse filter based on singular value discarding was
investigated as a means to improve the focusing. It was found that the
spatio-temporal inverse filter had better spatial focussing compared to the
time-reversal filter, provided that the bandwidth of the signal was not too
small, at which point they become similar to each other. In addition, the
temporal focusing of the spatio-temporal inverse filter far exceeded that of
time-reversal, with the temporal side-lobes of the signal at focus being al-
most 20 dB lower than for time-reversal. It was also shown that the spatio-
temporal inverse filter was able to provide control over a spatial sound field,
effectively using multiple control points over which to optimise the inverse
filter.

The relationship between time-reversal and inverse filtering methods was
investigated by Vignon et al. [2006]. Their work investigated the relation-
ship between the time-reversal filter and the spatio-temporal inverse filter.
Previous publications had shown that the time-reversal array was required
to completely surround the medium desired to be controlled (forming a time-
reversal cavity) to avoid echoing, whereas an inverse filter is able to avoid
echoing using an array that does not completely surrounded the medium
to be controlled. To examine this phenomenon, a relationship was formed
between the time-reversal and the inverse filter for a system comprising of
two arrays located either side of a solid interface submersed in water. It was
shown that the set of signals, EIF, that result from using the inverse filter to
transmit from array 1 to focus on a target transducer, S2, located on array
2 is given by

EIF = H∗S2 + H−1K2K
∗
2S2, (3.31)

where H is the transfer matrix between the elements of array 1 and array 2,
and K2 is the transfer matrix between array 2 and itself. The relationship
between the inverse and time-reversal filter was shown by noting that the
signal, EIF, is the sum of the signal resulting from a time-reversal procedure
between array 1 and 2, H∗S2, and the signal resulting from the time-reversal
procedure between array 2 and itself, K2K

∗
2S2, multiplied by H−1 to account

for the signals being emitted from array 1 instead of array 2. This result
demonstrates that the use of an inverse filter on a single array is equivalent

3.3 Channel compensation techniques used in acoustic communication
systems 63

to using time-reversal on both arrays simultaneously.

3.3 Channel compensation techniques used in
acoustic communication systems

Although time-reversal (TR) was demonstrated in 1961 by Parvulescu and
Clay [1965], the earliest reference found that proposes the use of the technique
with communication systems was given by Jackson and Dowling [1991]. Sev-
eral other authors suggested the use of time-reversal to assist communication
[Kuperman et al., 1998, Hodgkiss et al., 1999, Kim et al., 2001a].

The implementation of time-reversal has been investigated using two dif-
ferent techniques: active and passive time-reversal (commonly referred to as
passive phase conjugation in the literature). These techniques are shown in
Figure 3.12a and Figure 3.12b respectively. The steps for active time-reversal
communication are:

1. The target transmits a pulse, and the transmitting array records the
pulse at each element in the array.

2. The pulses recorded at each element are used as a filter between the
data signal and the signal to transmit at each element.

The steps involved in passive time-reversal communication systems are:

1. Transmitter source emits a single pulse, followed by a delay (in which
the response at the receiver has had time to decay away), followed by
the data to be transmitted.

2. The receiver captures the response from the first pulse, then uses the
time-reversal of this signal as a filter for the future signals that are
transmitted. Often the receiver consists of an array whereby the out-
puts of the filters on each element of the array are combined.

Passive time-reversal can be seen to be advantageous for scenarios where
it is too costly, or not feasible to have a transmitter at both ends of the
transmission system. However, the advantage of the active implementation
over the passive implementation is that the active implementation actually
results in a spatial focusing of the signal at the receiver.

3.3.1 Passive time-reversal in underwater acoustic
communication

The earliest reference found for the implementation of time-reversal was by
Dowling [1994] who used the passive-phase conjugation technique in a deep

(a) Active time-reversal communication system.

(b) Passive time-reversal communication system.

Figure 3.12: Two methods of using time-reversal in acoustic communication.
(a) Active time-reversal consists of the target emitting a signal that is recor-
ded at an array. The time-reverse of the recorded signals at the array are
then used as filters to transmit sound to the target. (b) Passive time-reversal
consists of a source emitting an initial pulse, during which time the array
records the response. After some time, the source transmits data and the
array uses the time-reverse of the records to filter the received signals.

64

3.3 Channel compensation techniques used in acoustic communication
systems 65

water environment. It was found that through the use of time-reversal it was
possible to transmit signals without the need for complex channel compens-
ation techniques. The duration for which time-reversal continued to provide
sufficient filtering for it to be used in a communication system was examined
by Rouseff et al. [2001] for a number of environmental conditions. In be-
nign conditions the communication continued to operate for several seconds,
however under windy conditions or when the source is drifting, the symbols
became less distinguishable rather quickly.

The developments that have arisen in passive phase conjugation are as
follows:

• Silva et al. [2000] presents a method known as “virtual” electronic time-
reversal. This method is essentially the same as passive phase conjug-
ation. Simulations were conducted for a single source operating at a
depth of 36m in a 40 m deep shallow water environment, transmit-
ting to an array 2 km away having 18 elements spaced between 20 m
and 36.5 m. The simulations showed that the implementation of pass-
ive TR was possible with a reduced complexity of structure compared
with other filtering techniques.

• Yang [2003] discussed the Inter-Symbol-Interference (ISI) for active
and passive time-reversal using simulations in conjunction with experi-
mental work. It was found that whilst the pulse for individual channels
had large side-lobes resulting in high ISI, using multiple channels with
spatial diversity decreased the magnitude of the side-lobes and also
phase fluctuations.

• Flynn et al. [2004] extended the PPC by combining it with an ad-
aptive decision-directed channel-estimation technique. The technique
was developed to avoid the time delay resulting from periodic channel
estimation when the environment had changed and the PCC channel
estimates were no longer useful. The technique involved performing
PPC, and performing phase synchronisation and symbol detection after
which the channel estimate is updated as the symbols are detected. An
experiment was conducted in May 2000, having a range of 500m to 5 km
and the water depth varied between 10 and 120m. The results showed
outstanding performance compared to PCC.

• Yang [2004] compared passive time-reversal, and the general DFE (De-
cision Feedback Equaliser) in radio wave communication systems. It
was found that for a small number of receivers, the passive time-reversal
technique does not remove all the ISI compared with the DFE, which
also resulted in a higher output SNR. However, the DFE was found to

66 Chapter 3 Literature Review

have the following problems with numerical sensitivity with large num-
bers of taps, and estimation error from channel IRF variances and Dop-
pler shifts. In some instances, the DFE did not converge with real data,
as the DFE only works well with high temporal coherence. The pass-
ive time-reversal technique was found to be much more stable, so Yang
[2005] coupled the passive time-reversal with a DFE. The technique de-
veloped by Yang [2005] was shown to be computationally simple, fast,
and require a small number of tap co-efficients. The design was shown
to be stable, with no or minimal user intervention required.

• Rouseff [2005] examined the ISI resulting from passive time-reversal
with respect to a physical model of the environment. It was found
that ISI was linked to three parameters: bandwidth, number of array
elements, and the length of the FIR (Finite Impulse Response) matched
filters. It was found that the performance had only a small dependence
on array geometry, and thus receiver arrays might not necessarily be
required to span the entire water column.

• Song et al. [2006b] examined a passive time-reversal technique between
a source and an array whereby the source was either fixed or moving.
The passive time-reversal technique was examined with and without
an adaptive channel equaliser. The experiment was conducted with
ranges of 4.2 km and 10 km, in 118m deep water. When the source
was moving, it was at a speed of 4 knots. The use of an adaptive
equaliser with passive time-reversal always outperformed time-reversal
alone, with a difference up to 13 dB and 5 dB for a moving and fixed
source respectively. When an adaptive equaliser was used, two or three
receivers provided reasonable performance. It was also found that the
performance of time-reversal without any other equaliser saturates with
no additional gain from spatial diversity for a given channel complexity.

• Song et al. [2007] demonstrated that MIMO (Multiple-Input/Multiple-
Output) communication can be achieved using passive time-reversal
coupled with a DFE. Experiments were conducted in 120m deep water
between two arrays moored at 4 km for one experiment, and 20 km for
the second. A number of user configurations were demonstrated using
a carrier frequency of 3.5 kHz and a 1 kHz bandwidth, and it was found
that as many as six users could transmit over a distance of 4 km using
QPSK modulation, and three users could transmit over a distance of
4 km using 16-QAM.

• Song et al. [2009] processed basin-scale data with the passive time-
reversal technique. The basin-scale data was obtained from an exper-
iment conducted in 1994 that transmitted data at 75Hz using binary

3.3 Channel compensation techniques used in acoustic communication
systems 67

phase shift keying over a distance of 3250 km in deep water. The in-
formation rate was 37.5 bit/s and the multi-path spanned 5 to 8 seconds.
The passive time-reversal technique was able to recover the transmit-
ted information with very few errors, demonstrating the effectiveness
of time-reversal for basin-scale environments.

3.3.2 Active time-reversal in underwater acoustic
communication

The earliest implementation of active time-reversal was made by Edelmann
et al. [2002]. The system developed by Edelmann et al. [2002] transmitted
a Binary Phase Shift Key (BPSK) signal using the time-reversal of a signal
obtained from the transmission of a 2ms, 3.5 kHz pure tone pulse and trans-
mitting replicas of this waveform with a positive or negative scaling. Scatter
plots showed that TR assists in mitigating the ISI. Active phase conjugation
was found to achieve a vertical focus of less then 10m when transmitting over
11 km in a shallow water environment having a depth that varied between
110 and 130m. Time-reversal was compared again using a single source
as a transmitter and using all the transmitters simultaneously emitting the
same signal (broadside) for a number of environments. In all instances time-
reversal outperformed single source and broadside transmissions.

Smith et al. [2003] examined active time-reversal in conjunction with
non-coherent communication, specifically frequency shift keying (FSK) using
numerical models. The temporal focusing of time-reversal overcomes the
requirement for guard times that was found for FSK. The technique was
found to be able to focus different messages simultaneous to different receiver
locations. From simulation, it was found that:

• The size of the focus decreased in dimension as carrier frequency in-
creased.

• The horizontal footprint was larger than the vertical footprint.

• Altering the frequency and using the same bandwidth, the temporal
focusing did not change significantly.

• Varying the element spacing had a small impact on the size of the focus.

• Increasing the aperture only resulted in a small improvement in the
focusing, however when the aperture was increased to 20λc a dramatic
improvement was observed.

These outcomes were confirmed by Heinemann et al. [2003] using a small
scale tank experiment.

68 Chapter 3 Literature Review

Edelmann et al. [2005] reported on active underwater acoustic commu-
nication experiments conducted in May-June 2000. The experiments were
performed over a range of 10 km in 110m to 120m flat shallow water and
subsequently in a shallow up-slope environment. The signal operated at a
carrier frequency of 3.5 kHz with a bandwidth of 500Hz. The performance of
both BPSK and QPSK (Quadrature Phase Shift Keying) modulations were
investigated. Whilst the signals were able to transmit with minimal errors,
Edelmann et al. [2005] considered that the major limitation to time-reversal
communication was the self-generated ISI from the time-reversal process.
The suggestion was made that further improvements could be obtained by
using time-reversal in conjunction with a Decision Feedback Equaliser.

3.3.3 Other time-reversal investigations in underwater
acoustic communication

A number of authors have investigated the application of active and passive
time-reversal, or alternate implementations such as that presented by Roux
et al. [2004]. An outline of the work that has been developed for general
time-reversal theory follows:

• Candy et al. [2004] described how point-to-point time-reversal could
be implemented in four ways: (1) Filtering at transmitter using Greens
function; (2) Filtering at transmitter using probe signal; (3) Filtering at
receiver using Greens function; or (4) Filtering at receiver using probe
signal. It can be observed that these implementations are essentially
active (1 and 2) or passive (3 and 4). Acoustic experiments were carried
out in air to compare these implementations. Unfortunately the probe
signal is not defined in this paper.

• Roux et al. [2004] described a technique called non-reciprocal time-
reversal (NR-TR). In this technique, a pulse is emitted on each element
of a source array, with a delay between each element, then the signals
received at the receiver array are wirelessly transmitted back to the
transmitter array for use as time-reversal filters. It was also shown
that rather than transmitting the signal back wirelessly, the received
signals could be used to passively determine an estimate of the original
source signal using a cross-correlation at the receiver (as per passive
phase conjugation).

• Candy et al. [2005] examined the spatial focusing of time-reversal us-
ing an air-acoustic experiment. The performance of the time-reversal
filter was examined for various number of bits in the A/D converter.
Using only 1-bit conversion degradation was observed however the sig-
nal was still reasonable and the approach could prove cost effective.

3.3 Channel compensation techniques used in acoustic communication
systems 69

Candy et al. [2005] also extended the four methods of implementation
described in Candy et al. [2004] to multiple transmitters and receivers.

• Stojanovic [2005] noted that it was often overlooked that whilst TR
maximises SNR, it also increases the duration of the response. Filters
were presented that maximised the SNR whilst having no ISI, or had
controlled ISI that could be compensated by an equaliser. The filter
structures were designed to limit the filtering to be only at the source,
the receiver, or both source and receiver. Limiting the filtering at either
the source or receiver was implemented to reduce the complexity, if
processor power was limited. The design structures examined either
multiple transmitters or multiple receivers, but never both. The filter
structures developed outperformed TR which was considered severely
performance limited due to ISI.

• Song et al. [2006c] presented results of underwater acoustic experi-
ments conducted over a range of 8.6 km in 105m deep shallow-water.
The modulations used were BPSK, QPSK and 8-QAM and operated
at 3.5 kHz with 1 kHz bandwidth. The implementation for transmit-
ting the data was the same as that used by Roux et al. [2004] where
the channel was recorded at the receivers, and wirelessly transmitted
back to the transmitter array to transmit signals that focused on each
receiver. Song et al. [2006c] found that it was possible to achieve multi-
channel communication using TR without any equalisation.

• Song et al. [2006a] investigated time-reversal communications with ad-
aptive channel equalisation. Near optimal results were obtained (with
respect to the optimal solution presented by Stojanovic [2005]) using
this design. A conclusion suggested by Stojanovic [2005] that the re-
ceiver requires a matched filter was challenged since TR actually be-
haves as a matched-filter.

• Fannjiang [2006] examined MIMO time-reversal between two arrays
separated by screens with pinholes, and was able to derive an upper
limit for the bandwidth for this arrangement.

• Song and Kim [2007] wrote a paper that was a response to the work
presented by Stojanovic [2005], whereby it was claimed that “Stojanovic
[2005] did not include important propagation physics that, if included,
potentially alter some of the conclusions in Stojanovic [2005].” The pa-
per examined arrays capable of using the spatial diversity to compare
the performance of the approaches. It is found that there are basically
four different approaches: (1) TR alone; (2) TR with equalisation; (3)
Equalisation with a fixed transmit array (does not use channel inform-
ation); and (4) The optimal approach.

70 Chapter 3 Literature Review

Song and Kim [2007] also critiqued the paper by Stojanovic [2005],
and noted that

1. The use of four elements with a spacing of λ/2 did not provide a
large enough aperture to resolve the multi-path, which is required
for the TR process to compete with the other approaches.

2. Stojanovic [2005] incorrectly normalised the power for the case
of a single transmitter and multiple receivers. It was stated that
the transmitter power should be held constant and increasing the
number of receivers actually increases the power received.

An interference pattern discussed by Stojanovic [2005] was shown to
omit a frequency-dependent phase delay that results in smearing of the
interference pattern.

Song and Kim [2007] found that after re-performing the simulations
incorperating changes to address the points raised, it was found that
the equalisers generally performed extremely similarly (including the
passive time-reversal and equaliser combination). In general the TR
performed better than initially portrayed by Stojanovic [2005].

3.3.4 Inverse filtering in underwater acoustic
communication

The use of Tikhonov inverse filtering for acoustic communication has not
received the same attention as time-reversal. The first investigation of Tik-
honov inverse filtering for underwater acoustic communication was given by
Cazzolato et al. [2001]. It was shown that using Tikhonov regularised inverse
filters achieves better temporal focusing and slightly greater spatial focusing
than TR for a simulated underwater environment. Simulations were con-
ducted for a shallow water environment with a constant depth of 145m.
Comparisons were made between the temporal focusing for broadside, time-
reversal and Tikhonov inverse filtering using two elements or sixteen elements
to transmit an impulse to a probe source at a depth of 85m located 2 km and
5 km away. Tikhonov inverse filtering was found to perform well when using
both two and sixteen elements, however time-reversal was found to improve
dramatically by increasing the number of transmission elements. In both
cases, the focal region was slightly better for inverse filtering.

Cazzolato et al. [2001] also investigated the transmission to multiple loc-
ations (MIMO) using inverse filtering. The simulations showed that MIMO
implementation of Tikhonov inverse filtering greatly reduced the cross-talk.
The cross-talk ability of time-reversal was not compared, however the natural

3.4 Conclusion and Gap Statement 71

cross-talk of independent single-channel Tikhonov inverse filtering was com-
pared against the MIMO Tikhonov inverse filtering, where the latter proved
to have much better cross-talk cancellation.

The final examination performed by Cazzolato et al. [2001] was to exam-
ine the performance of Tikhonov inverse filtering using a reduced number of
bits in the A/D converters, as first suggested by Derode et al. [1999]. The
simulations found that using 1-bit time-reversal introduced considerable noise
into the transmission. To examine the performance of reducing the number
of bits in the D/A and A/D converters, quantisation was performed for two
cases: on the measured IRF used to generate the filter, and on the signal
outputs from the filters. These two cases effectively simulate the reduction in
the number of A/D bits for the receiver and transmitter respectively. It was
found that a reduction in the number of bits during input had a more dra-
matic effect that on the output. Inverse filtering was found to out-perform
both broadside and phase conjugation for all the combinations of bits invest-
igated (1, 2, 4, 8 and ∞) when applied at the input or output stage, except
for 1-bit output where the difference in error was minimal. Whilst all the
filters were found to function with a reduced number of bits, reducing the
number of bits to less than 4 bits was found to penalise the performance
considerably.

The examination of Tikhonov inverse filtering for underwater acoustic
communication conducted by Cazzolato et al. [2001] was limited in that the
signals used in the examination consisted of single chirps rather than constant
data streams. The work presented by Kim and Shin [2004] examined using
a technique known as an adaptive time-reversal mirror (ATRM) that was
developed by Kim et al. [2001a]. Examination of the technique shows that
the design structure is closer to that of an inverse filtering technique (see Kim
and Shin [2004, Eq. 10]). Kim and Shin [2004] examined the functionality of
the ATRM (and thus the inverse filter) communication system using a longer
data stream and found that it significantly outperformed the TR technique.

3.4 Conclusion and Gap Statement

This chapter has examined the literature concerned with the implementa-
tion of underwater acoustic communication systems. The early investiga-
tions made into underwater acoustic communication systems used the tech-
nology that had been developed for radio wave communications. A major
difficulty found when implementing this technology was that the underwater
environment differs from the radio wave environment since it is highly rever-
berant due to the large number of reflections between the sea surface and
sea floor. This reverberation has resulted in the development of complicated
signal processing to compensate for the reverberation. A technology known

72 Chapter 3 Literature Review

as time-reversal has seen considerable research in recent years and provides a
means of compensating for the reverberation with reduced complexity. The
use of the time-reversal method also results in spatial focusing of the signal
at the receiver location. Time-reversal has thus been considered as a means
of increasing the transmission rate through the use of multiple transmitters
and receivers. Several authors have investigated the performance of time-
reversal compared with recently developed communication techniques and it
has been shown that time-reversal requires additional signal processing to
achieve similar performance.

Another technique know as Tikhonov inverse filtering was suggested by
Cazzolato et al. [2001] as a technique that is similar to time-reversal in that
it provides a reduced complexity filter design in addition to spatial focus-
ing. Using a simulation of a single pulse transmitted in an underwater
environment, it was shown that Tikhonov inverse filtering out-performed
time-reversal in spatial focusing and signal quality. Whilst there has been
considerable development in the use of time-reversal filtering in underwater
acoustic communication systems, the Tikhonov inverse filter has not seen
significant attention.

The goal of this work is to address this gap in the knowledge on the
relative performance of Tikhonov inverse filters by implementing Tikhonov
inverse filter design in a digital communication system and examining its per-
formance with respect to both time-reversal, and a recently developed filter
design by Stojanovic [2005]. When implementing Tikhonov inverse filtering
in communication systems, a number of adjustable parameters exist that in-
clude the transducer placement, sensitivity of the transducers, parameters of
the inverse filters, design structure of the inverse filter, data-rate, and carrier
frequency. This research aims to investigate the influence these parameters
have on the system design and its performance.

This chapter has provided a review of the literature relating to time-
reversal and Tikhonov inverse filtering, along with various applications and
observed features of these filter designs. This literature review has been given
to provide relevant information of the recent advancements that relate to the
work conducted in this thesis. This thesis expands on this previous work
in Chapter 4 which examines the influences of amplifier sensitivities on Tik-
honov inverse filtering; Chapter 5 which describes experiments conducted to
investigate the implementation of Tikhonov inverse filtering; and Chapter 6
which presents the theory and analysis of simulation results relating to the
relative performance of Tikhonov inverse filtering.

4 Influences of amplifier
sensitivities on Tikhonov inverse
filtering

The implementation of Tikhonov inverse filtering in acoustic communication
systems is influenced by the sensitivity of the transmitter and receiver. The
role of this chapter is to investigate this relationship to better understand
the influence the sensitivities have on communication systems that implement
Tikhonov regularised inverse filtering.

The work presented in this chapter has previously been published in the
journal paper entitled “Transducer sensitivity compensation using diagonal
preconditioning for time-reversal and Tikhonov inverse filtering in acous-
tic systems”, by P. Dumuid, B. Cazzolato and A. Zander, published in the
Journal of Acoustical Society of America Vol. 119 (1), pp. 372-381, Jan 2006.

4.1 Introduction

The aim of the research presented in this chapter has been to investigate the
implementation and performance of Tikhonov inverse filtering and similar
compensation systems in conjunction with digital communication systems
with specific application to shallow water acoustic environments. During the
implementation of channel compensation systems in laboratory experiments
it was observed that the performance of the communication system was influ-
enced by the sensitivities of the amplifiers used for the sources (loudspeakers)
and receivers (microphones).

In this chapter the influence of transducer sensitivities on the perform-
ance of these filters is examined. It is shown that the choice of transducer
sensitivity has a considerable influence on the resulting filters and can neg-
atively affect the performance of the resulting filter. To compensate for the
decrease in performance, diagonal preconditioning can be implemented in the
system. By using diagonal preconditioning, the loss in performance arising
from unbalanced sensitivities can be reduced. An algorithm is proposed that
calculates a set of diagonal matrices to precondition the channel matrix. The

73

74
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

algorithm is applied to a system to illustrate the technique, and the improve-
ments of the filter performance are shown and discussed.

4.2 Theory

4.2.1 Introduction

The multi-channel filter will be discussed based on the system presented in
Figure 3.10. It was shown in Section 3.2.2 that the Tikhonov regularised
inverse filter design is given by

Hκ(ωi) =
(
CH(ωi)C(ωi) + κI

)−1
CH(ωi). (4.1)

where κ is the regularisation parameter, and the matrix, A(ω), in Equa-
tion 3.30 has been substituted with the identity matrix, I, since it is desired
to replicate the source signals at the target receivers.

Denoting the transmitter and receiver sensitivities as αi, i ∈ [1, N] and
βj, j ∈ [1,M] respectively, the transfer matrix of the system with the sensit-
ivities included can be expressed as

Cg(ω) =


β1 0 · · · 0

0 β2
...

... . . . 0
0 · · · 0 βM

C


α1 0 · · · 0

0 α2
...

... . . . 0
0 · · · 0 αN


= βC(ω)α (4.2)

A question raised by this form is: What influence do the sensitivities
have on the resulting inverse filters? In this section it will be shown that the
selection of α and β to achieve the smallest condition number for Cg(ω) also
decreases the high regularisation needed for causality of the inverse filters
that result from a poor choice of sensitivities.

In single channel systems, the coherence between the input and the output
of the system is maximised by setting the sensitivity of the transmitters to
the maximum value possible to reduce the noise from the electro-acoustic
portion of the system, typically the largest source of noise in an acoustic
system. However, with a multi-channel time-reversal or Tikhonov inverse
filter design, the level of the received signal is actually determined by the
filter design that is developed considering the channel and the sensitivities.

Setting the sensitivities to their maximum value for multi-channel systems
does not always maximise the coherence between the input and output of the
entire system consisting of the inverse filter, the sensitivities and the electro-
acoustic system. It will be shown in the following sections that the algorithm

4.2 Theory 75

developed here will produce the optimal set of sensitivities that provide the
most balanced coherence for all channels.

4.2.2 Influence of transducer sensitivities on the
performance of the Tikhonov regularised inverse
filter

4.2.2.1 An “equally responsive system”

The influence of diagonal preconditioning on the Tikhonov inverse filter for
the conditions κ = 0, and κ tending toward infinity, shall be examined. The
examination shall be performed for a system C(ω) that is “equally respons-
ive”. A system shall be defined to be “equally responsive” when a signal
transmitted from each input results in a similar level of excitation at each of
the receivers.

When κ = 0, (i.e. no regularisation) the filter created using Equation 4.1
is found to be

H(ω) =
(
αCH(ω)ββC(ω)α

)−1
αCH(ω)β

= α−1
(
CH(ω)β2C(ω)

)−1
CH(ω)β (4.3)

If β = I, (i.e. equal receiver sensitivities), then Equation 4.3 shows that
the signal amplitude for transmitter i will be scaled by 1

αi
. The filter will

thus create a set of signals that generates a higher signal level for the weaker
transmitters. It then follows that the dynamic range will be fully utilised
only for the output channel with the smallest sensitivity (assuming all the
transducers have the same input dynamic range). When the matrix C is
square (i.e. the same number of transmitters and receivers), Equation 4.3
can be reduced to

H = α−1
(
CH(ω)C(ω)

)−1
CH(ω)β−1 (4.4)

showing that a similar attenuation is applied to the input signal according
to the choice of receiver sensitivities, β.

When regularisation is included, it can be noted from consideration of
Equation 4.1 that as κ is increased,

(
CH

g Cg + κI
)−1 tends toward 1

κ
I, and as

a result, the resulting filter approaches

H(ω) =
1

κ
CH

g (ω) (4.5)

=
1

κ
αCH(ω)β (4.6)

which can be observed to be a scaled version of the frequency domain rep-
resentation of the multi-channel time-reversal filter [Kuperman et al., 1998,

76
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

Jackson and Dowling, 1991, Prada et al., 1996],

H(ω) = CH(ω). (4.7)

The effect of the sensitivities on this filter design is that the signal to trans-
ducer i is scaled by αi, and the signal transmitted to receiver j is scaled by
βj. It then follows that the dynamic range will only be fully utilised for the
output channel with the largest sensitivity.

It has been shown that at the two extremities of κ = 0 and κ → ∞,
(denoted hereafter as inverse filtering (IF) and time-reversal filtering (TRF)),
the full dynamic range of the transducer will only be effectively used if the
transducer sensitivities are equal for an “equally responsive system”. It can
then be noted that if the system is not “equally responsive” (i.e. a source or
receiver positioned close to a pressure node), it would be desirable to find an
alternative set of sensitivities that would transform the total system into an
“equally responsive system”.

4.2.2.2 Influence of transducer sensitivities on the total system

With reference to Figure 3.10, the total system transfer function, being the
combination of the filter and the system, is given by

T(ω) = C(ω)H(ω). (4.8)

The influence that the transducer sensitivities have on the total system for
IF and TRF can be observed by inserting Equations 4.3 and 4.6 into Equa-
tion 4.8. The system transfer functions for IF and TRF are given by

TIF = βCαHIF

= βCα
((

αCHββCα
)−1

αCHβ
)

= I (4.9)

and

TTRF = βCαHTR

= βCα
(
αCHβ

)
= β

 N∑
i=1

α2
i

 c1i

c2i
...

 [c∗1i c∗2i · · ·
]β (4.10)

respectively, and the matrix c1i

c2i
...

 [c∗1i c∗2i · · ·
]

(4.11)

4.2 Theory 77

is the transfer matrix due to the ith transmitter. It is thus observed that the
variation of the transducer sensitivities has no influence on the total response
for an IF but considerable influence on the TRF.

Considering that CCH is diagonally dominant [Tanter et al., 2000], Equa-
tion 4.10 shows that the transducer sensitivities β result in the signal at the
jth receiver being scaled by β2

j , and the sensitivities α result in the scaling
of the ith transfer matrix by α2

i . Since in practise the Tikhonov inverse fil-
ter has a non-zero regularisation parameter, it is considered reasonable to
assume that the transmission channels would also be unequally scaled.

4.2.2.3 Examination of the transfer matrix singular values

In this section, the influence of the transducer sensitivities on the Tikhonov
IF will be examined according to the singular value decomposition (SVD) of
the system matrix, given by

C(ω) = U(ω)Σ(ω)VH(ω)

=
N∑
i=1

σiui(ω)vH
i (ω) (4.12)

where U(ω) and V(ω) are unitary matrices, Σ(ω) a diagonal matrix of sin-
gular values, σi, i ∈ [1, N], and ui(ω) and vi(ω) are the corresponding basis
vectors within the unitary matrices. The inverse filter with no regularisation
can then be expressed as

HIF(ω) = V(ω)Σ−1(ω)UH(ω)

=
N∑
i=1

vi(ω)uH
i (ω)

σi
(4.13)

and the addition of the regularisation results in the filter

HTIF(ω) = V(ω)ΣTIF(ω)UH(ω)

=
N∑
i=1

(
σ2
i

σ2
i + κ

)
vi(ω)uH

i (ω)

σi
(4.14)

where the subscript TIF denotes Tikhonov inverse filter. In subsequent equa-
tions the frequency dependence, (ω) is implied, but not shown. In Equa-
tion 4.14 it can be seen that the magnitude of κ compared to σ2

i (the sin-
gular values of C(ω)CH(ω)) determines the effectiveness of the “basis vector
coupling” between ui and vi [Tanter et al., 2001]. “Basis vector coupling”
is physically described as follows: ui is considered similar to a mode shape
that, when excited, results in an excitation of the receivers with a phase and
amplitude, vi, scaled according to the coupling factor of σi.

78
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

When the sensitivities are included, the filter becomes

Cg = βUΣVHα (4.15)
= UgΣgV

H
g (4.16)

where Ug,Vg and Σg are the unitary and singular matrices of the new sys-
tem. The basis vector coupling matrices, uiσiv

H
i , have been converted to

βuiσiv
H
i α. Since the set of vectors, βui, i ∈ [1,M] and αvi, i ∈ [1,N] (being

the transformation of the original basis vectors), cannot be simply scaled to
form another orthonormal set, it can be concluded that there is no trivial
solution to relate the singular values of C to those of Cg.

In this work, the goal is to determine a new set of sensitivities that reduce
the regularisation that results from a poor choice of sensitivities. Given a
fixed regularisation parameter, κ, Equation 4.14 shows that to reduce the
effect of the regularisation on the singular values, sensitivities should be
chosen that result in the largest singular values possible. This strategy by
itself is unrealistic because the problem is unconstrained since α and β can
be chosen to scale the singular values by any desired amount, x, by using a
set of scaling matrices,

α = xI, β = I, (4.17)

It can be further shown using Equation 4.14, that the change in regularisation
that results from scaling the sensitivities by x can equivalently be achieved by
selecting a different regularisation parameter, κ′ = x2κ. Thus, the objective
of adjusting the sensitivities should not be to scale the singular values, but
to minimise the condition number, being the ratio of the largest and smallest
singular values.

4.2.3 Calculation of desirable transducer sensitivities

In this section it will be assumed that it is possible to alter the sensitivities
of the transducers in the system by altering the sensitivity of the amplifiers.
In Section 4.2.2, two sets of ideal transducer sensitives were proposed that:
(1) Achieve an “equally responsive system”, and (2) Reduce the condition
number of the matrix.

4.2.3.1 Sensitivities for an “equally responsive system”

In order to have an “equally responsive system”, the transducer sensitivities
are chosen such that every input signal to the system excites the outputs of
the system with the same magnitude. This can be expressed as

|βCαe1|2 = |βCαe2|2 = · · · = |βCαeN|2 (4.18)

4.2 Theory 79

where |·|2 is the norm-2 (or Euclidean length) of a vector, and the vectors
e1, . . . , eN are the standard basis vectors for RN. This condition can be
achieved by setting

βi = 1

α2
j =

1∑M
i=1 |cij|

2
(4.19)

By using this scaling, the resulting filters will equalise the signals trans-
mitted, but not the signals received. In order to achieve equal signal levels
at the receivers, a further condition can be imposed: for a simultaneous unit
input on all the channels, the energy at each output is to be equal. To achieve
this, a set of diagonal matrices, α and β, are chosen such that

r2
1 = r2

2 = · · · = r2
M (4.20)

where 
r1

r2
...
rM

 = βCα


1
1
...
1

 (4.21)

A solution that achieves this is

αj = 1

β2
i =

1∑N
j=1 |cij|

2
(4.22)

If the conditions in Equations 4.19 and 4.22 are met, the system responds
equally, and thus Tikhonov inverse filtering can be found to effectively use
the full dynamic range of all the transducers within the system.

In order to obtain a perfect “equally responsive system”, both Equa-
tions 4.19 and 4.22 would need to be simultaneously met. However, it is not
always possible to meet both these conditions, and an algorithm is presented
in the following section that attempts to provide a close approximation.

4.2.3.2 Sensitivities to reduce the condition number of the
system

In Section 4.2.2.3 it was shown that a suitable choice of diagonal matrices
was the set that minimised the condition numbers of the system. Van der
Sluis [1969] discussed that minimisation of the condition number could not
be expected to be easily achieved, however it was shown [Van der Sluis,

80
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

1969, Theorem 3.5] that the condition number of the matrix αC was upper
bounded to be a factor of

√
m from the minimum when all the rows have

equal 2-norms, and the condition number of Cβ was upper bounded to be
a factor of

√
n from the minimum when all the columns have equal 2-norms

for an m×n C matrix. From Equations 4.19 and 4.22, the diagonal matrices
that best use the dynamic range of the transducers also results in a matrix
of equal 2-norm of both the rows and columns. Thus the design techniques
presented in Sections 4.2.2.2 and 4.2.2.3 have the same solution, being that
of diagonal matrices that result in Cg having rows and columns of equal
2-norm.

Finding a set of diagonal matrices that achieve equal 2-norms of both
the columns and rows simultaneously is a non-trivial problem. In order
to approximate such a condition, Ruiz [2001] presented an algorithm that
applies Equations 4.19 and 4.22 iteratively and converges to a set of diagonal
matrices having equal 2-norms of both rows and columns of the combined
matrices. The algorithm by Ruiz [2001] is considered as a suitable means to
calculate an optimal set of diagonal matrices and is presented as follows:

Algorithm 1

Ĉ(0) = C, β(0) = I, α(0) = I

for k = 0, 1, 2, . . . , until convergence do:

DR = diag

(√∣∣∣r(k)
i

∣∣∣
2

)
i=1,...,m

, and

DC = diag

(√∣∣∣c(k)
j

∣∣∣
2

)
j=1,...,n

Ĉ(k+1) = D−1
R Ĉ(k)D−1

C

β(k+1) = β(k)D−1
R , and α(k+1) = α(k)D−1

C

where r
(k)
i and c

(k)
j are the ith row and jth column of the matrix Ĉ(k) re-

spectively. For the experimental results given in Section 4.3, it was found
that adequate convergence of the algorithm was reached after 20 iterations,
after which further iterations had little influence on the magnitudes of the
values in the matrices.

4.2 Theory 81

4.2.4 Implementations of preconditioning in digital
systems

So far the implementation of sensitivity compensation has only been dis-
cussed with respect to scaling within the analog domain. In this section
the concept of scaling the signal within the digital domain will be presen-
ted. Figure 4.1 shows a number of variations of how preconditioning can be
performed in the analog and digital domain.

To develop a filter for use in the digital domain, it is observed that the
filter, Hg, is designed such that

[βCα] Hg ' I (4.23)

where the square brackets have been included to denote the analog domain.
It then follows that

β−1βCαHg ' β−1

[C]αHgβ ' I (4.24)

Thus an inverse filter for use in the digital domain is given by

Hdigital = αHgβ

= α
(
(βCα)H(βCα) + κI

)−1
(βCα)Hβ

=
(
CHβ2C + κα−2

)−1
CHβ2 (4.25)

The digital and analog implementations are shown in Figure 4.1b and 4.1c,
where, H { }, is the Tikhonov regularised inverse filter operator defined as

H {X} =
(
XHX + κI

)−1
XH. (4.26)

When applying diagonal preconditioning in the analog domain, α and β are
chosen to transform the system Cg(z) into an “equally responsive system”
such that the signals at the input and output of the system have relatively
equal amplitudes. However, if the scaling is performed within the digital
domain, the amplitude of the signals at the D/A and A/D converters are

sD/A(z) = αv(z) (4.27)

and

sA/D(z) = β−1w(z) (4.28)

respectively, showing that the filter does not make effective use of the D/A
and A/D converters. Thus the only benefit to using diagonal preconditioning
in the digital domain is to reduce the unequal regularisation on the singular
values which results from a poor choice of sensitivities.

Note that the scaling arrangement (d) shown in Figure 4.2 will be ad-
dressed in the next section.

82
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

Figure 4.1: Diagonal preconditioning systems: (a) no diagonal precondition-
ing; (b) digital preconditioning; (c) analog preconditioning; and (d) scaled
version of the Tikhonov inverse filter.

4.3 An example analysis
In this section, a simulation will be used to demonstrate the concept of di-
agonal preconditioning. The simulation repeats the simulation performed by
Kirkeby et al. [1998], however the data has been altered to emulate a system
with incorrect amplifier sensitivities. The preconditioning algorithm is then
used to correct the amplifier sensitivities. The simulation consists of using
Tikhonov regularised inverse filtering with four speakers to generate a set
of desired signals at four points surrounding a dummy head. For a detailed
overview of the physical configuration, see Kirkeby et al. [1998]. The simula-
tion utilises transfer functions created by Gardner and Martin [1994] which
are freely available for download from the MIT Media Laboratory website
(World Wide Web Address: http://sound.media.mit.edu/KEMAR.html).
The impulse responses that describe the system are shown in Figure 4.2. It
should be observed that due to symmetry in the experiment, the impulse
response matrix can be approximately written in the form

C(z) =


c1(n) c2(n) c3(n) c4(n)
c2(n) c1(n) c4(n) c3(n)
c5(n) c6(n) c7(n) c8(n)
c6(n) c5(n) c8(n) c7(n)

 . (4.29)

It can be observed from Figure 4.2 that the energies of c1(n), c3(n), c5(n),
and c7(n) are relatively equal, and similarly the energies of c2(n), c4(n), c6(n),
and c8(n) are relatively equal. It can thus be concluded that the norm-2 of the
rows and columns of this matrix are likely to be fairly similar, and thus the
system is already “equally responsive”. To examine the influence of diagonal
preconditioning, a set of sensitivities will be used to cause the system to be

4.3 An example analysis 83

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

Figure 4.2: The impulse responses crs(n) of the system (replica of Kirkeby
et al. [1998, Fig. 3]), showing the response amplitudes versus sample, n. In
this figure, the sub-figure at row i, column j corresponds to the IRF of the
channel between transmitter j and receiver i.

poorly scaled and a set of sensitivities is calculated using Algorithm 1 to
compensate for the poor scaling.

The set of sensitivities arbitrarily chosen to create a system with poor
scaling is given by

αp =


1.00 0 0 0

0 0.50 0 0
0 0 1.00 0
0 0 0 1.00



βp =


0.25 0 0 0

0 1.00 0 0
0 0 1.00 0
0 0 0 1.00

 (4.30)

with the resulting IRFs shown in Figure 4.3a. This system will be denoted as
Cp, where the subscript p denotes poorly scaled. The scaling physically cor-
responds to transmitter 2 having half the sensitivity of the other transmitters
and receiver 1 having a sensitivity a quarter that of the other elements. A set
of compensating sensitivities were then calculated by applying Algorithm 1

84
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

Table 4.1: Energy within the rows and columns of the transfer matrices

System Rows Columns
Poorly scaled system (Cp) [0.70 0.44 0.77 1.00]T [0.24 0.81 1.00 0.86]
Compensated

(
βgCpαg

)
[1.00 0.98 1.00 0.98]T [0.98 1.00 0.98 1.00]

to the system root-mean square matrix,

E =
√∑

n c
2
11(n)

√∑
n c

2
12(n)

√∑
n c

2
13(n)

√∑
n c

2
14(n)√∑

n c
2
21(n)

√∑
n c

2
22(n)

√∑
n c

2
23(n)

√∑
n c

2
24(n)√∑

n c
2
31(n)

√∑
n c

2
32(n)

√∑
n c

2
33(n)

√∑
n c

2
34(n)√∑

n c
2
41(n)

√∑
n c

2
42(n)

√∑
n c

2
43(n)

√∑
n c

2
44(n)

 . (4.31)

The resulting compensation sensitivities are

αg =


1.06 0 0 0

0 1.85 0 0
0 0 0.99 0
0 0 0 0.83



βg =


3.30 0 0 0

0 0.96 0 0
0 0 0.79 0
0 0 0 0.93

 . (4.32)

Figure 4.3b shows the IRFs of the system after sensitivity compensa-
tion has been applied (i.e. the application of αpαg and βpβg to the initial
system.) Table 4.1 shows the energy within the rows and columns of both
systems, normalised such that the largest energy level is unity. As the energy
within each row and each column for the sensitivity compensated system are
of similar magnitude (in contrast to that of the poorly scaled system), the
algorithm is thus observed to work as desired.

The singular values of the two systems as a function of frequency are
shown in Figure 4.4. It can be observed in this figure that when the system
is poorly scaled, the spread of the singular values is much larger and there-
fore the condition number is higher than that obtained when compensation
sensitivities are used.

Figure 4.5 shows the sensitivities, α and β, that would result in the
optimal scaling for each particular frequency. It can be observed that with
sensitivity compensation, the spread of these curves is reduced. If the system
is to be used for band-limited operation, then in practise a choice of sensit-
ivities would be found by averaging α and β over the desired bandwidth of
operation.

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

(a) Poorly scaled system, Cp

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

0 50 100
−1

0

1

(b) Poorly scaled system after application of sensitivity
compensation, βgCpαg

Figure 4.3: The impulse responses c(n). In these figures, the subplot at row i,
column j corresponds to the IRF of the channel between transmitter j and
receiver i.

0 5 10 15 20
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(a) Poorly scaled system, Cp

0 5 10 15 20
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(b) Poorly scaled system after application of sensitivity
compensation, βgCpαg

Figure 4.4: The singular values of C(ω).

85

86
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

0 5 10 15 20
10

−1

10
0

10
1

10
2

Frequency [kHz]

α
 s

c
a
lin

g
 f
a
c
to

rs

0 5 10 15 20
10

−1

10
0

10
1

10
2

Frequency [kHz]

β
 s

c
a
lin

g
 f
a
c
to

rs

(a) Poorly scaled system, Cp

0 5 10 15 20
10

−1

10
0

10
1

10
2

Frequency [kHz]

α
 s

c
a
lin

g
 f
a
c
to

rs

0 5 10 15 20
10

−1

10
0

10
1

10
2

Frequency [kHz]

β
 s

c
a
lin

g
 f
a
c
to

rs

(b) Poorly scaled system after application of sensitivity
compensation, βgCpαg

Figure 4.5: Optimal values of α and β with respect to frequency, calculated
using the preconditioning algorithm. x1, x2, x3, x4

where x = α and β respectively.

In Section 4.2.4 it was shown that diagonal preconditioning could be per-
formed in either the digital or analog domain. To understand the influence of
diagonal preconditioning, the various implementations shown in Figure 4.1
were examined. In order to compare the performance of the filter with and
without diagonal preconditioning, the systems that the filters are compensat-
ing for should be identical. When diagonal preconditioning is implemented in
the digital domain (Figure 4.1b), the system being compensated is the same
as that without preconditioning (Figure 4.1a). However, when diagonal pre-
conditioning is implemented in the analog domain (Figure 4.1c), the system
being compensated is different. In order to have a benchmark against which
the performance of the analog implementation can be compared, a new filter
is introduced, being the Tikhonov inverse filter formed from the system with
no preconditioning scaled for a system with poor sensitivities using the same
method and assumptions used to obtain Equation 4.25. The schematic of
this configuration is shown in Figure 4.1d.

The singular values curves calculated for each of the filters presented
in Figure 4.1 are shown in Figure 4.6. These curves represent the “basis
vector coupling” discussed in Section 4.2.2.3. Figures 4.6a and 4.6b show the
singular values of the inverse filters designed to compensate for the poorly
scaled system, whilst Figures 4.6c and 4.6d show the singular values of the

4.3 An example analysis 87

0 5 10 15 20
−20

−10

0

10

20

30

40

50

60

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(a) No preconditioning, H {Cp}

0 5 10 15 20
−20

−10

0

10

20

30

40

50

60

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(b) Digital preconditioning, αgH
{
βgCpαg

}
βg

0 5 10 15 20
−20

−10

0

10

20

30

40

50

60

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(c) Analog preconditioning, H
{
βgCpαg

} 0 5 10 15 20
−20

−10

0

10

20

30

40

50

60

Frequency [kHz]

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

)
]

(d) No preconditioning, scaled, α−1
g H {Cp}β−1

g

Figure 4.6: The singular values of the HTIF(ωn) for κ = 0.008, with
regularisation, without regularisation, singular value limit, 1

2
√
κ
.

inverse filters designed to compensate for a system incorporating sensitivity
compensation.

Figures 4.6a and 4.6c show that the filters do not have any singular val-
ues that exceed 15 dB. This limit can be explained with reference to Equa-
tions 4.13 and 4.14 where regularisation changes the singular value of the
inverse filter from

σIF =
1

σC

(4.33)

88
Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse

filtering

to
σTIF =

σ2
C

(σ2
C + κ)σC

(4.34)

where σC, σIF and σTIF and are the singular values of the channel, inverse
filter and the Tikhonov inverse filter respectively. A plot of these functions
is given in Figure 4.7 for κ = 0.008. Equation 4.34 is observed to limit
the maximum possible singular value of the inverse filter. The maximum
possible singular value in the Tikhonov regularised inverse filter for a given
regularisation, κ, is the value of σTIF when ∂

∂σC
σTIF = 0 and can be derived

as follows: Taking the partial derivative of the singular values gives

∂

∂σC

σTIF =
1

(σ2
C + κ)

− 2σ2
C

(σ2
C + κ)

2

=
(σ2

C + κ)− 2σ2
C

(σ2
C + κ)

2 , (4.35)

setting ∂
∂σC

σTIF = 0 (
σ2

C + κ
)
− 2σ2

C = 0

σC =
√
κ (4.36)

and inserting σC into Equation 4.34, we obtain

σTIF =
1

2
√
κ
. (4.37)

Thus the singular value for the regularisation, κ = 0.008 is limited to 15 dB
which can be confirmed in Figure 4.7. When σC >

√
κ, the singular values

are reflected about 1
2
√
κ
. This limit is shown in Figure 4.6 as a dotted hori-

zontal line. Comparing Figures 4.6a and 4.6b, the singular values when using
sensitivity compensation are no longer limited at 15 dB, but rather a regu-
larisation is evident that takes into account the poor choice of sensitivities
in the system.

Figures 4.6c and 4.6d show the singular value curves of the inverse filters
designed to compensate for a system incorporating sensitivity compensation.
Figure 4.6c shows the singular values for the inverse filter that was designed
using the channel response incorporating sensitivity compensation, whilst
Figure 4.6d shows the singular values for the inverse filter developed using
the poorly scaled system and scaled to suit the system that has incorporated
sensitivity compensation. The inverse filter design when the system had
poor scaling has been regularised considerably (Figure 4.6d) compared to
the filter from the system having sensitivity compensation (Figure 4.6c).
The regularisation of the inverse filter designed when the system had poor
scaling is particularly visible on the lowest curve above 15 kHz.

4.3 An example analysis 89

−50 −40 −30 −20 −10 0 10 20
−30

−20

−10

0

10

20

30

40

50

A
m

p
lit

u
d
e
 [
 2

0
 l
o
g

1
0
(σ

H
)

]

20 log
10

 (σ
C
)

Figure 4.7: Influence of regularisation of singular values. σIF = 1
σC

,

σTIF =
σ2
C

(σ2
C+0.008)σC

Figure 4.8 shows the resulting IRFs when the filters are normalised such
that the largest peak is ±1. By implementing diagonal preconditioning in the
analog domain, the amplitude of the IRFs are fairly similar, resulting in better
use of the dynamic range of the transducers, whereas when implemented in
the digital domain, the magnitude of the IRFs suffer as they are required to
compensate for the poor sensitivities induced into the system and shown in
Equation 4.30.

Figure 4.8c and Figure 4.8d shows the impulse response of the inverse filter
designed to compensate for a system incorporating sensitivity compensation.
Figure 4.8c shows the singular values for the inverse filter that was designed
using the channel response incorporating sensitivity compensation, whilst
Figure 4.8d shows the singular values for the inverse filter developed using
the poorly scaled system and scaled to suit the system that has incorporated
sensitivity compensation. The inverse filter developed using the poorly scaled
system is observed (Figure 4.8) to make poor use of the channels compared
to the inverse filter designed when the system has incorporated sensitivity
compensation. Thus if the sensitivities of the transducers are adjusted, the
inverse filter should be re-calculated rather than simply scaling the input and
output to the inverse filter.

Figure 4.9 shows the IRFs of the entire system from the desired signal,
u(z), to the received signal, w(z), using the filters shown in Figure 4.8. The
ideal impulse response would be one that has a large central peak in the
signal waveforms on the diagonal (referred to as signal level), with small side
lobes (referred to as signal quality), whilst the waveforms on the off diagonal
are completely flat (referred to as the level of cross-talk). In Figure 4.9a

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

(a) No preconditioning, H {Cp}

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

(b) Digital preconditioning, αgH
{
βgCpαg

}
βg

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

(c) Analog preconditioning, H
{
βgCpαg

}

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

0 500 1000
−1

0

1

(d) No preconditioning, scaled, α−1
g H {Cp}β−1

g

Figure 4.8: The impulse responses of the filters for κ = 0.008. The unit on the
x-axis is samples. In these figures, the subplot at row i, column j corresponds
to the IRF of the filter between virtual source j and transmitter i. These
impulse responses have been normalised such that the largest peak value of
each filter is ±1.

90

4.4 Conclusion 91

it is observed that because of the effort required to transmit to receiver 1,
the regularisation has reduced the quality of the response at receiver 1, and
also resulted in some cross-talk. When the sensitivities obtained using Al-
gorithm 1 are used (Figures 4.9b and 4.9c), the magnitude and quality of the
pulses are more consistent for each waveform on the diagonal, and there is
also a reduction in the relative magnitude of the cross-talk. However, the im-
plementation of diagonal preconditioning in the digital domain (Figure 4.9b),
is shown to have obtained these improvements at the cost of reducing the
signal levels.

Figure 4.9d shows the entire system response for the system using an
inverse filter developed using the poorly scaled system and scaled to suit the
system that has incorporated sensitivity compensation. It can be observed
that the performance of this filter has greater cross-talk, uneven signal levels,
and poorer signal quality than that shown in Figure 4.9c, being the filter
designed for the properly scaled system.

Figure 4.10 shows the frequency response functions (FRFs) of the entire
system from the desired signal to be received, u(z), to the actual signal re-
ceived, w(z), using the filters shown in Figure 4.8a and 4.8c. The system
response of Figures 4.8b and 4.8d have not been included, as they have very
similar spectra to the filters shown in Figures 4.8c and 4.8a respectively.
Comparing Figures 4.10a and 4.10b, the frequency response at the first re-
ceiver is noticeably improved with little change observed in the cross-talk
cancellation, observable in the off-diagonal FRFs.

4.4 Conclusion

It has been demonstrated that the choice of sensitivities used within the amp-
lifying stages of an acoustic system can have a significant influence on the
performance of a system that incorporates a Tikhonov inverse filter. Unlike
single channel systems, setting the sensitivities of the transducers to their
maximum value for multi-channel systems does not always maximise the co-
herence between the input and output of the entire system consisting of the
inverse filter, the sensitivities and the electro-acoustic system. An algorithm
has been presented that generates a set of sensitivities that can compensate
for poor combinations of receiver and transmitter sensitivities. In order to
validate the algorithm, data from a simulation conducted by Kirkeby et al.
[1998] was altered to emulate a system with a poor selection of transducer
sensitivities. The algorithm was shown to obtain a desirable set of compens-
ation gains that improved the performance of the system. The use of the
compensation was investigated in both the analog and digital domains. The
application of compensation sensitivities was shown to improve the quality of
the received signal, however if the gains were applied in the digital domain,

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

(a) No preconditioning, H {Cp}

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

(b) Digital preconditioning, αgH
{
βgCpαg

}
βg

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

(c) Analog preconditioning, H
{
βgCpαg

}

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

0 500 1000
−0.5

0

0.5

1

1.5

(d) No preconditioning, scaled, α−1
g H {Cp}β−1

g

Figure 4.9: The impulse responses of the complete system for κ = 0.008. The
unit on the x-axis is samples. In this figure, the subplot at row i, column j
corresponds to the IRF of the entire system between virtual source j and
receiver i.

92

4.4 Conclusion 93

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

(a) No preconditioning, H {Cp}

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

0 10 20
−60

−40

−20

0

(b) Analog preconditioning, H
{
βgCpαg

}
Figure 4.10: The frequency responses of the complete system for κ = 0.008.
The unit on the abscissa is kHz, and the unit on the ordinate is dB. In these
figures, the subplot at row i, column j corresponds to the FRF of the entire
system between virtual source j and transmitter i.

the magnitude of the signal was reduced. If the compensation sensitivities
were used to adjust the sensitivities of the transducers, it was shown that
the inverse filter should be re-calculated rather than simply scaling the input
and output to the inverse filter.

In the following chapter, the Tikhonov inverse filter design is used in
conjunction with digital communication systems. A description of the ex-
periment and simulation performed to implement the system is described in
Chapter 5 and the theory and results from the experiment are presented in
Chapter 6.

5 Experiment and Simulation

5.1 Overview

In order to investigate the application of the Tikhonov inverse filter to acous-
tic communication systems, an acoustic experiment was conducted in air.
During the experiment it was found that because of the large number of
variables that could be altered for each experiment, the results were insuffi-
cient to provide any conclusive outcome concerning the performance of the
filter designs examined. The experiment was replicated in a model based
simulation which could be executed more quickly than the air experiment
and allow for a greater range of parameters to be tested in a shorter period
of time. The purpose of this chapter is to provide a description of the exper-
iment and simulation undertaken. The experimental apparatus, computing
architecture, and computer code are presented and discussed. The details
concerning the theory and outcomes are presented in Chapter 6.

5.2 Inverse filtering performed in a sound
channel

5.2.1 Introduction

In order to compare the implementations of various inverse filter designs,
an experiment was performed in an air waveguide. An acoustic model con-
sisting of a static medium bound between two surfaces was used by Roux
et al. [1997] and Roux and Fink [2000] in an experiment which examined
the focusing of time-reversal. The results from the model provided insight
into how time-reversal might perform in a shallow underwater acoustic en-
vironment since that environment also consists of a medium (water) bound
between two surfaces: the sea floor and the air-water interface, and may be
considered static for short periods of time.

In this research, a sound waveguide was used for the experiments, and the
environment was bound by three surfaces. Since the waveguide is bounded
by three surfaces, there exist more transmission paths than that for two

95

96 Chapter 5 Experiment and Simulation

surfaces. The performance of some inverse filter designs is known to improve
with the number of transmission paths (see Section 3.2.1), so it was decided
to make the array span a plane rather than a line to make the environment
more challenging for the inverse filters.

The medium used in the experiment was air, whilst that used in the
model by Roux and Fink [2000] was water. In Section 3.2.1 it was discussed
how the performance of time-reversal was primarily dependent on the modes
created between the sea surface and the sea floor. Because the dimensions of
the waveguide are vastly different from the depth of the sea, and the speed
of sound in air is different from that in the sea, the frequency of transmission
required to excite the modes is also very different. In order to relate the
performance of the inverse filter from these experiments to that expected from
a static shallow underwater environment, it was ensured that the frequency
of operation in the waveguide was well above the cut-on frequency of the first
mode, being defined as [Elliott, 2001]

fc =
c

2Ly
(5.1)

where c is the speed of sound, and Ly the maximum cross-sectional length of
the waveguide. The waveguide width was around 400 mm and thus assuming
a speed of sound of 343 m/s, the cut-on frequency was 430 Hz.

Whilst the environment has been shown to vary considerably from a shal-
low underwater waveguide, it has been considered as a reasonable environ-
ment in which to perform preliminary testing of the proposed algorithms
before conducting experiments in the sea. An advantage of using the wave-
guide was that the experiment could be performed in a laboratory. The
waveguide also proved to be an easy environment to configure; having a fast
turn-around for obtaining results to be able to continually alter and develop
the inverse filter designs which was the focus of this research.

5.2.2 Experiment configuration

A schematic of the equipment used for the experiment is shown in Figure 5.1.
The configuration consists of microphone and speaker arrays located at each
end of the waveguide, with each microphone placed directly in front of a
speaker. The microphones were placed directly in front of the speakers so
that future experiments using the environment might be able to use the
principle of reciprocity (described in Section 3.2.1). In this experiment, only
one speaker array and one microphone array were used, each at different ends
of the waveguide. Because the dSPACE DS1104 controller card used for the
experiment only had 8 A/D and 8 D/A converters, two switch boxes were
used to select the speakers and microphones to play and record. The first
switch box was connected to the D/A converters to select between the signals

5.2 Inverse filtering performed in a sound channel 97

Figure 5.1: Experiment schematic

coming from the arrays at either end of the waveguide. The second switch
box was connected to the A/D converters to select from which array to record
the microphone signals. Amplifiers were incorporated between the speakers
and microphones to adjust the signal level for each individual speaker or
microphone.

Photographs of the equipment used in the experiment are shown in Fig-
ure 5.2. The equipment shown are the waveguide, one of the arrays, and
one of the switch boxes. The arrays consisted of six speaker and microphone
pairs arranged on a 3 by 2 grid with a grid spacing of 55mm. The array
was mounted on a metal frame and separated from the end of the waveguide
using sound absorbing material (shown in Figure 5.2a) to make the wave-
guide approximately acoustically unbounded lengthwise. Various cylindrical
objects were placed inside the waveguide to increase the reverberation within
the environment.

5.2.3 Characteristics of the system components

In order to keep costs to a minimum, the components used in the system
configuration were chosen based on affordability rather than quality. Given
the low cost of the speakers and microphones, the performance of the devices
were expected to vary from that of higher quality devices. As the objective
of the inverse filter designs is to compensate for an acoustic channel with
an unknown system response, the characteristics of the microphones and

(a) The waveguide (b) The microphone and speaker array

(c) Switch box - Front view (d) Switch box - Back view

Figure 5.2: Images of the waveguide equipment

98

5.2 Inverse filtering performed in a sound channel 99

speakers would also be included as part of the system that is compensated.
However, the use of poor quality components could result in the inverse
filter requiring considerable effort to compensate for the characteristics of
the device rather than the channel. To assist in understanding the effort
required by the inverse filter to compensate for devices, an analysis of the
various components in the experiment was conducted.

5.2.3.1 Speaker amplifier characterisation

The speaker amplifiers used in the experiment were of a type typically used
in car audio systems. In this examination of the amplifier, the gain of the
amplifiers was set so that a 1 kHz tone at 2Vrms resulted in a 2Vrms output
signal. The measured frequency and phase response of the amplifier using
this gain is shown in Figure 5.3 with no loading. The frequency response
of the amplifiers fluctuate by less that 0.6 dB over the range 500Hz - 50 kHz,
and the phase follows a straight line corresponding to a delay of 2µs. The
frequency response obtained for the amplifier is exceptional such that it is
questioned if the variation observed might also be the result of the meas-
urement equipment. The result shows that the amplifier imposes very little
distortion on the signal.

5.2.3.2 Speaker characterisation

The equipment used to examine the characteristics of the speaker is shown
in Figure 5.4. A speaker was placed in an anechoic chamber with sound ab-
sorbent material surrounding the speaker. A high quality microphone (Brüel
& Kjaer) was placed 283 mm away from the speaker, on axis. The frequency
and phase response between the signal provided to the speaker and the sig-
nal received from the microphone were measured using a spectrum analyser
whilst transmitting white noise through the speaker. A delay of 839.2µs
was applied to the measured speaker signal to maximise the coherence of the
measurement by counteracting the delay from the travel of the sound waves
through the air.

The magnitude, phase and coherence measurements for all the speakers
are shown in Figure 5.5, where the magnitude of the response for each speaker
has been normalised such that the average between 8 kHz and 13 kHz is 1.
The amplitude response is relatively flat between 5 kHz and 15 kHz, after
which the response rises, and after 22 kHz a number of nulls are evident.
The coherence is very good except surrounding the nulls. Although the
amplitude and phase response varies quite significantly, the response between
the speakers is similar up until around 40 kHz.

0 5 10 15 20 25 30 35 40 45 50
−0.6

−0.4

−0.2

0

0.2

M
a

g
n

it
u

d
e

 (
d

B
 r

e
 1

 V
/V

)

0 5 10 15 20 25 30 35 40 45 50
−40

−30

−20

−10

0

10

P
h

a
s
e

 (
d

e
g

re
e

s
)

Frequency (kHz)

Figure 5.3: Measured bode plot for speaker amplifiers.

Figure 5.4: Equipment setup used to characterise the speakers.

100

5.2 Inverse filtering performed in a sound channel 101

0 5 10 15 20 25 30 35 40 45 50
−60

−40

−20

0

N
o

rm
a

lis
e

d
 M

a
g

n
it
u

d
e

 (
d

B
)

0 5 10 15 20 25 30 35 40 45 50
−200

−100

0

100

200

P
h

a
s
e

 (
u

n
w

ra
p

p
e

d
)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

C
o

h
e

re
n

c
e

Frequency (kHz)

Figure 5.5: Magnitude, phase and coherence measurements for the speakers.
The magnitude of the response for each speaker has been normalised such
that the average between 8 kHz and 13 kHz is 1.

5.2.3.3 Microphone amplifier characterisation

The amplifiers used to convert the signal from the microphones used in the
experiment were custom built and developed by the School’s electronic work-
shop. The amplifiers provided three levels of gain, 10, 100, and 1000. The
frequency and phase responses for these amplifiers are shown in Figure 5.6.
Between 300Hz and 20 kHz, the variation was limited to 1.7 dB, and the
phase plots were observed to be almost linear with frequency between 300Hz
and 15 kHz, corresponding to group delays of 2.04µs, 4.66µs and 6.95µs for
the gains 10, 100 and 1000 respectively. Whilst the response of the amplifier
is not ideal, the characteristics should be sufficiently well behaved for the
inverse filters to overcome.

102 Chapter 5 Experiment and Simulation
M

ag
ni

tu
de

 (d
B

 re
 1

 V
/V

)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

A
ng

le
(d

eg
re

es
)

Frequency (kHz)

Figure 5.6: Measured bode plot showing the magnitude and phase for a
microphone amplifier.

5.2.3.4 Microphone characterisation

In this section, the frequency response of the array microphones used in the
experiment is examined. The equipment used to examine the array micro-
phone characteristics is shown in Figure 5.7. A high quality 1/4” micro-
phone (Brüel & Kjaer) was placed as close as possible to one of the array
microphones. A loudspeaker was then placed on axis around 1 m from the
microphones.

The frequency and phase response between the high quality microphone
and the array microphone was measured whilst emitting white noise from
the loudspeaker. The resulting bode plot obtained from the measurements
is shown in Figure 5.8 for all the microphones, where the magnitude of the
response for each microphone has been normalised such that the average
between 5 kHz and 10 kHz is 1. The amplitude of the frequency response
is observed to be similar over all the microphones. The amplitude response
between 300Hz and 15 kHz reduces smoothly and the phase also decreases
in a roughly linear manner. At 16 kHz, the response of the microphones
undergoes a critical change, and then settles again from 17 kHz through to

5.2 Inverse filtering performed in a sound channel 103

(a) View of loudspeaker, and microphone separation (b) Close-up view of microphone co-
location

Figure 5.7: Equipment setup used to characterise the microphones.

25 kHz. The fluctuation observed at 16 kHz could be attributed to the fact
that the centres of the two microphones are separated by a distance of around
10mm. When the spacing between the two microphones is greater than half
the wavelength some variations between the responses should be expected
as the measurements will be 180 degrees out of phase at this point. Assum-
ing a speed of sound of 343m/s, the 180 degree shift observed at 16 kHz,
has a corresponding half wavelength of 10mm, and is considered to be the
reason for the fluctuation observed. Apart from this large fluctuation the
frequency response appears to be consistent, and the coherence is generally
flat. Although the amplitude response of the microphone varies by up to
20 dB between 0 and 25 kHz, the variations are smooth, with the exception
of the variation at 16 kHz, therefore it should not be too difficult using the
inverse filter to compensate for these variations.

5.2.3.5 Concluding remarks on system component
characterisation

From examination of all the components, it can be observed that the major
causes of distortion in the system are the speakers and the microphones. If
the operational frequency is between 5 kHz and 25 kHz, then any fluctuation
in the inverse filter performance observed at 22 kHz could be attributed to
the compensation required for the speaker characteristics. A spectral amp-
litude plot as a result obtained from one of the experiments conducted using
the speakers and microphones is shown in Figure 5.9. The influence of the
response of the speakers at 22 kHz is observable. However the variation at
around 16 kHz seen in Figure 5.8 does not appear observable, indicating that
the fluctuations observed in the microphone characterisation were indeed the
result of the spacing between the microphones.

104 Chapter 5 Experiment and Simulation

0 5 10 15 20 25
−40

−20

0

N
o
rm

a
lis

e
d
 M

a
g
n
it
u
d
e
 (

d
B

)

0 5 10 15 20 25
−200

−100

0

100

200

P
h
a
s
e
 (

u
n
w

ra
p
p
e
d
)

0 5 10 15 20 25
0

0.5

1

C
o
h
e
re

n
c
e

Frequency (kHz)

Figure 5.8: Magnitude, phase and coherence measurements for the micro-
phones. The results have been normalised such that the average magnitude
of each microphone measurement between 5 kHz and 10 kHz is 1.

5.2.4 The computer program code

To implement this experiment, a computer and a special programmable com-
puter card were used to perform the signal processing parts of the experi-
ment. The programmable computer card used was the dSPACE DS1104
R&D controller board. Whilst the dSPACE R&D board is designed to be
used to perform real-time simulations of signal processing systems designed
using MATLAB Simulink, it was found that the speed of the device was not
sufficient for the sampling rates required when conducting the experiment.
As a result, the dSPACE DS1104 device was used to only perform playback
and recording of the analog signals, and the signal processing required was
performed in MATLAB. To obtain the fastest sampling rate possible, the
DS1104 device was programmed using a “hand-code” C-program in conjunc-
tion with a library provided by dSPACE that allows MATLAB to be able to
easily communicate with the device. The program code developed to run on
the DS1104 controller board, along with the MATLAB program code used

5.2 Inverse filtering performed in a sound channel 105

0 5 10 15 20 25
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Frequency (kHz)

M
a
g
n
it
u
d
e
 (

d
B

 r
e
 1

 V
/V

)

Receiver 1

Receiver 2

Figure 5.9: Average frequency response between six transmitters and two
receivers from one of the experiments conducted.

to interact with the controller board, and perform the desired calculations is
presented in AppendixA. A textural description accompanies the program
listings to provide the reader with an understanding on how the programs
perform the desired functions.

5.2.5 Experimental procedure

In order to conduct the experiment, the computer and dSPACE DS1104
were connected to the equipment as shown in Figure 5.1. The source code
for the main scripts of the software used to run the experiment is presented
in AppendixA.2. In addition to the main scripts, a number of helper scripts
were developed for use by the main scripts to perform specific functions.
Some of the helper scripts are specific to this experiment, whilst others have
been re-used in the simulation discussed in Section 5.3. The scripts specific
to this experiment are presented in Appendix A.2.4, whilst the functions that
have been re-used have been placed in a “thesis MATLAB library” given in
Appendix A.4.

To run the experiment, the code, DuctExperimentDSPACEProgram.c, was
compiled using the compiler provided by dSPACE and then downloaded
onto the controller card. The MATLAB script, DuctExperimentCreate-
TransmissionSignal.m, was then executed to interact with the dSPACE
DS1104 device to measure the impulse response of the transmission signals,

106 Chapter 5 Experiment and Simulation

and generate the modulated signals required to transmit a desired binary
sequence using the various inverse filter design schemes. The script, Duct-
ExperimentPlayAndPostprocess.m, is then used to play the signal, and
perform post-processing on the signal received to examine the performance
of the inverse filter designs.

Transmission Signal Generation

The specific steps performed by the script, DuctExperimentCreateTransmission-
Signal.m, to create the transmission signal are as follows:

1. Measure the channel impulse response functions

The impulse response function is measured through the use of the func-
tion GetIRFsDS1104.m which creates a signal used to characterise the
system and send the data to be played to the dSPACE controller. The
function GetIRFsDS1104.m then makes the DS1104 controller card ex-
ecute the routine Play_Stepped_SIMO on the dSPACE controller that
plays the signal independently on each of the desired output channels,
and records the response on all the inputs. The function GetIRFs-
DS1104.m then retrieves the signal and uses the MATLAB function,
spectrum, to determine the set of impulse responses between each
transmitter and receiver.

2. Convert the channel impulse response to base-band

Whilst the inverse filters could be designed at pass-band, it was found
that the inverse filter could also be designed with reduced complexity at
base-band. This conversion was performed according to Equation 2.26.

3. Down-sample the channel impulse response for the design of the inverse
filters

Referring to Figure 2.10, if the inverse filters are designed at passband,
the sampling frequency must be greater than 2(fc + B

2
), where fc is

the carrier frequency and B the bandwidth. However, if the channel
response is converted to base-band, then the sampling frequency of
the base-band impulse responses can reduced to 2B. By designing the
inverse filter at a lower frequency rate, the number of computations
can be reduced compared with designing the inverse filter at passband.

4. Design of the inverse filters

The function CreateInverseFilter.m was used to design the inverse
filters. The resulting inverse filter consists of a set of impulse responses
between a set of virtual sources, and the transmitting devices, where
the virtual sources are the signals desired to be received at the receiver

5.2 Inverse filtering performed in a sound channel 107

devices after a given time delay (required to make the inverse filter
realisable). The function CreateInverseFilter.m can design the fol-
lowing filters:

No Filtering This filter type is effectively an identity matrix, and
effectively transmits the signal desired to be on the i-th receiver
on the i-th transmitter.

Time Reversal The time-reversal filter design employed used the re-
verse of the channel response between the i-th transmitter channel
and the j-th receiver channel as the filter between the j-th virtual
source, and the i-th transmitter channel. In this instance, the
time-reversal filters have been normalised for each filter independ-
ently.

Tikhonov Inverse Filter Three variations in the design of the Tik-
honov inverse filter were developed as part of this thesis. The
designs are: inverse by path (SISO), inverse by channel (MISO)
and inverse by full response (MIMO). These forms of implement-
ation are described in Section 6.2.1, given by Equations 6.7, 6.8,
and 6.9.

Stojanovic Two-Sided Filter During the time that the experiment
and subsequent simulations where being conducted, Stojanovic
[2005] published a paper that was considered to have contributed
valuable inverse filter designs against which to compare the Tik-
honov inverse filter. One of the designs implemented in this re-
search was the two-sided filter. This filter design is described in
greater detail in Stojanovic [2005], and has also been modified in
this thesis to include regularisation (to improve performance) as
discussed in Section 6.2.3. The equation for this filter is given by
Equation 6.13.

5. Up-sample the inverse filter impulse responses

Following the design of the inverse filters using the lower sampling rate,
the inverse filters are up-sampled to that of the sampling rate used in
the experiment.

6. Create the transmission signal

A digital sequence is developed that consists of 1 followed by 499 ran-
dom samples. This binary sequence is then mapped to a series of com-
plex symbols according to the Phase-Shift-Keying (PSK) modulation
using the function BitSequenceToComplexSequence.m. This sequence
is then pre-pended with a lead-in sequence that is used to synchronise

108 Chapter 5 Experiment and Simulation

the receiver to the time and phase of the signal. A raised cosine square-
root spectral shaping filter is then designed using the function Raised-
CosineFrequencySpectrum.m, which is used to convert the complex
sequence of symbols to a base-band signal using the function Complex-
SequenceToSignal.m. The theory concerning the generation of the
communication signal as performed in this step is described in more
detail in Section 2.2.4.

7. Filter the transmission through the inverse filter

The base-band transmission signal is then used as the virtual signal for
the first channel, and passed through each of the inverse filter designs
to form a set of base-band signals to play through the transmitters.

8. Convert the signal to pass-band

The base-band signal for the transmitter is converted to pass-band
using the function BasebandToPassband, and normalised so the max-
imum signal level is unity. This conversion was performed according to
the formula given in Equation 2.25.

Transmission and reception of the signal

The steps performed by the script, DuctExperimentPlayAndPostprocess.m,
used to play and process the received signals are:

1. Play the transmission through the system.

The pass-band transmission signal developed for each of the inverse
filters was played whist recording the response using the function Run-
DS1104MIMO.m. This function was designed to transfer the play data
from the MATLAB environment to the controller board and then trig-
ger the board to run the routine Play_MIMO. After the routine Play_-
MIMO is finished, the function RunDS1104MIMO.m retrieves the recorded
signals.

2. Convert the signal to base-band and estimate the time delay and phase
of the signal

The function SignalPhaseEstimatorPassbandToBaseband.m was de-
veloped to convert the signal from pass-band to base-band using the
hetero-dyne technique described in Section 2.2.3. The distance between
the transmitter and received signal results in the base-band received
signals being delayed and shifted in phase from that of the transmitted
base-band signal. To estimate the delay and the phase, a once-off delay
and phase estimate was performed. The method used to estimate the
delay was to find the peak magnitude of the signal in the range of one

5.2 Inverse filtering performed in a sound channel 109

symbol length after the time at which the signal rose above 40% of
the received signal value. Given that the lead-in sequence consisted of
a one followed by zeros, the phase was calculated from the phase at
the location of the peak magnitude signal, and was used to correct the
phase of the entire base-band signal.

3. Sample the signal at the correct sampling instances.

4. Run the adaptive filter algorithms on the received signals using the
function DuctExperimentRunAdaptiveTests.m. This function performed
the following:

a) Applied an adaptive filter with no tap adjustment to observe the
performance of a detector without the use of an adaptive filter.

b) Apply the adaptive algorithms using a number of different step
sizes at the symbol rate.
The adaptive filters examined were the Zero Forcing algorithm
(ZF), Least-Mean-Square algorithm (LMS), and the Recursive
Least Square (RLS) algorithm, each of which is described in Sec-
tion 2.2. It was desired that a very long bit sequence be used to
examine the results for each filter after the filter-taps had appro-
priately settled, however memory limitations, and the high compu-
tational complexity resulted in a limited number of samples that
could be transmitted. To be able to examine the likely perform-
ance of each filter, the adaptive algorithms were applied multiple
times to a shorter bit sequence. The adaptive filters were first ap-
plied with a very large step size and then using the final state of
the filter taps as the initial state of the next iteration of applying
the adaptive filters using a smaller step size. The step size of the
adaptive filter was incrementally reduced for all the algorithms
except the RLS algorithm.

5.2.6 Results from experiment

Preliminary examinations of the ability to focus sound were presented at the
145th meeting of the Acoustical Society of America conference [Dumuid and
Cazzolato, 2003].

Throughout the experiment, there were a number of parameters that
could be adjusted, such as the inverse filter regularisation value, the selection
of which sources and receivers to use, the carrier frequency, and the symbol
rate. When adjusting these parameters, the result obtained also varied. A
sample of the results obtained for each experiment run are shown in Figures
5.10 to 5.13.

110 Chapter 5 Experiment and Simulation

Figure 5.10 shows the sampled signal at the target receiver and the signal
sampled simultaneously at the non-target receiver. The results for an ideal
inverse filter would show a scatter plot consisting of dots at the typical 4-
PSK phase positions at the target receiver and a set of dots on the origin for
the non-target receiver. For this particular set of results, it can be observed
that all the inverse filters have a 4-PSK scatter plot at the target receiver.
The Tikhonov inverse filter designed by full response MIMO has the smallest
variation in the signal received at the non-target receiver, whilst the time-
reversal result has the largest variation although it does have the largest
signal amplitude at the receiver. If a PSK was desired to be transmitted to
the non-target receiver, then it would be expected that the scatter shown
would be added to the scatter of the received PSK, and a similar level of in-
terference would be received on the target receiver. By considering the effect
of adding the fluctuations of the non-target receiver to the target receiver
it can be observed that none of the inverse filters would have exceptional
performance for this set of results.

To compensate for inter-symbol interference that might remain in the
received signals, a number of adaptive filters were applied to the sampled
signals. The adaptive filter algorithms employed were the Zero Forcing (ZF)
algorithm, Least-Mean-Square algorithm (MSE), and the Recursive Least
Square (RLS) algorithm. The MSE and RLS algorithms were also examined
using fractional spacing. The adaptive filters were applied several times
to attain the best possible set of taps as described in Section 5.2.5. The
results obtained using the various adaptive filter designs are presented in
Figures 5.11 and 5.12. Figure 5.11 shows the final scatter plots of the re-
ceived signal for each inverse filter design and corresponding adaptive filter
algorithms, whilst Figure 5.12 shows the average error between the detected
symbol and the filtered signal, after each recursive application of the ad-
aptive filters. It can be observed that the use of an adaptive filter provides
reduced symbol fluctuation regardless of the adaptive filter or inverse filter
design used. Whilst the RLS algorithm is shown to provide the least symbol
error for all the inverse filter designs, the average symbol error signal is of
the same order of magnitude as that of the other designs.

In order to ensure that the adaptive filters operated properly, the filter
taps for each sample processed in the adaption were stored. Figure 5.13
shows the magnitude of these filter taps for each sample. From these graphs,
it is evident that the RLS algorithm performs the adaption more rapidly
than the other adaptive filter designs.

5.2 Inverse filtering performed in a sound channel 111

−0.5 0 0.5

−0.5

0

0.5

Target receiver

S
to

j.
 2

−
S

−0.5 0 0.5

−0.5

0

0.5

Non−target receiver

−0.5 0 0.5

−0.5

0

0.5

T
.R

.

−0.5 0 0.5

−0.5

0

0.5

−0.5 0 0.5

−0.5

0

0.5

T
.I
.F

.(
fu

ll)

−0.5 0 0.5

−0.5

0

0.5

−0.5 0 0.5

−0.5

0

0.5

T
.I
.F

.(
c
h
a
n
n
e
l)

−0.5 0 0.5

−0.5

0

0.5

−0.5 0 0.5

−0.5

0

0.5

T
.I
.F

.(
p
a
th

)

−0.5 0 0.5

−0.5

0

0.5

Figure 5.10: Scatter plot of the sampled signal at the target receiver and
non-target receiver. The filters examined are the Stojanovic two-sided filter
design [Stoj. 2-S], time-reversal [T.R.], Tikhonov inverse filtering using full
[T.I.F. (full)], channel [T.I.F. (channel)], and path [T.I.F. (path)] structures.

112 Chapter 5 Experiment and Simulation

none ZF MSE MSE−FS RLS RLS−FS
−2

0

2

S
to

j.
 2

−
S

none ZF MSE MSE−FS RLS RLS−FS
−2

0

2

T
.R

.

none ZF MSE MSE−FS RLS RLS−FS
−2

0

2

T
.I
.F

.(
fu

ll)

none ZF MSE MSE−FS RLS RLS−FS
−2

0

2

T
.I
.F

.(
c
h
a
n
n
e
l)

none ZF MSE MSE−FS RLS RLS−FS
−2

0

2

T
.I
.F

.(
p
a

th
)

Figure 5.11: Scatter plots of the filtered target receiver signal after ap-
plying the different adaptive filtering algorithms to each of the signals re-
ceived by the inverse filter designs. The adaptive filters are no filtering
[none], the zero-forcing equaliser [ZF], the mean-square error equaliser [MSE],
the fractionally-spaced mean square error equaliser [MSE-FS], the recursive
least square error equaliser [RLS], and the fractionally-spaced recursive least
square error equaliser [RLS-FS].

5.2 Inverse filtering performed in a sound channel 113

0 0.01 0.003 0.0001 0.0001 1e-05

10
-1

Zero Forcing Algorithm (ZF)

0 0.01 0.003 0.0001 0.0001 1e-05

10
-1

Mean Square Error Algorithm (MSE)

0 0.006 0.0004 0.0004 0.0001 1e-05

10
-1

Fractionally Spaced Mean Square Error Algorithm (MSE-FS)

0 0.999 0.999 0.999 0.999 0.999

10
-1

Recursive Least Square (RLS)

0 0.999 0.999 0.999 0.999 0.999

10
-1

Fractionally Spaced Recursive Least Square Algorithm (RLS-FS)

Stoj. 2-S T.R. T.I.F. (full) T.I.F. (channel) T.I.F. (path)

Figure 5.12: The history of the symbol error after each iteration of the various
adaptive filter algorithms. The values shown on the abscissas are the step-
sizes used for each iteration of the equalisers, and the ordinate value is the
symbol error after the iteration. The step size was kept constant for each
iteration of the RLS equalisers.

114 Chapter 5 Experiment and Simulation

ZF

200 400 600 800 1000 1200 1400

5

10

15

MSE

200 400 600 800 1000 1200 1400

20

40

60

MSE−FS

200 400 600 800 1000 1200 1400

20

40

60

RLS

200 400 600 800 1000 1200 1400

20

40

60

RLS−FS

samples

200 400 600 800 1000 1200 1400

20

40

60

Figure 5.13: The magnitude of the filter tap after each sample of the adaptive
filters for the Tikhonov inverse filter using the full structure.

5.2.7 Conclusion from the experiment

In this experiment, the ability to perform communication in a reverberant
channel through the use of inverse filters was investigated. Whilst the results
obtained demonstrated it was possible to achieve transmission over the chan-
nel, it was questioned if multi-channel communication could be performed. It
was also shown that the performance of all the inverse filters examined could

5.3 Computer simulations 115

be improved using adaptive equalisers. It was found that the variation and
possible range of various parameters in the experiment made it difficult to
obtain a clear understanding of the performance of each of the filter designs.
In order to obtain more informative results concerning the performance of the
inverse filter designs over the possible range of parameter values, a computer
simulation was conducted that performed similar steps as the experiment,
except that an estimate of the channel responses to the transmission signals
were used. The computer simulation is described in greater detail in the
following section.

5.3 Computer simulations

5.3.1 Introduction

In Section 5.2, an experiment was presented that implemented inverse filters
in a digital communication system through an air waveguide using acoustic
signals. The experiment contained many parameters that could be varied
to alter the performance of the system. Due to the number of parameters
that could be varied, it was difficult to identify the influence each parameter
had on the results independently of the other parameters. In addition to the
difficulty of characterising each parameter, since the experimental apparatus
was not enclosed there was a high environmental noise and temporal variation
of the channel response.

After measuring the channel impulse and generating the communication
signal, it was possible to either emit the signal in the channel and measure the
response or simulate the response. The simulated and experimental results
were observed to be similar provided there were minimal disturbances from
the environment. To examine the influence of each parameter it was decided
to record a set of impulse responses from the channel, and develop a sim-
ulation that would measure the performance of the communication system
using each inverse filter over a range of parameters. After implementing the
simulation it was found that to test all the filter designs for a single carrier
frequency, a single transmitter and receiver array arrangement and a single
symbol rate over a range of 42 possible values of the regularisation parameter
took an average time of 2.98 hours to execute. In order to examine the res-
ults over a greater range of parameters and in a timely manner, a distributed
computing system was used.

116 Chapter 5 Experiment and Simulation

Queue
Manager

Submitting
Computer

Pool of Execution ComputersM
onitor/M

atch

M
at

ch

Job negotiation

Figure 5.14: Schematic of the Condor distributed computing system. The
pool of execution computers contained around 200 computers.

5.3.2 Implementation

5.3.2.1 The Condor system

Because of the number of computations required, it was decided that the
simulations be performed using a pool of computers and managed by the
distributed computing software, Condor. Figure 5.14 provides a schematic
of the Condor system. The Condor system consists of a submitting computer,
a queue manager, and a pool of execution computers. The pool of execution
computers consisted of the undergraduate teaching suite computers from the
Faculty of Engineering, Computer and Mathematical Sciences. Any machines
not being used by the students at any point in time were available to the
pool. The submitting computer contains a list of jobs desired to be executed.
The queue manager monitors the computers in the pool and the jobs listed
by each submitter and determines which computer in the pool matches the
requirements for each job on the submitting computer. The queue manager
then notifies both the submitting and executing computer of the match,
and the submitting computer directly communicates with the computer to
transfer the files required for the job, along with the commands to execute
the job. After the executing computer has finished processing the job, the
output files are returned to the submitting computer. The code used for the
simulation is included in Appendix A.3.

5.3.2.2 MATLAB scripts that interact with Condor

To interact with the Condor system and control the simulation, several MAT-
LAB scripts were developed. The schematic showing how these scripts gen-
erate the jobs, and process the results in presented in Figure 5.15. The main
script that controls the simulation is DuctSimulationManager.m. This script
calls the script DuctSimulationSubmitJobsAndFetchResults.m to create a
set of files in a directory for each job and submit the job to the Condor

5.3 Computer simulations 117

submitter machine. Subsequent calls to DuctSimulationSubmitJobsAnd-
FetchResults.m, can be performed to re-submit the jobs (if the job failed or
was cancelled because the computer was used by a student for other tasks)
and fetch the results if available. The results fetched by DuctSimulation-
SubmitJobsAndFetchResults.m are then combined into a single variable to
be saved and used when processing the results. The script used to process
and display the results is DuctSimulationResultViewer.m.

The parameters that the simulation was used to investigate are:

• The carrier frequency.

• The inverse filter regularisation parameter, κ (for the designs that had
a regularisation parameter).

• The symbol length.

• The transmission elements used (all 6, or various subsets).

The range of values over which these parameters were varied were defined
in DuctSimulationManager.m in the variable staticConfig.ranges. Each
job script tested the inverse filter designs over all the ranges of regularisa-
tion parameter, κ, for a specific carrier frequency, symbol length, and selec-
tion of transmitter elements. The script DuctSimulationSubmitAndResult-
Fetcher.m submitted a job for each carrier frequency from the range of car-
rier frequencies tested. The symbol length and the transmitter elements were
configured by the user by setting the variables, simulationConfig.symbol-
LengthIndex and simulationConfig.arrangementIndex prior to executing
the script DuctSimulationManager.m.

5.3.3 The executing computer script

5.3.3.1 Overview

The source code to the scripts that were run on the executing computer is
presented in Appendix A.3.3. The executing computer runs the batch file
CondorJobExecutor.bat that connects to a remote network drive and ex-
ecutes a compiled version of the MATLAB script, MainCondorJobScript.m.
The MATLAB script MainCondorJobScript.m loads the simulation para-
meters from the file runparams.mat and the channel impulse response and
data sequence from the files testIRFs.mat and bitseq2.mat, stored on the
remote network drive. The schematic of the simulation conducted is presen-
ted in Figure 5.16. The steps involved in the simulation consist of:

1. Generating a communication signal.

2. Generating the inverse filters.

118 Chapter 5 Experiment and Simulation

submitFile0001.sub runparams.mat

Submitted

run0001.mat

Received

submitFile0002.sub runparams.mat

Submitted

run0002.mat

Received

submitFile0003.sub runparams.mat

Submitted

run0003.mat

Received

DuctSimulationResultsViewer.m

DuctSimulationSubmitJobsAndFetchResults.m

DuctSimulationManager.m

Executing
Computer

Executing
Computer

Executing
Computer

CondorJobMainScript.m

testIRFs.matbitseq2.mat

Helper Scripts

Network Drive

/<mergedJobName>/run0001/

/<mergedJobName>/run0002/

/<mergedJobName>/run0003/

CondorJobExecutor.bat

CondorJobExecutor.bat

CondorJobExecutor.bat

Figure 5.15: Schematic of the program execution.

3. Testing each inverse filter design with the communication system.

Each of these steps is described in greater detail in the following sections.
It should be noted that schematic and the computer code show the use of
fractional sampling and the RLS adaptive equalisers; however these were
turned off during the main simulations as these required extra computational
time that limited the turn-around whilst developing the simulation code.

5.3.3.2 Generation of the communication signal

The digital data sequence is taken from the remote network drive to ensure all
experiments use the same signal. To transmit the digital data sequence over
the channel, the sequence is required to be modulated to a suitable analog
signal. This process is described in Section 2.2.4 and consists of mapping the
digital sequence to a series of complex values using the Phase Shift Keying
(PSK) pattern to create a complex sequence. A spectral shaping filter is
designed and used to convert the complex sequence to a complex base-band
signal used in the simulation.

5.3 Computer simulations 119

5.3.3.3 Generation of the inverse filters

The channel IRFs used in the simulation are those recorded from the ex-
periment discussed in Section 5.2. The channel IRFs are loaded from a file
stored on the network drive. The channel IRFs are converted to base-band,
and down-sampled to reduce the computations required to design the in-
verse filters (see Section 5.2.5), and corresponding receiver filters (if the filter
design caters for a receiver filter). After the filters are designed, they are
up-sampled for use in the testing of the inverse filter. The inverse filters were
generated and tested for each regularisation parameter in the range provided
in the file runparams.mat.

5.3.3.4 Testing of the inverse filter

The testing of the inverse filter consists of using the communication signal
as the virtual source signal for the target receiver, whilst setting the signal
for the non-target virtual source to zero. These signals are filtered by the
inverse filter to generate the signals that become the base-band transmitter
signals. The base-band transmitter signals are then filtered by the base-
band channel IRFs to produce the base-band signals that would be expected
at the receivers. The signals are then passed through the receiver filter, and
then used with a symbol synchronisation process to determine the delay, and
complex amplitude and phase. These synchronised results are used to sample
the signal. The sampled signal is then passed through both non-adaptive and
adaptive filters. The adaptive filters were applied using two sets of training
sequences: no training sequence, or a sequence of 40 symbols.

Various values were measured throughout the simulation as indicated by
the multimeter icon in Figure 5.16. The values recorded were:

• Peak value and power of the transmission signals.

• For a transmission to the target receiver: The power of the entire signal
at the target receiver, the power of the signal before the portion of
the signal containing the communication signal, and the power of the
communication signal only.

• For a transmission to the non-target receiver: The power of the entire
signal at the target receiver, and the power of the communication signal
only.

• Power of the signal after the receiver filter for both the target and
non-target receiver.

• Standard deviation of the sampled symbols without the use of a de-
tector. (Two methods of measuring the standard deviation were per-
formed, as discussed in the source-code.)

120 Chapter 5 Experiment and Simulation

Digital sequence

Map to PSK

Convert complex sequence
to baseband signal

Create
spectral shaping

filterComplex Sequence

Complex Signal

0
Non-Target Rx.

Target V.Src.

Non-Target V.Src.

Symbol
synchronisation

Sampling
Normal sampling

Fractional sampling

Target Rx.

Inverse filter
Baseband
Channel

IRFs

Receiver
filter

* Peak
* Power

* Power0
* Power1
* Power2

* Power0

Inverse filter
and receiver filters

Channel IRFs

Convert to baseband

Down-sample

Design inverse filters

Up-sample

GENERATE COMMUNICATION SIGNAL

GENERATE INVERSE FILTERS

Target Rx.

Inverse filter
Baseband
Channel

IRFs

Receiver
filter

* Power0
* Power1

* Power0

Normal sampling

Fractional sampling

Non-adaptive
detector

Adaptive
detector (RLS)

Adaptive
detector (RLS)

NoTraining

Training40

2x

Adaptive
detector (ZF)

Adaptive
detector (ZF)

Delta steps

Adaptive
detector (MSE)

Adaptive
detector (MSE)

NoTraining

Training40

NoTraining

Training40

* Symbol Error1
* Symbol Error2

* Standard Deviation1
* Standard Deviation2

* Average Error Hist.
* Std. Deviation
* Symbol Error

* Average Error Hist.
* Std. Deviation
* Symbol ErrorTEST INVERSE FILTERS

Target V.Src.

Non-Target V.Src.

0

* PeakIndex
* Amplitude / Phase compensation gain

Figure 5.16: Schematic of the simulation executed on each computer.
Whilst the schematic and the computer code show the implementation of fractional
sampling, and RLS adaptive equalisers, these were turned off during the main simula-
tions due to computation limitations.

• The symbol error using a non-adaptive detector.

• The average symbol error at each iteration of the application of the
adaptive filters.

• The standard deviation of the symbols for each of the adaptive filters
used.

• The symbol error for each of the adaptive filters used.

5.3 Computer simulations 121

5.3.4 Conclusions

In this section the programs used to perform a simulation of the experiment
conducted in Section 5.2 have been presented. The purpose of this section was
to describe the programs used to perform the simulation of the inverse filters.
Whilst various changes and bug fixes were required during its development,
the simulation proved to be a success. The results that were obtained from
the simulation have been published in a journal paper [Dumuid et al., 2008],
and are included in Chapter 6, which describes the inverse filter designs, and
the results in greater detail.

6 Performance of Tikhonov
regularised inverse filter design
structures

The purpose of this chapter is to analyse the results of the simulation de-
scribed in Chapter 5 that examined various Tikhonov inverse filter imple-
mentations over a range of scenarios and parameters. This chapter describes
the theory behind the filter design structures implemented, and provides the
results from the simulation, along with a discussion of the performance of
the various filter structures examined.

The work presented in this chapter has previously been published in the
journal paper entitled “A comparison of filter design structures for multi-
channel acoustic communication systems”, by P. Dumuid, B. Cazzolato and
A. Zander, published in the Journal of Acoustical Society of America Vol. 123 (1),
pp. 174-185, Jan 2008.

6.1 Introduction

In Section 3.2 the application of channel compensation methods to commu-
nication systems was described. Stojanovic [2005] showed that time-reversal
(TR) was severely limited in its performance when compared to a number of
alternative designs. Cazzolato et al. [2001] demonstrated that inverse filter-
ing outperformed time-reversal when using a Dirac impulse transmission in a
simulated underwater environment. In this chapter, the research conducted
in this thesis to extend the initial work by Cazzolato et al. [2001] is presented.

Different ways of implementing Tikhonov inverse filtering are investigated
in conjunction with PSK communication using a simulation to examine the
influence of a number of parameters. The performance of each of these imple-
mentations are compared against TR and a design presented by Stojanovic
[2005]. As the filter design presented by Stojanovic is a theoretical design,
the filter was modified slightly to make it practically realisable.

In this chapter, comparisons are made between the inverse filter designs
based on how well they reduce the symbol errors for both a single channel

123

124
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

and multi-channel transmission. The inverse filter designs were compared via
a simulation that used measurements obtained from the Impulse Responses
(IRs) measured from a reverberant open-air waveguide that is described Sec-
tion 5.2.

The results obtained from the simulation demonstrate that Tikhonov in-
verse filtering with appropriate regularisation performs better than time-
reversal. The Stojanovic two-sided filter design is observed to outperform
both time-reversal and Tikhonov inverse filters when used in a single chan-
nel scenario. However, the multi-channel implementation of the Tikhonov
inverse filter is found to be the only filter able to perform multi-channel
communication for the channel IRs investigated here.

6.2 The filter designs

6.2.1 Design classifications

Three filter classifications are presented as a means by which inverse filters
may be designed for Multiple Input - Multiple Output (MIMO) systems.
They are: inverse by path (SISO), inverse by channel (MISO) and inverse
by full MIMO. These classifications are based on the filter structure shown
in Figure 6.1. A set of sources, si, i ∈ [1, S], are desired to be replicated
at the receivers, ri, i ∈ [1, S], with minimal cross-talk through the use of a
set of transmitters, tj, j ∈ [1, T]. The channel through which the signals are
transmitted is also modelled as a set of IRs, ci,j(t), i ∈ [1, S] and j ∈ [1, T]
denote the receiver and transmitter respectively. In order to achieve the
desired response between the source and the receiver a set of filters, hj,i, are
generated.

Figure 6.1: Schematic of filter connections.

The design of the inverse filters can be classified by which channel re-
sponses each inverse filter depends on. Figure 6.2a presents a classifica-
tion that shall be called inverse by path. In this design, each sub-filter,
hj,i(t), of the inverse filter is only dependent on a single channel response,

6.2 The filter designs 125

ci,j(t). The inverse by path classification thus encompasses the inverse fil-
ter designs that are multi-channel filters developed by combining multiple
single channel systems. The general aim of filter designs developed accord-
ing to the inverse by path classification is to find the inverse filter, hj,i, such
that hj,i(t) ∗ ci,j(t) ' δ(t), where ∗ is the convolution operator, and δ(t) the
Dirac delta function. If only the source, si(t), is excited then the response
at receiver, i, from the combination of all the individual systems is given by

ri(t) =

(
T∑
j=1

hj,i(t) ∗ ci,j(t)

)
∗ si(t) (6.1)

' Tδ(t) ∗ si(t), (6.2)

where the summation in Equation 6.1 is approximately Tδ(t) in a multi-
path environment as a result of the correlated peak at t = 0 due to the fact
that hj,i(t) ∗ ci,j(t) should be uncorrelated for t 6= 0 and should thus average
to zero. In other words, the T systems add coherently, increasing the gain
T times at t = 0, whilst reducing the signal level away from t = 0. The
cross-talk for the inverse by path design at receiver i can be determined by
measuring the response at this receiver due to a signal that is transmitted to
target a different receiver, rict , where the subscript ct stands for “cross-talk”.
The response is given by

ri(t) =

(
T∑
j=1

hj,ict(t) ∗ ci,j(t)

)
∗ sict(t). (6.3)

The cross-talk is observed to be dependent on the correlations between the
filter, hj,ict(t), and the channel path, ci,j(t), for j ∈ [1, T]. If the channels are
sufficiently uncorrelated then the term in the brackets should tend towards
zero as the number of transmitters is increased. The time-reversal mirror
is an example of an inverse filter designed according to the inverse by path
design and its features of both focusing and temporal compression have been
described in the literature extensively.

The second classification, called inverse by channel is shown in Fig-
ure 6.2b. This classification encompasses the filter designs where the sub-
filters, hj,i(t), j ∈ [1, T] are calculated together to replicate the response,
si(t), at receiver, ri. This design is different from the inverse by path design
since the filter, hj,i(t), is dependent on multiple responses, ci,j(t), j ∈ [1, T].
The cross-talk for inverse filters designed by the inverse by channel classi-
fication is dependent on the relationship between hj,ict(t) and ci,j(t) being
uncorrelated in a similar manner to that for filters designed according to
the inverse by path classification. The filters presented in Stojanovic [2005]
are examples of inverse filters designed according to the inverse by channel
classification.

126
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

The last classification is called inverse by full MIMO. Filters designed
according to this classification require that each sub-filter of the inverse fil-
ter is calculated based on all the channel responses. Inverse filters designed
according to this classification attempt to achieve a MIMO transfer func-
tion between sources and receivers that has a desired response between the
source and receiver, whilst also minimising the cross-talk between channels.
Examples of this type of inverse filter design include those by Cazzolato et al.
[2001], Montaldo et al. [2004], and Higley et al. [2006].

(a) inverse by path

(b) inverse by channel

(c) inverse by full MIMO

Figure 6.2: Schematic of filter design classifications. Solid lines denote trans-
mission paths considered when developing filters. Dashed paths are addi-
tional paths which contribute to cross talk.

It should be noted that there are extensions to the design classifications
discussed above, for example a number of the designs by Stojanovic [2005]
include filters at both the transmitter and receiver.

6.2.2 The Tikhonov regularised inverse filter

The development of the Tikhonov regularised inverse filter is presented in
Section 3.2.2. The fast Tikhonov inverse filter design using FFT was given

6.2 The filter designs 127

by (Equation 3.29)

H(z) =
(
CH(z−1)C(z) + κI

)−1
CH(z−1)A(z) (6.4)

with the corresponding frequency domain equivalent (Equation 3.30)

H(ω) =
(
CH(ω)C(ω) + κI

)−1
CH(ω)A(ω). (6.5)

The Tikhonov inverse filter designs for each classification shall be defined
given the inverse filter expressed as

H(ω) =


H1,1(ω) H1,2(ω) · · · H1,J(ω)
H2,1(ω) H2,2(ω) · · · H2,J(ω)

...
...

HI,1(ω) HI,2(ω) · · · HI,J(ω)

 , (6.6)

the filter design according to inverse by path design is calculated by

Hi,j(ω) =
C∗j,i(ω)

C∗j,i(ω)Cj,i(ω) + κ

=
(
|Cj,i(ω)|2 + κ

)−1
C∗j,i(ω), (6.7)

the filter design according to inverse by channel is calculated by
H1,j(ω)
H2,j(ω)

...
HN,j(ω)

 =



C∗j,1(ω)
C∗j,2(ω)

...
C∗j,N(ω)

 [Cj,1(ω) Cj,2(ω) · · · Cj,N(ω)
]

+ κI


−1

×


C∗j,1(ω)
C∗j,2(ω)

...
C∗j,N(ω)

 (6.8)

and the filter design according to inverse by full MIMO is calculated by

H(ω) =
(
CH(ω)C(ω) + κI

)−1
CH(ω). (6.9)

In Chapter 4, it was shown that as κ tended towards infinity the resulting
equation for the inverse by full MIMO filter, H(ω), tended towards the time-
reversal filter. Observing Equations 6.7 and 6.8, this property holds true
for the Tikhonov inverse filter designs by inverse by path and inverse by
channel classifications. Thus, as κ approaches infinity, each of these filtering
classifications approaches the time-reversal filter design.

128
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

6.2.3 Regularisation of Stojanovic’s two-sided filter for
no inter-symbol interference

Stojanovic [2005] compared time-reversal with a set of optimal equalisation
designs. These designs were developed for systems comprised of either mul-
tiple transmitters or multiple receivers, but not both. The Stojanovic filter
design used in the simulation performed here is the “two-sided filter” that
utilises multiple transmitters. Stojanovic [2005] proposed another filter that
theoretically performed better by allowing ISI, however it was more difficult
to implement and the performance improvement minimal and thus not used
in the simulation presented here.

Using the notation presented in Figure 6.1, the two-sided filter design
developed by Stojanovic [2005] between source, n and receiver, n is given by
[Stojanovic, 2005, Eq. 19]

Rn(ω) = Kn(ω)
√
X(ω)γ−1/4

n (ω) (6.10)
Hm,n(ω) = K−1

n (ω)
√
X(ω)γ−3/4

n (ω)C∗n,m(ω) (6.11)

where Rn(ω) is the filter at the receiver, γn(ω) =
∑M

m=1

∣∣C2
n,m(ω)

∣∣ is the
composite channel power spectral density, X(ω) the Nyquist transfer function
and

Kn(ω) =

√√√√ E/σ2
d∫ +∞

−∞

√
Sw(ω) X(ω)√

γn(ω)
dω
S1/4
w (ω) (6.12)

where E represents the transmission energy, σ2
d the average power of the data

sequence, and Sw(ω) the power spectral density of the noise. This design can
be extended to a MIMO design by designing the filters over all the n = [1, N]
source / receiver combinations.

The filter design by Stojanovic [2005] can be analysed by separating the
equations into four different parts:

1. Kn(ω) - a filter that is related to the noise spectrum. If the noise is
flat then Kn(ω) is constant with respect to frequency.

2. X(ω) - the Nyquist transfer function, being the raised cosine spectrum.
The raised cosine spectrum is used as the desired total transfer function
that has no ISI, and is commonly observed to be split between the
transmitter and receiver (see Proakis [2001, Pg. 561]).

3. γ−1/4
n (ω) and γ

−3/4
n (ω) - the inverse of the composite channel power

spectrum. The composite channel power spectrum can be observed to
be the total channel response when using time-reversal, and thus these
filters combined are an inverse filter.

6.3 Performance comparisons 129

4. C∗n,m(ω) - the time-reversal filter.

The two-sided filter given by Equations 6.10 and 6.11 can thus be described
as a time-reversal filter (part 4) with inverse filters (part 3) fitted at both
the transmitter and receiver to compensate for the summation of the time-
reversals (through the inversion of γn) combined with a filter to compensate
for the noise spectrum (part 1) and a filter to achieve the desired response
(part 2) that is split between the source and receiver.

Stojanovic [2005] examined the theoretical performance of the two-sided
filter. Such an examination does not consider the problems that occur when
implementing the filters as time domain filters. In the work presented in this
thesis, a small adjustment must be made to the design to account for non-
causal wrap-around that could possibly occur when implementing the filter in
the time-domain. Wrap-around may occur when converting the filters from
the frequency domain into time domain if there are zeros in the composite
channel power spectrum. To avoid wrap-around, a regularisation parameter,
κ, can be added to the inversion of γn(ω), given in Equations 6.10 and 6.11,
to produce a regularised filter design,

Rn(ω) = Kn(ω)
√
X(ω) (γn(ω) + κ)−1/4 e−jTω/2

Hm,n(ω) = K−1
n (ω)

√
X(ω) (γn(ω) + κ)−3/4 e−jTω/2C∗n,m(ω) (6.13)

The term e−jTω/2 is added to make the filter causal, where T is the duration
of the FFT window.

6.3 Performance comparisons

6.3.1 Procedure

The impulse responses used in the simulation were measured from the labor-
atory experiment described in Section 5.2. The arrays were separated by an
approximately 1 metre long open-air channel containing various objects to
increase the reverberation. Reverberation was desired to emulate a difficult
environment through which to transmit, such as an underwater acoustic en-
vironment. Figure 5.2 shows a photograph of the experimental setup. The
quality of the speakers and microphones used in the experiment was rather
low to reduce the cost of the experiment. The poor quality of the speakers
and microphones described in Section 5.2 was considered to add an extra
degree of difficulty for the inverse filters to compensate.

A number of parameters influenced the performance of the communica-
tion system including the carrier frequency, symbol rate and the regularisa-
tion parameter. Each filter was examined under a wide range of parameters
in order to avoid the possibility that a certain set of conditions would favour

130
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

one particular inverse filter design over another. The inverse filters examined
were:

1. Two-sided filter design by Stojanovic [2005]

2. Time-reversal filter

3. Tikhonov regularised filter formed by

a) inverse by path

b) inverse by channel

c) inverse by full MIMO

To perform the simulation, a number of computers were controlled using
Condor–a distributed computing software. Each computer calculated the
system performance for a set of design parameters. A schematic of the simu-
lation performed on each computer is shown in Figure 5.16. The parameters
varied in the simulation were the number of transmitter elements, symbol
rate, carrier frequency, regularisation parameter and filter type. A detailed
description of the implementation of the simulation is given in Section 5.3.
The job performed on each computer was as follows:

1. A digital sequence of 800 bits was used to generate 400 symbols using
4-PSK signal space. These symbols were used to create a base-band
signal using the raised cosine spectral shaping filter.

2. The channel impulse responses (being sampled at a rate of 55 kHz) were
converted to base-band and used to calculate each inverse filter.

3. The base-band signal from step 1 was convolved with each inverse fil-
ter to generate the signal that would be transmitted. The response at
receiver 1 was examined under two conditions: firstly, for a transmis-
sion that is intended to be received at receiver 1, and secondly for a
transmission that is intended to be received at receiver 2. The first
condition was used to measure the quality of the transmission, and the
second condition to measure the level of cross-talk.

4. The peak level and power of the transmission signals were measured
and used to normalise all the measurements. In a real-time situation,
the transmission signals would be normalised by an automatic gain
control.

5. The transmission signals were convolved with the channel responses to
generate the signals that would be received at the receiver array.

6.3 Performance comparisons 131

6. The power of each received signal was measured to determine the
strength of the signal that would be received at the receiver.

7. The signal was synchronised with the first peak of the training se-
quence, sampled at the symbol rate and adjusted for amplitude and
phase variation.

8. The sampled signal was passed into a non-adaptive and various adapt-
ive detectors, from which the symbol error and standard deviation were
measured.

It should be noted that whilst the schematic in Figure 5.16 and the computer
code show the use of fractional sampling and the RLS adaptive equalisers,
these were turned off during the main simulations as these required extra
computational time, that limited the turn-around whilst developing the sim-
ulation code.

6.3.2 Sensitivity to noise

In the simulations, the environmental noise was omitted from the channel
model so that the symbol errors would be the result of the inter-symbol
interference (ISI) alone. The measured data can be post-processed to obtain
a perspective of how sensitive the inverse filters are to environmental noise,
and channel response mis-match errors.

If the symbol error resulting from ISI is distributed according to a Gaus-
sian distribution, then the expected number of symbol errors when channel
noise is included can be estimated by combining the standard deviation of
the environmental noise and the standard deviation of the symbols resulting
from ISI. This estimate is only possible provided adaptive filters are not used.
If an adaptive filter were to be included, then the addition of environmental
noise can actually be equivalent to adding regularisation (see Equation 10.2-
33 in Proakis [2001]).

Whilst ISI cannot be assumed to be Gaussian, if it is smaller than the
noise, then the error from estimating it as a Gaussian distribution is small
[Shimbo and Celebiler, 1971]. The relationship between the probability of
error for Gaussian interference having a standard deviation of σ for a PSK
modulation scheme is given by [Proakis, 2001]

Pe = 1−
(
Q(− 1

σ
)

)2

(6.14)

where Q(x) = 1√
2π

∫∞
t=x

e−
t2

2 dt is the Matlab function, qfunc.
A scatter plot of the standard deviation versus the symbol error for the

measurements is presented in Figure 6.3 along with the curve of the expected

132
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

symbol error obtained using Equation 6.14. The correlation between the
measured data and the curve demonstrates that it is appropriate to estimate
the inter-symbol interference as Gaussian. The graph of 400Pe approaches a
limit of 300 symbol errors. This limit results because the modulation scheme
(being 4-PSK) consists of four symbols, each with equal probability. The
probability of a correct symbol is thus 1

4
, conversely the probability of an

erroneous symbol, Pe = 3
4
, leading to 400Pe = 300.

Using the relationship between the standard deviation and symbol error,
it is possible to estimate:

• The ratio, R0, by which the measured standard deviation could increase
before obtaining a desired probability of error, Pi,

R0 =
σPi

σs
(6.15)

• The root-mean-square environmental noise, n0, that results in a desired
probability of error, Pi,

n0 = arms

√
σ2
Pi
− σ2

s (6.16)

• The probability of error, Pe,CT , that would be expected as a result of
the cross-talk

Pe,CT = 1−

Q
 −1√

σ2
s +

(
crms

arms

)2




2

(6.17)

• The ratio, RCT , by which the measured standard deviation could in-
crease before obtaining a desired probability of error, Pi, when the
cross-talk noise is included

RCT =
σPi√

σ2
s +

(
crms

arms

)2
(6.18)

• The root-mean-square environmental noise, nCT , that results in a de-
sired probability of error, Pi, when the cross-talk noise is included

nCT = arms

√
σ2
Pi
− σ2

s −
(
crms
arms

)2

(6.19)

6.4 Results 133

−30 −20 −10 0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

S
y
m

b
o
l
e
rr

o
r

(o
u
t
o
f
4
0
0
 s

y
m

b
o
ls

)

Standard deviation (dB)

Figure 6.3: Scatter of standard deviation versus symbol error for all filter
designs. The light curve shows the expected average for a Gaussian distrib-
uted symbol spread.

In each of these equations, σs is the standard deviation of the symbols,
σPi

the standard deviation required to get a probability of error, Pi, crms is
the measured root-mean-square measure of the cross-talk signal, and arms
the root-mean-square measure of the received signal.

The ratio by which the standard deviation must increase to achieve a spe-
cific probability of error shows the sensitivity that the inverse filter design
has to noise resulting from channel estimation error, cross-talk or environ-
mental noise. The environmental noise required to achieve a probability of
error differs from the ratio because the influence of environmental noise is
dependent on the magnitude of the received signal. If the received signal is
very large, then the environmental noise has a small impact on the standard
deviation, however if the received signal is small, a small amount of environ-
mental noise will have a significant impact on the standard deviation of the
symbols.

6.4 Results
The experiment that was simulated consisted of utilising all six, three or two
speakers of the transmitter array to transmit to two adjacent microphones
at the receiver array. Two adjacent microphones were chosen to increase the
cross-talk between the microphones to demonstrate the filter design perform-
ance. The average frequency responses between the six transmitters and each
of the two receivers are shown in Figure 6.4. Receivers 1 and 2 are observed

134
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

to have a fairly similar response. Arbitrarily taking -25 dB as an operational
level, the channel was considered operable between approximately 1.5 kHz
and 20 kHz, despite the response fluctuating significantly throughout this
range.

0 5 10 15 20 25
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Frequency (kHz)

M
a
g
n

it
u
d

e
 (

d
B

 r
e
 1

 V
/V

)

Receiver 1

Receiver 2

Figure 6.4: Average frequency responses between all 6 transmitters and re-
ceivers 1 and 2. The vertical dashed lines show the region in which the
simulations occurred, and the horizontal dashed line indicates the chosen
operational level.

Figures 6.5 to 6.19 show the results obtained from the simulations for
each combination of transmitters, symbol rate, carrier frequency, regular-
isation parameter and filter design. The ranges over which the simulation
parameters were varied are presented in Table 6.1. Each figure presents the
results that are grouped according to the combination of transmitters. Each
group contains a set of sub-plots placed in a grid, where the data rate var-
ies horizontally between 2280, 5700, and 11400 baud, (being 25, 10, and
5 samples / symbol respectively) and the type of inverse filter used varies
vertically. Each subplot shows the results for a range of regularisation values
(ordinate) and carrier frequencies (abscissa). The results for no regularisation
(κ = 0) are shown in the top row of pixels of each plot above the dashed line,
whilst the remaining positions range logarithmically from κ = 10−20 to 100.
Since time-reversal does not have a regularisation parameter, the height of
this subplot has accordingly been reduced. The regularisation parameter,
κ, was normalised against the peak value of the frequency response of the
channel, and results concerning powers at the receiver have been normal-
ised against the total transmission power. The upper limit of 100 for the
regularisation parameter, κ, was chosen to significantly exceed the largest
singular value of the channel responses. This value resulted in the filter ef-
fectively being a time-reversal filter. In some instances, results could not be

6.4 Results 135

obtained because either the carrier frequencies were below half the symbol
rate (Nyquist limit) or the received signal could not be synchronised to de-
termine the desired signals. The regions where the results are not available
have been masked with grey.

Table 6.1: Range of simulation parameters

Transmitter elements used [1 2 3 4 5 6], [1 2 3] and [1 3]
Regularisation parameter, κ 0, 10−20, 10−19.5, · · · , 100

Carrier frequencies 1.5 kHz , · · · , 20 kHz (665 bins)
Data rate 2280, 5700 and 11400 baud

Filter design structure Stojanovic two-sided
Tikhonov inverse by path

Tikhonov inverse by channel
Tikhonov inverse by full MIMO

time-reversal

General observations Several features can be observed from all the res-
ults presented in Figures 6.5 to 6.19. The first observation is that as the
regularisation parameter is increased, the results tend to become similar to
that of the time-reversal filter. This observation confirms the theoretical
prediction presented in Chapter 4 that the inverse filters tend towards the
time-reversal filter as κ tends towards infinity. A second observation is that
as the regularisation parameter approaches zero, some of the filters become
unstable. In such situations the signal that the receiver is required to pro-
cess is severely corrupted. The regions at which this occurs can generally be
observed to appear speckled or greyed out altogether. A third observation
is that as the data rate is increased, the results appear smoother between
carrier frequencies (provided the inverse filter is stable). This can be ex-
plained from the bandwidth occupied by the signal. At the low data rate of
2280 baud, the bandwidth occupied is ±1.14 kHz (see Section 2.2.3), thus an
increase of 2.28 kHz results in the signal operating in entirely different band-
width space; however for the higher data rate of 11400 baud the bandwidth
occupied is ±5.7 kHz, and a shift of 2.28 kHz results in the signal occupying
80% of the previous frequency range, and thus is more likely to have similar
performance.

Transmitter power Figure 6.5 shows the transmitter power prior to the
application of any normalisation. It should be noted that an automatic gain
control (AGC) would generally compensate for the variations observed in
these plots, however it is of interest to observe the signal levels resulting
from the filter designs. From the figures it can be observed that the signal

136
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

level is greater when κ > 10−7, and the Stojanovic two-sided filter design
generally has the greatest signal level. As the data rate is increased, the
signal level is observed to diminish for all the filter designs.

Receiver power Figure 6.6 shows the power of the signal received at the
target receiver. There appears to be only a minor variation of the power
received with respect to the number of elements used at the transmitter,
although reducing the number of elements generally increases the received
power slightly. The increase in power could be attributed to the reduction
of destructive interference.

The power received is generally greatest for the Stojanovic two-sided fil-
ter design whilst the Tikhonov inverse by path filter design is observed to
have the least. Whilst the Stojanovic filter design is the least influenced by
the regularisation parameter, as κ goes above 10−3, all the filters appear to
produce similar power and generally greater than for κ < 10−3.

The high signal power received for the Stojanovic two-sided filter design
can be understood by examining the structure of the filter. The structure
consists of matched filters applied to each receiver followed by a summer that
combines the outputs of these filters. The combined signal is passed through
an inverse filter (shared between the source and receiver) that compensates
for the signal, being the sum of these responses. The matched filter can be
observed to maximise the signal-to-noise ratio, and the summation to result
in an averaging that causes the frequency response to be smoother and less
likely to have deep nulls, and thus should be easier to invert. On the other
hand, the Tikhonov inverse filter is applied to compensate for responses that
are less smooth, and more effort is used to smooth out the response, resulting
in less received energy but of higher quality.

Amplitude of the sampled signal The average symbol amplitude of the
synchronised and sampled signal is shown in Figure 6.7. Whilst this plot
is related to the received power presented in Figure 6.6, the relationship is
dependent on the performance of the inverse filter. If the inverse filter is func-
tioning correctly, then the amplitude of the received signal at the sampling
instance should be a fixed amplitude that would be related to the receiver
power. If the inverse filter was not functioning correctly, the received signal
level for each sampling instance would vary and thus the average amplitude
would be smaller regardless of the receiver power. However, a high amp-
litude does not directly correlate to good inverse filter performance in terms
of inter-symbol interference. It is well known that the time-reversal filter
(or matched filter) achieves the highest signal-to-noise ratio (which would
likewise result in a large average sampling amplitude), however this is at the
expense of inter-symbol interference.

6.4 Results 137

Figure 6.7 shows areas that are quite similar in magnitude to the received
power, however there are also areas where the amplitude is greatly reduced
and also appears noisy–typical of an unstable inverse filter. It is of particular
interest to note that despite the high received power from the Stojanovic two-
sided filter design at 5700 baud, the symbol amplitude is actually increased
by using higher values of regularisation.

Ratio of receiver power to cross-talk power Figure 6.8 shows the ratio
of the receiver power to the cross-talk power (being the power of the signal at
the receiver for a transmission targeted at the cross-talk receiver). The Tick-
honov inverse filter designed by full MIMO has the largest signal to cross-talk
noise ratio, ranging between 30 and 35 dB for the optimal carrier and regular-
isation parameter values for the six transmitter configuration, and between
10 and 15 dB for the two transmitter configuration. This performance is far
above that of all the other filter designs, typically having a ratio between -5
and 10 dB, and greater for higher regularisation values, where all the filters
tend towards being a TR filter, as also shown in the figure. The Stojanovic
two-sided filter is shown to consistently have a slightly larger ratio than the
Tikhonov inverse by path and inverse by channel filters.

The range of regularisation parameter that provides a good signal to
cross-talk noise ratio for the full Tikhonov inverse filter is reduced when the
data rate is increased or a smaller number of transmitters are used. This can
be attributed to the fact that when the data rate is increased, the bandwidth
of the signal is also increased resulting in the inverse filter being required to
place more effort on compensating for the channel fluctuations. When the
number of transmitters is reduced, the inverse filters have fewer channels to
compensate zeros in the transmission path, and resulting in poor composite
transfer functions.

Cazzolato et al. [2001] showed that the focal region of the Tikhonov in-
verse by full MIMO filter was smaller than that for time-reversal. Thus,
the cross-talk resulting for time-reversal could be reduced by an increase in
the distance between the receiver elements. However, increasing the distance
between the receivers would also improve the performance of the inverse by
full MIMO filter as less effort would be required to eliminate the cross-talk.

Symbol error The symbol error measured after the received signal was
synchronised and amplitude / phase adjusted is shown in Figure 6.9. The
areas where low symbol error is observed denote the set of parameters for
which the combination of the inverse filter and channel response result in a
received signal from which the symbols could be detected. To obtain low
symbol errors, the inverse filter design is required to result in a stable set of
filters.

138
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

The Stojanovic two-sided filter has very low symbol error without the
need for regularisation for data rates of 2280 and 5700 baud regardless of the
number of transmitters used. However at the higher data rate of 11400 baud,
the filter design requires a regularisation of between 10−11 and 10−4. The
Tikhonov inverse by path filter design can achieve zero symbol error without
any regularisation for some carrier frequencies at low data rates, however the
addition of regularisation of around 10−4 allows the inverse filter to achieve
low symbol rates for all carrier frequencies and all transmitter arrangements.
The Tikhonov filters designed by both inverse by channel and inverse by
full MIMO require that regularisation always be used to achieve low symbol
errors. All the inverse filters have symbol errors as the regularisation increases
above 10−2, and time-reversal is observed to have the worst performance of
all the filter designs.

The range of suitable regularisation reduces with either an increase in the
data rate or a decrease in the number of transmitters. The Tikhonov inverse
by full MIMO filter design consistently has the smallest range of suitable
regularisation values; whilst the Stojanovic two-sided filter has the largest.

The reason the Stojanovic two-sided filter requires little or no regular-
isation can be attributed to the fact that the inversion is performed on a
spectral averaged response of all the channels. In order for a zero to occur
within this average, all of the IRs must share a common zero. As the number
of transmitters is increased, the probability of a common zero is reduced. At
11400 baud, regularisation was required for the Stojanovic two-sided filter
to achieve a low number of symbol errors. Regularisation was found to be
required for this symbol rate because a common zero existed in the frequency
responses of the channels. This common zero was the result of the filtering
performed in the band-pass to base-band conversion.

Sensitivity of the system to noise In Section 6.3.2 it was described how
the standard deviation of the sampled symbols could be related to the symbol
error and used to obtain an estimate of the sensitivity of the inverse filter
to both environmental noise and channel estimation error. To validate the
ability of using the standard deviation to determine the symbol error, the
symbol error for 400 symbols calculated from the standard deviation is shown
in Figure 6.10. Comparing the estimated symbol error with the actual symbol
error shown in Figure 6.9, there appears to be reasonably good agreement,
particularly around the edges of the regions having zero symbol errors. The
accuracy of the boundaries of the zero symbol error are of particular interest
as this is the value of standard deviation used to determine the margin by
which the noise could increase.

The increase in the standard deviation before attaining a 1 in 400 chance
of error is shown in Figure 6.11. The Stojanovic two-sided filter is observed
to have the greatest margin. However, if the regularisation parameter is ap-

6.4 Results 139

propriately chosen for either the inverse by channel or inverse by full MIMO
Tikhonov inverse filter a similar level of performance is achieved. The inverse
by path design is observed to perform the worst, whilst the inverse by channel
filter is the most resilient to noise. This can be explained by the fact that
the inverse by path filter uses most of the energy to compensate for nulls in
each channel rather than for a combination of channels as per the inverse by
channel or inverse by full MIMO designs. The inverse by full MIMO filter
performs worse than the inverse by channel design since part of the effort in
the filter design is used to reduce the cross-talk to the other receivers.

Figure 6.12 shows the noise level required in the channel to cause the
standard deviation to increase to the point of achieving a probability of er-
ror, Pe = 1

400
. The noise level required to achieve this error is dependent on

both the increase of standard deviation required to reach Pe = 1
400

, shown
in Figure 6.11, and the magnitude of the received symbols shown in Fig-
ure 6.7. Comparing these figures, it is evident that provided the margin for
the standard deviation of the received signals is above 2 dB, the noise margin
is primarily related to the symbol amplitude.

The Stojanovic two-sided filter has the largest margin for the noise to
increase at the higher data rates, however with an appropriate choice of reg-
ularisation parameters, for the correct carrier frequency, similar performance
can be obtained from all the receivers. As the number of receivers is re-
duced, the performance of all the filters is slightly reduced. In particular,
the range of regularisation values for which the Tikhonov inverse filter pro-
duces the near optimal results is reduced. The Stojanovic two-sided filter
clearly performs the best with regard to sensitivity to noise.

Performance prediction with cross-talk In Section 6.3.2 it was shown
that the standard deviation of the sampled symbols could be related to the
symbol error and used to obtain an estimate of the sensitivity of the inverse
filter to environmental noise, channel estimation error, and cross-talk inter-
ference. In this section, the results for the influence of cross-talk are presen-
ted. Figure 6.13 shows the estimated symbol error, Figure 6.14 the increase
in standard deviation required to obtain a probability of error, Pe = 1

400
,

and Figure 6.15 the required level of noise to obtain a probability of error,
Pe = 1

400
, when cross-talk is considered.

The estimated symbol error presented in Figure 6.13 shows that the Tik-
honov inverse by full MIMO filter design provides the greatest performance
having obtained no symbols from cross-talk when appropriate regularisa-
tion is chosen, regardless of the carrier frequency or number of transmitters
used. However the range of regularisation values over which the regularisa-
tion provides good results is reduced when the number of transmitters is
reduced or the data rate is increased. Whilst the other inverse filter designs
show certain amounts of error, many could be made to function through the

140
Chapter 6 Performance of Tikhonov regularised inverse filter design

structures

use of an adaptive equaliser. The Stojanovic two-sided filter has a low sym-
bol error and the performance improves with an increase in data rate, but
decreases when reducing the number of transmitters.

The increase in standard deviation or noise required to obtain a probabil-
ity of error, Pe = 1

400
, shown in Figures 6.14 and Figure 6.15 demonstrate that

the Tikhonov inverse by full MIMO is the only filter that can safely function
in a multi-channel system for most carrier frequencies, data rates, and num-
ber of transmitters. The inverse by channel appears to be able to function
at an appropriate error rate, however the range of carrier frequencies over
which the error rate can be achieved is very small, and the margins for noise
fluctuations extremely low. However, at high data rates or when using few
transmitters, the margins for performing MIMO communication are greatly
degraded. Whilst it was mentioned in the previous paragraph that adaptive
filters could be used to achieve a functional multi-channel system using the
other filter designs, the ratio of the target signal to cross-talk signal power
presented in Figure 6.8 demonstrates that the Tikhonov inverse by full MIMO
has the smallest sensitivity to the cross-talk noise and is observed to operate
best when the regularisation is around 10−3 for lower carrier and 10−4 for
higher carrier frequencies. At low symbol rates, the range of regularisation
producing low symbol error is large, however for faster data rates, the range
is much smaller. This can be attributed to the bandwidth that the signal
occupies. When the data rate is increased, the bandwidth is increased, and
the number of zeros likely to be within the bandwidth increases, resulting in
a reduction in the range of regularisation values.

Symbol error for the adaptive equalisers A number of adaptive filters
were implemented at the receiver having both feed-forward and feed-back
taps that spanned 18ms (half the length of the channel impulse responses).
The responses were passed through the adaptive filters three times with a
decrease in the step size to obtain the best possible adaption. The taps
resulting from each step were used at the next iteration unless the average
error increased. If the error increased the adaptive equaliser taps were reset
to the state they were before the current iteration. The results from us-
ing the zero forcing and least-mean-square (LMS) adaptive filters, with and
without a training sequence of 40 symbols, are shown in Figures 6.16 to 6.19.
Comparing the symbol error to that without any adaptive filtering, as shown
in Figure 6.9, the adaptive equalisers have been able to reduce the error,
provided the error is not too large. Of particular note, the adaptive filter has
enabled the time-reversal to operate over a much wider range of frequencies
at the speed of 2280 symbols / second.

6.5 Conclusion 141

6.5 Conclusion
In this chapter, three classifications of channel filter design have been dis-
cussed; inverse by path, inverse by channel and inverse by full MIMO. Tik-
honov regularised inverse filters were implemented according to these classi-
fications and compared with the time-reversal filter and the two-sided filter
design proposed by Stojanovic [2005]. Whilst Stojanovic [2005] presented
theoretical results, the filter was shown to require a regularisation parameter
in order to be practically implementable. The Stojanovic two-sided filter out-
performs the Tikhonov regularised inverse filter designs when communicating
over a single channel. The inverse by path and inverse by channel performed
particularly poorly when compared to the Stojanovic two-sided filter, whilst
the inverse by full MIMO design was found to have only slightly reduced
performance. Whilst the Stojanovic two-sided filter and inverse by path, and
inverse by channel Tikhonov inverse filter designs are not designed for MIMO
communication; they were however found to reduce the cross-talk. However,
the performance of these designs for MIMO communication was found to be
poor when compared to the inverse by full MIMO filter. The inverse by full
MIMO was found to provide 20 dB less cross-talk at the expense of around
2 dB loss in signal strength when compared to the Stojanovic two-sided filter.
In this scenario, the inverse by MIMO Tikhonov filter design was the only
design that was able to be used to transmit multiple transmission streams.

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−70

−60

−50

−40

−30

−20

[1 2 3 4 5 6] => [1 2] : Transmitter power without normalisation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−70

−60

−50

−40

−30

−20

[1 2 3] => [1 2] : Transmitter power without normalisation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−70

−60

−50

−40

−30

−20

[1 3] => [1 2] : Transmitter power without normalisation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.5: Transmitter power for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

142

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 2 3 4 5 6] => [1 2] : Power at target receiver from transmission for target receiver
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 2 3] => [1 2] : Power at target receiver from transmission for target receiver
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 3] => [1 2] : Power at target receiver from transmission for target receiver
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.6: Power at the target receiver for the parameter ranges presented
in Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

143

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 2 3 4 5 6] => [1 2] : Average symbol amplitude
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 2 3] => [1 2] : Average symbol amplitude
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−50

−40

−30

−20

−10

0

[1 3] => [1 2] : Average symbol amplitude
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.7: Average amplitude of sampled signal prior to compensation of the
phase / amplitude for the parameter ranges presented in Table 6.1. Results
for κ = 0 are presented in the plots in the top row of pixels above the dashed
line.

144

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−5

0

5

10

15

20

25

30

35

[1 2 3 4 5 6] => [1 2] : Ratio of target signal to cross−talk signal power
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−5

0

5

10

15

20

25

30

35

[1 2 3] => [1 2] : Ratio of target signal to cross−talk signal power
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−5

0

5

10

15

20

25

30

35

[1 3] => [1 2] : Ratio of target signal to cross−talk signal power
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.8: Ratio of the receiver power to the cross-talk power for the para-
meter ranges presented in Table 6.1. Results for κ = 0 are presented in the
plots in the top row of pixels above the dashed line.

145

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Symbol error
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Symbol error
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Symbol error
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.9: Symbol error without any adaptive filters for the parameter
ranges presented in Table 6.1. Results for κ = 0 are presented in the plots
in the top row of pixels above the dashed line.

146

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Estimated symbol error using standard deviation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Estimated symbol error using standard deviation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Estimated symbol error using standard deviation
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.10: Estimate of symbol error derived from the standard deviation for
the parameter ranges presented in Table 6.1. Results for κ = 0 are presented
in the plots in the top row of pixels above the dashed line.

147

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 2 3 4 5 6] => [1 2] : Increase in standard deviation required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 2 3] => [1 2] : Increase in standard deviation required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 3] => [1 2] : Increase in standard deviation required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.11: Increase in standard deviation required to achieve an error rate
of 1 in 400 for the parameter ranges presented in Table 6.1. Results for κ = 0
are presented in the plots in the top row of pixels above the dashed line.

148

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 2 3 4 5 6] => [1 2] : Noise level required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 2 3] => [1 2] : Noise level required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 3] => [1 2] : Noise level required to get P
e
=1/400

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.12: Channel noise required to achieve a standard deviation that
results in an error rate of 1 in 400 for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

149

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Estimated symbol error using standard deviation with cross−talk
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Estimated symbol error using standard deviation with cross−talk
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Estimated symbol error using standard deviation with cross−talk
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.13: Estimate of symbol error derived from the standard devi-
ation with the addition of cross-talk for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

150

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 2 3 4 5 6] => [1 2] : Increase in standard deviation required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 2 3] => [1 2] : Increase in standard deviation required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

0

2

4

6

8

10

12

14

16

18

20

[1 3] => [1 2] : Increase in standard deviation required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.14: Increase in standard deviation required to achieve an error rate
of 1 in 400 after the addition of cross-talk for the parameter ranges presented
in Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

151

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 2 3 4 5 6] => [1 2] : Noise level required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 2 3] => [1 2] : Noise level required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

dB

−45

−40

−35

−30

−25

−20

−15

−10

[1 3] => [1 2] : Noise level required to get P
e
=1/400 with cross−talk

5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.15: Channel noise required to achieve a standard deviation that
results in an error rate of 1 in 400 after the addition of cross-talk for the
parameter ranges presented in Table 6.1. Results for κ = 0 are presented in
the plots in the top row of pixels above the dashed line.

152

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Symbol error using MSEA adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Symbol error using MSEA adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Symbol error using MSEA adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.16: Symbol Error using LMS adaptive equaliser and no training
sequence for the parameter ranges presented in Table 6.1. Results for κ = 0
are presented in the plots in the top row of pixels above the dashed line.

153

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Symbol error using MSEA adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Symbol error using MSEA adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Symbol error using MSEA adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.17: Symbol error using LMS adaptive equaliser and a training se-
quence of 40 symbols for the parameter ranges presented in Table 6.1. Results
for κ = 0 are presented in the plots in the top row of pixels above the dashed
line.

154

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Symbol error using ZF adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Symbol error using ZF adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Symbol error using ZF adaptive filter
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.18: Symbol error using the zero-forcing adaptive equaliser and no
training sequence for the parameter ranges presented in Table 6.1. Results
for κ = 0 are presented in the plots in the top row of pixels above the dashed
line.

155

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3 4 5 6] => [1 2] : Symbol error using ZF adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 2 3] => [1 2] : Symbol error using ZF adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

2280 baud

S
to

j.
 2

s
id

e
d

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
P

a
th

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
C

h
a

n

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

T
IF

:
M

IM
O

κ

1e−20

1e−16

1e−12

1e−08

0.0001

1

Carrier Frequency (kHz)

T
R

2 4 6 8 10 12 14 16 18

Symbols
incorrect

0

20

40

60

80

100

120

[1 3] => [1 2] : Symbol error using ZF adaptive filter with training (40 symbols)
5700 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

11400 baud

Carrier Frequency (kHz)
2 4 6 8 10 12 14 16 18

Figure 6.19: Symbol error using the zero-forcing adaptive equaliser and
a training sequence of 40 symbols for the parameter ranges presented in
Table 6.1. Results for κ = 0 are presented in the plots in the top row of
pixels above the dashed line.

156

7 Conclusions and Future Work

7.1 Conclusions

The general aim of the research presented in this thesis is to examine the
application of Tikhonov regularised inverse filtering to acoustic communic-
ation systems. The motivation for this research is to be able to apply the
developments of this work to underwater acoustic communication systems.

In the literature two groups of researchers have examined the implementa-
tion of digital underwater acoustic communication systems for shallow water
environments. One group investigated underwater acoustic communication
from the basis of general digital communication theory [Baggeroer, 1984,
Catipovic, 1990, Stojanovic, 1996, Kilfoyle and Baggeroer, 2000, Chitre et al.,
2008]. The second group have looked at using an acoustic technique known as
time-reversal and investigated means of integrating this technology with di-
gital communication systems [Jackson and Dowling, 1991, Kuperman et al.,
1998, Hodgkiss et al., 1999, Kim et al., 2001a]. Tikhonov regularised in-
verse filtering is observed to be similar to time-reversal in that both systems
feature a focusing effect, and both aim to provide some form of reduced com-
plexity in the design. The novel contributions of this thesis primarily relate
to two particular developments: The influence of transducer sensitivity on
Tikhonov inverse filtering, and an investigation of the performance of the
Tikhonov inverse filter for use in communication systems. The details of
these contributions and their implications are presented in the following two
sections.

7.1.1 Influence of amplifier gain on Tikhonov inverse
filter performance

During the implementation of Tikhonov inverse filtering in an experiment, it
was found that the choice of amplifier sensitivities for the transmitting and
receiving elements had an impact on the Tikhonov inverse filter performance.
A technique was proposed to assist in compensating for the amplifier sens-
itivities. The influence of the amplifier sensitivities on Tikhonov regularised
inverse filters was examined by mathematically considering the impact of

157

158 Chapter 7 Conclusions and Future Work

the sensitivities on the resulting filter co-efficients. Setting the sensitivities
to their maximum for multi-channel systems does not always maximise the
coherence between the input and output of the entire system.

The algorithm was tested on a set of channel responses that were used
by Kirkeby et al. [1998] to demonstrate the functionality of the Tikhonov
regularised inverse filter. The channel responses were scaled to emulate a
system with poor sensitivities. Applying the adjustments to the sensitivities
derived using the developed algorithm, the frequency response was found to
be flatter, and the level of cross-talk reduced; indicating the algorithm was
functioning as desired.

It was also shown that the impact the sensitivities has on the perform-
ance of the Tikhonov inverse filter varies depending on the regularisation
parameter. By examining the Tikhonov inverse filter as the regularisation
parameter approached zero and infinity, it was possible to gain insight into
the performance of the inverse filters designs. It was found that if the reg-
ularisation was close to zero, the influence of the amplifier sensitivities on
the total response was minimal, however as the regularisation parameter is
increased, the influence becomes considerable. During the examination of
various regularisation parameters it was also found that the time-reversal fil-
ter is equivalent to a Tikhonov regularised filter with infinite regularisation.

Since the time-reversal filter is equivalent to a Tikhonov regularised filter
with infinite regularisation, many of the properties of time-reversal also apply
to Tikhonov regularisation provided the regularisation is sufficiently large. In
addition, if an optimisation strategy is created to find the optimal regularisa-
tion value for the Tikhonov regularised inverse filter, then the performance
will always be greater or equal to that of the time-reversal filter since the
time-reversal filter is included in the search space of the optimisation.

The ability to perform the compensation for the poor sensitivities in the
digital domain was also investigated, however doing so resulted in a reduction
of the magnitude of the channel response.

7.1.2 Implementation of Tikhonov inverse filtering for
a communication system

An experimental investigation was performed to asses different methods of
integrating various inverse filter designs into communication systems. An
experiment was conducted that utilised Tikhonov regularised inverse filters
in conjunction with an acoustic digital communication system in air. The
experimental environment was designed to provide insight into how the filters
might perform in a shallow underwater acoustic environment. A shallow
underwater acoustic environment consists of a layer of water bounded by
two surfaces: the sea surface, and the sea floor. These two surfaces result in
the transmission undergoing many reflections when traversing through the

7.1 Conclusions 159

channel. In order to create a similar experimental environment, the channel
used in the experiments was bounded by a number of surfaces, and multiple
items were placed between the arrays to increase the number of reflections.
Two arrays separated by 1 to 3 metres were placed in the environment and
Tikhonov inverse filters used to create sets of signals that when transmitted
would focus different information at each receiver.

In this work it was shown that the Tikhonov inverse filter and related
filter design structures could be implemented according to three different
classifications. The Tikhonov inverse filter was implemented according to
each of these classifications and compared with each other and with two other
filter designs: time-reversal filtering, and the Stojanovic two-sided filter.

The experiment demonstrated that the use of Tikhonov regularised in-
verse filter proved to have benefits over the other time-reversal and the Sto-
janovic two-sided filter. However, given the large number of parameters that
could be altered it was difficult to gain a comprehensive comparison between
the filters because of the time taken to run each experiment. The investiga-
tion was thus migrated to a simulation so that the experimental arrangement
could be examined using various parameter configurations.

The parameters varied in the simulation were the selection of transmitter
elements used, symbol rate, carrier frequency, regularisation parameter and
filter type. The model of the channel response deviated from the physical
communication experiment in that extraneous noise was not included in the
model.

The simulation examined the response for a transmission that sent the
information signal to a target receiver, and a null to the non-target receiver.
A subsequent response was examined for a transmission that sent the in-
formation signal to the non-target receiver, and a null to the target receiver
to examine the cross-talk at the target receiver. Extraneous noise was not
included in the model because the results from a model containing no noise
could be manipulated to provide an estimate of the results if noise had been
included. Using these simulation results, the expected performance of the
filter design for multi-channel communications could be derived.

The results obtained from the simulation demonstrated that the Stojan-
ovic two-sided filter performed the best for single channel communications.
However if the regularisation parameter was chosen correctly, the difference
between the performance of the system using the Stojanovic two-sided filter
and that using Tikhonov regularisation was small. The range of regularisa-
tion that provides effective results was found to decrease when the number
of transmitters was reduced or the data rate increased. The Stojanovic two-
sided filter was modified to include a regularisation parameter and it was
found that at higher data rates, the filter performance improved when using
regularisation.

The filter providing the best performance for multi-channel communica-

160 Chapter 7 Conclusions and Future Work

tions was the Tikhonov regularised inverse filter designed according to the
inverse by full MIMO classification. This filter was the only one that was
found to be functional for the system under investigation, providing zero
symbol error over all the selections of transmitter elements, symbol rates
and carrier frequencies. Some of the other filters could possibly be used in
a multi-channel environment, however adaptive equalisers and other signal
processing would be required to correct the symbol errors.

This research has satisfied its aim to investigate the influence of the Tik-
honov inverse filter parameters on the communication system design, and
its relative performance. The influences of the following were investigated:
transducer placement, sensitivity of the transducers, parameters of the in-
verse filters, design structure of the Tikhonov regularised inverse filter, data
rate, and carrier frequency. In addition, a technique has been developed to
provide a means of compensating for poorly performing transducers from
poor placement or incorrect sensitivities. Several implementations of the
Tikhonov inverse filter were proposed and compared with two related filter
designs: time-reversal and the Stojanovic two-sided filter. Given appropriate
parameters, the Tikhonov regularised inverse filter successfully demonstrated
good or comparable performance to the best filter tested for communication
systems. In particular a Tikhonov regularised design out-performed the other
filter designs tested with respect to multi-channel communication capability.

7.2 Recommendations for future work

The following sections describe potential lines of investigation to further the
work presented in this thesis.

7.2.1 Methods for adapting the regularisation
parameter

The simulations discussed in Chapter 6 provided good insight into the range
of regularisation parameters for which the Tikhonov regularised inverse filter
functions well. The addition of Tikhonov regularisation to the various inverse
filtering systems influenced the magnitude and quality of the received signal
and also the level of cross-talk to adjacent receivers. Observing the results
from the simulations (Figures 6.5 to 6.19) the optimal choice of regularisa-
tion parameter appears to consistently be between 10−1 and 10−8. However
observing the level required to obtain an error of 1 in 400 with and without
cross-talk (Figures 6.11 and 6.14) it is apparent that the optimal value can
vary slightly depending on the channel response and the level of noise in the
system.

7.2 Recommendations for future work 161

It can be seen by examining the power of the received signal (Figure 6.6),
that the magnitude of the received signal can be increased by increasing
the regularisation parameter. For each scenario investigated, there was an
optimal value for the regularisation parameter located between 10−1 and 10−8

that reduced the cross-talk power (Figure 6.8) and improved the quality of
the received signal (Figures 6.9 and 6.11). If the regularisation strayed too
far from this optimal area the cross-talk power would increase and the quality
of the received symbols degrade. Future investigations into the inverse filter
design could be made to develop a cost function that adapts the regularisation
parameter to the conditions in which the filter design is to operate.

7.2.2 Adaptive channel estimates update using the
symbol errors

The duration for which time-reversal provided sufficient filtering in a com-
munication system was examined by Rouseff et al. [2001] for a shallow water
environment for a number of environmental conditions. In calm conditions
the communication continued to operate for some time, however in windy
conditions or when the source was drifting, the symbols became less distin-
guishable over a much shorter duration. Flynn et al. [2004] investigated a
means of using the detected symbols to update the co-efficients of the time-
reversal filter to avoid completely halting the communication to obtain a
fresh set of channel measurements. A similar technique could be applied to
the Tikhonov regularised inverse filtering technique.

In order to test the implementation of channel updates, the waveguide
experiment described in Chapter 5 could be modified to create a controlled
dynamic environment that could provide repeatable variance of the channel
environment through the use of motors to alter the position of the arrays
or objects within the channel. Alternatively, a simulation with time-varying
parameters could be used to assess the performance of the Tikhonov regu-
larised inverse filtering technique.

7.2.3 Using the DORT technique to focus on each
receiver

In Section 3.2.1, the technique of using a decomposition of the temporal
operator (DORT) was described for matched field processing systems which
was able to create signals that could focus on any of the desired reflective
targets in an environment. An avenue for future work could involve using
the same technique on floating receiver locations with a central base station.
Each of these floating target receiver locations might retransmit an initial

162 Chapter 7 Conclusions and Future Work

probe signal, and the DORT technique could then be used to create signals
specifically targeted for each receiver location.

7.2.4 Variable range focusing

Song et al. [1998] demonstrated that the focal zone of time-reversal could
be moved by shifting the frequency response of the channel measurement
used in the time-reversal process. The phenomenon could be combined with
a communication system to predict the response at different locations for
travelling vessels. The phenomenon could also be used in conjunction with
Tikhonov regularised inverse filtering to zero the signal at different ranges to
tighten the spatial focus of the signal.

7.2.5 Automatic channel MIMO reduction

When deploying MIMO communication systems for use in the underwater en-
vironment, some environments might provide a favourable channel in which
the MIMO system can effectively transmit various signals to each receiver
with little cross-talk or signal distortion, whilst in other environments there
could be more cross-talk interference or signal degradation for the same ar-
rangement. It would be desirable to design a communication system that can
detect the quality of the environment and dynamically adapt the number of
channels over which to transmit in order to maximise the channel capacity.

7.2.6 Using the adjoint operator to eliminate cross-talk

In the development of the Tikhonov regularised inverse filter design, Kirkeby
et al. [1996b] showed that given the z-transform representation of the filter

H(z) =
[
CT(z−1)C(z) + κI

]−1
CT(z), (7.1)

the filter can also be expressed as

H(z) =
adj
[
CT(z−1)C(z) + κI

]
CT(z−1)

det [CT(z−1)C(z) + κI]
(7.2)

where the adj[] and det[] operators are the adjoint and determinant operat-
ors respectively. A property of both the adjoint and determinant operators
is that the elements of the output matrix consist of multiplications of the
elements of the input matrix. Thus if the elements of the matrix consist
of finite length filters, then the resulting output will also consist of finite
length filters. Thus any instability that results from the Tikhonov regular-
ised filter design is the result of the inversion of the determinant. Since the
determinant results in a scalar value, the portion of the filter design that

7.2 Recommendations for future work 163

achieves cross-talk cancellation must be in the numerator. Thus it would
appear that a finite-length cross-talk canceller can theoretically be formed
using the numerator of the filter,

Ha1(z) = adj
[
CT(z−1)C(z−1) + κI

]
CT(z−1) (7.3)

and setting κ to zero. Whilst this might result in a stable cross-talk cancelling
filter, the length of the total system response may be very long. The length
of the response of the Tikhonov regularised inverse filter can be seen to be
controlled by the application of the additional filter

Ha2(z) =
1

det [CT(z−1)C(z) + κI]
, (7.4)

being the denominator of the Tikhonov regularised inverse filter. It would
be of interest to observe the functionality of a filter design that replaces the
inverse operator with a time-reversal equivalent, resulting in the computa-
tionally less expensive filter

Ha2(z) = (det
[
CT(z−1)C(z) + κI

]
)∗. (7.5)

References

J.B. Allen, D.A. Berkley, and J. Blaert. Multimicrophone signal-processing
techniques to remove room reverberation from speech signals. Journal of
the Acoustical Society of America, 62(4):912–915, October 1977. See page 54.

A.B. Baggeroer. Acoustic telemetry - an overview. IEEE Journal of Oceanic
Engineering, 9(4):229–235, October 1984. See pages 1, 33, 34, and 157.

H.P. Bucker. Sound propagation in a channel with lossy boundaries. Journal
of the Acoustical Society of America, 48(5):1187–1194, 1970. See page 11.

H.P. Bucker. Use of calculated sound fields and matched-field detection to
locate sound sources in shallow water. Journal of the Acoustical Society of
America, 59(2):368–373, February 1976. See page 42.

J.V. Candy, A.W. Meyer, A.J. Poggio, and B.L. Guidry. Time-reversal pro-
cessing for an acoustic communications experiment in a highly reverberant
environment. Journal of the Acoustical Society of America, 115(4):1621–
1631, April 2004. See pages 68 and 69.

J.V. Candy, A.J. Poggio, D.H. Chambers, B.L. Guidry, C.L. Robbins, and
C.A. Kent. Multi-channel time-reversal processing for acoustic commu-
nications in a highly reverberant environment. Journal of the Acoustical
Society of America, 118(4):2339–2354, October 2005. See pages 68 and 69.

D. Carsten, J.-C. Aime, and M. Fink. One-channel time-reversal in chaotic
cavities: Experimental results. Journal of the Acoustical Society of Amer-
ica, 105(2):618–625, February 1999. See page 44.

D. Cassereau and M. Fink. Time-reversal of ultrasonic fields-part iii: Theory
of the closed time-reversal cavity. IEEE Transactions on Ultrasonics, Fer-
roElectrics, and Frequency Control, 39(5):579–592, September 1992. See

page 40.

D. Cassereau and M. Fink. Focusing with plane time-reversal mirrors: An
efficient alternative to closed cavities. Journal of the Acoustical Society of
America, 94(4):2373–2386, October 1993. See page 40.

165

166 REFERENCES

J.A. Catipovic. Performace limitations in underwater acoustic telemetry.
IEEE Journal of Oceanic Engineering, 15(3):205–216, July 1990. See pages

1, 33, 34, 35, and 157.

B.S. Cazzolato, P. Nelson, P. Joseph, and R.J. Brind. Numerical simulation
of optimal deconvolution in a shallow-water environment. Journal of the
Acoustical Society of America, 110(1):170–185, July 2001. See pages 2, 61, 70,

71, 72, 123, 126, and 137.

D. H. Chambers and A.K. Gautesen. Time reversal for a single spherical
scatterer. Journal of the Acoustical Society of America, 109(6):2616–2624,
June 2001. See page 48.

M. Chitre, S. Shahabudeen, and M. Stojanovic. Underwater acoustic com-
munications and networking: Recent advances and future challenges. The
Spring, 42(1):103–116, 2008. See pages 1, 33, 35, and 157.

C.S. Clay. Waveguides, arrays, and filters. GeoPhysics, 31(3):501–505, June
1966. See pages 37 and 50.

C.S. Clay. Optimum time domain signal transmission and source location in
a waveguide. Journal of the Acoustical Society of America, 81(3):660–664,
March 1987. See pages 42 and 49.

C.S. Clay and Li Saimu. Time domain signal transmission and source location
in a waveguide: Matched filter and deconvolution experiments. Journal of
the Acoustical Society of America, 83(4):1377–1383, April 1988. See page 60.

P. Damaske. Head-related two-channel stereophony with loudspeaker repro-
duction. Journal of the Acoustical Society of America, 50(4):1109–1115,
1971. See page 54.

A. Derode, P. Roux, and M. Fink. Robust acoustic time reversal with
high-order multiple scattering. Physics Review Letters, 75(23):4206–4210,
December 1995. doi: 10.1103/PhysRevLett.75.4206. See page 42.

A. Derode, A. Tourin, and M. Fink. Ultrasonic pulse compuression with one-
bit time reversal through multiple scattering. Journal of Applied Physics,
85(9):6343–6352, May 1999. See pages 44 and 71.

C. Dorme and M. Fink. Focusing in transmit–receiver mode through inhomo-
geneous media: The time reversal matched filter approach. Journal of the
Acoustical Society of America, 98(2):1155–1162, August 1995. See page 60.

C. Dorme and M. Fink. Ultrasonic beam steering through inhomogeneous
layers with a time reversal mirror. IEEE Transactions on Ultrasonics,
FerroElectrics, and Frequency Control, 43(1):167–175, January 1996. See

pages 40 and 41.

REFERENCES 167

D.R. Dowling. Acoustic pulse compression by passive phase-conjugation.
Journal of the Acoustical Society of America, 95(3):1450–1458, March
1994. See pages 49 and 63.

D.R. Dowling and D.R. Jackson. Narrow-band performance of phase-
conjugate arrays in dynamic random media. Journal of the Acoustical
Society of America, 91(6):3257–3277, June 1992. See page 42.

C. Draeger, D. Cassereau, and M. Fink. Theory of time-reversal process in
solids. Journal of the Acoustical Society of America, 102(3):1289–1295,
September 1997. See page 54.

dSPACE. DS1104 R&D Controller Board - RTLib Reference. dSPACE
GmbH, Technologiepark 25, 33100 Paderborn, Germany, release 4.1 edi-
tion, March 2004. See pages 179 and 186.

P.M. Dumuid and B.S. Cazzolato. Experimental results of time reversal and
optimal inverse filtering performed in a one dimensional waveguide. In
145th Meeting: Acoustical Society of America, volume 114, pages 2407–
2408. Acoustical Society of America, October 2003. See page 109.

P.M. Dumuid, B.S. Cazzolato, and A.C. Zander. A comparison of filter design
structures for multi-channel acoustic communication systems. Journal of
the Acoustical Society of America, 123(1):174–185, January 2008. See page

121.

R.M. Dunbar. The performace of magnetic loop transmitter-receiver systems
submerged in the sea. The Radio and Electronic Engineer, 42(10):457–463,
October 1972. See page 1.

G.F. Edelmann, T. Akal, W.S. Hodgkiss, S. Kim, W.A. Kuperman, and H.C.
Song. An initial demonstration of underwater acoustic communication
using time reversal. IEEE Journal of Oceanic Engineering, 27(3):602–609,
July 2002. See page 67.

G.F. Edelmann, H.C. Song, S. Kim, W.S. Hodgkiss, W.A. Kuperman, and
T. Akal. Underwater acoustic communications using time reversal. IEEE
Journal of Oceanic Engineering, 30(4):852–864, October 2005. See pages 67

and 68.

S.J. Elliott. Signal Processing for Active Control. Academic Press, 1st ed.
edition, 2001. See page 96.

P.C. Etter. Underwater acoustic modeling - Principles, Techniques and Ap-
plications. E & FN Spon, 2nd edition, 1996. See pages xiii, 1, 5, 7, 8, 9, 11, 12,

and 14.

168 REFERENCES

A.C. Fannjiang. Time reversal communications in rayleigh-fading broadcast
channels with pinholes. Physics Letters A, 353(5):389–397, 2006. See page

69.

M. Fink. Time reversal of ultrasonic fields - part i: Basic principles. IEEE
Transactions on Ultrasonics, FerroElectrics, and Frequency Control, 39(5):
555–566, September 1992. See pages xiv, 37, 39, 45, and 49.

M. Fink, G. Montaldo, and M. Tanter. Time-reversal acoustics in biomedical
engineering. Annual Review of Biomedical Engineering, 5:465–497, August
2003. See page 53.

J.L. Flanagan and R.C. Lummis. Signal processing to reduce multipath
distortion in small rooms. Journal of the Acoustical Society of America,
47(6):1475–1481, 1970. See page 54.

J.A. Flynn, J.A. Ritcey, D. Rouseff, and W.L.J. Fox. Multichannel equaliza-
tion by decision-directed passive phase conjugation: Experimental results.
IEEE Journal of Oceanic Engineering, 29(3):824–836, July 2004. See pages

65 and 161.

B. Gardner and K. Martin. HRTF measurements of a KEMAR dummy-head
microphone. Technical Report 280, MIT Media Lab Perceptual Comput-
ing, MIT Media Lab, E15-401D, Cambridge, MA 02139, May 1994. See page

82.

G.H. Golub, M. Heath, and G. Wahba. General cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, May
1979. See page 59.

T. Goursolle, S. Dos Santos, O. Bou Matar, and S. Calle. Non-linear based
time reversal acoustic applied to crack detection: Simulation and exper-
iments. International Journal of Non-Linear Mechanics, 43(3):170–177,
2008. See page 54.

P.C. Hansen. Rank-deficient and discrete ill-posed problems: numerical as-
pects of linear inversion. SIAM Monographs on Mathematical Modeling
and Computation. Society for Industrial and Applied Mathematics, Phil-
adelphia, PA, USA, 1998. ISBN 0-89871-403-6. See pages 58 and 59.

S. Haykin. Communication Systems. John Wiley & Sons, Inc., fourth edition,
2001. See page 26.

M. Heinemann, A. Larraza, and K.B. Smith. Experimental studies of ap-
plications of time-reversal acoustics to noncoherent underwater commu-
nications. Journal of the Acoustical Society of America, 113(6):3111–3116,
June 2003. See page 67.

REFERENCES 169

W.J. Higley, P. Roux, and W.A. Kuperman. Relationship between time
reversal and linear equalization in digital communications (l). Journal
of the Acoustical Society of America, 120(1):35–37, July 2006. See pages 59

and 126.

W.S. Hodgkiss, H.C. Song, W.A. Kuperman, T. Akal, C. Ferla, and D. R.
Jackson. A long-range and variable focus phase-conjugation experiment
in shallow water. Journal of the Acoustical Society of America, 105(3):
1597–1604, March 1999. See pages 2, 41, 51, 63, and 157.

O. Ikeda. An image reconstruction algorithm using phase conjugation for
diffraction-limited imaging in an inhomogeneous medium. Journal of the
Acoustical Society of America, 85(4):1602–1606, April 1989. See pages 37

and 45.

D.R. Jackson and D.R. Dowling. Phase conjugation in underwater acoustics.
Journal of the Acoustical Society of America, 89(1):171–181, January 1991.
See pages xiv, 2, 37, 38, 39, 40, 50, 63, 76, and 157.

F.B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational
Ocean Acoustics. American Institute of Physics, New York, 2000. See pages

xiii, 5, 11, 12, and 13.

E. Kerbrat, D. Clorennec, C. Prada, D. Royer, D. Cassereau, and M. Fink.
Detection of cracks in a thin air-filled hollow cylinder by application of the
dort method to elastic components of the echo. Ultrasonics, 40:715–720,
2002. See page 54.

E. Kerbrat, C. Prada, D. Cassereau, and M. Fink. Imaging in the presence of
grain noise using the decomposition of the time reversal operator. Journal
of the Acoustical Society of America, 113(3):1230–1240, March 2003. See

page 49.

D.B. Kilfoyle and A.B. Baggeroer. The state of the art in underwater acoustic
telemetry. IEEE Journal of Oceanic Engineering, 25(1):4–27, January
2000. See pages 1, 33, 35, and 157.

J.S. Kim and K.C. Shin. Multiple focusing with adaptive time-reversal mir-
ror. Journal of the Acoustical Society of America, 115(2):600–606, Febru-
ary 2004. See page 71.

J.S. Kim, H.C. Song, and W.A. Kuperman. Adaptive time-reversal mir-
ror. Journal of the Acoustical Society of America, 109(5):1817–1825, May
2001a. See pages 2, 41, 49, 63, 71, and 157.

170 REFERENCES

S. Kim, G.F. Edelman, W.A. Kuperman, W.S. Hodgkiss, H.C. Song, and
T. Akal. Spatial resolution of time-reversal arrays in shallow water. Journal
of the Acoustical Society of America, 110(2):820–829, August 2001b. See

pages 42 and 52.

Y. Kim and P. A. Nelson. Spatial resolution limits for the reconstruction
of acoustic source strength by inverse methods. Journal of Sound and
Vibration, 265(3):583–608, August 2003. See page 59.

Y. Kim and P.A. Nelson. Estimation of acoustic source strength within
a cylindrical duct by inverse methods. Journal of Sound and Vibra-
tion, 275(1–2):391–413, 2004a. ISSN 0022-460X. doi: DOI:10.1016/j.jsv.
2003.06.032. URL http://www.sciencedirect.com/science/article/
B6WM3-4B3MS2F-1/2/eecb44ea196ed02ac15447e87203201e. See page 60.

Y. Kim and P.A. Nelson. Optimal regularisation for acoustic source recon-
struction by inverse methods. Journal of Sound and Vibration, 275(3–5):
463–487, August 2004b. See page 59.

Y. Kim, O. Deille, and P.A. Nelson. Crosstalk cancellation in virtual acoustic
imaging systems for multiple listeners. Journal of Sound and Vibration,
297(1–2):251–266, October 2006. See page 60.

O. Kirkeby and P.A. Nelson. Reproduction of plane wave sound fields.
Journal of the Acoustical Society of America, 94(5):2992–3000, November
1993. See page 59.

O. Kirkeby, P.A. Nelson, H. Hamada, and F. Orduña Bustamante. Fast
deconvolution of multi-channel systems using regularisation. Technical
Report 255, Institute of Sound and Vibration Research, Southhampton
S017 1BJ, England, April 1996a. See pages 2 and 56.

O. Kirkeby, P.A. Nelson, F. Orduna-Bustamante, and H. Hamada. Local
sound field reproduction using digital signal processing. Journal of the
Acoustical Society of America, 100(3):1584–1593, September 1996b. See

pages 59 and 162.

O. Kirkeby, P.A. Nelson, H Hamada, and F. Orduña Bustamante. Fast decon-
volution of multichannel systems using regularization. IEEE Transactions
on Speech and Audio Processing, 6(2):189–195, March 1998. See pages xiv, xv,

57, 58, 82, 83, 91, and 158.

W.A. Kuperman, W.S. Hodgkiss, H.C. Song, T. Akal, C. Ferla, and D.R.
Jackson. Phase conjugation in the ocean: Experimental demonstration
of an acoustic time-reversal mirror. Journal of the Acoustical Society of
America, 103(1):25–40, January 1998. See pages xiv, 2, 13, 44, 49, 50, 51, 52, 63, 75,

and 157.

REFERENCES 171

T. Leutenegger and J. Dual. Detection of defects in cylindrical structures
using a time reversal method and a finite-difference approach. Ultrasonics,
40:721–725, 2002. See page 54.

T. Leutenegger and J. Dual. Non-destructive testing of tubes using a time
reversal simulation (trns) method. Ultrasonics, 41:811–822, 2004. See page

54.

S. Li and C.S. Clay. Optimum time domain signal transmission and source
location in a waveguide: Experiments in an ideal wedge waveguide. Journal
of the Acoustical Society of America, 82(4):1409–1417, October 1987. See

page 49.

J.F. Lingevitch, H.C. Song, and W.A. Kuperman. Time reversed reverbera-
tion focusing in a waveguide. Journal of the Acoustical Society of America,
111(6):2609–2614, June 2002. See page 49.

M. Miyoshi and Y. Kaneda. Inverse filtering in room acoustics. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 36(2):145–152, Febur-
ary 1988. See page 56.

G. Montaldo, M. Tanter, and M. Fink. Real time inverse filter focusing
through iterative time reversal. Journal of the Acoustical Society of Amer-
ica, 115(2):768–775, February 2004. See pages 58 and 126.

N. Mordant, C. Prada, and M. Fink. Highly resolved detection and select-
ive focusing in a waveguide using the D.O.R.T. method. Journal of the
Acoustical Society of America, 105(5):2634–2642, May 1999. See page 48.

S.T. Neely and J.B. Allen. Invertibility of a room impulse response. Journal
of the Acoustical Society of America, 66(1):165–169, July 1979. See page 56.

P.A. Nelson. Active control of acoustic fields and the reproduction of sound.
Journal of Sound and Vibration, 177(4):447–477, November 1994. See page

59.

P.A. Nelson and S.H. Yoon. Estimation of acoustic source strength by inverse
methods: Part I, conditioning of the inverse problem. Journal of Sound
and Vibration, 233(4):643–668, 2000. See page 59.

P.A. Nelson, H. Hamada, and J. Elliott. Adaptive inverse filters for stereo-
phonic sound reproduction. IEEE Transactions on Signal Processing, 40
(7):1621–1632, 1992. See page 56.

P.A. Nelson, F. Orduña Bustamante, and H. Hamada. Inverse filter design
and equalization zones in multichannel sound reproduction. IEEE Trans-
actions on Speech and Audio Processing, 3(3):185–192, May 1995. See pages

56 and 59.

172 REFERENCES

H.W. Park, H. Sohn, K.H. Law, and C.R. Farrar. Time reversal active sensing
for health monitoring of composite plate. Journal of Sound and Vibration,
302:50–66, 2007. See page 54.

A. Parvulescu. Matched-signal ("MESS") processing by the ocean. Journal
of the Acoustical Society of America, 98(2):943–960, August 1995. See pages

2, 36, and 50.

A. Parvulescu and C.S. Clay. Reproducibility of signal transmission in the
ocean. The Radio and Electronic Engineer, 29:223–228, 1965. See page 63.

M. Pernot, J.-F. Aubry, M. Tanter, A.L. Boch, and M. Fink. Ultrasonic
transcranial brain therapy: first in vivo clinical investigation on 22 sheep
using adaptive focusing. IEEE Ultrasonics Symposium, 2(23):1013–1016,
2004. See page 53.

R. P. Porter and A. J. Devaney. Generalized holography and the inverse
source problems. Journal of the Optical Society of America, 72:327–330,
1982. See page 40.

C. Prada and M. Fink. Eigenmodes of the time reversal operator: a solution
to selective focusing in multiple-target media. Wave Motion, 20(2):151–
163, 1994. See page 45.

C. Prada and M. Fink. Separation of interfering acoustic scattered signals
using the invariants of the time-reversal operator. application to Lamb
waves characterization. Journal of the Acoustical Society of America, 104
(2):801–807, August 1998. See page 48.

C. Prada, F. Wu, and M. Fink. The iterative time reversal mirror: A solution
to self-focusing in the pulse echo mode. Journal of the Acoustical Society
of America, 90(2):1119–1129, August 1991. See pages xiv, 37, 38, 39, 45, and 46.

C. Prada, J.-L. Thomas, and M. Fink. The iterative time reversal process:
Analysis of the convergence. Journal of the Acoustical Society of America,
97(1):62–71, January 1995. See pages xiv, 45, 47, and 48.

C. Prada, S. Manneville, D. Spoliansky, and M. Fink. Decomposition of the
time reversal operator: Detection and selective focusing on two scatterers.
Journal of the Acoustical Society of America, 99(4):2067–2076, April 1996.
See pages 48 and 76.

J.G. Proakis. Digital Communications. McGraw-Hill Series in Electrical and
Computer Engineering. McGraw-Hill, fourth edition, 2001. See pages xiv, 16,

17, 18, 20, 26, 28, 29, 30, 50, 128, and 131.

REFERENCES 173

J.H Rose, M. Bilgen, P. Roux, and M. Fink. Time-reversal mirrors and
rough surfaces: Theory. Journal of the Acoustical Society of America, 106
(2):716–723, August 1999. See page 53.

D. Rouseff. Intersymbolic interference in underwater acoustic communica-
tions using time-reversal signal processing. Journal of the Acoustical Soci-
ety of America, 117(2):780–788, Febuary 2005. See page 66.

D. Rouseff, D.R. Jackson, W.L.J. Fox, C.D. Jones, J.A. Ritcey, and D.R.
Dowling. Underwater acoustic communication by passive-phase conjuga-
tion: Theory and experimental results. IEEE Journal of Oceanic Engin-
eering, 26(4):821–831, October 2001. See pages 65 and 161.

P. Roux and M. Fink. Time reversal in a waveguide: Study of the temporal
and spatial focusing. Journal of the Acoustical Society of America, 107(5):
2418–2429, may 2000. See pages 44, 52, 95, and 96.

P. Roux, B. Roman, and M. Fink. Time-reversal in an ultrasonic waveguide.
Applied Physics Letters, 70(14):1811–1813, April 1997. doi: 10.1063/1.
118730. URL http://link.aip.org/link/?APL/70/1811/1. See pages xiv,

44, 45, 50, and 95.

P. Roux, A. Derode, A. Peyre, A. Tourin, and M. Fink. Acoustical imaging
through a multiple scattering medium using a time-reversal mirror. Journal
of the Acoustical Society of America - Acoustics Research Letters Online,
107(2):L7–L12, Feburary 2000. See page 54.

P. Roux, W.A. Kuperman, W.S. Hodgkiss, H.C. Song, and T. Akal. A
nonreciprocal implementation of time reversal in the ocean. Journal of the
Acoustical Society of America, 116(2):1009–1015, August 2004. See pages 68

and 69.

D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms
in matrices. Technical Report RAL-TR-2001-034, Rutherford Appleton
Laboratory, September 2001. See page 80.

K. G. Sabra and D. R. Dowling. Blind deconvolution in ocean waveguides
using artificial time reversal. Journal of the Acoustical Society of America,
116(1):262–271, July 2004. See page 53.

K. G. Sabra, S. R. Khosla, and D. R. Dowling. Broadband time-reversing
array retrofocusing in noisy environments. Journal of the Acoustical Society
of America, 111(2):823–830, Feburary 2002. See pages 50 and 53.

O. Shimbo and M. Celebiler. The probability of error due to intersymbol
interference and Gaussian noise in digital communication systems. IEEE

174 REFERENCES

Transactions on Communication Technology, 19(2):113–119, April 1971.
See page 131.

A Silva, S. Jesus, J. Gomes, and V. Barrosso. Underwater acoustic commu-
nication using a "virtual" electronic time-reversal mirror approach. Lyon,
France, 2000. Fifth European Conference on Underwater Acoustics, ECUA
2000. See page 65.

B. Sklar. Digital Communications - Fundamentals and Application. Prentice
Hall PTR, 2001. See pages xiii, 15, 16, and 17.

A. Skretting and C.C. Leroy. Attenuation between 200 Hz and 10 kHz.
Journal of the Acoustical Society of America, 49(1):276–282, 1971. See page

5.

K.B. Smith, A.M. Abrantes, and A. Larraza. Examination of time-reversal
acoustics in shallow water and application to noncoherent underwater com-
munications. Journal of the Acoustical Society of America, 113(6):3095–
3110, June 2003. See page 67.

H.C. Song and S.M. Kim. Retrofocusing techniques in a waveguide for acous-
tic communications (letter). Journal of the Acoustical Society of America,
121(6):3277–3279, June 2007. See pages 69 and 70.

H.C. Song, W.A. Kuperman, and W.S. Hodgkiss. A time-reversal mirror with
variable range focusing. Journal of the Acoustical Society of America, 103
(6):3234–3240, June 1998. See pages xiv, 41, 42, 43, and 162.

H.C. Song, W.A. Kuperman, W.S. Hodgkiss, T. Akal, and C. Ferla. Iterative
time reversal in the ocean. Journal of the Acoustical Society of America,
105(6):3176–3184, June 1999. See page 52.

H.C. Song, W.S. Hodgkiss, W.A. Kuperman, M. Stevenson, and T. Akal. Im-
provement of time reversal communications using adaptive channel equal-
izers. IEEE Journal of Oceanic Engineering, 31(2):487–496, 2006a. See page

69.

H.C. Song, W.S. Kodgkiss, W.A. Kuperman, W.J. Higley, K. Raghukuar,
and T. Akal. Spatial diversity in passive time reversal communications.
Journal of the Acoustical Society of America, 120(4):2067–2076, October
2006b. See page 66.

H.C. Song, P. Roux, W.S. Hodgkiss, W.A. Kuperman, T. Akal, and
M. Stevenson. Multiple input / multiple output coherent time reversal
communications in a shallow water acoustic channel. IEEE Journal of
Oceanic Engineering, 31(1):170–178, January 2006c. See page 69.

REFERENCES 175

H.C. Song, W.S. Hodgkiss, W.A. Kuperman, T. Akal, and M. Stevenson.
Multiuser communications using passive time reversal. IEEE Journal of
Oceanic Engineering, 32(4):915–926, October 2007. See page 66.

H.C. Song, W.A. Kuperman, and W.S. Hodgkiss. Basin-scale time reversal
communications. Journal of the Acoustical Society of America, 125(1):
212–217, January 2009. See page 66.

M. Stojanovic. Recent advances in high-speed underwater acoustic com-
munications. IEEE Journal of Oceanic Engineering, 21(2):125–136, April
1996. See pages 1, 33, 35, and 157.

M. Stojanovic. Retrofocusing techniques for high rate acoustic communic-
ations. Journal of the Acoustical Society of America, 117(3):1173–1185,
march 2005. See pages iii, xvi, 4, 69, 70, 72, 107, 111, 123, 124, 125, 126, 128, 129, 130, 136, 137,

138, 139, 140, 141, 159, and 160.

M. Stojanovic, J.A. Catipovic, and J.G. Proakis. Adaptive multichannel com-
bining and equalization for underwater acoustic communications. Journal
of the Acoustical Society of America, 94(3):1621–1631, September 1993.
See page 35.

M. Stojanovic, J.A. Catipovic, and J.G. Proakis. Phase-coherent digital com-
munications for underwater acoustic channels. IEEE Journal of Oceanic
Engineering, 19(1):100–111, January 1994. See page 35.

M. Stojanovic, J.A. Catipovic, and J.G. Proakis. Reduced-complexity spatial
and temporal processing of underwater acoustic communication signals.
Journal of the Acoustical Society of America, 98(2):961–972, August 1995.
See page 35.

M. Tanter, J.-L. Thomas, and M. Fink. Time reversal and the inverse filter.
Journal of the Acoustical Society of America, 108(1):223–234, July 2000.
See pages 61 and 77.

M. Tanter, J.-F. Aubry, J. Gerber, J.-L. Thomas, and M. Fink. Optimal
focusing by spatio-temporal inverse filter. I. Basic principles. Journal of
the Acoustical Society of America, 110(1):37–47, July 2001. See page 77.

T. Tanter, J.-L. Thomas, and M. Fink. Focusing and steering through absorb-
ing and aberrating layers: Application to ultrasonic propagation through
the skull. Journal of the Acoustical Society of America, 103(5):2403–2410,
May 1998. See pages 41, 53, and 60.

J.-L. Thomas and M. Fink. Ultrasonic beam focusing through tissue inhomo-
geneities with a time reversal mirror: application to transskull therapy.

176 REFERENCES

IEEE Transactions on Ultrasonics, FerroElectrics, and Frequency Control,
43(6):1122–1129, 1996. See pages xiv, 60, and 61.

J.-L. Thomas, F. Wu, and M. Fink. Time reversal focusing applied to litho-
tripsy. Ultrasonic Imaging, 18(2):106–121, 1996. See page 53.

W.H. Thorpe. Analytic description of the low-frequency attenuation coeffi-
cient. Journal of the Acoustical Society of America, 42(1):270, 1967. See

page 6.

I. Tolstoy and C.S. Clay. Ocean Acoustics - Theory and Experiment in Un-
derwater Sound. American Institute of Physics, 2nd edition, 1987. See pages

xiii, 5, 7, 9, and 10.

A. Van der Sluis. Condition numbers and equilibration of matrices. Nu-
merische Mathematik, 14(1):14–23, 1969. See page 79.

F. Vignon, J.-F. Aubry, A. Saez, M. Tanter, D Cassereau, G. Montaldo, and
M. Fink. The stokes relations linking time reversal and the inverse filter.
Journal of the Acoustical Society of America, 119(3):1335–1346, March
2006. See page 62.

T.C. Yang. Temporal resolutions of time-reversal and passive-phase conjug-
ation for underwater acoustic communications. IEEE Journal of Oceanic
Engineering, 28(2):229–245, April 2003. See page 65.

T.C. Yang. Differences between passive-phase conjugation and decision-
feedback equalizer for underwater acoustic communications. IEEE Journal
of Oceanic Engineering, 29(2):472–487, April 2004. See page 65.

T.C. Yang. Correlation-based decision-feedback equalizer for underwater
acoustic communications. IEEE Journal of Oceanic Engineering, 30(4):
865–880, October 2005. See page 66.

S. Yon, M. Tanter, and M. Fink. Sound focusing in rooms. II. the spatio-
temporal inverse filter. Journal of the Acoustical Society of America, 114
(6):3044–3052, December 2003a. See page 62.

S. Yon, M. Tanter, and M. Fink. Sound focusing in rooms: The time-reversal
approach. Journal of the Acoustical Society of America, 113(3):1533–1543,
March 2003b. See page 62.

K. Yoo and T.C. Yang. Broadband source localization in shallow water in the
presense of internal waves. Journal of the Acoustical Society of America,
106(6):3255–3269, December 1999. See page 53.

Appendices

177

A Program developed for the
experiment and simulation

A.1 The dSpace development system

In this section the code used to perform the experiments is presented1. The
experiment was conducted using a dSPACE ds1104 board. The dSPACE
ds1104 board is a PCI card that contains its own CPU, 8 A/D converters
and 8 D/A converters. The board was developed by dSPACE for the rapid
prototyping of Digital Signal Processing (DSP) systems that are designed
using Simulink, a program that is provided with MATLAB. dSPACE provide
software that converts DSP models designed in Simulink to a program that is
downloaded and executed on the card. Monitoring routines are implemented
on the card to allow the host computer to read values from the program as
it executes.

When investigating the capabilities of the dSPACE card for use in this
research, it was desired that programs would execute at a speed that would
allow the A/D converters and D/A converters to operate at a speed sufficient
for the acoustic signals. However, early investigations showed that the use of
Simulink to develop programs for the card was unable to run at the speeds
desired. (It should be noted that since these initial investigations, recent
upgrades to the dSPACE system may provide faster speeds.) dSPACE also
provided a library to enable users to write programs in C, along with tools
to compiled user written C code an downloaded the program to the card.
A library of functions was also available to simplify the programming of the
device, and allow MATLAB to control the device via reading and writing
to / from memory addresses, or sending “host interrupt” events that execute
portions of the code [dSPACE, 2004].

This chapter presents the C-code and MATLAB scripts used to interact
and run with the experiments.

1Please note that the code shown in this thesis has been slightly modified (such as
variable renaming, and removal of redundant code) from the original source used in the
experiments to ease the readability and has not since been tested. If you wish to obtain
the original code, please contact the author (pmdumuid@gmail.com).

179

180 Chapter A Program developed for the experiment and simulation

A.2 Code used for the experiment using
inverse filter designs in an air-acoustic
channel

In this section, the code used for the experiment used to investigate the abil-
ity to achieve digital transmission in conjunction with inverse filter design
over an air-acoustic channel. The code consists of a C program, Duct-
ExperimentDSPACEProgram.c, that is compiled and downloaded to run on
the dSPACE DS1104 controller board and two main MATLAB script, Duct-
ExperimentCreateTransmissionSignal.m, and DuctExperimentPlayAnd-
Postprocess.m. The MATLAB script, DuctExperimentCreateTransmission-
Signal.m, is used to create the transmission signals, and the DuctExperiment-
PlayAndPostprocess.m script is used play the signal, and perform post-
process on the received signal. A number of other helper scripts, were de-
veloped that contain functions required by these main scripts. Some of these
functions are specific to this experiment, whilst others have been re-used for
the third experiment. The scripts specific to this experiment are presented
in Section A.2.4, whilst the functions that have been re-used are included in
the thesis MATLAB library given in Section A.4.

A.2.1 DuctExperimentDSPACEProgram.c

A.2.1.1 Program listing
1 /∗ DuctExperimentDSPACEProgram.c ∗∗∗
2

3 Author: Pierre Dumuid
4 Description :
5

6 This program is developed to be used for the duct experiment conducted as part of the thesis done
7 by Pierre Dumuid. The program is used to play signals on the outputs , and record the response.
8

9 ∗∗∗/
10

11 #include <Brtenv.h>
12 #include "math.h"
13

14 /∗ GLOBALVARIABLES:START ∗/
15

16 /∗ Data block for play and record MATLAB communication. ∗/
17 #define block_size 1024∗100
18 Float64 data_block[32∗block_size] ;
19

20 /∗ Variable used to let the host computer set the digital I/O bit . ∗/
21 UInt16 io_bits_write = 0;
22 /∗ Variable used to let the host computer read the digital I/O bit . ∗/
23 UInt32 io_bits_status = 0;
24

25 /∗ Program status and control . ∗/
26 UInt16 program_status = 0; // Used to indicate status of program
27 UInt16 program_control = 0; // Used to control what to do in the interrupt program.
28 UInt16 main_loop_control = 0; // Used to control what to do in the loop in the main() function .

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 181

29

30 /∗ Used for the level trigger functionality . ∗/
31 Float64 trigger_level = 0.1;
32

33 /∗ LED flash routine variables . ∗/
34 UInt32 led_flash_counter = 0;
35 UInt32 led_flash_bits = 0xE00;
36

37 /∗ Recording / playback settings . ∗/
38 Float64 sample_period = 0.0001;
39

40 UInt32 play_sample_length = 400;
41 UInt32 record_sample_length = 400;
42

43 /∗ Array to indicate which channels to play and record on. The f irs t element in the array defines
44 the number of channels to use , and the subsequent values , the actual channels to use. ∗/
45 UInt16 play_channels[9] = {6, 1, 2, 3, 4, 5, 6 ,7 , 8};
46 UInt16 record_channels[9] = {6, 1, 2, 3, 4, 5, 6, 7, 8};
47

48 /∗ Gains to apply when playing and recording . ∗/
49 Float64 play_channel_gains[8] = {1, 1, 1, 1, 1, 1, 1 ,1};
50 Float64 record_channel_gains[8] = {1, 1, 1, 1, 1, 1, 1 ,1};
51

52 /∗ GLOBALVARIABLES:END ∗/
53

54

55 void Play_Stepped_SIMO() {
56 /∗
57 Plays a single signal on each channel one−by−one, and records the response from the recording
58 channels . The data_block is used as follows :
59

60 0 − 1∗play_sample_length−1 : Sample to play
61 1∗play_sample_length − 2∗play_sample_length−1 : Channel 1 response for playing on channel 1
62 2∗play_sample_length − 3∗play_sample_length−1 : Channel 2 response for playing on channel 1
63 . . .
64 6∗play_sample_length − 7∗play_sample_length−1 : Channel 6 response for playing on channel 1
65 7∗play_sample_length − 8∗play_sample_length−1 : Time samples for playing on channel 1
66 9∗play_sample_length − 10∗play_sample_length−1 : Channel 1 response for playing on channel 2
67 10∗play_sample_length − 11∗play_sample_length−1 : Channel 2 response for playing on channel 2
68 . . .
69 14∗play_sample_length − 15∗play_sample_length−1 : Channel 6 response for playing on channel 2
70 15∗play_sample_length − 16∗play_sample_length−1 : Time samples for playing on channel 2
71 . . .
72 . . .
73 etc .
74

75 NOTE: The above is an example for recording on 6 channels , i f recording on a different number
76 of channels , the offsets for the data is equivalently adjusted .
77

78 i .e . record_channel_offset =
79 play_sample_length + (record_channel_index∗(number_of_record_channels + 1)∗play_sample_length
80 ∗/
81

82 float current_time, next_sample_time;
83 UInt16 adc_mux_scan_table[4] = {1, 2, 3, 4};
84 UInt16 play_channel_index , play_channel;
85 UInt16 record_channel_index, record_channel;
86 UInt32 sample_index;
87

88 Float64 adc_mux_values[6] ;
89

90 program_status = 1;
91

92 for (play_channel_index = 0; play_channel_index < play_channels [0] ; play_channel_index++) {
93 play_channel = play_channels[play_channel_index + 1];

182 Chapter A Program developed for the experiment and simulation

94

95 ds1104_tic_start();
96

97 next_sample_time = ds1104_tic_read() + sample_period;
98

99 /∗ Loop through al l the samples ∗/
100 for (sample_index = 0; sample_index < play_sample_length; sample_index++) {
101

102 /∗ Wait for the time of the next sample. ∗/
103 do {
104 master_cmd_server(); current_time = ds1104_tic_read();
105 } while (current_time < next_sample_time);
106 next_sample_time += sample_period;
107

108 /∗ Write the sample to play to the corresponding channel . ∗/
109 ds1104_dac_write(play_channel,
110 play_channel_gains[play_channel_index] ∗ data_block[sample_index]) ;
111

112 /∗ Read the ADC mux, and start the ADCs. ∗/
113 ds1104_adc_read_mux(adc_mux_scan_table, 4, adc_mux_values);
114 ds1104_adc_start(DS1104_ADC2 | DS1104_ADC3 | DS1104_ADC4 | DS1104_ADC5);
115

116 /∗ Record the sample time in the data_block. Index is determined as follows :
117 1. Length of the play sample
118 2. Length of the data for the previously played channels .
119 3. Offset for the time data block
120 4. Offset for the current sample.
121 ∗/
122

123 data_block[
124 play_sample_length // 1
125 + play_sample_length ∗ play_channel_index ∗ (record_channels[0] + 1) // 2
126 + play_sample_length ∗ record_channels[0] // 3
127 + sample_index // 4
128] = current_time;
129

130 /∗ Record the ADC values for the record channels in the data_block. Index is determined
131 ∗ as follows :
132 1. Length of the play sample
133 2. Length of the data for the previously played channels .
134 3. Offset for the current record channel .
135 4. Offset for the current sample.
136 ∗/
137 for(record_channel_index = 0;
138 record_channel_index < record_channels [0] ;
139 record_channel_index++) {
140

141 record_channel = record_channels[record_channel_index + 1] − 1;
142

143 i f (record_channel < 4) {
144 data_block[
145 play_sample_length // 1
146 + play_sample_length∗play_channel_index∗(record_channels[0] + 1) // 2
147 + play_sample_length∗record_channel_index // 3
148 + sample_index // 4
149] =
150 adc_mux_values[record_channel]∗record_channel_gains[record_channel] ;
151 } else {
152 data_block[
153 play_sample_length // 1
154 + play_sample_length∗play_channel_index∗(record_channels[0] + 1) // 2
155 + play_sample_length∗record_channel_index // 3
156 + sample_index // 4
157] =
158 ds1104_adc_read_ch(record_channel + 1)∗record_channel_gains[record_channel] ;

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 183

159 }
160 }
161 }
162 }
163 program_status = 2;
164 }
165

166

167 void Play_MIMO() {
168 /∗
169 Plays the single signal defined data_block on the playing channels and record the
170 response. The data_block is used as follows :
171

172 0 − 1∗play_sample_length−1 : Output 1 Sample
173 1∗play_sample_length − 2∗play_sample_length−1 : Output 2 Sample
174 . . .
175 (N−1)∗play_sample_length − N∗play_sample_length−1 : Output N Sample
176

177 After record_offset :
178 0 − 1∗record_sample_length−1 : Input 1 Signal
179 1∗record_sample_length − 2∗record_sample_length−1 : Input 2 Signal
180 . . .
181 (M−1)∗record_sample_length −M∗record_sample_length−1 : Input 3 Signal
182

183 After time_offset :
184 0 − max_sample_length : Sampling times
185

186 where
187 record_offset = N∗play_sample_length
188 time_offset = N∗play_sample_length +M∗record_sample_length
189 max_sample_length = max(record_sample_length, play_sample_length)
190 ∗/
191

192 UInt16 adc_mux_scan_table[4] = {1, 2, 3, 4};
193 Float64 adc_mux_values[6] ;
194

195 UInt16 play_channel_index, record_channel_index, record_channel;
196 UInt32 sample_index;
197

198 float current_time, next_sample_time, start_time;
199 UInt32 record_offset , time_offset ;
200 UInt32 max_sample_length;
201

202 program_status = 1;
203

204 record_offset = play_channels[0] ∗ play_sample_length;
205 time_offset = record_offset + record_channels[0] ∗ record_sample_length;
206

207 i f (record_sample_length > play_sample_length)
208 max_sample_length = record_sample_length;
209 else
210 max_sample_length = play_sample_length;
211

212 ds1104_tic_start();
213

214 start_time = ds1104_tic_read();
215

216 /∗ Loop through al l the samples ∗/
217 for (sample_index = 0; sample_index < max_sample_length; sample_index++) {
218

219 /∗ Define the time for the next sample (wait 5 samples_period 's before starting) ∗/
220 next_sample_time = start_time + (sample_index + 5)∗sample_period;
221

222 /∗ Wait for the time of the next sample ∗/
223 do {

184 Chapter A Program developed for the experiment and simulation

224 current_time = ds1104_tic_read();
225 } while (current_time < next_sample_time);
226

227 /∗ Send the signals to the DAC converters . ∗/
228 i f (sample_index<= play_sample_length) {
229 for (play_channel_index = 0;
230 play_channel_index < play_channels [0] ;
231 play_channel_index++)
232 ds1104_dac_write(play_channels[play_channel_index + 1] ,
233 data_block[play_channel_index∗play_sample_length + sample_index]
234 ∗ play_channel_gains[play_channel_index]) ;
235 ds1104_dac_strobe();
236 }
237

238 /∗ Read the values on the ADC converters ∗/
239 i f (sample_index<= record_sample_length) {
240 /∗ Read the ADC mux, and start the ADCs. ∗/
241 ds1104_adc_read_mux(adc_mux_scan_table, 4, adc_mux_values);
242 ds1104_adc_start(DS1104_ADC2 | DS1104_ADC3 | DS1104_ADC4 | DS1104_ADC5);
243

244 /∗ Record the sample time in the data_block. ∗/
245 data_block[time_offset + sample_index] = current_time;
246

247 /∗ Record the values on the ADC converters ∗/
248 for(record_channel_index = 0;
249 record_channel_index < record_channels [0] ;
250 record_channel_index++) {
251 record_channel = record_channels[record_channel_index + 1] − 1;
252 i f (record_channel < 4) {
253 data_block[record_offset
254 + record_channel_index ∗ record_sample_length
255 + sample_index
256] =
257 adc_mux_values[record_channel]
258 ∗ record_channel_gains[record_channel] ;
259 } else {
260 data_block[record_offset
261 + record_channel_index ∗ record_sample_length
262 + sample_index
263] =
264 ds1104_adc_read_ch(record_channel + 1)
265 ∗ record_channel_gains[record_channel] ;
266 }
267 }
268 }
269 }
270 program_status = 2;
271 }
272

273

274 /∗ Define the IIOF2 service interrupt routine ∗/
275 void Host_Interrupt_Service() {
276 float adc_mux_value1;
277 program_status = 1;
278 switch (program_control) {
279 case 1:
280 break ;
281 case 2: // Wait for a trigger level to be reached
282 program_status = 1;
283 do {
284 ds1104_adc_delayed_start(DS1104_ADC_CH1);
285 ds1104_adc_mux(1);
286 adc_mux_value1 = ds1104_adc_read_ch(1);
287 master_cmd_server();
288 } while (adc_mux_value1 < trigger_level);

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 185

289 program_status = 2;
290 break ;
291 case 3:
292 Play_Stepped_SIMO();
293 break ;
294 case 4:
295 Play_MIMO();
296 break ;
297 case 5:
298 break ;
299 case 99:
300 main_loop_control = 0;
301 break ;
302 default :
303 break ;
304 }
305 program_status = 2;
306 }
307

308

309 /∗ Register the service interrupt routine ∗/
310 void Initialise_Interrupt_Service() {
311 /∗ set the interrupt vector ∗/
312 ds1104_set_interrupt_vector(DS1104_INT_HOST,
313 (DS1104_Int_Handler_Type) Host_Interrupt_Service,
314 SAVE_REGS_ON);
315

316 /∗ enable interrupt IIOF2 ∗/
317 ds1104_enable_hardware_int(DS1104_INT_HOST);
318

319 /∗ global interrupt enable ∗/
320 DS1104_GLOBAL_INTERRUPT_ENABLE();
321 }
322

323

324 void main(void) {
325 UInt16 adc_mux_scan_table[4] = {1, 2, 3, 4};
326 Float64 adc_mux_values[4] ;
327

328 ds1104_init();
329 Initialise_Interrupt_Service ();
330 ds1104_dac_reset();
331 ds1104_dac_init(DS1104_DACMODE_TRANSPARENT);
332

333 ds1104_bit_io_init(DS1104_DIO0_OUT | DS1104_DIO1_OUT |
334 DS1104_DIO2_OUT | DS1104_DIO3_OUT |
335 DS1104_DIO4_OUT | DS1104_DIO5_OUT |
336 DS1104_DIO6_OUT | DS1104_DIO7_OUT |
337 DS1104_DIO8_OUT | DS1104_DIO9_OUT |
338 DS1104_DIO10_OUT | DS1104_DIO11_OUT |
339 DS1104_DIO12_OUT | DS1104_DIO13_OUT |
340 DS1104_DIO14_OUT | DS1104_DIO15_OUT |
341 DS1104_DIO16_OUT | DS1104_DIO17_OUT |
342 DS1104_DIO18_OUT | DS1104_DIO19_OUT);
343

344 /∗ Loop that is performed whilst waiting for an interrupt ∗/
345 while(1) {
346 while(msg_last_error_number() ==DS1104_NO_ERROR) {
347

348 switch (main_loop_control) {
349 case 0: /∗ Flash the LEDs ∗/
350 /∗ This flashing routine runs every time led_flash_counter reaches 0x f f f f . At this
351 ∗ point , the bits are shifted le f t with the addition of a new random bit . ∗/
352

353 led_flash_counter++;

186 Chapter A Program developed for the experiment and simulation

354 i f (led_flash_counter == 0xff f f) led_flash_counter = 0;
355 i f (led_flash_counter == 1) {
356 led_flash_bits = (led_flash_bits << 1) + (rand() >> 8);
357 ds1104_bit_io_write((led_flash_bits & 0xFFF00) + io_bits_write);
358 i f (led_flash_bits == 0)
359 led_flash_bits = 0x1;
360 }
361 io_bits_status = ds1104_bit_io_read();
362 break ;
363 case 1: /∗ Read from the ADC and write to the DAC's ∗/
364 ds1104_adc_read_mux(adc_mux_scan_table, 4, adc_mux_values);
365 ds1104_dac_write(1, adc_mux_values[2]) ;
366 ds1104_dac_write(2, adc_mux_values[3]) ;
367 break ;
368 }
369 master_cmd_server();
370 host_service(0 ,0);
371 }
372

373 msg_info_set(MSG_SM_USER, msg_last_error_no,
374 "Error occurred within PPC application 'adc_1104_hc.ppc ' .");
375

376 while(msg_last_error_number() != DS1104_NO_ERROR) {
377 master_cmd_server();
378 host_service(0 ,0);
379 }
380 msg_info_set(MSG_SM_USER, 0, "Error released .");
381 }
382 }

A.2.1.2 Program description

This program is the C-program that is required to be compiled and installed
on the dSPACE DS1104 controller board in order to run the experiment. The
MATLAB functions used to communicate with the board are RunDS1104-
MIMO.m, RunDS1104Chkspk.m, and GetIRFsDS1104.m that are presented in
Section A.2.4. The code used for this experiment follows. The numbers in
the left column refer to the line-numbers of the code.

Standard includes, and global variable definitions. (Lines 1-44)

1-9 General comment block used to describe the program.

11 Brtenv.h is the header file for the Basic Realtime Environment for the
DS1104. It includes all the necessary header files, declaration of global
variables, and definitions of macros [dSPACE, 2004].

14-52 These variables are defined globally (outside of any function) so that
the dSPACE MATLAB MLIB function can obtain the address inform-
ation and read the values from these variables.

The main function (Lines 324-382) The function, main(), defined at
line 324 is the first function that is executed by the dSPACE board. This

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 187

function actually does nothing except to possibly (dependent on the value of
the variable, main_loop_control) flash the LEDs on the break-out board,
and also copy the input values to the output values to let the operator know
that the program is loaded.

325 The variable, adc_mux_scan_table, contains an array of channel num-
bers to specify which channels to read from (see line 364).

326 The variable, adc_mux_values, is an array that is written to hold the
read values from the A/D converter (see lines 364-366).

328 The ds1104_init() function is the standard DS1104 initialisation routine
provided by dSPACE.

329 The Initialise_Interrupt_Service() function is defined at lines 310-
321, and is used to specify which function to call when the host com-
puter sends an interrupt.

330-342 These commands set up the D/A converter and the direction of
the I/O bits on the device. All the bits are set as outputs to enable
the program to “flash” the LEDs.

345-381 The program then operates in a single loop, awaiting an interrupt
from the host computer.

364-371 This loop is executed whilst there is no error. If there is an error,
lines 373-380 are used to handle the error, and after the error has been
released, the loop from lines 345-381 is re-commenced.

348-368 Whilst the DS1104 board is waiting for an interrupt to occur, the
device performs some functions depending on the value of the variable,
main_run_state.

349-362 If the main_run_state variable is set to 0 then a continually incre-
menting value, led_flash_number, is written to the output, so that the
LEDs appear to flash, (however only the high bits change slow enough
for the eye to see the flashing). The bits are read into the variable
iobits for retrieval from the host computer.

363-367 If the main_run_state variable is set to 1 then the A/D converter
converters are read, and immediately written to the D/A converter
outputs.

369-370 These two commands are used to allow MATLAB to communicate
with the dSPACE board.

373-380 This is a set of error handling commands. This error handling
routine was copied from the demonstration code provided by dSPACE.

188 Chapter A Program developed for the experiment and simulation

The interrupt initialisation function (Lines 309-321) The interrupt
initialisation function, Initialise_Interrupt_Service(), is called from
the main() function on line 329.

312-314 This tells the interrupt handler to call Host_Interrupt_Service()
when a host interrupt event occurs.

316-320 This enables the interrupts.

The interrupt service function (Lines 275-306) The interrupt ser-
vice function, Host_Interrupt_Service(), is called when the host computer
generates an interrupt on the card.

277,385 When the interrupt routine is running, the variable, program_-
status, is set to 1, and upon completion is set to 0.

278-304 The action to be taken as a result of the interrupt is determined
by the value of the variable, program_control.

279-280 If the variable, program_control, is set to 1, nothing is executed.

281-290 If the variable, program_control, is set to 2, the function reads
the A/D converters until a trigger level is recorded, and exits. (Such
a function can allow the MATLAB script to wait for a loud noise to
occur, before proceeding).

291-293 If the variable, program_control, is set to 3, the function Play_-
Stepped_SIMO is called.

294-296 If the variable, program_control, is set to 4, the function Play_-
MIMO is called.

297-298 If the variable, program_control, is set to 5, nothing is executed.

299-301 If the variable, program_control, is set to 5, the main_loop_control
variable is set to 0.

The Play_Stepped_SIMO routine (Lines 55-164) The functions, Play_-
Stepped_SIMO, is used to play the same signal on each channel, and record
the response on all the channels (a typical operation performed in the system
identification procedure).

The Play_MIMO routine (Lines 167-271) The function, Play_MIMO, is
used to simultaneously play and record sound at the same time similar to
that of , Play_Two_Out_In, used in the first experiment.

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 189

A.2.2 DuctExperimentCreateTransmissionSignal.m

A.2.2.1 Program listing
1 % DuctExperimentCreateTransmissionSignal.m
2 %
3 %USAGE:
4 % DuctExperimentCreateTransmissionSignal
5 % DuctExperimentPlayAndPostProcess
6 %
7 % This script is used as part of an experiment conducted in a duct that forms part of the thesis for
8 % Pierre Dumuid. This script is designed to measure the system response and create a set of
9 % transmission according to various inverse f i l t e r designs. The script ,

10 % DuctExperimentPlayAndPostProcess, is then used to play the signals in the environment and
11 % post−process the signals to display various performance metrics.
12 %
13 % Before invoking this M−f i l e the real−time processor application , XXXX.obj
14 % (or equivalent) must be loaded and running on the dSPACE board.
15

16 % These variables hold the f i l t e r designs for :
17 % No Filtering , Time Reversal , Milica ' s 2−sided , IF:Path, IF:Channel, IF:Full−MIMO
18 clear nof tr mil2s if_path if_chan if_fmimo;
19

20 %===
21 % Define experiment parameters
22 %===
23

24 freqSampling = 57000;
25 freqCarrier = 4000;
26 symbolLength = 25;
27

28 playChannels = [1 2 3 4 5 6];
29 recordChannels = [1:2] ;
30

31 channelSettings.playArrayId = 1;
32 channelSettings.recordArrayId = 2;
33

34 config.loadMatChannel = 1;
35 config.simulateChannel = 1;
36 config.downSampleForFilterDesign = 1;
37 config.receiverFilter = 1;
38

39 config.matChannelFilename = '/home/pmdumuid/repofind/LastNonGit/testIRFs.mat ' ;
40

41 %===
42 % Measure Impulse Response Functions (IRFs)
43 %===
44 fprintf ('Measuring channelIRFs\n');
45 i f (config.loadMatChannel)
46 a = load(config.matChannelFilename);
47 channelIRFs = a.IRFs(1:1024 ,: ,:);
48 elsei f (config.simulateChannel)
49 channelIRFs = GetFakeIRFs(length(playChannels) , length(recordChannels) ,1024);
50 noise = rand(6000,length(playChannels) , length(recordChannels));
51 else
52 a = load('micgains ') ; smgains.mic = a.micgains.current ;
53 b = load('spkgains ') ; smgains.spk = b.spkgains.current ;
54 i f channelSettings.playArrayId == 1
55 channelSettings.playGains = smgains.spk.tx1 ;
56 else
57 channelSettings.playGains = smgains.spk.tx2 ;
58 end
59 i f channelSettings.recordArrayId == 1
60 channelSettings.playGains = smgains.spk.rx1 ;
61 else

190 Chapter A Program developed for the experiment and simulation

62 channelSettings.playGains = smgains.spk.rx2 ;
63 end
64 [channelIRFs coherence noise] = GetIRFsDS1104(freqSampling,playChannels,recordChannels, . . .
65 channelSettings);
66 end
67

68 %===
69 % Convert IRF' s to baseband
70 %===
71 fprintf ('Converting to baseband\n');
72 % Truncate IRFs to 2048.
73 channelIRFLength = min(2048,size(channelIRFs,1));
74

75 channelIRFsBB = PassbandToBaseband(channelIRFs(1:channelIRFLength, : , :) , freqSampling, freqCarrier);
76

77 %===
78 % Down−sample the f i l t ers
79 %===
80 fprintf ('Resample to baseband\n');
81 i f (config.downSampleForFilterDesign)
82 % Set baseband to min(3.5 time samples per symbol, freqCarrier)
83 freqSamplingBB = min(floor(3.5∗freqSampling/symbolLength) , freqCarrier);
84

85 channelIRFsBBL = ResampleIRFs(channelIRFsBB,freqSamplingBB,freqSampling);
86 else
87 channelIRFsBBL = channelIRFsBB;
88 end
89

90 %===
91 % Design the inverse f i l t ers
92 %===
93 fprintf ('Design of baseband f i l ters\n');
94

95 nof.inverseIRFsBBL = CreateInverseFilter(channelIRFsBBL, 'No Filtering ');
96

97 tr.inverseIRFsBBL = CreateInverseFilter(channelIRFsBBL, 'TimeReversal ') ;
98

99 filterSettings.mil2s.beta = 0;
100 [mil2s.inverseIRFsBBL mil2s.extraInfo] = CreateInverseFilter(channelIRFsBBL, . . .
101 'Milica : Two−Side Filter ' , . . .
102 filterSettings.mil2s);
103

104 filterSettings.if_path.beta = 0.0005 ;
105 if_path.inverseIRFsBBL = CreateInverseFilter(channelIRFsBBL, . . .
106 'Tikhonov IF: Path' , . . .
107 filterSettings.if_path);
108

109 filterSettings.if_chan.beta = 0.0005 ;
110 if_chan.inverseIRFsBBL = CreateInverseFilter(channelIRFsBBL, . . .
111 'Tikhonov IF: Channel ' , . . .
112 filterSettings.if_chan);
113

114 filterSettings.if_fmimo.beta = .0005 ;
115 if_fmimo.inverseIRFsBBL = CreateInverseFilter(channelIRFsBBL, . . .
116 'Tikhonov IF: Full MI−MO' , . . .
117 filterSettings.if_fmimo);
118

119 %===
120 % Up−sample f i l t e r
121 %===
122 fprintf ('Resample the channelIRFs from freqSamplingBB to freqSampling\n');
123 i f (config.downSampleForFilterDesign)
124 nof.inverseIRFsBB = ResampleIRFs(nof.inverseIRFsBBL ,freqSampling,freqSamplingBB);
125 tr.inverseIRFsBB = ResampleIRFs(tr.inverseIRFsBBL ,freqSampling,freqSamplingBB);
126 mil2s.inverseIRFsBB = ResampleIRFs(mil2s.inverseIRFsBBL ,freqSampling,freqSamplingBB);

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 191

127 if_path.inverseIRFsBB = ResampleIRFs(if_path.inverseIRFsBBL ,freqSampling,freqSamplingBB);
128 if_chan.inverseIRFsBB = ResampleIRFs(if_chan.inverseIRFsBBL ,freqSampling,freqSamplingBB);
129 if_fmimo.inverseIRFsBB = ResampleIRFs(if_fmimo.inverseIRFsBBL,freqSampling,freqSamplingBB);
130 else
131 nof.inverseIRFsBB = nof.inverseIRFsBBL;
132 tr.inverseIRFsBB = tr.inverseIRFsBBL;
133 mil2s.inverseIRFsBB = mil2s.inverseIRFsBBL;
134 if_path.inverseIRFsBB = if_path.inverseIRFsBBL;
135 if_chan.inverseIRFsBB = if_chan.inverseIRFsBBL;
136 if_fmimo.inverseIRFsBB = if_fmimo.inverseIRFsBBL;
137 end
138

139 %===
140 % Create the transmission signal
141 %===
142 fprintf ('Make up a transmission signal\n');
143

144 fprintf (' (a) Create a random binary stream\n');
145 digitalSequence = [1 [rand(1,499) > 0.5]] ;
146

147 fprintf (' (b) Map binary stream to complex symbols (PSK)\n');
148 modulationSettings.k = 2;
149 modulationSettings.addphase = 0;
150 complexSymbols = BitSequenceToComplexSequence(digitalSequence , 'PSK' ,modulationSettings);
151

152 fprintf (' (c) Prepend symbols with a lead in sequence (used for synchronisation)\n');
153 % The lead−in sequence is used to synchronise the decoder , and perform a one−time phase correction.
154 leadInSequence = [1 zeros(1,5) 1 zeros(1 ,5)];
155 complexSymbols = [leadInSequence complexSymbols] ;
156

157 fprintf (' (d) Create the spectral shaping f i l ters\n');
158 rCFLength = 2048;
159 rCFLength = ceil (rCFLength/symbolLength)∗symbolLength;
160

161 % Create the raised co−sine spectral shaping f i l t e r s .
162 raisedCosineSqrtFilter = real(f ftshi ft (i f f t (sqrt(. . .
163 RaisedCosineFrequencySpectrum([1:rCFLength/2 −rCFLength/2+1:0]∗freqSampling/rCFLength, . . .
164 symbolLength/freqSampling, . . .
165 0.2) . . .
166))));
167 raisedCosineFilter = real(f ftshi ft (i f f t (. . .
168 RaisedCosineFrequencySpectrum([1:rCFLength/2 −rCFLength/2+1:0]∗freqSampling/rCFLength, . . .
169 symbolLength/freqSampling, . . .
170 0.2) . . .
171)));
172

173 % Normalise the f i l t e r co−efficients
174 raisedCosineFilter = raisedCosineFilter /sum(raisedCosineFilter);
175 raisedCosineSqrtFilter = raisedCosineSqrtFilter/sum(raisedCosineSqrtFilter);
176

177 fprintf (' (e) Convert the symbol stream into the base−band stream.\n');
178 transmitSignalBB = ComplexSequenceToSignal(complexSymbols, . . .
179 raisedCosineSqrtFilter ,symbolLength);
180

181 % Second channel is not transmitted.
182 transmitSignalBB(1: size(transmitSignalBB,1) ,2) . . .
183 = zeros(1, size(transmitSignalBB,1));
184

185 %===
186 % Apply inverse fi l tering to transmission signals
187 %===
188 fprintf ('Convolving with the TX signal with the f i l ters \n');
189 fprintf (' −−> Base−band Filtering for No Filtering\n');
190 transmitSignalBBIF.nof = MatrixConvolve(nof.inverseIRFsBB ,transmitSignalBB);
191 fprintf (' −−> Base−band Filtering for TR\n');

192 Chapter A Program developed for the experiment and simulation

192 transmitSignalBBIF.tr = MatrixConvolve(tr.inverseIRFsBB ,transmitSignalBB);
193 fprintf (' −−> Base−band Filtering for Mil 2s\n');
194 transmitSignalBBIF.mil2s = MatrixConvolve(mil2s.inverseIRFsBB ,transmitSignalBB);
195 fprintf (' −−> Base−band Filtering for if_path\n');
196 transmitSignalBBIF.if_path = MatrixConvolve(if_path.inverseIRFsBB ,transmitSignalBB);
197 fprintf (' −−> Base−band Filtering for if_chan\n');
198 transmitSignalBBIF.if_chan = MatrixConvolve(if_chan.inverseIRFsBB ,transmitSignalBB);
199 fprintf (' −−> Base−band Filtering for if_fmimo\n');
200 transmitSignalBBIF.if_fmimo = MatrixConvolve(if_fmimo.inverseIRFsBB,transmitSignalBB);
201

202 %===
203 % Convert signals to passband
204 %===
205 fprintf ('STEP 6: Convert the signals to pass−band\n');
206 txSignalInfo.PSK.transmitSignalIF.nof = . . .
207 BasebandToPassband(transmitSignalBBIF.nof , freqCarrier , freqSampling);
208 txSignalInfo.PSK.transmitSignalIF.tr = . . .
209 BasebandToPassband(transmitSignalBBIF.tr , freqCarrier , freqSampling);
210 txSignalInfo.PSK.transmitSignalIF.mil2s = . . .
211 BasebandToPassband(transmitSignalBBIF.mil2s , freqCarrier , freqSampling);
212 txSignalInfo.PSK.transmitSignalIF.if_path = . . .
213 BasebandToPassband(transmitSignalBBIF.if_path , freqCarrier , freqSampling);
214 txSignalInfo.PSK.transmitSignalIF.if_chan = . . .
215 BasebandToPassband(transmitSignalBBIF.if_chan ,freqCarrier , freqSampling);
216 txSignalInfo.PSK.transmitSignalIF.if_fmimo = . . .
217 BasebandToPassband(transmitSignalBBIF.if_fmimo, freqCarrier , freqSampling);
218

219 %===
220 % Normalise the signals
221 %===
222 fprintf ('STEP 7: Normalisations:\n');
223 txSignalInfo.PSK.transmitSignalIF.nof = . . .
224 txSignalInfo.PSK.transmitSignalIF.nof /max(txSignalInfo.PSK.transmitSignalIF.nof (:)) ;
225 txSignalInfo.PSK.transmitSignalIF.tr = . . .
226 txSignalInfo.PSK.transmitSignalIF.tr /max(txSignalInfo.PSK.transmitSignalIF.tr (:)) ;
227 txSignalInfo.PSK.transmitSignalIF.mil2s = . . .
228 txSignalInfo.PSK.transmitSignalIF.mil2s /max(txSignalInfo.PSK.transmitSignalIF.mil2s (:)) ;
229 txSignalInfo.PSK.transmitSignalIF.if_path = . . .
230 txSignalInfo.PSK.transmitSignalIF.if_path /max(txSignalInfo.PSK.transmitSignalIF.if_path(:)) ;
231 txSignalInfo.PSK.transmitSignalIF.if_chan = . . .
232 txSignalInfo.PSK.transmitSignalIF.if_chan /max(txSignalInfo.PSK.transmitSignalIF.if_chan(:)) ;
233 txSignalInfo.PSK.transmitSignalIF.if_fmimo = . . .
234 txSignalInfo.PSK.transmitSignalIF.if_fmimo/max(txSignalInfo.PSK.transmitSignalIF.if_fmimo(:)) ;
235

236 %===
237 % Retain some parameters
238 %===
239 txSignalInfo.PSK.leadInSequence = leadInSequence;
240 txSignalInfo.PSK.leadInSequenceLength = length(leadInSequence);
241 txSignalInfo.PSK.modulationSettings = modulationSettings ;
242 txSignalInfo.PSK.complexSymbols = complexSymbols;

A.2.3 DuctExperimentPlayAndPostprocess.m

A.2.3.1 Program listing
1 % DuctExperimentPlayAndPostProcess.m
2 %
3 %USAGE:
4 % DuctExperimentCreateTransmissionSignal
5 % DuctExperimentPlayAndPostProcess
6 %

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 193

7 % This script is used as part of an experiment conducted in a duct that forms part of the thesis for
8 % Pierre Dumuid. This script is to be run after the script , DuctExperimentCreateTransmissionSignal
9 % has been run. The script , DuctExperimentCreateTransmissionSignal, is designed to measure the

10 % system response and create a set of transmission according to inverse f i l t e r designs. This script
11 % is then used to play the signals in the environment and post−process the signals to display
12 % various performance metrics. The postprocessing involves :
13 %
14 % R Plotting the signal received at the target and non−target location
15 % P Performing a phase and signal synchronisation based on the f irs t peak
16 % P Converting the signal to base−band
17 % R Displaying a scatter plot of the signal at the target and non−target locations
18 % P Pass the signal through the ZF, MSE and RLS adaptive algorithms and show the following :
19 % R Scatter plot after adaptive fi l tering
20 % R Plot of the error for each step
21 % R Filter tap history (to observe how the taps change as the f i l t e r adapts)
22 %
23 % where P stands for post−processing , and R stand for showing results.
24 %
25

26 config.showReceivedSignal = 0;
27

28 %===
29 % Specify parameters for the adaptive f i l t ers
30 %===
31 adaptiveFIR.deltaSteps = [0 1e−2 3e−3 1e−4 1e−4 1e−5];
32 adaptiveFIR.deltaStepsFS = [0 6e−3 4e−4 4e−4 1e−4 1e−5];
33 adaptiveFIR.deltaStepsRLS = [0 0.999 0.999 0.999 0.999 0.999] ;
34 % filterPeakIndex specifies where the peak is for the RLS and MSE adaptive algorithmes. Values range
35 % between 1 and filterLength. A value of 1 indicates that the f i l t e r operates on the current and
36 % past sampled signals only , and a value of 15 indicates the f i l t e r operates on the current and
37 % future sampled signals.
38 adaptiveFIR.filterLength = 15;
39 adaptiveFIR.filterPeakIndex = 15;
40 adaptiveFIR.feedbackFilterLength = 48;
41 adaptiveFIR.fractionalSteps = 2;
42

43 % Define some useful variables
44 leadInSequenceLength = txSignalInfo.PSK.leadInSequenceLength;
45 complexSymbolsLength = length(txSignalInfo.PSK.complexSymbols);
46

47 % Make the leadInSequence and the f irs t 50 symbols to be the training sequence.
48 trainingSequence = txSignalInfo.PSK.complexSymbols(leadInSequenceLength + [1:50]);
49

50 %===
51 % Obtain the system response from playing the signal.
52 %===
53 i f (config.simulateChannel)
54 fprintf ('Calculating response for No Filtering\n');
55 txSignalInfo.PSK.receivedSignal.nof = . . .
56 MatrixConvolve(channelIRFs, txSignalInfo.PSK.transmitSignalIF.nof);
57 fprintf ('Calculating response for tr\n');
58 txSignalInfo.PSK.receivedSignal.tr = . . .
59 MatrixConvolve(channelIRFs, txSignalInfo.PSK.transmitSignalIF.tr);
60 fprintf ('Calculating response for mil2s\n');
61 txSignalInfo.PSK.receivedSignal.mil2s = . . .
62 MatrixConvolve(channelIRFs, txSignalInfo.PSK.transmitSignalIF.mil2s);
63 fprintf ('Calculating response for if_path\n');
64 txSignalInfo.PSK.receivedSignal.if_path = . . .
65 MatrixConvolve(channelIRFs, txSignalInfo.PSK.transmitSignalIF.if_path);
66 fprintf ('Calculating response for if_chan\n');
67 txSignalInfo.PSK.receivedSignal.if_chan = . . .
68 MatrixConvolve(channelIRFs, txSignalInfo.PSK.transmitSignalIF.if_chan);
69 fprintf ('Calculating response for if_fmimo\n');
70 txSignalInfo.PSK.receivedSignal.if_fmimo = . . .
71 MatrixConvolve(channelIRFs,txSignalInfo.PSK.transmitSignalIF.if_fmimo);

194 Chapter A Program developed for the experiment and simulation

72 else
73 % Set the deviceSetting structure
74 deviceSettings.freqSampling = freqSampling;
75 deviceSettings.playChannels = playChannels;
76 deviceSettings.recordChannels = recordChannels ;
77 deviceSettings.playChannelsCount = length(deviceSettings.playChannels);
78 deviceSettings.recordChannelsCount = length(deviceSettings.recordChannels);
79

80 fprintf ('Measuring response for nof\n');
81 transmitSignal = txSignalInfo.PSK.transmitSignalIF.nof ;
82 deviceSettings.playSampleLength = size(transmitSignal ,1);
83 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
84 txSignalInfo.PSK.receivedSignal.nof = RunDS1104MIMO(deviceSettings , transmitSignal);
85

86 fprintf ('Measuring response for tr\n');
87 transmitSignal = txSignalInfo.PSK.transmitSignalIF.tr ;
88 deviceSettings.playSampleLength = size(transmitSignal ,1);
89 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
90 txSignalInfo.PSK.receivedSignal.tr = RunDS1104MIMO(deviceSettings , transmitSignal);
91

92 fprintf ('Measuring response for Mil 2s\n');
93 transmitSignal = txSignalInfo.PSK.transmitSignalIF.mil2s ;
94 deviceSettings.playSampleLength = size(transmitSignal ,1);
95 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
96 txSignalInfo.PSK.receivedSignal.mil2s = RunDS1104MIMO(deviceSettings , transmitSignal);
97

98 fprintf ('Measuring response for if_path\n');
99 transmitSignal = txSignalInfo.PSK.transmitSignalIF.if_path ;

100 deviceSettings.playSampleLength = size(transmitSignal ,1);
101 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
102 txSignalInfo.PSK.receivedSignal.if_path = RunDS1104MIMO(deviceSettings , transmitSignal);
103

104 fprintf ('Measuring response for if_chan\n');
105 transmitSignal = txSignalInfo.PSK.transmitSignalIF.if_chan;
106 deviceSettings.playSampleLength = size(transmitSignal ,1);
107 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
108 txSignalInfo.PSK.receivedSignal.if_chan = RunDS1104MIMO(deviceSettings , transmitSignal);
109

110 fprintf ('Measuring response for if_fmimo\n');
111 transmitSignal = txSignalInfo.PSK.transmitSignalIF.if_fmimo;
112 deviceSettings.playSampleLength = size(transmitSignal ,1);
113 deviceSettings.recordSampleLength = size(transmitSignal ,1) + channelIRFLength;
114 txSignalInfo.PSK.receivedSignal.if_fmimo = RunDS1104MIMO(deviceSettings , transmitSignal);
115 end
116

117 %===
118 % Calculate delay i f using a receiver f i l t e r
119 %===
120 i f (config.receiverFilter)
121 [a rxFilterDelay] = max(raisedCosineSqrtFilter);
122 else
123 rxFilterDelay = 0;
124 end
125

126 % Design a low pass f i l t e r for the SignalPhaseEstimatorPassbandToBaseband routine
127 lowPassFIR = fir1(128,freqCarrier/freqSampling);
128

129 figureCount = 0;
130

131 % Initial ise parameters for figures that show results for each inverse f i l t e r on multiple rows.
132 multiRowFigureDetails.totalRows = 5;
133 multiRowFigureDetails.currentRow = 0;
134

135 %===
136 % Initial ise the figure windows for each of the multi−row figures.

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 195

137 %===
138 figureCount = figureCount + 1;
139 multiRowFigureDetails.figureHandles.scatterPlots = figure(figureCount);
140 set(multiRowFigureDetails.figureHandles.scatterPlots , 'Position ' ,[5 230 310 718]);
141 figureCount = figureCount + 1;
142 multiRowFigureDetails.figureHandles.adaptiveScatterPlots = figure(figureCount);
143 set(multiRowFigureDetails.figureHandles.adaptiveScatterPlots , 'Position ' ,[325 227 547 718]);
144 figureCount = figureCount + 1;
145 multiRowFigureDetails.figureHandles.symbolErrorHistory = figure(figureCount);
146 set(multiRowFigureDetails.figureHandles.symbolErrorHistory , 'Position ' ,[880 227 547 718]);
147

148 %===
149 % 1. Process the results for Milica Stojanovic 2−sided f i l t e r
150 %===
151 currentFilterTextDescription = 'Stoj. 2−S' ;
152 multiRowFigureDetails.currentRow = multiRowFigureDetails.currentRow + 1;
153 i f (config.showReceivedSignal)
154 figureCount = figureCount + 1;
155 figure(figureCount);
156 set(figureCount , 'Name' ,currentFilterTextDescription);
157 subplot(2 ,1 ,1);
158 plot(txSignalInfo.PSK.receivedSignal.mil2s (: ,1));
159 t it le (['Received signals for ' currentFilterTextDescription]) ;
160 subplot(2 ,1 ,2);
161 plot(txSignalInfo.PSK.receivedSignal.mil2s (: ,2));
162 set(get(gcf , 'children ') , 'YLim',[−1 1]∗max(max(abs(txSignalInfo.PSK.receivedSignal.mil2s))));
163 end
164

165 %−−−
166 % a. Convert the signals of both channels to baseband, and apply the receiver f i l t e r as appropriate.
167 %−−−
168 [receivedSignalBB1 maxValIdx1 phiPeak gain1] = . . .
169 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.mil2s(: ,1) , . . .
170 freqCarrier , freqSampling,lowPassFIR,symbolLength);
171

172 [receivedSignalBB2 maxValIdx2 phiPeak gain2] = . . .
173 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.mil2s(: ,2) , . . .
174 freqCarrier , freqSampling,lowPassFIR,symbolLength);
175

176 fprintf ([currentFilterTextDescription ' maxValIdx1 =%d\n'] ,maxValIdx1);
177

178 i f (config.receiverFilter)
179 receivedSignalBB1 = conv(raisedCosineSqrtFilter ,receivedSignalBB1);
180 receivedSignalBB2 = conv(raisedCosineSqrtFilter ,receivedSignalBB2);
181 end
182

183 % The two−sided f i l t e r design by Milica requires the received signal be fi l tered by another
184 % fi l t er developed by the algorithm.
185 receivedSignalBB1 = conv(receivedSignalBB1,mil2s.extraInfo.rxFilter (: ,1));
186 milicaReceiverFilterDelay = rxFilterDelay + size(mil2s.extraInfo.rxFilter ,1)/2;
187

188 PlotScatter(. . .
189 receivedSignalBB1(. . .
190 (maxValIdx1 + milicaReceiverFilterDelay) . . .
191 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain1 , . . .
192 receivedSignalBB2(. . .
193 (maxValIdx1+milicaReceiverFilterDelay) . . .
194 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain2 , . . .
195 symbolLength,multiRowFigureDetails, currentFilterTextDescription);
196

197 %−−−
198 % b. Re−sample at symbol locations (and at the fractional spacing rate)
199 %−−−
200 sampledSignal = receivedSignalBB1(maxValIdx1 + milicaReceiverFilterDelay . . .
201 + [. . .

196 Chapter A Program developed for the experiment and simulation

202 leadInSequenceLength∗symbolLength . . .
203 :symbolLength . . .
204 :complexSymbolsLength∗symbolLength]) ' ;
205

206 sampledSignalFS = receivedSignalBB1(maxValIdx1 + milicaReceiverFilterDelay . . .
207 + round([. . .
208 leadInSequenceLength∗symbolLength . . .
209 :symbolLength/adaptiveFIR.fractionalSteps . . .
210 :complexSymbolsLength∗symbolLength])) ' ;
211

212 %−−−
213 % c. Pass the signal through the adaptive algorithms
214 %−−−
215 figureCount = figureCount + 1;
216 figure(figureCount);
217 set(figureCount , 'Name' ,currentFilterTextDescription , . . .
218 'Position ' ,[664 178 454 592]);
219 constellationValues = GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
220 adaptiveFilterData.mil2s = . . .
221 DuctExperimentRunAdaptiveTests(constellationValues ,sampledSignal ,sampledSignalFS, . . .
222 trainingSequence ,multiRowFigureDetails, . . .
223 currentFilterTextDescription ,adaptiveFIR);
224

225 %===
226 % 2. Process the results for the Time Reversal f i l t e r
227 %===
228 currentFilterTextDescription='T.R. ' ;
229 multiRowFigureDetails.currentRow = multiRowFigureDetails.currentRow + 1;
230 i f (config.showReceivedSignal)
231 figureCount = figureCount + 1;
232 figure(figureCount);
233 set(figureCount , 'Name' ,currentFilterTextDescription);
234 subplot(2 ,1 ,1);
235 plot(txSignalInfo.PSK.receivedSignal.tr (: ,1));
236 t it le (['Received signals for ' currentFilterTextDescription]) ;
237 subplot(2 ,1 ,2);
238 plot(txSignalInfo.PSK.receivedSignal.tr (: ,2));
239 set(get(gcf , 'children ') , 'YLim',[−1 1]∗max(max(abs(txSignalInfo.PSK.receivedSignal.tr))));
240 end
241

242 %−−−
243 % a. Convert the signals of both channels to baseband, and apply the receiver f i l t e r as appropriate.
244 %−−−
245 [receivedSignalBB1 maxValIdx1 phiPeak gain1] = . . .
246 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.tr (: ,1) , freqCarrier , . . .
247 freqSampling,lowPassFIR,symbolLength);
248

249 [receivedSignalBB2 maxValIdx2 phiPeak gain2] = . . .
250 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.tr (: ,2) , freqCarrier , . . .
251 freqSampling,lowPassFIR,symbolLength);
252

253 fprintf ([currentFilterTextDescription ' maxValIdx1 =%d\n'] ,maxValIdx1);
254

255 i f (config.receiverFilter)
256 receivedSignalBB1 = conv(raisedCosineSqrtFilter ,receivedSignalBB1);
257 receivedSignalBB2 = conv(raisedCosineSqrtFilter ,receivedSignalBB2);
258 end
259

260 PlotScatter(. . .
261 receivedSignalBB1(. . .
262 (maxValIdx1+rxFilterDelay) . . .
263 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain1 , . . .
264 receivedSignalBB2(. . .
265 (maxValIdx1+rxFilterDelay) . . .
266 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain2 , . . .

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 197

267 symbolLength, multiRowFigureDetails, currentFilterTextDescription);
268

269 %−−−
270 % b. Re−sample at symbol locations (and at the fractional spacing rate)
271 %−−−
272 sampledSignal = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
273 + [. . .
274 leadInSequenceLength∗symbolLength . . .
275 :symbolLength . . .
276 :complexSymbolsLength∗symbolLength]) ' ;
277

278 sampledSignalFS = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
279 + round([. . .
280 leadInSequenceLength∗symbolLength . . .
281 :symbolLength/adaptiveFIR.fractionalSteps . . .
282 :complexSymbolsLength∗symbolLength])) ' ;
283

284 %−−−
285 % c. Pass the signal through the adaptive algorithms
286 %−−−
287 figureCount = figureCount + 1;
288 figure(figureCount);
289 set(figureCount , 'Name' ,currentFilterTextDescription , . . .
290 'Position ' ,[664 178 454 592]);
291 constellationValues = GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
292 adaptiveFilterData.tr = . . .
293 DuctExperimentRunAdaptiveTests(constellationValues ,sampledSignal ,sampledSignalFS, . . .
294 trainingSequence ,multiRowFigureDetails, . . .
295 currentFilterTextDescription ,adaptiveFIR);
296

297 %===
298 % 3. Process the results for Tikhonov inverse f i l t e r (fu l l)
299 %===
300 currentFilterTextDescription='T.I.F.(ful l) ' ;
301 multiRowFigureDetails.currentRow = multiRowFigureDetails.currentRow + 1;
302 i f (config.showReceivedSignal)
303 figureCount = figureCount + 1;
304 figure(figureCount);
305 set(figureCount , 'Name' ,currentFilterTextDescription);
306 subplot(2 ,1 ,1);
307 plot(txSignalInfo.PSK.receivedSignal.if_fmimo(: ,1));
308 t it le (['Received signals for ' currentFilterTextDescription]) ;
309 subplot(2 ,1 ,2);
310 plot(txSignalInfo.PSK.receivedSignal.if_fmimo(: ,2));
311 set(get(gcf , 'children ') , 'YLim',[−1 1]∗max(max(abs(txSignalInfo.PSK.receivedSignal.if_fmimo))));
312 end
313

314 %−−−
315 % a. Convert the signals of both channels to baseband, and apply the receiver f i l t e r as appropriate.
316 %−−−
317 [receivedSignalBB1 maxValIdx1 phiPeak gain1] = . . .
318 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_fmimo(: ,1) , freqCarrier , . . .
319 freqSampling,lowPassFIR,symbolLength);
320

321 [receivedSignalBB2 maxValIdx2 phiPeak gain2] = . . .
322 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_fmimo(: ,2) , freqCarrier , . . .
323 freqSampling,lowPassFIR,symbolLength);
324

325 fprintf ([currentFilterTextDescription ' maxValIdx1 =%d\n'] ,maxValIdx1);
326

327 i f (config.receiverFilter)
328 receivedSignalBB1 = conv(raisedCosineSqrtFilter ,receivedSignalBB1);
329 receivedSignalBB2 = conv(raisedCosineSqrtFilter ,receivedSignalBB2);
330 end
331

198 Chapter A Program developed for the experiment and simulation

332 PlotScatter(. . .
333 receivedSignalBB1(. . .
334 (maxValIdx1+rxFilterDelay) . . .
335 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain1 , . . .
336 receivedSignalBB2(. . .
337 (maxValIdx1+rxFilterDelay) . . .
338 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain2 , . . .
339 symbolLength, multiRowFigureDetails, currentFilterTextDescription);
340

341 %−−−
342 % b. Re−sample at symbol locations (and at the fractional spacing rate)
343 %−−−
344 sampledSignal = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
345 + [. . .
346 leadInSequenceLength∗symbolLength . . .
347 :symbolLength . . .
348 :complexSymbolsLength∗symbolLength]) ' ;
349

350 sampledSignalFS = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
351 + round([. . .
352 leadInSequenceLength∗symbolLength . . .
353 :symbolLength/adaptiveFIR.fractionalSteps . . .
354 :complexSymbolsLength∗symbolLength])) ' ;
355

356 %−−−
357 % c. Pass the signal through the adaptive algorithms
358 %−−−
359 figureCount = figureCount + 1;
360 figure(figureCount);
361 set(figureCount , 'Name' ,currentFilterTextDescription , . . .
362 'Position ' ,[664 178 454 592]);
363 constellationValues = GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
364 adaptiveFilterData.tiffull = . . .
365 DuctExperimentRunAdaptiveTests(constellationValues ,sampledSignal ,sampledSignalFS, . . .
366 trainingSequence ,multiRowFigureDetails, . . .
367 currentFilterTextDescription ,adaptiveFIR);
368

369 %===
370 % 4. Process the results for Tikhonov inverse f i l t e r (one channel)
371 %===
372 currentFilterTextDescription='T.I.F.(channel) ' ;
373 multiRowFigureDetails.currentRow = multiRowFigureDetails.currentRow + 1;
374 i f (config.showReceivedSignal)
375 figureCount = figureCount + 1;
376 figure(figureCount);
377 set(figureCount , 'Name' ,currentFilterTextDescription);
378 subplot(2 ,1 ,1);
379 plot(txSignalInfo.PSK.receivedSignal.if_chan(: ,1));
380 t it le (['Received signals for ' currentFilterTextDescription]) ;
381 subplot(2 ,1 ,2);
382 plot(txSignalInfo.PSK.receivedSignal.if_chan(: ,2));
383 set(get(gcf , 'children ') , 'YLim',[−1 1]∗max(max(abs(txSignalInfo.PSK.receivedSignal.if_chan))));
384 end
385

386 %−−−
387 % a. Convert the signals of both channels to baseband, and apply the receiver f i l t e r as appropriate.
388 %−−−
389 [receivedSignalBB1 maxValIdx1 phiPeak gain1] = . . .
390 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_chan(: ,1) , freqCarrier , . . .
391 freqSampling,lowPassFIR,symbolLength);
392

393 [receivedSignalBB2 maxValIdx2 phiPeak gain2] = . . .
394 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_chan(: ,2) , freqCarrier , . . .
395 freqSampling,lowPassFIR,symbolLength);
396

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 199

397 fprintf ([currentFilterTextDescription ' maxValIdx1 =%d\n'] ,maxValIdx1);
398

399 i f (config.receiverFilter)
400 receivedSignalBB1 = conv(raisedCosineSqrtFilter ,receivedSignalBB1);
401 receivedSignalBB2 = conv(raisedCosineSqrtFilter ,receivedSignalBB2);
402 end
403

404 PlotScatter(. . .
405 receivedSignalBB1(. . .
406 (maxValIdx1+rxFilterDelay) . . .
407 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain1 , . . .
408 receivedSignalBB2(. . .
409 (maxValIdx1+rxFilterDelay) . . .
410 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain2 , . . .
411 symbolLength, multiRowFigureDetails, currentFilterTextDescription);
412

413 %−−−
414 % b. Re−sample at symbol locations (and at the fractional spacing rate)
415 %−−−
416 sampledSignal = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
417 + [. . .
418 leadInSequenceLength∗symbolLength . . .
419 :symbolLength . . .
420 :complexSymbolsLength∗symbolLength]) ' ;
421

422 sampledSignalFS = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
423 + round([. . .
424 leadInSequenceLength∗symbolLength . . .
425 :symbolLength/adaptiveFIR.fractionalSteps . . .
426 :complexSymbolsLength∗symbolLength])) ' ;
427

428 %−−−
429 % c. Pass the signal through the adaptive algorithms
430 %−−−
431 figureCount = figureCount + 1;
432 figure(figureCount);
433 set(figureCount , 'Name' ,currentFilterTextDescription , . . .
434 'Position ' ,[664 178 454 592]);
435 constellationValues = GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
436 adaptiveFilterData.tifchan = . . .
437 DuctExperimentRunAdaptiveTests(constellationValues ,sampledSignal ,sampledSignalFS, . . .
438 trainingSequence ,multiRowFigureDetails, . . .
439 currentFilterTextDescription ,adaptiveFIR);
440

441 %===
442 % 5. Process the results for Tikhonov inverse f i l t e r (one path)
443 %===
444 currentFilterTextDescription='T.I.F.(path) ' ;
445 multiRowFigureDetails.currentRow = multiRowFigureDetails.currentRow + 1;
446 i f (config.showReceivedSignal)
447 figureCount = figureCount + 1;
448 figure(figureCount);
449 set(figureCount , 'Name' ,currentFilterTextDescription);
450 subplot(2 ,1 ,1);
451 plot(txSignalInfo.PSK.receivedSignal.if_path(: ,1));
452 t it le (['Received signals for ' currentFilterTextDescription]) ;
453 subplot(2 ,1 ,2);
454 plot(txSignalInfo.PSK.receivedSignal.if_path(: ,2));
455 set(get(gcf , 'children ') , 'YLim',[−1 1]∗max(max(abs(txSignalInfo.PSK.receivedSignal.if_path))));
456 end
457

458 %−−−
459 % a. Convert the signals of both channels to baseband, and apply the receiver f i l t e r as appropriate.
460 %−−−
461 [receivedSignalBB1 maxValIdx1 phiPeak gain1] = . . .

200 Chapter A Program developed for the experiment and simulation

462 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_path(: ,1) , . . .
463 freqCarrier , freqSampling,lowPassFIR,symbolLength);
464

465 [receivedSignalBB2 maxValIdx2 phiPeak gain2] = . . .
466 SignalPhaseEstimatorPassbandToBaseband(txSignalInfo.PSK.receivedSignal.if_path(: ,2) , . . .
467 freqCarrier , freqSampling,lowPassFIR,symbolLength);
468

469 fprintf ([currentFilterTextDescription ' maxValIdx1 =%d\n'] ,maxValIdx1);
470

471 i f (config.receiverFilter)
472 receivedSignalBB1 = conv(raisedCosineSqrtFilter ,receivedSignalBB1);
473 receivedSignalBB2 = conv(raisedCosineSqrtFilter ,receivedSignalBB2);
474 end
475

476 PlotScatter(. . .
477 receivedSignalBB1(. . .
478 (maxValIdx1+rxFilterDelay) . . .
479 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain1 , . . .
480 receivedSignalBB2(. . .
481 (maxValIdx1+rxFilterDelay) . . .
482 + [leadInSequenceLength∗symbolLength:complexSymbolsLength∗symbolLength])/gain2 , . . .
483 symbolLength, multiRowFigureDetails, currentFilterTextDescription);
484

485 %−−−
486 % b. Re−sample at symbol locations (and at the fractional spacing rate)
487 %−−−
488 sampledSignal = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
489 + [. . .
490 leadInSequenceLength∗symbolLength . . .
491 :symbolLength . . .
492 :complexSymbolsLength∗symbolLength]) ' ;
493

494 sampledSignalFS = receivedSignalBB1(maxValIdx1 + rxFilterDelay . . .
495 + round([. . .
496 leadInSequenceLength∗symbolLength . . .
497 :symbolLength/adaptiveFIR.fractionalSteps . . .
498 :complexSymbolsLength∗symbolLength])) ' ;
499

500 %−−−
501 % c. Pass the signal through the adaptive algorithms
502 %−−−
503 figureCount = figureCount + 1;
504 figure(figureCount);
505 set(figureCount , 'Name' ,currentFilterTextDescription , . . .
506 'Position ' ,[664 178 454 592]);
507 constellationValues = GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
508 adaptiveFilterData.tifpath = . . .
509 DuctExperimentRunAdaptiveTests(constellationValues ,sampledSignal ,sampledSignalFS, . . .
510 trainingSequence ,multiRowFigureDetails, . . .
511 currentFilterTextDescription ,adaptiveFIR);
512

513 %===
514 % Plot the average signal error for each adaptive f i l ter , and inverse f i l t e r type.
515 %===
516 figure(multiRowFigureDetails.figureHandles.symbolErrorHistory);
517 adaptiveFilterFields = { ' zf ' 'mse' 'mseFS' ' rls ' 'rlsFS '};
518 adaptiveFilterNames = { . . .
519 'Zero Forcing Algorithm (ZF) ' . . .
520 'Mean Square Error Algorithm (MSE) ' . . .
521 'Fractionally Spaced Mean Square Error Algorithm (MSE−FS) ' . . .
522 'Recursive Least Square (RLS) ' . . .
523 'Fractionally Spaced Recursive Least Square Algorithm (RLS−FS) '};
524 adaptiveFilterSteps = { . . .
525 adaptiveFIR.deltaSteps . . .
526 adaptiveFIR.deltaSteps . . .

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 201

527 adaptiveFIR.deltaStepsFS . . .
528 adaptiveFIR.deltaStepsRLS . . .
529 adaptiveFIR.deltaStepsRLS . . .
530 };
531 inverseFilterFields = { 'mil2s ' ' tr ' ' t i f fu l l ' ' tifchan ' ' tifpath '};
532 inverseFilterNames = {'Stoj. 2−S' 'T.R. ' 'T.I.F. (ful l) ' 'T.I.F. (channel) ' 'T.I.F. (path) '};
533 lineStyles = { '−' ' : ' '−. ' '−−' '−' };
534 grayColors = [0.7 0 0 0 0];
535 for i i = 1:length(adaptiveFilterFields)
536 subplot(length(adaptiveFilterFields) ,1 , i i) ;
537 t it le (adaptiveFilterNames(i i));
538 hold on;
539 for j j = 1:length(inverseFilterFields)
540 plotValues(: , jj , i i) = getfield(. . .
541 adaptiveFilterData , inverseFilterFields{j j },adaptiveFilterFields{ i i }, . . .
542 'averageSignalError ') ;
543 ph = plot(plotValues(: , jj , i i)) ;
544 set(ph, 'Marker' , ' . ' , 'LineStyle ' , lineStyles{j j }, 'Color ' ,grayColors(j j) . ∗[1 1 1]);
545 set(gca, 'XTick' ,1:6 , 'XTickLabel ' ,adaptiveFilterSteps{ i i })
546 end
547 hold off ;
548 end
549 maxV = max(plotValues (:)) ;
550 minV = min(plotValues (:)) ;
551 upperLim = ceil (maxV∗10^(−floor(log10(maxV)))) ∗ 10^(floor(log10(maxV)));
552 lowerLim = floor(minV∗10^(−floor(log10(minV)))) ∗ 10^(floor(log10(minV)));
553 set(get(gcf , 'children ') , 'YLim' , [lowerLim upperLim] , 'YScale ' , ' log ');
554 h = legend(inverseFilterNames , 'Location ' , 'Best ' , 'Orientation ' , 'horizontal ') ;
555 set(h, 'Position ' ,[0 .05 0.03 0.9 0.035]) ;

A.2.4 Helper Scripts

A.2.4.1 DuctExperimentRunAdaptiveTests.m
1 function outData = DuctExperimentRunAdaptiveTests(. . .
2 constellationValues ,sampledSignal ,sampledSignalFS,trainingSequence ,multiRowFigureDetails, . . .
3 currentFilterTextDescription ,adaptiveFIR)
4 %USAGE: outData = DuctExperimentRunAdaptiveTests(. . .
5 % constellationValues ,sampledSignal ,sampledSignalFS, trainingSequence ,multiRowFigureDetails , . . .
6 % currentFilterTextDescription ,adaptiveFIR)
7 %
8 % This function is used as part of an experiment conducted in a duct that forms part of the thesis
9 % for Pierre Dumuid . This function runs the adaptive algorithms , 'Zero Forcing' (ZF) , 'Mean Square

10 % Error' (MSE) , and 'Recursive Least Square' (RLS) on the signals , sampledSignal , and
11 % sampledSignalFS. The signal , sampledSignal , is the sampled baseband complex signal that has been
12 % phase synchronised and sampled at the sampling rate , whilst the signal , sampledSignalFS, is the
13 % signal that has been phase synchronised and sampling at fractionalSteps times the sampling rate ,
14 % and is used when performing fractional spacing equalisation. Fractional spacing equalisation is
15 % employed on for the RLS algorithm , and one of the instances of the RLS algorithm. The length of
16 % the feedforward , and feedback f i l t ers are given by feedbackFilterLength , and filterLength
17 % respectively. If the variable , trainingSequence contains a non−empty vector , then this vector
18 % provides a training sequence to init ia l ise the f i l t e r taps.
19 %
20

21 colorGrey = 0.5∗[1 1 1];
22 color2 = [1 0.3 0.7] ;
23

24 deltaSteps = adaptiveFIR.deltaSteps ;
25 deltaStepsFS = adaptiveFIR.deltaStepsFS;
26 deltaStepsRLS = adaptiveFIR.deltaStepsRLS;
27 fractionalSteps = adaptiveFIR.fractionalSteps ;
28 filterLength = adaptiveFIR.filterLength ;

202 Chapter A Program developed for the experiment and simulation

29 feedbackFilterLength = adaptiveFIR.feedbackFilterLength;
30 filterPeakIndex = adaptiveFIR.filterPeakIndex ;
31

32 %===
33 % Run non−recursive Detector with no stepsize (essentially straight detector)
34 %===
35 zfa0.filterTaps = [1 zeros(1, filterLength)] ;
36 [zfa0.signalError zfa0.detectedSymbols zfa0.filterTaps zfa0.filterTapHistory zfa0.filteredSignal] . . .
37 = DetectorAdaptiveZF(constellationValues ,sampledSignal,0 , zfa0.filterTaps , trainingSequence);
38

39 %===
40 % Run Adaptive f i l t ers several times using different delta steps.
41 %===
42 % Define the various parameter arrays
43 zfa.filterTapLongHistory = [] ;
44 msea.filterTapLongHistory = [] ;
45 rlsa.filterTapLongHistory = [] ;
46 mseaFS.filterTapLongHistory = [] ;
47 rlsaFS.filterTapLongHistory = [] ;
48

49 zfa.signalErrorHistory = [] ;
50 msea.signalErrorHistory = [] ;
51 rlsa.signalErrorHistory = [] ;
52 mseaFS.signalErrorHistory = [] ;
53 rlsaFS.signalErrorHistory = [] ;
54

55 zfa.filterTaps = [1 zeros(1, filterLength)] ;
56 msea.filterTaps = [zeros(1 ,filterPeakIndex−1) 1 zeros(1,filterLength−filterPeakIndex)] ;
57 rlsa.filterTaps = [zeros(1,filterPeakIndex−1) 1 zeros(1,filterLength−filterPeakIndex)] ;
58 mseaFS.filterTaps = . . .
59 [zeros(1 ,(filterPeakIndex−1)∗fractionalSteps) . . .
60 1 0 . . .
61 zeros(1 ,(filterLength−filterPeakIndex)∗fractionalSteps)] ;
62 rlsaFS.filterTaps = . . .
63 [zeros(1 ,(filterPeakIndex−1)∗fractionalSteps) . . .
64 1 0 . . .
65 zeros(1 ,(filterLength−filterPeakIndex)∗fractionalSteps)] ;
66

67 msea.feedbackFilterTaps = zeros(1,feedbackFilterLength);
68 rlsa.feedbackFilterTaps = zeros(1,feedbackFilterLength);
69 mseaFS.feedbackFilterTaps = zeros(1,feedbackFilterLength);
70 rlsaFS.feedbackFilterTaps = zeros(1,feedbackFilterLength);
71

72 % Increment through the delta steps
73 for i i = 1:length(deltaSteps)
74 delta = deltaSteps(i i) ;
75 deltaFS = deltaStepsFS(i i) ;
76 deltaRLS = deltaStepsRLS(i i) ;
77

78 % Perform the adaptive fi l tering
79 [zfa.signalError zfa.detectedSymbols zfa.filterTaps zfa.filterTapHistory zfa.filteredSignal] . . .
80 = DetectorAdaptiveZF(constellationValues ,sampledSignal , delta , zfa.filterTaps , trainingSequence);
81

82 [msea.signalError msea.detectedSymbols msea.filterTaps msea.filterTapHistory . . .
83 msea.filteredSignal msea.feedbackFilterTaps] = . . .
84 DetectorAdaptiveMSE(constellationValues ,sampledSignal , delta ,msea.filterTaps , . . .
85 trainingSequence,1 ,msea.feedbackFilterTaps , filterPeakIndex);
86

87 [rlsa.signalError rlsa.detectedSymbols rlsa.filterTaps rlsa.filterTapHistory . . .
88 rlsa.filteredSignal rlsa.feedbackFilterTaps] = . . .
89 DetectorAdaptiveRLS(constellationValues ,sampledSignal ,deltaRLS, rlsa.filterTaps , . . .
90 trainingSequence,1 ,rlsa.feedbackFilterTaps , filterPeakIndex);
91

92 [mseaFS.signalError mseaFS.detectedSymbols mseaFS.filterTaps mseaFS.filterTapHistory . . .
93 mseaFS.filteredSignal mseaFS.feedbackFilterTaps] = . . .

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 203

94 DetectorAdaptiveMSE(constellationValues ,sampledSignalFS,deltaFS,mseaFS.filterTaps , . . .
95 trainingSequence , fractionalSteps ,mseaFS.feedbackFilterTaps, . . .
96 filterPeakIndex);
97

98 [rlsaFS.signalError rlsaFS.detectedSymbols rlsaFS.filterTaps rlsaFS.filterTapHistory . . .
99 rlsaFS.filteredSignal rlsaFS.feedbackFilterTaps] = . . .

100 DetectorAdaptiveRLS(constellationValues ,sampledSignalFS,deltaRLS, rlsaFS.filterTaps , . . .
101 trainingSequence , fractionalSteps , rlsaFS.feedbackFilterTaps , . . .
102 filterPeakIndex);
103

104 fprintf ('%.4f ZFA: %.4f MSEA: %.4f RLSA: %.4f MSEA−FS %.4f RLSA−FS: %.4f\n' ,delta , . . .
105 mean(abs(zfa.signalError)) ,mean(abs(msea.signalError)) ,mean(abs(rlsa.signalError)) , . . .
106 mean(abs(mseaFS.signalError)) ,mean(abs(rlsaFS.signalError)));
107

108 % Keep a history of the results
109 zfa.signalErrorHistory = [zfa.signalErrorHistory zfa.signalError] ;
110 msea.signalErrorHistory = [msea.signalErrorHistory msea.signalError] ;
111 rlsa.signalErrorHistory = [rlsa.signalErrorHistory rlsa.signalError] ;
112 mseaFS.signalErrorHistory = [mseaFS.signalErrorHistory mseaFS.signalError] ;
113 rlsaFS.signalErrorHistory = [rlsaFS.signalErrorHistory rlsaFS.signalError] ;
114 zfa.averageSignalError(i i) = mean(abs(zfa.signalError));
115 msea.averageSignalError(i i) = mean(abs(msea.signalError));
116 rlsa.averageSignalError(i i) = mean(abs(rlsa.signalError));
117 mseaFS.averageSignalError(i i) = mean(abs(mseaFS.signalError));
118 rlsaFS.averageSignalError(i i) = mean(abs(rlsaFS.signalError));
119 zfa.filterTapLongHistory = [zfa.filterTapLongHistory zfa.filterTapHistory] ;
120 msea.filterTapLongHistory = [msea.filterTapLongHistory msea.filterTapHistory] ;
121 rlsa.filterTapLongHistory = [rlsa.filterTapLongHistory rlsa.filterTapHistory] ;
122 mseaFS.filterTapLongHistory = [mseaFS.filterTapLongHistory mseaFS.filterTapHistory] ;
123 rlsaFS.filterTapLongHistory = [rlsaFS.filterTapLongHistory rlsaFS.filterTapHistory] ;
124 end
125 fprintf ('\n');
126

127 %===
128 % Plot the results
129 %===
130 currentFigureHandle = gcf ;
131

132 %−−−
133 % Plot the scatter plots for each adaptive f i l t e r
134 %−−−
135 figure(multiRowFigureDetails.figureHandles.adaptiveScatterPlots);
136 totalRows = multiRowFigureDetails.totalRows;
137 currentRow = multiRowFigureDetails.currentRow;
138 subplot(totalRows,1 ,currentRow);
139 plotSeperator = 3;
140 hold off ;
141 lh = plot(zfa0.filteredSignal (1:end−1) + 1∗plotSeperator , 'k. ') ;
142 hold on;
143 plot(zfa.filteredSignal (1:end−1) + 2∗plotSeperator , 'k. ') ;
144 plot(msea.filteredSignal(1:end−1) + 3∗plotSeperator , 'k. ') ;
145 plot(mseaFS.filteredSignal(1:end−1) + 4∗plotSeperator , 'k. ') ;
146 plot(rlsa.filteredSignal (1:end−1) + 5∗plotSeperator , 'k. ') ;
147 plot(rlsaFS.filteredSignal (1:end−1) + 6∗plotSeperator , 'k. ') ;
148 set(get(gca, 'children ') , 'MarkerSize ' ,2);
149 set(gca, 'XTick' ,[1:6]∗plotSeperator , . . .
150 'XTickLabel ' ,{ 'none' , 'ZF' , 'MSE' , 'MSE−FS' , 'RLS' , 'RLS−FS'}, . . .
151 'XLim' , [plotSeperator − 2 6∗plotSeperator+2]);
152 hold off
153 ylabel(currentFilterTextDescription);
154

155 %−−−
156 % Plot f i l t e r tap history
157 %−−−
158 figure(currentFigureHandle)

204 Chapter A Program developed for the experiment and simulation

159 subplot(5 ,1 ,1);
160 imagesc(20∗log10(abs(zfa.filterTapLongHistory)))
161 t it le ('ZF');
162 subplot(5 ,1 ,2);
163 imagesc(20∗log10(abs(msea.filterTapLongHistory)))
164 t it le ('MSE');
165 subplot(5 ,1 ,3);
166 imagesc(20∗log10(abs(mseaFS.filterTapLongHistory)))
167 t it le ('MSE−FS');
168 subplot(5 ,1 ,4);
169 imagesc(20∗log10(abs(rlsa.filterTapLongHistory)))
170 t it le ('RLS');
171 subplot(5 ,1 ,5);
172 imagesc(20∗log10(abs(rlsaFS.filterTapLongHistory)))
173 t it le ('RLS−FS');
174 xlabel('samples ') ;
175

176 outData.zf.averageSignalError = zfa.averageSignalError ;
177 outData.mse.averageSignalError = msea.averageSignalError ;
178 outData.mseFS.averageSignalError = mseaFS.averageSignalError;
179 outData.rls.averageSignalError = rlsa.averageSignalError ;
180 outData.rlsFS.averageSignalError = rlsaFS.averageSignalError ;
181

182 outData.zf0.filteredSignal = zfa0.filteredSignal (1:end−1);
183 outData.zf.filteredSignal = zfa.filteredSignal (1:end−1);
184 outData.mse.filteredSignal = msea.filteredSignal(1:end−1);
185 outData.mseFS.filteredSignal = mseaFS.filteredSignal(1:end−1);
186 outData.rls.filteredSignal = rlsa.filteredSignal (1:end−1);
187 outData.rlsFS.filteredSignal = rlsaFS.filteredSignal (1:end−1);

A.2.4.2 GetDS1104VariableDescriptions.m
1 function dSpaceMapVar = GetDS1104VariableDescriptions()
2 %USAGE: dSpaceMapVar = GetDS1104VariableDescriptions()
3 %
4 % This function generates a structure containing the map varibles used by the dSPACE function ,
5 % mlib() to retrieve the variables from the dSpace DS1104 board. These variable descriptions are
6 % specific to the program, DuctExperimentDSPACEProgram.c that must be loaded onto the DS1104
7 % device.
8 %
9

10 %===
11 % Program execution variables
12 %===
13 dSpaceMapVar.program_status = mlib('GetMapVar' , 'program_status ' , 'type ' , 'UInt16');
14 dSpaceMapVar.program_control = mlib('GetMapVar' , 'program_control ' , 'type ' , 'Int16 ');
15

16 %===
17 % General variables
18 %===
19 dSpaceMapVar.data_block = mlib('GetMapVar' , 'data_block' , 'type ' , 'Float64 ');
20 dSpaceMapVar.sample_period = mlib('GetMapVar' , 'sample_period ');
21

22 %===
23 % Routine variables
24 %===
25 dSpaceMapVar.play_sample_length = mlib('GetMapVar' , 'play_sample_length' , 'type ' , 'UInt32');
26 dSpaceMapVar.record_sample_length = mlib('GetMapVar' , 'record_sample_length' , 'type ' , 'UInt32');
27 dSpaceMapVar.play_channels = mlib('GetMapVar' , 'play_channels ' , 'type ' , 'UInt16' , ' length ' ,9);
28 dSpaceMapVar.record_channels = mlib('GetMapVar' , 'record_channels ' , 'type ' , 'UInt16' , ' length ' ,9);
29 dSpaceMapVar.play_channel_gains = mlib('GetMapVar' , 'play_channel_gains ' , 'type ' , 'Float64 ' , ' length ' ,8);
30 dSpaceMapVar.record_channel_gains = mlib('GetMapVar' , 'record_channel_gains ' , 'type ' , 'Float64 ' , ' length ' ,8);
31

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 205

32 %===
33 % Variable to write bits to the i/o connector
34 %===
35 dSpaceMapVar.io_bits_write = mlib('GetMapVar' , 'io_bits_write ' , 'type ' , 'UInt16' , ' length ' ,1);

A.2.4.3 GetFakeIRFs.m
1 function outIRFs = GetFakeIRFs(playChannelsCount,recordChannelsCount, filterLength)
2 %USAGE: outIRFs = GetFakeIRFs(playChannelsCount,recordChannelsCount, filterLength)
3 %
4 % Make a set of fake impulse using random values enveloped in decaying exponent envelopes.
5 %
6

7 noEnvelopes = 6;
8 for i i = 1:recordChannelsCount
9 for j j = 1:playChannelsCount

10 outIRFs(: , i i , j j) = zeros(filterLength ,1);
11 for envelopeAdditionIndex = 1:noEnvelopes
12 outIRFs(: , i i , j j) = outIRFs(: , i i , j j) . . .
13 + (rand(filterLength,1)−0.5) .∗exp(−(3+rand∗4)∗[1:filterLength] ./filterLength) . ' ;
14 end
15 end
16 end

A.2.4.4 GetIRFsDS1104.m
1 function [outIRFs coherence noise] = . . .
2 GetIRFsDS1104(freqSampling,playChannels,recordChannels, channelSettings)
3 %USAGE: [outIRFs coherence noise] = . . .
4 % GetIRFsDS1104(freqSampling ,playChannels ,recordChannels, channelSettings)
5 %
6 % Description :
7 % This script is used to characterise the impulse response between a set of outputs and inputs
8 % connected to the dSPACE board.
9 %

10 % Before invoking this M−f i l e the real−time processor application DuctExperimentDSPACEProgram.obj
11 % (or equivalent) must be loaded and running on the dSPACE board.
12

13 i f (nargin < 2)
14 playChannels = 1:6;
15 recordChannels = 1:6;
16 end
17

18 %===
19 % Set parameters on dSPACE board
20 %===
21 mlib('SelectBoard ' , 'DS1104')
22

23 deviceSettings.freqSampling = freqSampling;
24 deviceSettings.playSampleLength = 43000;
25

26 dSpaceMapVar = GetDS1104VariableDescriptions;
27

28 % Set the output bits so that the switch box switches to the current arrays.
29 outBits = 1∗(channelSettings.recordArrayId−1) + 2∗(channelSettings.playArrayId−1);
30 mlib('write ' ,dSpaceMapVar.io_bits_write , 'data ' ,outBits);
31

32 % Load the current system gains
33 i f i s f ie ld (channelSettings , 'playGains ')
34 playGains = channelSettings.playGains ;
35 else

206 Chapter A Program developed for the experiment and simulation

36 b = load('spkgains ') ;
37 currentPlayGains = b.spkgains.current ;
38 i f channelSettings.playArrayId == 1
39 playGains = currentPlayGains.tx1;
40 else
41 playGains = currentPlayGains.tx2;
42 end
43 end
44 i f i s f ie ld (channelSettings , 'recordGains ')
45 playGains = channelSettings.recordGains ;
46 else
47 a = load('micgains ') ;
48 currentRecordGains = a.micgains.current ;
49 i f channelSettings.recordArrayId == 1
50 recordGains = currentRecordGains.rx1;
51 else
52 recordGains = currentRecordGains.rx2;
53 end
54 end
55

56 % Set the record and playback gains on the DS1104 device.
57 playChannelGains = playGains(playChannels);
58 playChannelGains = [playChannelGains zeros(1,8−length(playChannelGains))] ;
59 recordChannelGains = recordGains(recordChannels);
60 recordChannelGains = [recordChannelGains zeros(1,8−length(recordChannelGains))] ;
61 mlib('write ' ,dSpaceMapVar.record_channel_gains, 'data ' ,recordChannelGains);
62 mlib('write ' ,dSpaceMapVar.play_channel_gains , 'data ' ,playChannelGains);
63

64

65 % Set the settings for the RunDS1104ChkSpk routine.
66 deviceSettings.playChannels = playChannels;
67 deviceSettings.recordChannels = recordChannels ;
68 deviceSettings.playChannelsCount = length(deviceSettings.playChannels);
69 deviceSettings.recordChannelsCount = length(deviceSettings.recordChannels);
70

71 %===
72 % Create a signal to characterise the signal with.
73 %===
74 numberZeroForNoiseFloor = 1024∗6; % Zero at the beginning of the signal used to measure the
75 % noise in the system.
76 numberZerosBeforeNextChannel = 1500; % Zeros at end of signal to avoid influencing the
77 % measurements for the next speaker.
78

79 playSampleNonZeroLength = deviceSettings.playSampleLength − numberZerosBeforeNextChannel;
80

81 % Generate the random signal used to characterise the system.
82 playSample = rand(1,playSampleNonZeroLength);
83

84 % Normalise and zero pad to make sure i t is sampleLength samples long.
85 playSample = (playSample − mean(playSample));
86 playSample = playSample / sqrt(max(playSample.^2));
87 playSample = [playSample(1:playSampleNonZeroLength) ' ; . . .
88 zeros(deviceSettings.playSampleLength − playSampleNonZeroLength,1)] ;
89 playSample = playSample(1:deviceSettings.playSampleLength);
90

91 % Add the zeros to the beginning of the sample
92 playSample = [zeros(numberZeroForNoiseFloor,1); . . .
93 playSample(numberZeroForNoiseFloor+1:end−4400); . . .
94 zeros(4400,1)];
95

96 %===
97 % Play the characterisation signal
98 %===
99 % Pause a l i t t l e bit to allow the input switch to sett le i f i t was switched

100 pause(.25);

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 207

101

102 disp('Now Performing measurement to determine system outIRFs');
103 recordData = RunDS1104Chkspk(deviceSettings , playSample);
104

105 %===
106 % Modify the received signal
107 %===
108 % reshape the recordData (Dimensions: 1=sample Measurements, 2=RX.No.+Time, 3=TX.No.)
109 recordData = reshape(recordData(deviceSettings.playSampleLength + 1:end) , . . .
110 deviceSettings.playSampleLength , . . .
111 deviceSettings.recordChannelsCount + 1, . . .
112 deviceSettings.playChannelsCount);
113

114 noise = recordData(1:numberZeroForNoiseFloor, . . .
115 1:deviceSettings.recordChannelsCount , . . .
116 1:deviceSettings.playChannelsCount);
117

118 % Ensure that the inputs haven' t maxed out...
119 maxValues = squeeze(max(abs(recordData) , [] ,1)) . ' ;
120 maxValues = maxValues(: ,1:deviceSettings.recordChannelsCount);
121 maxValue = max(max(maxValues∗diag(recordGains(recordChannels) .^−1)));
122 fprintf ('max value was %.3f\n' ,maxValue);
123 i f maxValue > 0.9
124 disp('WARNING: Level overload occurred ')
125 end
126

127 %===
128 % Determine the impulse responses using the FFT method.
129 %===
130 disp('Now Determining IRF' 's via FFT method')
131 fprintf ('\noutIRFs: ') ;
132

133 % Create a matrix of the transmitted recordData (with the dely removed...)
134 transmitSignal = playSample(numberZeroForNoiseFloor+1:end);
135

136 %==> FFT Method Variables
137 % Using the FFT method:
138

139 % Number of points in the FFT
140 fftSettings.n = 2048∗4;
141

142 % Number of points to calculate FFT over
143 fftSettings.m = (size(playSample) . . .
144 − numberZeroForNoiseFloor . . .
145 − numberZerosBeforeNextChannel . . .
146 − 1000);
147

148 % Overlap to use in the FFT
149 fftSettings.overlap = floor(fftSettings.n∗0.25);
150

151 tic
152 for i i = 1:deviceSettings.recordChannelsCount
153 for j j = 1:deviceSettings.playChannelsCount
154 fprintf (' . ') ;
155 % Isolate the recorded data for reciever ii , j j
156 receivedSignal = recordData(numberZeroForNoiseFloor+1:end, i i , j j) ;
157

158 % Use the MATLAB command, spectrum to perform the FFT calculations
159 P = spectrum(transmitSignal ([1: fftSettings.m]) , . . .
160 receivedSignal(1: fftSettings.m) , . . .
161 fftSettings.n , . . .
162 fftSettings.overlap);
163

164 % The spectrum command returns the frequency response for positive frequencies.
165 % Given the outIRFs must be real , the negative frequecies can be made from the conjugate

208 Chapter A Program developed for the experiment and simulation

166 fullFrequencyResponse(: , i i , j j) = [P(: ,4); conj(P([end−1:−1:2],4))];
167 outIRFs(: , i i , j j) = real(i f f t (fullFrequencyResponse(: , i i , j j)));
168

169 coherence(: , i i , j j) = P([1:end end−1:−1:2],5);
170 end
171 fprintf ('%d' , i i) ;
172 end
173 fprintf (' (%f)\n' ,toc);

A.2.4.5 PlotScatter.m
1 function PlotScatter(complexSignal1,complexSignal2,symbolLength,multiRowFigureDetails, . . .
2 currentFilterTextDescription)
3 %USAGE: PlotScatter(complexSignal1 ,complexSignal2 ,symbolLength,multiRowFigureDetails , . . .
4 % currentFilterTextDescription)
5 %
6 % This function creates two scatter plots in one figure. The plots contain x' s at for each sample
7 % seperated by symbolLength, and a grey signal elsewhere. It is used to plot scatter plots of two
8 % complex signals (complexSignal1 and complexSignal2) that have sampling points seperated by
9 % symbolLength.

10 %
11 totalRows = multiRowFigureDetails.totalRows;
12 currentRow = multiRowFigureDetails.currentRow;
13 figure(multiRowFigureDetails.figureHandles.scatterPlots);
14

15 subplot(totalRows,2 ,(currentRow−1) ∗ 2 + 1);
16 %lineHandle = plot(real(complexSignal1) ,imag(complexSignal1), '− ');
17 %set(lineHandle , 'Color' ,[1 1 1]∗.8)
18 %hold on
19 lh = plot(real(complexSignal1(1:symbolLength:end)) ,imag(complexSignal1(1:symbolLength:end)) , 'k. ') ;
20 set(lh , 'MarkerSize ' ,2);
21 %hold off
22 i f currentRow == 1;
23 t it le ('Target receiver ') ;
24 end
25 ylabel(currentFilterTextDescription);
26 axis([−1 1 −1 1]∗max(abs(axis)));
27 axesHandle = axis ;
28

29 subplot(totalRows,2 ,(currentRow−1) ∗ 2 + 2);
30 lineHandle = plot(real(complexSignal2) ,imag(complexSignal2) , '−') ;
31 set(lineHandle , 'Color ' ,[1 1 1]∗.8)
32 lh = plot(real(complexSignal2(1:symbolLength:end)) ,imag(complexSignal2(1:symbolLength:end)) , 'k. ') ;
33 set(lh , 'MarkerSize ' ,2);
34 i f currentRow == 1;
35 t it le ('Non−target receiver ') ;
36 end
37 ylabel(' ') ;
38 axis(axesHandle);

A.2.4.6 RunDS1104Chkspk.m
1 function recordData = RunDS1104Chkspk(deviceSettings ,playSample)
2 %USAGE: recordData = RunDS1104Chkspk(deviceSettings ,playSample)
3 %
4 % This function is designed to play the same vector on each output channel , one after the other and
5 % record the response on al l the inputs. (i .e . stepped single−input , multi−output)
6 %
7 % The variables are:
8 % deviceSettings − a structure with fie lds :
9 % .playChannels − matrix of the channels to play

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 209

10 % .recordChannels − matrix of the channels to record
11 % .playChannelsCount − number of channels to play
12 % .recordChannelsCount − number of channels to record
13 % .freqSampling − sampling frequency
14 % playSample − The signal to play
15 % recordData − The recorded signal :
16 % 0 − 1∗playSampleLength−1 : Sample to play
17 % 1∗playSampleLength − 2∗playSampleLength−1 : Channel 1 response for playing on channel 1
18 % 2∗playSampleLength − 3∗playSampleLength−1 : Channel 2 response for playing on channel 1
19 % . . .
20 % 6∗playSampleLength − 7∗playSampleLength−1 : Channel 6 response for playing on channel 1
21 % 7∗playSampleLength − 8∗playSampleLength−1 : Time samples for playing on channel 1
22 % 9∗playSampleLength − 10∗playSampleLength−1 : Channel 1 response for playing on channel 2
23 % 10∗playSampleLength − 11∗playSampleLength−1 : Channel 2 response for playing on channel 2
24 % . . .
25 % 14∗playSampleLength − 15∗playSampleLength−1 : Channel 6 response for playing on channel 2
26 % 15∗playSampleLength − 16∗playSampleLength−1 : Time samples for playing on channel 2
27 % . . .
28 % . . .
29 % etc.
30 %
31 % NOTE: The above is an example for recording on 6 channels , i f recording on a different number
32 % of channels , the offsets for the data is equivalently adjusted.
33 %
34

35 %===
36 % Set parameters on dSPACE board
37 %===
38 mlib('SelectBoard ' , 'DS1104');
39

40 % Get the variable descriptions
41 dSpaceMapVar = GetDS1104VariableDescriptions();
42

43 % Set which channels to play and record on
44 playChannels = [deviceSettings.playChannels (:) ; zeros (8 ,1)] ';
45 recordChannels = [deviceSettings.recordChannels (:) ; zeros (8 ,1)] ';
46 mlib('write ' ,dSpaceMapVar.play_channels, . . .
47 'data ' , [deviceSettings.playChannelsCount playChannels(1:8)]);
48 mlib('write ' ,dSpaceMapVar.record_channels, . . .
49 'data ' , [deviceSettings.recordChannelsCount recordChannels(1:8)]);
50

51 % Set the sampling period
52 mlib('Write ' ,dSpaceMapVar.sample_period, 'Data' ,1/deviceSettings.freqSampling);
53

54 % Set the play length
55 playSampleLength = length(playSample);
56 mlib('Write ' ,dSpaceMapVar.play_sample_length, 'Data' ,playSampleLength);
57

58 % Write the playSample data to the datablock
59 dSpaceMapVar.data_block.length = playSampleLength;
60 mlib('Write ' , dSpaceMapVar.data_block, 'Data' , playSample);
61

62 % Set board to state 3:Play_Stepped_SIMO
63 mlib('Write ' , dSpaceMapVar.program_control, 'Data' ,3)
64 mlib('Write ' , dSpaceMapVar.program_status , 'Data' ,0)
65

66 %===
67 % Play the signal on each speaker
68 %===
69 mlib('Intrpt ') ;
70

71 % Wait 60% of the time that the program should take.
72 pause(0.6 ∗ deviceSettings.playChannelsCount ∗ playSampleLength / deviceSettings.freqSampling);
73

74 while (mlib('Read' ,dSpaceMapVar.program_status) ~= 2)

210 Chapter A Program developed for the experiment and simulation

75 % Waiting for the process to finish
76 end
77

78 %===
79 % Retrieve the recorded signals
80 %===
81 % Read in the sample that was played
82 tempDSpaceMapVar = dSpaceMapVar.data_block;
83 tempDSpaceMapVar.length = playSampleLength;
84 recordData = mlib('Read' ,tempDSpaceMapVar);
85

86 % Increment the address to the location of the f irs t recording.
87 tempDSpaceMapVar.addr = tempDSpaceMapVar.addr + playSampleLength ∗ 8;
88 tempDSpaceMapVar.length = playSampleLength ∗ (deviceSettings.recordChannelsCount + 1);
89

90 % Read the responsed for each played channel
91 for i i = 1:deviceSettings.playChannelsCount
92 recordData = [recordData mlib('Read' ,tempDSpaceMapVar)] ;
93 tempDSpaceMapVar.addr = tempDSpaceMapVar.addr + tempDSpaceMapVar.length ∗ 8;
94 end

A.2.4.7 RunDS1104MIMO.m
1 function [recordData recordSamplingTimes] = RunDS1104MIMO(deviceSettings ,playSample)
2 %USAGE: [recordData recordSamplingTimes] = RunDS1104MIMO(deviceSettings ,playSample)
3 %
4 % This function is designed to simultaneously play a set of signals on the dSpace outputs and record
5 % the response on the inputs.
6 %
7 % The variables are:
8 % deviceSettings − a structure with fie lds :
9 % .playChannels − matrix of the channels to play

10 % .recordChannels − matrix of the channels to record
11 % .playChannelsCount − number of channels to play
12 % .recordChannelsCount − number of channels to record
13 % .freqSampling − sampling frequency
14 % .playSampleLength − the length of the signal to play
15 % .recordSampleLength − the length of the signals to record
16 % playSample − The signal to play
17 % recordData − The recorded signal :
18 % 0 − 1∗playSampleLength−1 : Output 1 Sample
19 % 1∗playSampleLength − 2∗playSampleLength−1 : Output 2 Sample
20 % . . .
21 % (N−1)∗playSampleLength − N∗playSampleLength−1 : Output N Sample
22 %
23 % After recordOffset :
24 % 0 − 1∗recordSampleLength−1 : Input 1 Signal
25 % 1∗recordSampleLength − 2∗recordSampleLength−1 : Input 2 Signal
26 % . . .
27 % (M−1)∗recordSampleLength −M∗recordSampleLength−1 : Input 3 Signal
28 %
29 % After timeOffset :
30 % 0 − maxSampleLength : Sampling times
31 %
32 % where
33 % recordOffset = N∗playSampleLength
34 % timeOffset = N∗playSampleLength +M∗recordSampleLength
35 % maxSampleLength = max(recordSampleLength, playSampleLength)
36 % recordsampleTimes − The sampling times
37

38 % Reshape data−block i f incorrect
39 [playSampleSize1 playSampleSize2] = size(playSample);
40 i f (playSampleSize2 == 2)

A.2 Code used for the experiment using inverse filter designs in an
air-acoustic channel 211

41 playSample2 = playSample. ' ;
42 else
43 playSample2 = playSample;
44 end
45

46 %===
47 % Set parameters on dSPACE board
48 %===
49 mlib('SelectBoard ' , 'DS1104');
50

51 % Get the variable descriptions
52 dSpaceMapVar = GetDS1104VariableDescriptions();
53

54 % Set which channels to play and record on
55 playChannels = [deviceSettings.playChannels (:) ; zeros (8 ,1)] ';
56 recordChannels = [deviceSettings.recordChannels (:) ; zeros (8 ,1)] ';
57 mlib('write ' ,dSpaceMapVar.play_channels, . . .
58 'data ' , [deviceSettings.playChannelsCount playChannels(1:8)]);
59 mlib('write ' ,dSpaceMapVar.record_channels, . . .
60 'data ' , [deviceSettings.recordChannelsCount recordChannels(1:8)]);
61

62 % Set the sampling period
63 mlib('Write ' ,dSpaceMapVar.sample_period, 'Data' ,1/deviceSettings.freqSampling);
64

65 % Set the record and play lengths
66 mlib('Write ' ,dSpaceMapVar.play_sample_length, 'Data' ,deviceSettings.playSampleLength);
67 mlib('Write ' ,dSpaceMapVar.record_sample_length, 'Data' ,deviceSettings.recordSampleLength);
68

69 % Write the playSample data to the datablock
70 localDSpaceMapVar.play_data_block = dSpaceMapVar.data_block;
71 localDSpaceMapVar.play_data_block.length = . . .
72 deviceSettings.playSampleLength ∗ deviceSettings.playChannelsCount;
73 localDSpaceMapVar.play_data_block.offset = 0;
74 mlib('Write ' , localDSpaceMapVar.play_data_block, 'Data' , playSample2(:)) ;
75

76 % Set board to state 4:Play_MIMO
77 mlib('Write ' , dSpaceMapVar.program_control, 'Data' ,4)
78 mlib('Write ' , dSpaceMapVar.program_status , 'Data' ,0)
79

80 %===
81 % Play the signal on the speakers
82 %===
83 mlib('Intrpt ') ;
84

85 % Wait 60% of the time that the program should take.
86 pause(0.6 . . .
87 ∗ max([deviceSettings.recordSampleLength deviceSettings.playSampleLength]) . . .
88 / deviceSettings.freqSampling);
89

90 while (mlib('Read' ,dSpaceMapVar.program_status) ~= 2)
91 % Waiting for the process to finish
92 end
93

94 %===
95 % Retrieve the recorded signals
96 %===
97 localDSpaceMapVar.record_data_block = dSpaceMapVar.data_block;
98 localDSpaceMapVar.record_data_block.offset = . . .
99 deviceSettings.playChannelsCount ∗ deviceSettings.playSampleLength;

100 localDSpaceMapVar.record_data_block.length = deviceSettings.recordSampleLength;
101

102 for i i = 1:deviceSettings.recordChannelsCount
103 recordData(: , i i) = mlib('read ' ,localDSpaceMapVar.record_data_block) . ' ;
104 localDSpaceMapVar.record_data_block.offset = localDSpaceMapVar.record_data_block.offset . . .
105 + deviceSettings.recordSampleLength;

212 Chapter A Program developed for the experiment and simulation

106 end
107

108 % Read the Recording Sampling Times
109 i f nargout > 1
110 localDSpaceMapVar.time_data_block = dSpaceMapVar.data_block;
111 localDSpaceMapVar.time_data_block.length = . . .
112 max([deviceSettings.recordSampleLength deviceSettings.playSampleLength]) ;
113 localDSpaceMapVar.time_data_block.offset = . . .
114 deviceSettings.playChannelsCount ∗ deviceSettings.playSampleLength . . .
115 + deviceSettings.recordChannelsCount ∗ deviceSettings.recordSampleLength;
116 recordSamplingTimes = mlib('read ' ,localDSpaceMapVar.time_data_block);
117 end

A.3 Code used for the simulation

A.3.1 The Condor submitter scripts

A.3.1.1 DuctSimulationManager.m
1 % DuctSimulationManager.m
2 %
3 %USAGE:
4 % DuctSimulationManager
5 %
6 % This script is used to manage the simulation the results that would be obtained for the
7 % communication systems performed in duct that forms part of the thesis for Pierre Dumuid.
8 %
9 % Prior to executing the script , the following variables should be defined in the MATLAB:

10 %
11 % simulationConfig.arrangementIndex
12 % − The index of the arrangement being simulated
13 % simulationConfig.symbolLengthIndex
14 % − The index of the symbol length being simulated
15 %
16 % managerConfig.refetchResults
17 % − If this script should execute the script to submit the jobs and fetch the results.
18 % managerConfig.plotGraphs
19 %
20 % submitJobsAndFetchResultsConfig.resubmitCondorJobs
21 % − Resubmit a condor job i f results are not present
22 % submitJobsAndFetchResultsConfig.usePreviousFetchedResult
23 % − Use previously fetched results i f data exists from last fetch.
24 %
25

26 %===
27 % Define variables
28 %===
29

30 submitJobsAndFetchResultsConfig.fakeMissingResults = 0;
31 submitJobsAndFetchResultsConfig.submitJobsInRandomOrder = 1;
32

33 defaults.plotResultsConfig.showMainResults = 1;
34 defaults.plotResultsConfig.showTXPowerVSPeak = 0;
35 defaults.plotResultsConfig.showCondorTime = 0;
36 defaults.plotResultsConfig.annotationPosition = [0.105 0.71 1 0.02] ;
37 defaults.plotResultsConfig.colorbarXPosition = [0.95 0.02] ;
38 defaults.plotResultsConfig.timeReversalYPosition = [0.06 0.02] ;
39 defaults.plotResultsConfig.subplotGridPosition = [.058 0.065 .88 .825] ;
40 defaults.plotResultsConfig.subplotGridSpacing = [0.005 0.01] ;
41

42 % Apply defaults plotResultConfigs i f none are set

A.3 Code used for the simulation 213

43 defaultFieldNames = fieldnames(defaults.plotResultsConfig);
44 for f i i = 1:length(defaultFieldNames);
45 defaultFieldName = defaultFieldNames{ f i i };
46 i f ~isf ie ld (plotResultsConfig ,defaultFieldName)
47 plotResultsConfig = setfield (. . .
48 plotResultsConfig , . . .
49 defaultFieldName, . . .
50 getfield(defaults.plotResultsConfig ,defaultFieldName) . . .
51);
52 end
53 end
54

55 %−−−
56 % Static variables
57 %−−−
58

59 % The ranges of the parameters that the system is tested over
60 staticConfig.ranges.frequencyCarrier = [1.5e3:27.8320:20e3] ;
61 staticConfig.ranges.beta = [0 10.^[−20:0.5 : 0]] ;
62 staticConfig.ranges.symbolLength = [25 10 5];
63 staticConfig.ranges.transmitterElements = { . . .
64 [1 2 3 4 5 6] , . . .
65 [1 2 3] , . . .
66 [1 3] . . .
67 };
68

69 % Information concerning the inverse f i l t ers that are tested.
70 staticConfig.inverseFilters.names = { . . .
71 'Time Reversal ' . . .
72 'Stojanovic ' ' s Two−sided ' . . .
73 ' Inverse Filter : Path' . . .
74 ' Inverse Filter : Channel ' . . .
75 ' Inverse Filter : Full MIMO' . . .
76 };
77

78 staticConfig.inverseFilters.abbreviations = { . . .
79 'T.R. ' . . .
80 ' Stoj. 2sided ' . . .
81 'TIF: Path' . . .
82 'TIF: Chan' . . .
83 'TIF: MIMO' . . .
84 };
85 staticConfig.inverseFilters.textKeys = { . . .
86 ' tr ' . . .
87 'mil2s ' . . .
88 'if_path ' . . .
89 'if_chan ' . . .
90 'if_fmimo' . . .
91 };
92 staticConfig.inverseFilters.betaVaries = [. . .
93 0 . . .
94 1 . . .
95 1 . . .
96 1 . . .
97 1 . . .
98] ;
99

100 % Keys for the general results obtained from each simulation
101 staticConfig.results.generalMeasureVariableNames = {
102 'prerx_power1' . . .
103 'prerx_power2' . . .
104 'prerx_power' . . .
105 'prerx_power1_t' . . .
106 'prerx_power2_t' . . .
107 'prerx_power_t' . . .

214 Chapter A Program developed for the experiment and simulation

108 'postrx_power' . . .
109 'postrx_power_t' . . .
110 'symbolerr ' . . .
111 'txpeak ' . . .
112 'txpower ' . . .
113 'gain ' . . .
114 ' idx ' . . .
115 'total_std ' . . .
116 'total_std2 ' . . .
117 'crosstalk_prerx ' . . .
118 'crosstalk_postrx ' . . .
119 'crosstalk_postrx_rng ' . . .
120 };
121

122 % Keys for the adaptive f i l t ers used in the simulations
123 staticConfig.results.adaptiveFilterKeys = {'zfa ' ' zfat ' 'msea' 'mseat '};
124

125 % Keys for the properties measured from the adaptive f i l t ers
126 staticConfig.results.adaptiveFilterMeasureKeys = {'_ee' '_std' '_symbolerr ' };
127

128 %−−−
129 % Condor submit f i l e settings
130 %−−−
131 submitFileSettings.environmentPath ='C:\\WINNT\\system32;C:\\windows\\system32;D:\\temp; ' ;
132 submitFileSettings.notify = 0;
133 submitFileSettings.additionalTransferFiles = ' ' ;
134 submitFileSettings.executable = ' . .\\ . .\\pierres4job_pf.bat ' ;
135 submitJobsAndFetchResultsConfig.submitFileSettings = submitFileSettings ;
136

137 %−−−
138 % Condor job mat f i l e settings
139 %−−−
140 % The variable , runparams, is loaded by each the condor job to control the parameters that are
141 % tested.
142 runparams.matpath = '/home/pmdumuid/MyDocs/lyx/thesis/ExperimentCode/Experiment3/matFiles/ ' ;
143 runparams.runopts.do.tr = 1;
144 runparams.runopts.do.mil2s = 1;
145 runparams.runopts.do.if_path = 1;
146 runparams.runopts.do.if_chan = 1;
147 runparams.runopts.do.if_fmimo = 1;
148 runparams.runopts.isfd = 0;
149

150 %−−−
151 % Derived variable values
152 %−−−
153

154 % The following runparams are determined from the staticConfig and simulationConfig values.
155 runparams.betarange = staticConfig.ranges.beta ;
156 runparams.symblen = staticConfig.ranges.symbolLength(simulationConfig.symbolLengthIndex);
157 runparams.IRFchannelidx = staticConfig.ranges.transmitterElements{simulationConfig.arrangementIndex};
158

159 % Name of variable to hold a l l the results
160 alphabetLetters = { 'c ' 'd' 'e ' };
161 mergedJobResultsVariableName = sprintf(. . .
162 ['sim2a_results%02d' alphabetLetters{simulationConfig.symbolLengthIndex}] , . . .
163 simulationConfig.arrangementIndex);
164

165 % Name of the job (used for the directory name)
166 mergedJobName = sprintf(. . .
167 ['sim2_pf%02d' alphabetLetters{simulationConfig.symbolLengthIndex}] , . . .
168 simulationConfig.arrangementIndex);
169

170 % Created the selectedInverseFilters variable.
171 selectedFilterIndexes = [] ;
172 i f (runparams.runopts.do.tr) selectedFilterIndexes = [selectedFilterIndexes 1]; end

A.3 Code used for the simulation 215

173 i f (runparams.runopts.do.mil2s) selectedFilterIndexes = [selectedFilterIndexes 2]; end
174 i f (runparams.runopts.do.if_path) selectedFilterIndexes = [selectedFilterIndexes 3]; end
175 i f (runparams.runopts.do.if_chan) selectedFilterIndexes = [selectedFilterIndexes 4]; end
176 i f (runparams.runopts.do.if_fmimo) selectedFilterIndexes = [selectedFilterIndexes 5]; end
177 selectedInverseFilters.textKeys = staticConfig.inverseFilters.textKeys(selectedFilterIndexes);
178 selectedInverseFilters.names = staticConfig.inverseFilters.names(selectedFilterIndexes);
179 selectedInverseFilters.betaVaries = staticConfig.inverseFilters.betaVaries(selectedFilterIndexes);
180 selectedInverseFilters.abbreviations = . . .
181 staticConfig.inverseFilters.abbreviations(selectedFilterIndexes);
182

183 %===
184 % (Re−)Fetch the results
185 %===
186 i f (managerConfig.refetchResults)
187 tst = ~exist(mergedJobResultsVariableName);
188 % Initial ise the variable , resultsFetched i f the variable ,mergedJobResultsVariableName, isn ' t
189 % defined yet.
190 i f (tst)
191 eval ([mergedJobResultsVariableName '.resultsFetched = ' . . .
192 'zeros(1,length(staticConfig.ranges.frequencyCarrier)); ']) ;
193 end
194 eval ([' [' mergedJobResultsVariableName ' resultInfo] = ' . . .
195 'DuctSimulationSubmitJobsAndFetchResults(' mergedJobResultsVariableName ' , ' . . .
196 'submitJobsAndFetchResultsConfig, simulationConfig ,runparams,mergedJobName, ' . . .
197 ' staticConfig , selectedInverseFilters); ']) ;
198 end
199

200 %===
201 % Plot the results
202 %===
203 i f (managerConfig.plotGraphs)
204 eval ([' [' mergedJobResultsVariableName ' resultInfo] = ' . . .
205 'DuctSimulationResultViewer(' mergedJobResultsVariableName . . .
206 ' , selectedInverseFilters , simulationConfig ,plotResultsConfig , staticConfig ,runparams); ']) ;
207 end

A.3.1.2 DuctSimulationSubmitJobsAndFetchResults.m
1 function mergedJobResults = DuctSimulationSubmitJobsAndFetchResults(. . .
2 mergedJobResults,submitJobsAndFetchResultsConfig, simulationConfig ,runparams,mergedJobName, . . .
3 staticConfig , selectedInverseFilters)
4 submitFileSettings = submitJobsAndFetchResultsConfig.submitFileSettings;
5 %−−−
6 % Initial ise queuingComputer mat f i l e to record what this computer has submitted to condor.
7 %−−−
8 % Find queuing computer name (works on windows only)
9 i f (submitJobsAndFetchResultsConfig.resubmitCondorJobs)

10 i f (ispc)
11 queuingComputerName = getenv('COMPUTERNAME');
12 else
13 queuingComputerName = getenv('HOSTNAME');
14 end
15 queuingComputerName = strtrim(queuingComputerName);
16 queuingComputerMatFilename = ['condorjobs_' queuingComputerName '.mat '] ;
17

18 i f (submitJobsAndFetchResultsConfig.resubmitCondorJobs)
19 i f exist(queuingComputerMatFilename)
20 load(queuingComputerMatFilename);
21 i f (~exist('condorjobs ') | . . .
22 ~isf ie ld (condorjobs , 'submitCount') | . . .
23 ~isf ie ld (condorjobs.submitCount,mergedJobName))
24 eval (['condorjobs.submitCount. ' mergedJobName ' = 0; ']) ;
25 end

216 Chapter A Program developed for the experiment and simulation

26 else
27 eval (['condorjobs.submitCount. ' mergedJobName ' = 0; ']) ;
28 end
29 eval (['condorjobs.submitCount. ' mergedJobName ' = ' . . .
30 'condorjobs.submitCount. ' mergedJobName ' + 1; ']) ;
31 setSubmitCount = getfield(condorjobs.submitCount, mergedJobName);
32 save(queuingComputerMatFilename, 'condorjobs ');
33

34 warning off MATLAB:MKDIR:DirectoryExists
35 mkdir(mergedJobName);
36 warning on MATLAB:MKDIR:DirectoryExists
37 end
38 end
39

40

41 %−−−
42 % Initial ise general variables
43 %−−−
44 i f (~submitJobsAndFetchResultsConfig.usePreviousFetchedResult)
45 clear mergedJobResults;
46 end
47

48 condorJobsRemainingCount = 0;
49

50 % Generate the string , '%0x' where x is (1 for 1−9 jobs , 2 for 10−99 jobs , etc..)
51 numberOfDigits = ceil (log10(. . .
52 length(staticConfig.ranges.frequencyCarrier) . . . % Place in here a l l the loop lengths
53));
54

55 % Create a job submission order variable
56 i f submitJobsAndFetchResultsConfig.submitJobsInRandomOrder
57 jobOrder = randsample(length(staticConfig.ranges.frequencyCarrier) , . . .
58 length(staticConfig.ranges.frequencyCarrier));
59 else
60 jobOrder = 1:length(staticConfig.ranges.frequencyCarrier);
61 end
62

63 i f (submitJobsAndFetchResultsConfig.usePreviousFetchedResult)
64 tst = ~exist('mergedJobResults ') ;
65 i f (tst)
66 mergedJobResults.resultsFetched = zeros(1,length(staticConfig.ranges.frequencyCarrier));
67 disp('The variable doesn ' ' t exist , can ' ' t use previously fetched results ! ') ;
68 else
69 disp('Using existing results to speed up resubmissions ! ') ;
70 end
71 end
72

73 waitbarHandle = MultiWaitBar([0 0] , 'Loading f i l e s for mergedJobResults ') ;
74 for jobOrderIndex = 1:length(staticConfig.ranges.frequencyCarrier)
75 frequencyCarrierIndex = jobOrder(jobOrderIndex);
76

77 i f (submitJobsAndFetchResultsConfig.usePreviousFetchedResult)
78 thisResultPreviouslyFetched = mergedJobResults.resultsFetched(frequencyCarrierIndex);
79 else
80 thisResultPreviouslyFetched = 0;
81 end
82

83 i f ((~submitJobsAndFetchResultsConfig.usePreviousFetchedResult) . . .
84 | | (~thisResultPreviouslyFetched))
85 freqCarrier = staticConfig.ranges.frequencyCarrier(frequencyCarrierIndex);
86 jobIndex = frequencyCarrierIndex;
87 jobDirectoryName = sprintf ([mergedJobName '/run%04d/ '] , jobIndex);
88 runparams.fc = freqCarrier ;
89 runparams.tofile = sprintf (['run%04d.mat'] , jobIndex);
90

A.3 Code used for the simulation 217

91 i f (exist ([jobDirectoryName runparams.tofile] , ' f i l e '))
92 %−−−
93 % If the results exist in a mat f i le , them...
94 %−−−
95 load([jobDirectoryName runparams.tofile]) ;
96 resultsFetched(frequencyCarrierIndex) = 1;
97

98 % Add the data from loaded matfile , (in thisresults) , to the mergedJobResultsVariable.
99 for filterIndex = 1:length(selectedInverseFilters.textKeys)

100 fn = selectedInverseFilters.textKeys{filterIndex};
101 for generalMeasureVariableIndex = . . .
102 1:length(staticConfig.results.generalMeasureVariableNames)
103 generalMeasureVariableName = . . .
104 staticConfig.results.generalMeasureVariableNames{generalMeasureVariableIndex};
105

106 eval (['mergedJobResults. ' fn ' . ' generalMeasureVariableName . . .
107 ' (: , : , frequencyCarrierIndex) = ' . . .
108 ' thisresults. ' fn ' . ' generalMeasureVariableName ' ; ']) ;
109 end
110

111 eval ([' tst = isf ie ld (thisresults. ' fn ' , ' 'skipping ' ') ; '])
112 i f tst
113 eval (['mergedJobResults. ' fn . . .
114 ' .skipped (: , : , frequencyCarrierIndex) = thisresults. ' fn ' .skipping ; ']) ;
115 else
116 i f selectedInverseFilters.betaVaries(filterIndex)
117 betaLength = length(staticConfig.ranges.beta);
118 else
119 betaLength = 1;
120 end
121 eval (['mergedJobResults. ' fn . . .
122 ' .skipped (: , : , frequencyCarrierIndex) =−1∗ones(betaLength,2); ']) ;
123 end
124

125 for adaptiveFilterIndex = 1:length(staticConfig.results.adaptiveFilterKeys)
126 adaptiveFilterKey = staticConfig.results.adaptiveFilterKeys{adaptiveFilterIndex};
127 for adaptiveFilterMeasureIndex = . . .
128 1:length(staticConfig.results.adaptiveFilterMeasureKeys)
129

130 adaptiveFilterMeasureKey = . . .
131 staticConfig.results.adaptiveFilterMeasureKeys{adaptiveFilterMeasureIndex};
132 eval ([. . .
133 'mergedJobResults. ' fn ' . ' . . .
134 adaptiveFilterKey adaptiveFilterMeasureKey . . .
135 ' (: , : , : , frequencyCarrierIndex) = thisresults. ' fn ' . ' . . .
136 adaptiveFilterKey adaptiveFilterMeasureKey . . .
137 ' ; ']) ;
138 end
139 end
140 eval (['mergedJobResults. ' fn . . .
141 '.cputime(: , : , frequencyCarrierIndex) = thisresults. ' fn '.cputime ' ' ; ']) ;
142 end
143 mergedJobResults.totaltime(frequencyCarrierIndex) = thisresults.totaltime ;
144 % mergedJobResults.cputime(frequencyCarrierIndex) = thisresults.cputime ;
145 else
146 %−−−
147 % If the results don' t exist , fake the results and resubmit (dependent on
148 % submitJobsAndFetchResultsConfig)
149 %−−−
150 resultsFetched(frequencyCarrierIndex) = 0;
151 condorJobsRemainingCount = condorJobsRemainingCount + 1;
152

153 % Fake the result
154 i f (submitJobsAndFetchResultsConfig.fakeMissingResults && frequencyCarrierIndex > 2)
155 for filterIndex = 1:length(selectedInverseFilters.textKeys)

218 Chapter A Program developed for the experiment and simulation

156 fn = selectedInverseFilters.textKeys{filterIndex};
157 eval (['mergedJobResults. ' fn ' .total_std (: , : , frequencyCarrierIndex) = ' . . .
158 'mergedJobResults. ' fn ' .total_std (: , : , frequencyCarrierIndex−1); ']) ;
159

160 eval (['mergedJobResults. ' fn ' .gain (: , : , frequencyCarrierIndex) = ' . . .
161 'mergedJobResults. ' fn ' .gain (: , : , frequencyCarrierIndex−1); ']) ;
162

163 eval (['mergedJobResults. ' fn ' .crosstalk (: , : , frequencyCarrierIndex) = ' . . .
164 'mergedJobResults. ' fn ' .crosstalk (: , : , frequencyCarrierIndex−1); ']) ;
165 end
166 end
167

168 % Submit or resubmit Condor jobs
169 i f (submitJobsAndFetchResultsConfig.resubmitCondorJobs)
170 disp([' SubmitCondorJob(jobIndex, ' jobDirectoryName . . .
171 ' ,submitFileSettings ,5 ,runparams']) ;
172 condorJobId = SubmitCondorJob(jobIndex,jobDirectoryName, . . .
173 submitFileSettings ,5 ,runparams);
174

175 load(queuingComputerMatFilename, 'condorjobs ');
176 eval (['condorjobs. ' mergedJobName '.nows(setSubmitCount, jobIndex) = now(); ']) ;
177 eval (['condorjobs. ' mergedJobName ' .started(setSubmitCount, jobIndex) = 1; ']) ;
178 eval (['condorjobs. ' mergedJobName ' .jobid(setSubmitCount, jobIndex) =condorJobId; ']) ;
179 save(queuingComputerMatFilename, 'condorjobs ');
180 end
181 end
182 end
183 MultiWaitBar([jobOrderIndex−condorJobsRemainingCount condorJobsRemainingCount] . . .
184 ./length(staticConfig.ranges.frequencyCarrier) ,waitbarHandle);
185 end
186 close(waitbarHandle)
187 fprintf ('Have %d results , waiting on %d.\n' , [sum(resultsFetched) sum(1−resultsFetched)]) ;
188 eval (['mergedJobResults.resultsFetched = resultsFetched ; ']) ;

A.3.1.3 DuctSimulationResultViewer.m
1 function [mergedJobResults resultInfo] = DuctSimulationResultViewer(. . .
2 mergedJobResults, selectedInverseFilters , simulationConfig ,plotResultsConfig , staticConfig ,runparams)
3

4 %−−−
5 % Determine useful variables
6 %−−−
7

8 % Load the sampling frequency from the pre−measured results.
9 testIRFsMatVariables = load('/media/KFUSB2/KFUSB1−thesisSimulations/SubmitScript/testIRFs.mat '); % Contains IRFs, fs

10 freqSampling = testIRFsMatVariables.fs ;
11

12 selectedBetaVariantFiltersIndex = find(selectedInverseFilters.betaVaries);
13 selectedBetaVariantFiltersCount = . . .
14 length(selectedInverseFilters.textKeys(selectedBetaVariantFiltersIndex));
15

16 validFreqIndexes = find(mergedJobResults.resultsFetched);
17

18 % Create an index of a l l the integer frequencies.. This occurs when the value after the decimal
19 % resets , (i .e . goes from 9 to 0 as in 11.81 11.95 12.02)
20 decimalValue = . . .
21 staticConfig.ranges.frequencyCarrier/1e3 − floor(staticConfig.ranges.frequencyCarrier/1e3);
22 integerKHzFrequencyIndex = find((decimalValue(2:end) − decimalValue(1:end−1)) < 0) + 1;
23

24 arrangementText = [' [' strtrim(sprintf('%1d ' ,runparams.IRFchannelidx)) '] => [1 2] '] ;
25

26 symbolLengthRangeCount = length(staticConfig.ranges.symbolLength);
27

A.3 Code used for the simulation 219

28 symbolLength = runparams.symblen;
29

30 %−−−
31 % Calculate derived simulation results
32 %−−−
33 mergedJobResults = CondorSubmitterCalculateDerivedVariables(mergedJobResults, . . .
34 selectedInverseFilters , . . .
35 length(staticConfig.ranges.transmitterElements{simulationConfig.arrangementIndex}));
36

37 %−−−
38 % Plot the graphs
39 %−−−
40 figurePositionVariable = [. . .
41 (simulationConfig.symbolLengthIndex−1)∗1280/symbolLengthRangeCount . . .
42 50 . . .
43 1280/symbolLengthRangeCount . . .
44 904];
45

46 % x y w h
47 subplotGrid.position = plotResultsConfig.subplotGridPosition ;
48 subplotGrid.spacing = plotResultsConfig.subplotGridSpacing ;
49 subplotGrid.size = [length(staticConfig.ranges.symbolLength) 4];
50

51 subplotGrid.derived.xStep = subplotGrid.position(3) / subplotGrid.size(1) . . .
52 + subplotGrid.spacing(1)/2;
53 subplotGrid.derived.yStep = subplotGrid.position(4) / subplotGrid.size(2) . . .
54 + subplotGrid.spacing(2)/2;
55 subplotGrid.derived.width = subplotGrid.position(3) / subplotGrid.size(1) . . .
56 − subplotGrid.spacing(1)/2;
57 subplotGrid.derived.height = subplotGrid.position(4) / subplotGrid.size(2) . . .
58 − subplotGrid.spacing(1)/2;
59

60 resultInfo.names = {
61 'Transmitter power without normalisation ' . . .
62 'Power at target receiver from transmission for target receiver ' . . .
63 'Power at target receiver from transmission for target receiver (2) ' . . .
64 'Power at target receiver from transmission for target receiver (3) ' . . .
65 'Power at target receiver from transmission for cross−talk receiver ' . . .
66 . . .
67 'Average symbol amplitude ' . . .
68 . . .
69 'Ratio of target signal to cross−talk signal power' . . .
70 . . .
71 'Symbol error ' . . .
72 'Symbol error using MSE adaptive f i l ter ' . . .
73 'Symbol error using MSE adaptive f i l ter with training (40 symbols) ' . . .
74 'Symbol error using ZF adaptive f i l ter ' . . .
75 'Symbol error using ZF adaptive f i l ter with training (40 symbols) ' . . .
76 'Estimated symbol error using standard deviation ' . . .
77 'Estimated symbol error using standard deviation with cross−talk ' . . .
78 . . .
79 ' Increase in standard deviation required to get P_e=1/400' . . .
80 ' Increase in standard deviation required to get P_e=1/400 with cross−talk ' . . .
81 . . .
82 'Noise level required to get P_e=1/400' . . .
83 'Noise level required to get P_e=1/400 with cross−talk ' . . .
84 };
85

86 resultInfo.fieldVariable = {
87 '_dv.txRMS' . . .
88 '_dv.rxRMS0' . . .
89 '_dv.rxRMS1' . . .
90 '_dv.rxRMS2' . . .
91 '_dv.rxRMSCT' . . .
92 . . .

220 Chapter A Program developed for the experiment and simulation

93 '_dv.symbolAmplitude' . . .
94 . . .
95 '_dv.ratioRXToCT' . . .
96 . . .
97 ' .symbolerr ' . . .
98 '.msea_symbolerr ' . . .
99 '.mseat_symbolerr ' . . .

100 '.zfa_symbolerr ' . . .
101 '.zfat_symbolerr ' . . .
102 '_dv.symbolErrorFromStdDev' . . .
103 '_dv.symbolErrorFromStdDevCT' . . .
104 . . .
105 '_dv.increaseOfStdFor1in400 ' . . .
106 '_dv.increaseOfStdFor1in400WithCT' . . .
107 . . .
108 '_dv.noiseForStd400 ' . . .
109 '_dv.noiseForStd400CT' . . .
110 };
111

112 resultInfo.units = {
113 sprintf('dB') . . . % txpower
114 sprintf('dB') . . .
115 sprintf('dB') . . .
116 sprintf('dB') . . .
117 sprintf('dB') . . .
118 . . .
119 sprintf('dB') . . . %
120 . . .
121 sprintf('dB') . . . %
122 . . .
123 sprintf('Symbols\nincorrect ') . . . % symbolerr
124 sprintf('Symbols\nincorrect ') . . . % msea_symbolerr
125 sprintf('Symbols\nincorrect ') . . .
126 sprintf('Symbols\nincorrect ') . . .
127 sprintf('Symbols\nincorrect ') . . .
128 sprintf('Symbols\nincorrect ') . . .
129 sprintf('Symbols\nincorrect ') . . .
130 . . .
131 sprintf('dB') . . .
132 sprintf('dB') . . .
133 . . .
134 sprintf('dB') . . .
135 sprintf('dB') . . .
136 };
137

138 resultInfo.logAmplitudes = {
139 1 . . .
140 1 . . .
141 1 . . .
142 1 . . .
143 1 . . .
144 . . .
145 1 . . .
146 . . .
147 1 . . .
148 . . .
149 0 . . .
150 0 . . .
151 0 . . .
152 0 . . .
153 0 . . .
154 0 . . .
155 0 . . .
156 . . .
157 1 . . .

A.3 Code used for the simulation 221

158 1 . . .
159 . . .
160 1 . . .
161 1 . . .
162 };
163

164 colorLimit1 = [−5 35];
165 resultInfo.colorLimits = {
166 [−70 −14] . . . %−12.97 −16.47 −15.92
167 [−55 0] . . . % −6.8 −4.5 −3.5 (WAS: 8.7 5.0 2.5)
168 [−55 0] . . . %−15.2 −10.6 −10.4 (WAS: 0.4 −1.0 −4.4)
169 [−55 0] . . . % −4.7 −2.4 −1.7 (WAS: 10.0 7.1 4.4) (−30 was good)
170 [−55 0] . . . % 36.0 21.1 17.7 (WAS: 51.7 30.7 23.8) (upper 15)
171 . . .
172 [−55 5] . . . % 1.2 3.0 3.3 (WAS: 16.8 12.6 9.3)
173 . . .
174 colorLimit1 . . . % 49.7 49.8 22.0 (???: 32.7 26.2 22.0)
175 . . .
176 [0 120] . . .
177 [0 120] . . .
178 [0 120] . . .
179 [0 120] . . .
180 [0 120] . . .
181 [0 120] . . .
182 [0 120] . . .
183 . . .
184 [0 20] . . . % 19.75 19.02 17.69
185 [0 20] . . . % 16.75 12.24 7.31
186 . . .
187 [−45 −9] . . .
188 [−45 −9] . . .
189 };
190

191 colorMapJet = jet (512);
192

193 zeroPosition = (0−colorLimit1(1))/(colorLimit1(2) − colorLimit1(1));
194 noPoints = floor(size(colorMapJet,1)∗zeroPosition/(1−zeroPosition));
195 colorMap1 = [[. . .
196 zeros(noPoints+1,1) . . .
197 (0.3+(0.1∗[0:noPoints] ' ./noPoints)) . . .
198 (0.2+(0.8∗[0:noPoints] ' ./noPoints))
199] ; colorMapJet] ;
200

201 colorMapDefault = colorMapJet;
202

203 resultInfo.colorMaps = {
204 colorMapDefault . . .
205 colorMapDefault . . .
206 colorMapDefault . . .
207 colorMapDefault . . .
208 colorMapDefault . . .
209 . . .
210 colorMapDefault . . .
211 . . .
212 colorMap1 . . .
213 . . .
214 colorMapDefault . . .
215 colorMapDefault . . .
216 colorMapDefault . . .
217 colorMapDefault . . .
218 colorMapDefault . . .
219 colorMapDefault . . .
220 colorMapDefault . . .
221 . . .
222 colorMapDefault . . .

222 Chapter A Program developed for the experiment and simulation

223 colorMapDefault . . .
224 . . .
225 colorMapDefault . . .
226 colorMapDefault . . .
227 };
228

229 % Figure start count
230 fcs = 1 + (length(resultInfo.fieldVariable) + 1)∗(simulationConfig.symbolLengthIndex−1);
231

232 i f (plotResultsConfig.showMainResults)
233 for figureCount = 1:length(resultInfo.fieldVariable)
234 figureFieldVariable = resultInfo.fieldVariable{figureCount};
235 figure(figureCount)
236 % [basex basey width height]
237 set(gcf , . . .
238 'DefaultAxesPosition ' , [.06 .10 1−2∗.05 − 0.04 1−2∗.08] , . . .
239 'name' ,resultInfo.names{figureCount}, . . .
240 'position ' ,[184 212 1062 713]);
241 set(gcf , . . .
242 'PaperOrientation ' , 'landscape ' , . . .
243 'PaperPosition ' , [[0 .634517 0.634517 28.4084 19.715]]) ;
244

245

246 % (1) Find the limits of the data from al l the results (to isoloate the max / min for the
247 % color limits)
248 filterData = [] ;
249 for filterIndex = 1:selectedBetaVariantFiltersCount ;
250 fn = selectedInverseFilters.textKeys{selectedBetaVariantFiltersIndex(filterIndex)};
251 eval ([' filterData = [filterData ; ' . . .
252 'squeeze(mergedJobResults. ' fn figureFieldVariable ' (: ,1 ,validFreqIndexes))] ; ']) ;
253 end
254 clim = [min(20∗log10(filterData (:))) max(20∗log10(filterData (:)))] ;
255

256 % (2) Loop through f i l t e r types
257 for filterIndex = 1:selectedBetaVariantFiltersCount ;
258 fn = selectedInverseFilters.textKeys{selectedBetaVariantFiltersIndex(filterIndex)};
259 receiverChannel = 1;
260

261 subplot('Position ' , [. . .
262 subplotGrid.position(1) + subplotGrid.derived.xStep∗(simulationConfig.symbolLengthIndex−1) . . .
263 1 − (subplotGrid.position(2) + subplotGrid.derived.yStep∗(filterIndex)) . . .
264 subplotGrid.derived.width . . .
265 subplotGrid.derived.height . . .
266]) ;
267

268 % Plot the image
269 eval ([' filterData = mergedJobResults. ' fn figureFieldVariable ' ; ']) ;
270 i f (resultInfo.logAmplitudes{figureCount})
271 plotData = 20∗log10([squeeze(filterData (: , receiverChannel , :))]) ;
272 else
273 plotData = [squeeze(filterData (: , receiverChannel , :))] ;
274 end
275

276 % Set color range
277 i f (length(resultInfo.colorLimits{figureCount}))
278 nullPlotData = zeros(size(plotData));
279 eval (['nullPlotData = squeeze(mergedJobResults. ' fn ' .skipped(: ,1 , :)) > 0; ']) ;
280 nullPlotData(: , find(mergedJobResults.resultsFetched == 0)) = 1;
281 % make a line to indicate frequencies that aren' t valid
282 nullPlotData(: , find(. . .
283 staticConfig.ranges.frequencyCarrier < freqSampling/symbolLength/2 . . .
284)) = 1;
285 MarkNullImageSC(plotData([1 1 1: size(plotData,1)] , :) , . . .
286 resultInfo.colorLimits{figureCount}, . . .
287 nullPlotData([1 1 1: size(plotData,1)] , :) , . . .

A.3 Code used for the simulation 223

288 [1 1 1]∗0.8 , . . .
289 resultInfo.colorMaps{figureCount} . . .
290);
291 else
292 imagesc(plotData([1 1 1: size(plotData,1)] , :)) ;
293 colormap(resultInfo.colorMaps{figureCount});
294 end
295 h = line ([0 665] ,[3 .5 3.5]) ;
296 set(h, 'LineStyle ' , '−' , 'Color ' ,[1 1 1])
297

298 h = line ([0 665] ,[3 .5 3.5]) ;
299 set(h, 'LineStyle ' , '−−' , 'Color ' ,[0 0 0])
300

301 lastPlotAxes = gca;
302

303 % Column t i t l e s
304 currentFigurePosition = get(lastPlotAxes , 'position ');
305 i f (filterIndex == 1)
306 titleHandle = tit le (sprintf('%.0f baud' ,freqSampling/symbolLength));
307 titlePosition = get(titleHandle , 'position ');
308 set(titleHandle , . . .
309 'position ' , [titlePosition(1) −.3 1] , . . .
310 ' fontsize ' ,10.5)
311 end
312

313 % Y Labels
314 i f (simulationConfig.symbolLengthIndex == 1)
315 set(lastPlotAxes , . . .
316 'YTick' ,2+[2:8:length(staticConfig.ranges.beta)]) ;
317 set(gca, 'Fontsize ' ,10);
318 set(lastPlotAxes , . . .
319 'YTickLabel ' ,(staticConfig.ranges.beta(−2+get(lastPlotAxes , 'YTick'))));
320

321 yLabelHandle = . . .
322 ylabel(sprintf('%s\n\\kappa' , . . .
323 selectedInverseFilters.abbreviations{ . . .
324 selectedBetaVariantFiltersIndex(filterIndex)} . . .
325));
326 ylp = get(yLabelHandle, 'position ');
327 % 1.5 to adjust top after changing VerticalAlignment from middle to top.
328 set(yLabelHandle, . . .
329 'FontSize ' ,10.5 , . . .
330 'VerticalAlignment ' , 'top ' , . . .
331 'Position ' ,ylp.∗[1.35 1 1]);
332 lastYLabelHandle = yLabelHandle;
333 else
334 set(lastPlotAxes , 'YTick' , []) ;
335 set(lastPlotAxes , 'YTickLabel ' , []) ;
336 end
337

338 % X Labels , (Time Reversal is used for the x−labels)
339 set(lastPlotAxes , 'XTick' , []) ;
340 set(lastPlotAxes , 'XTickLabel ' , []) ;
341

342 % Plot time reversal data
343 i f (filterIndex == selectedBetaVariantFiltersCount)
344 currentFigurePosition = get(lastPlotAxes , 'position ');
345 axes('position ' , . . .
346 plotResultsConfig.timeReversalYPosition∗[0 1 0 0; 0 0 0 1] + . . .
347 currentFigurePosition.∗[1 0 1 0]);
348 eval (['filterDataTR = mergedJobResults.tr ' figureFieldVariable ' ; ']) ;
349 i f (resultInfo.logAmplitudes{figureCount})
350 plotDataTR = 20∗log10([squeeze(filterDataTR(: , receiverChannel , :))] ') ;
351 else
352 plotDataTR = [squeeze(filterDataTR(: , receiverChannel , :))] ' ;

224 Chapter A Program developed for the experiment and simulation

353 end
354 i f (length(resultInfo.colorLimits{figureCount}))
355 nullPlotDataTR = zeros(size(plotDataTR));
356 nullPlotDataTR(find(mergedJobResults.resultsFetched == 0)) = 1;
357 nullPlotDataTR(find(squeeze(mergedJobResults.tr.skipped(: ,1 , :)) > 0)) = 1;
358

359 % make a line to indicate frequencies that aren' t valid
360 nullPlotDataTR(find(. . .
361 staticConfig.ranges.frequencyCarrier < freqSampling/symbolLength/2 . . .
362)) = 1;
363 MarkNullImageSC(plotDataTR, . . .
364 resultInfo.colorLimits{figureCount}, . . .
365 nullPlotDataTR, . . .
366 [1 1 1]∗0.8 , . . .
367 resultInfo.colorMaps{figureCount});
368 else
369 imagesc(plotDataTR);
370 colormap(resultInfo.colorMaps{figureCount});
371 end
372

373 set(gca, 'YTick' , []) ;
374 set(gca, 'YTickLabel ' , []) ;
375 set(gca, 'XTick' ,integerKHzFrequencyIndex(1:2:end));
376 set(gca, . . .
377 'XTickLabel ' , floor(. . .
378 staticConfig.ranges.frequencyCarrier(integerKHzFrequencyIndex(1:2:end)) . . .
379 /1000));
380 xLabelHandle = xlabel('Carrier Frequency (kHz) ');
381 set(xLabelHandle, ' fontsize ' ,10.5);
382

383 i f (simulationConfig.symbolLengthIndex == 1)
384 yLabelHandle = ylabel('TR');
385 ylp = get(yLabelHandle, 'position ');
386 lylp = get(lastYLabelHandle, 'position ');
387 set(yLabelHandle, . . .
388 'FontSize ' ,10.5 , . . .
389 'VerticalAlignment ' , 'top ' , . . .
390 'position ' ,ylp.∗[0 1 1] + lylp.∗[1 0 0] . . .
391);
392 end
393 end
394

395 % Draw colorbar for the last f i l t e r
396 i f (length(findobj(gcf , 'tag ' , 'figure_color_bar ')) == 0 . . .
397 && length(resultInfo.colorLimits{figureCount}) . . .
398 && filterIndex == selectedBetaVariantFiltersCount)
399 lastAxesPosition = get(lastPlotAxes , 'position ');
400 colorbarAxes = axes ;
401 % column of data
402 r = resultInfo.colorLimits{figureCount};
403 colorBarPlotData = [(r(1) + (r(2) − r(1))∗[0:512] ' . /512)];
404 %MATLABBUG: print −dpdf breaks with only one
405 colorBarPlotData2 = [colorBarPlotData colorBarPlotData] ;
406 MarkNullImageSC(colorBarPlotData2, . . .
407 resultInfo.colorLimits{figureCount}, . . .
408 zeros(size(colorBarPlotData2)) , . . .
409 [1 1 1]∗0.8 , . . .
410 resultInfo.colorMaps{figureCount}, . . .
411 1,colorBarPlotData);
412

413 set(colorbarAxes , . . .
414 'YDir' , 'normal ' , . . .
415 'XTick' , [] , . . .
416 'XTickLabel ' , [] , . . .
417 'tag ' , 'figure_color_bar ' , . . .

A.3 Code used for the simulation 225

418 'YAxisLocation ' , ' right ' , . . .
419 'FontSize ' ,10, . . .
420 'position ' ,plotResultsConfig.colorbarXPosition∗[1 0 0 0; 0 0 1 0] + . . .
421 [0 . . .
422 plotResultsConfig.timeReversalYPosition(1) . . .
423 0 . . .
424 (1 + subplotGrid.derived.height − subplotGrid.derived.yStep . . .
425 − (plotResultsConfig.timeReversalYPosition(1) + subplotGrid.position(2))) . . .
426]) ;
427 t it le (resultInfo.units{figureCount})
428 end
429 end
430

431 % Total figure t i t l e
432 i f (simulationConfig.symbolLengthIndex == 1)
433 ah = annotation('textbox ' ,plotResultsConfig.annotationPosition , . . .
434 'String ' , sprintf('%s : %s ' ,arrangementText, resultInfo.names{figureCount}) , . . .
435 'LineStyle ' , 'none' , . . .
436 'LineWidth' ,0 , . . .
437 'HorizontalAlignment ' , 'center ' , . . .
438 'VerticalAlignment ' , 'baseline ' , . . .
439 'FontSize ' ,14);
440 end
441

442 end
443 end
444

445 i f (plotResultsConfig.showTXPowerVSPeak)
446 figureCount = figureCount+1;
447 selectedFilterCount = length(selectedInverseFilters.textKeys);
448 % Histogram of the spread of ratios for txpeak txpower
449 figure(fcs + figureCount − 1);
450 set(gcf , 'Position ' , figurePositionVariable);
451 set(gcf , 'PaperPosition ' ,[0.634517 0.634517 19.715 28.4084]) ;
452 subplot(selectedFilterCount ,2 ,1)
453 for filterIndex = 1:selectedFilterCount ;
454 fn = selectedInverseFilters.textKeys{filterIndex};
455 eval (['tpeak = squeeze(mergedJobResults. ' fn '.txpeak); ']) ;
456 eval (['tpower = squeeze(mergedJobResults. ' fn '.txpower); ']) ;
457 subplot(selectedFilterCount ,2 ,(filterIndex−1)∗2 + 1)
458 h = plot(tpower(:) ,tpeak(:) , ' . ') ;
459 set(h, 'MarkerSize ' ,1);
460 axis([0 .06 0 .4]) ;
461 t it le ([selectedInverseFilters.names{filterIndex }]);
462 subplot(selectedFilterCount ,2 ,(filterIndex−1)∗2 + 2)
463 warning off MATLAB:dividebyzero
464 hist(tpeak(:) ./tpower(:) , [1 .3 : .02 :12]);
465 warning on MATLAB:dividebyzero
466 ax = axis ; axis([1 .3 12 ax(3:4)]);
467 end
468 xlabel(sprintf('n_{symb}=%d, resulting in f_{symb} =%.3f ' , . . .
469 symbolLength,freqSampling/symbolLength));
470 end
471

472 i f (plotResultsConfig.showCondorTime)
473 figureCondorTimeHandle = findobj(0, 'Tag' , 'CondorTime');
474 i f (~length(figureCondorTimeHandle))
475 figureCondorTimeHandle = figure(40);
476 set(figureCondorTimeHandle, 'Tag' , 'CondorTime');
477 else
478 figure(figureCondorTimeHandle)
479 end
480 totalTimesSorted = sort(mergedJobResults.totaltime);
481 hold on;
482 plot(totalTimesSorted./60./60, 'x ') ;

226 Chapter A Program developed for the experiment and simulation

483 ylabel('Total execution time (hours) ') ;
484 end

A.3.2 Functions for the Condor submitter script

A.3.2.1 SubmitCondorJob.m
1 function condorJobId = SubmitCondorJob(. . .
2 jobIndex,jobDirectoryName, submitFileSettings ,verbosityLevel ,runparams)
3 %USAGE: condorJobId = SubmitCondorJob(. . .
4 % jobIndex ,jobDirectoryName, submitFileSettings , verbosityLevel ,runparams)
5 %
6 % This function is used to create a condor submission fi le , along with a parameter f i l e in order
7 % to run condor jobs , and then submits the job to Condor. The parameters are as follows :
8 %
9 % jobIndex − an integer value that represents the index of the job.

10 % (i .e . the 5 in '5 of 20')
11 %
12 % jobDirectoryName − is the directory to submit the job in.
13 %
14 % submitFileSettings − is a structure containing information used when forming the condor
15 % submit f i l e . The following fields must be declared :
16 %
17 % .environmentPath − A string of the environmental search path
18 % .notify − An integer to determine the inclusion of "notification = never"
19 % .executable − A string of the f i l e to execute
20 % .additionalTransferFiles − A string of the extra f i l e s to tranfer , (must lead the string
21 % with a comma (i .e . ' , . .\\foobar.mat ')
22 %
23 % verbosityLevel − is an integer to determine the level of messages to display :
24 % 0 − No messages, except error messages
25 % 1 − starting / finishing condor
26 % job successfully submitted
27 % 2 − creation of runsettings.mat
28 % 3 − creation of submit f i l e
29 % 4 − directory traversal
30 %
31 % runparams − is a structure that contains a set of parameters that is written to the
32 % fi le , runparams.mat.
33 %
34 % condorJobId − The job ID given by Condor, (used for tracking purposes)
35 %
36 % Usage Notes:
37 %
38 % Due to the fact that condor is bad at transferring fi les , i t is best to use the extrainfiles as
39 % l i t t l e as possible. Ideally one should map a network drive , and place the matlab executable in
40 % this directory , along with any common .mat. Consider i f you have a .mat f i l e s of only 100k and
41 % you are doing a job consisting of 10000 runs, you f i l e transfer wil l result in 1 Gb of f i l e
42 % transfer , and disk usage!
43

44 % File revision history :
45 %
46 % 2010−04, Pierre Dumuid
47 % ∗ Cleaned up for presentation in his thesis.
48 %
49 % 2006−08, Pierre Dumuid
50 % ∗ Modified to use params instead of a changing l i s t of arguments.
51 % ∗ Implemented structures and nicer looking varable names.
52 % ∗ Made the help information better.
53 %
54 % 2006−0? Carl Olsard
55 % ∗ Adapted for the GA Toolbox for use in an asynchronous manner with the Condor pool.

A.3 Code used for the simulation 227

56 %
57 % ????−?? Rick Morgans
58 % ∗ developed the code for the AFOSR project.
59 %
60

61 VerbosePrintString(verbosityLevel ,1 , 'Starting Condor_submit.\n')
62

63 %−−−
64 % Clear up previously logs , errors , and out f i l e s
65 %−−−
66 warning off
67 i f ispc
68 try
69 delete ([jobDirectoryName, '\∗.log ']) ;
70 end
71 try
72 delete ([jobDirectoryName, '\∗.err ']) ;
73 end
74 try
75 delete ([jobDirectoryName, '\∗.out ']) ;
76 end
77 else
78 try
79 delete ([jobDirectoryName, '/∗.log ']) ;
80 end
81 try
82 delete ([jobDirectoryName, '/∗.err ']) ;
83 end
84 try
85 delete ([jobDirectoryName, '/∗.out ']) ;
86 end
87 end
88 warning on
89

90 %−−−
91 % Create the directory to perform the work in
92 %−−−
93 warning off MATLAB:MKDIR:DirectoryExists
94 mkdir(jobDirectoryName);
95 warning on MATLAB:MKDIR:DirectoryExists
96

97 %−−−
98 % Create the MATLAB parameter f i l e
99 %−−−

100 VerbosePrintString(verbosityLevel ,2 , 'Creating runparams.mat . . . \n');
101 tic ;
102 save([jobDirectoryName '/runparams.mat'] , 'runparams');
103 VerbosePrintString(verbosityLevel ,2 , sprintf(' done (took %.2f seconds)\n' ,toc));
104

105 %−−−
106 % Create the Condor submit f i l e
107 %−−−
108 VerbosePrintString(verbosityLevel ,3 , 'Creating submit f i l e . . . \n');
109 tic ;
110

111 submitFileName = sprintf('submitFile%04d.sub ' ,jobIndex);
112 submitFileHandle = fopen([jobDirectoryName '/ ' submitFileName] , 'w');
113

114 fprintf (submitFileHandle, 'universe = vanilla\n');
115 fprintf (submitFileHandle , ['environment = path=' submitFileSettings.environmentPath '\n']) ;
116 fprintf (submitFileHandle , [. . .
117 'requirements = ' . . .
118 ' (Arch == "INTEL") && ((OpSys == "WINNT50") | | (OpSys == "WINNT51")) && (Disk > 260000) \n']) ;
119 %fprintf (submitFileHandle , 'rank = Machine == "catspc001.cats.adelaide.edu.au"\n') ;
120 %fprintf (submitFileHandle , [. . .

228 Chapter A Program developed for the experiment and simulation

121 % 'requirements = (OpSys == "WINNT51") && (Subnet != "129.127.239")\n') ;
122 i f ~submitFileSettings.notify
123 fprintf (submitFileHandle, 'notification = never\n');
124 end
125 fprintf (submitFileHandle, 'TRANSFER_FILES=ALWAYS \n');
126 fprintf (submitFileHandle, 'should_transfer_files = YES\n');
127 fprintf (submitFileHandle, 'when_to_transfer_output =ON_EXIT\n');
128 fprintf (submitFileHandle , ['executable = ' submitFileSettings.executable ' \n']) ;
129 fprintf (submitFileHandle , [. . .
130 'transfer_input_files = runparams.mat' submitFileSettings.additionalTransferFiles '\n']) ;
131 %fprintf (submitFileHandle , 'TRANSFER_OUTPUT_FILES= out.mat, success.sub , fai led.txt\n') ;
132 fprintf (submitFileHandle, 'output = thisjob$(Cluster).out\n');
133 fprintf (submitFileHandle, ' error = thisjob$(Cluster) .err\n');
134 fprintf (submitFileHandle, ' log = thisjob$(Cluster) .log\n');
135 fprintf (submitFileHandle, ' initialdir = .\n');
136 fprintf (submitFileHandle, 'copy_to_spool = false \n');
137 fprintf (submitFileHandle, 'on_exit_remove = (ExitCode != 1)\n');
138 fprintf (submitFileHandle, 'queue %d\n' ,1);
139 fclose(submitFileHandle);
140 VerbosePrintString(verbosityLevel ,3 , sprintf('done (%.2f seconds)\n' ,toc));
141

142 %−−−
143 % Perform the condor submission
144 %−−−
145 VerbosePrintString(verbosityLevel ,4 , 'Entering directory...\n');
146

147 % Save the current directory so that we can return to i t later.
148 originalDirectory = pwd;
149

150 % Enter the directory containing the condor job f i l e s .
151 eval (['cd ' ,jobDirectoryName]) ;
152

153 % Try using a dos prompt to submit the condor job.
154 dosSubmitCommandString = ['condor_submit −d ' submitFileName ' > submitStdOut.txt '] ;
155 errorCode = 1;
156 errorText = ' ' ;
157 while errorCode ~= 0
158 % If there is an error in the submission , continue to try to resubmitting the job.
159 VerbosePrintString(verbosityLevel ,1 , sprintf('Submitting job "%s" . . . ' ,submitFileName));
160 tic
161 [errorCode,errorText] = dos(dosSubmitCommandString);
162 i f errorCode ~= 0
163 toc
164 pause(5);
165 VerbosePrintString(verbosityLevel ,1 , ' failed\n');
166 VerbosePrintString(verbosityLevel ,0 , . . .
167 ['#### ' ,datestr(now) , ' Had to resubmit job ' jobDirectoryName . . .
168 ' . The error was: \n']) ;
169 VerbosePrintString(verbosityLevel ,0 , ['ERRORTEXT=' ,errorText '\n']) ;
170 else
171 VerbosePrintString(verbosityLevel ,1 , sprintf('success ! (took %.2f seconds)\n' ,toc));
172 condorJobId = 0;
173 fh = fopen('submitStdOut.txt ') ;
174 while 1
175 tline = fgetl (fh);
176 i f ~ischar(tline) , break ; end
177 [tok mat] = regexp(tline , 'submitted to cluster ([0−9]∗) . ' , 'tokens ' , 'match');
178 i f length(tok);
179 condorJobId = str2double(tok{1});
180 break ;
181 end
182 end
183 fclose(fh);
184 end
185 end

A.3 Code used for the simulation 229

186

187 VerbosePrintString(verbosityLevel ,4 , 'Leaving directory...\n');
188 eval (['cd ' originalDirectory ' ; ']) ;
189

190 VerbosePrintString(verbosityLevel ,1 , 'Condor_submit finished\n');
191

192

193 function VerbosePrintString(verbosityLevel , requiredVerbosityLevel , string)
194 i f (verbosityLevel >= requiredVerbosityLevel)
195 fprintf ('%s ' , string);
196 end

A.3.3 The Condor job script

A.3.3.1 The Condor job executor: CondorJobExecutor.bat
1 @echo off
2

3 REM This script is executed on each condor computer to mount a network drive , and then run the
4 REMMATLAB compiled program, CondorJobMainScript.exe .
5

6 REM Copy the f i l e from the Network drive to the local drive
7

8 path=C:\WINNT\system32;C:\WINDOWS\system32;D:\temp;%PATH
9 echo path =%PATH%

10

11 echo ====DEBUG−START: Listing all connected network drives:
12 net use
13 echo ====DEBUG: Show All Mounts
14 mountvol
15 echo ====DEBUG: Parameter passed is
16 echo %1
17 echo ====DEBUG−END
18

19 echo ==== Trying different mount points
20 set MYDIR=\pmdumuid\test2
21

22 echo ==== attempt to connect to ts1 . cats . adelaide .edu.au (IP=\\129.127.236.8)
23 for %%d in (B: E: F: G: H: I : J: K: L: M: N: O: P: Q: R: S: T: U:) do (
24 echo Attempt Drive, %%d
25 echo 1. Attempt to unmount drive , %%d
26 mountvol %%d /D
27 echo 2. Attempting to disconnect drive , %%d
28 net use %%d /d
29 echo 3. Attempting to mount using drive , %%d
30 net use %%d \\129.127.236.8\condor smbmountpassword /USER:condor /PERSISTENT:NO
31 i f %ERRORLEVEL%LEQ 0 (
32 set td=%%d
33 goto :mountokay
34)
35)
36

37 exit /B 1
38

39 :mountokay
40 echo Mount successful ! , the drive is %td%
41 echo %td%> mountedDriveLetter. txt
42 set PATH=%PATH%;%td%;%td%\matlab6_lib;%td%\matlab6_lib\bin\win32;%td%\matlab7_lib\v71\runtime\win32
43 set PATH=%PATH%;%td%\%MYDIR%
44

45 echo The path i s : %PATH%
46 echo The contents of %td%\%MYDIR% is :

230 Chapter A Program developed for the experiment and simulation

47 dir %td%\%MYDIR%
48

49 echo ====Run the Main script
50 %td%\%MYDIR%\CondorJobMainScript.exe > doitout . txt
51

52 echo ==== finished calculation
53 i f NOT exist run???.mat (
54 echo %computername% failed > failed . txt
55 exit /B 1
56)
57

58 echo ====DEBUG−START2: Path
59 path
60 echo ====DEBUG: Directory Listing
61 dir .
62 echo ====DEBUG−END
63

64 echo ==== Unmounting the drive , %td%
65 net use %td% /delete
66 echo ===FINISHED
67

68 exit /B 0

A.3.3.2 The main Condor job: CondorJobMainScript.m
1 function CondorJobMainScript()
2 %USAGE: CondorJobMainScript()
3 %
4 % This function is used as part of a simulation conducted that forms part of the thesis for Pierre
5 % Dumuid. This script is designed to be compiled to an executable f i le , and serves as a main
6 % control function for the simulation. The simulation consists of :
7 %
8 % ∗ Loading various control parameters from runparams.mat specific to the local execution of
9 % this script.

10 %
11 % ∗ Loading the impulse response , and digital sequence located generally on a mapped network
12 % drive , specified by the variable , runparams.matpath.
13 %
14 % ∗ Isolate the channels in the impulse response.
15 %
16 % ∗ Create a base−band modulated signal
17 %
18 % ∗ Run the simulation of the channel.
19 %
20

21 load runparams.mat % runparams.fc
22 % .betarange
23 % .symblen
24 % .to f i l e
25 % .IRFchannelidx
26 load([runparams.matpath 'testIRFs.mat ']) ; % IRFs
27 % fs
28 load([runparams.matpath 'bitseq2.mat ']) ; % bitseq
29

30 % Isolate the impulse responses according to the desired indexing.
31 channelIRFs = IRFs(: , : ,runparams.IRFchannelidx);
32

33 % Rename some variables (since Variable Renaming)
34 % testIRFs.mat contains variable called ' fs ' −−> freqSampling
35 % bitseq2.mat contains variable called ' bitseq ' −−> digitalSequence
36 % runparams.mat contains a number of variables that are mapped to
37 % jobOptions
38

A.3 Code used for the simulation 231

39 freqSampling = fs ;
40 digitalSequence = bitseq ;
41 jobOptions.boolTestFilter = runparams.runopts.do;
42 freqCarrier = runparams.fc ;
43 betaRange = runparams.betarange;
44 symbolLength = runparams.symblen;
45

46 txSignalInfo = CondorJobCreateModulatedSignal(symbolLength,freqSampling,digitalSequence);
47 thisresults = CondorJobRunFilterTests(channelIRFs,freqSampling, freqCarrier ,betaRange, . . .
48 symbolLength, txSignalInfo ,jobOptions);
49 thisresults.runparams = runparams;
50 save(runparams.tofile , ' thisresults ') ;
51 end

A.3.3.3 CondorJobCreateModulatedSignal.m
1 function txSignalInfo = CondorJobCreateModulatedSignal(symbolLength,freqSampling,digitalSequence)
2 %USAGE: txSignalInfo = CondorJobCreateModulatedSignal(symbolLength, freqSampling , digitalSequence)
3 %
4 % This function is used to convert the digital sequence, digitalSequence to a PSK modulated
5 % base−band signal.
6 %
7

8 fprintf ('CondorJobCreateModulatedSignal: Make up a transmission signal\n');
9 fprintf (' Step 1: Map binary stream to complex symbols (PSK)\n');

10 modulationSettings.k = 2;
11 modulationSettings.addphase = 0;
12 complexSymbols = BitSequenceToComplexSequence(digitalSequence , 'PSK' ,modulationSettings);
13

14 fprintf (' Step 2: Prepend symbols with a lead in sequence (used for synchronisation\n');
15 leadInSequence = [1 zeros(1,5) 1 zeros(1 ,5)];
16 complexSymbols = [leadInSequence complexSymbols] ;
17

18 fprintf (' Step 3: Create the spectral shaping f i l ters\n');
19 rCFLength = 2048 ∗ 6;
20 rCFLength = ceil (rCFLength/symbolLength)∗symbolLength;
21 truncFLength = 2048;
22 truncFLength = ceil (truncFLength/symbolLength)∗symbolLength;
23

24 % Create the Raised Co−sine spectral shaping f i l t e r s .
25 raisedCosineSqrtFilter = real(f ftshi ft (i f f t (sqrt(. . .
26 RaisedCosineFrequencySpectrum([1:rCFLength/2 −rCFLength/2+1:0]∗freqSampling/rCFLength, . . .
27 symbolLength/freqSampling, . . .
28 0.2) . . .
29))));
30 raisedCosineFilter = real(f ftshi ft (i f f t (. . .
31 RaisedCosineFrequencySpectrum([1:rCFLength/2 −rCFLength/2+1:0]∗freqSampling/rCFLength, . . .
32 symbolLength/freqSampling, . . .
33 0.2) . . .
34)));
35

36 % Truncate the f i l t ers to truncFLength
37 [dummy peakIndex] = max(raisedCosineSqrtFilter);
38 raisedCosineSqrtFilter = raisedCosineSqrtFilter(peakIndex + [−truncFLength:truncFLength−1]);
39 raisedCosineFilter = raisedCosineFilter(peakIndex + [−truncFLength:truncFLength−1]);
40

41 % Normalise the f i l t e r co−efficients
42 raisedCosineFilter = raisedCosineFilter /sum(raisedCosineFilter);
43 raisedCosineSqrtFilter = raisedCosineSqrtFilter/sum(raisedCosineSqrtFilter);
44

45 % Truncate at −80 dB
46 raisedCosineFilter = CentralPeakSignalTrim(raisedCosineFilter ,−80,symbolLength);
47 raisedCosineSqrtFilter = CentralPeakSignalTrim(raisedCosineSqrtFilter,−80,symbolLength);

232 Chapter A Program developed for the experiment and simulation

48

49 fprintf (' Step 4: Convert the symbol stream into the base−band stream.\n');
50 txSignalInfo.PSK.transmitSignalBB = ComplexSequenceToSignal(complexSymbols, . . .
51 raisedCosineSqrtFilter ,symbolLength);
52 txSignalInfo.PSK.signalBBRaisedCosine = ComplexSequenceToSignal(complexSymbols, . . .
53 raisedCosineFilter ,symbolLength);
54

55 % Second channel is not transmitted.
56 txSignalInfo.PSK.transmitSignalBB(1: size(txSignalInfo.PSK.transmitSignalBB,1) ,2) . . .
57 = zeros(1, size(txSignalInfo.PSK.transmitSignalBB,1));
58 fprintf ('\n');
59

60 txSignalInfo.PSK.leadInSequence = leadInSequence;
61 txSignalInfo.PSK.leadInSequenceLength = length(leadInSequence);
62 txSignalInfo.PSK.complexSymbols = complexSymbols;
63 txSignalInfo.PSK.modulationSettings = modulationSettings ;
64 txSignalInfo.digitalSequence = digitalSequence ;

A.3.3.4 CondorJobRunFilterTests.m
1 function thisResults = CondorJobRunFilterTests(channelIRFs,freqSampling, freqCarrier ,betaRange, . . .
2 symbolLength, txSignalInfo ,jobOptions)
3 %USAGE: thisResults = CondorJobRunFilterTests(channelIRFs, freqSampling , freqCarrier ,betaRange, . . .
4 % symbolLength, txSignalInfo , jobOptions)
5 %
6 % This function is used to run some test for a digital communication defined by txSignalInfo with
7 % using specific inverse f i l t e r designs as developed as part of the thesis by Pierre Dumuid. A
8 % parameter involved in the inverse f i l t ers is varied according to the range of values in
9 % betaRange, and specific options for this set of test is given in the variable , jobOptions.

10 %
11 tic
12

13 %===
14 % Various configuration parameters
15 %===
16 % These are extra options that have been hard−coded, and could be moved into the variable ,
17 % jobOptions at a later time.
18

19 config.downSampleForFilterDesign = 1;
20 config.testFilters.nof = 0;
21 config.runRLSAAlgorithm = 0;
22 config.targetReceiverRange = [1] ; % Receiver locations to test
23 config.crosstalkReceiverRange = [2] ; % Corresponding crosstalk receivers to measure
24 config.fractionalSpacing = 2;
25 config.performAdaptiveFiltering = 1;
26 config.deltaSteps = [0 6e−3 4e−4 0];
27 % The channelIRFs were truncated to 35 ms.. shouldn ' t need a f i l t e r to span more than this ! and the
28 % RLS algorithm was set to use f i l t ers with taps length 0.15 of this length as i t was REALLY slow!
29 config.adaptiveFilterLength = floor(0.5∗36e−3/(symbolLength/freqSampling));
30 config.adaptiveFeedbackFilterLength = floor(0.5∗36e−3/(symbolLength/freqSampling));
31 config.adaptiveRLSFilterLength = floor(0.15 ∗ config.adaptiveFilterLength);
32 config.adaptiveRLSFeedbackFilterLength = floor(0.15 ∗ config.adaptiveFeedbackFilterLength);
33 config.filterPeakIndex = config.adaptiveFilterLength ;
34 config.examineCrossTalk = 1;
35 config.examineTransmitSignal = 1;
36

37 fprintf ('CondorJobRunFilterTests: Run Simulations\n');
38 %===
39 % Convert channel IRF' s to baseband
40 %===
41 fprintf (' STEP 1: Converting the channel IRFs to baseband\n');
42 % Truncate IRFs to 2048.
43 channelIRFLength = min(2048,size(channelIRFs,1));

A.3 Code used for the simulation 233

44

45 channelIRFsBB = PassbandToBaseband(channelIRFs(1:channelIRFLength, : , :) , freqSampling, freqCarrier);
46

47 %===
48 % Convert the channel IRF' s to a lower sampling rate
49 %===
50 fprintf (' STEP 2: Down−sample channels to lower sampling rate\n');
51 i f (config.downSampleForFilterDesign)
52 % Work with 5 samples / symbol rate :
53 freqSymbol = freqSampling/symbolLength;
54 freqSamplingBB = ceil(5∗freqSymbol);
55 i f (freqSamplingBB > freqSampling)
56 freqSamplingBB = freqSampling;
57 end
58 channelIRFsBBLS = ResampleIRFs(. . .
59 [channelIRFsBB; . . .
60 zeros(floor(2∗symbolLength) , size(channelIRFsBB,2) , size(channelIRFsBB,3))] , . . .
61 freqSamplingBB,freqSampling);
62 else
63 channelIRFsBBLS = channelIRFsBB;
64 end
65 thisResults.finish1 = toc ;
66

67 %===
68 % Iterate through various values of beta
69 %===
70 fprintf (' STEP 3: Iterate through the beta range\n');
71 tocStartBetaLoop = toc ;
72 for betaIdx = 1:length(betaRange)
73 thisBeta = betaRange(betaIdx);
74 fprintf ('==\n');
75 fprintf ('BETA Loop %d of %d (beta =%.3f freqCarrier =%.3f)\n' , . . .
76 betaIdx, length(betaRange) ,thisBeta , freqCarrier);
77 fprintf ('==\n');
78

79 %===
80 % Design the inverse f i l t ers at baseband and the lower sampling rate
81 %===
82 fprintf (' (a) Create Filters\n');
83 clear filterInfo.textKeys filterInfo.fullNames
84 clear filterData
85

86 filterIdx = 0;
87

88 % The f i l t ers for "no fi l tering", time reversal and are independent of beta , and are only
89 % calculated for the f irs t beta value.
90 i f (betaIdx == 1)
91 i f (config.testFilters.nof)
92 filterIdx = filterIdx + 1;
93 filterInfo.textKeys{filterIdx} = 'nof ' ;
94 filterInfo.fullNames{filterIdx} = 'No Filtering ' ;
95 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
96 cputimeBeforeFilterDesign = cputime;
97 filterData.nof.inverseIRFsBBLS = CreateInverseFilter(channelIRFsBBLS, 'No Filtering ');
98 filterData.nof.receiverFilterBBLS = ones(1, size(channelIRFs,2));
99 filterData.nof.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;

100 end
101

102 i f (jobOptions.boolTestFilter.tr)
103 filterIdx = filterIdx + 1;
104 filterInfo.textKeys{filterIdx} = ' tr ' ;
105 filterInfo.fullNames{filterIdx} = 'Time Reversal ' ;
106 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
107 cputimeBeforeFilterDesign = cputime;
108 filterData.tr.inverseIRFsBBLS = CreateInverseFilter(channelIRFsBBLS, 'TimeReversal ') ;

234 Chapter A Program developed for the experiment and simulation

109 filterData.tr.receiverFilterBBLS = ones(1, size(channelIRFs,2));
110 filterData.tr.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;
111 end
112 end
113

114 i f (jobOptions.boolTestFilter.mil2s)
115 filterIdx = filterIdx + 1;
116 filterSettings.mil2s.beta = thisBeta ;
117 filterInfo.textKeys{filterIdx} = 'mil2s ' ;
118 filterInfo.fullNames{filterIdx} = 'Milica Stojanovic (2 sided) ' ;
119 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
120 cputimeBeforeFilterDesign = cputime;
121 [filterData.mil2s.inverseIRFsBBLS filterData.mil2s.filterDesignExtraInfo] = . . .
122 CreateInverseFilter(channelIRFsBBLS, 'Milica : Two−Side Filter ' , filterSettings.mil2s);
123 filterData.mil2s.receiverFilterBBLS = filterData.mil2s.filterDesignExtraInfo.rxFilter ;
124 filterData.mil2s.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;
125 end
126

127 i f (jobOptions.boolTestFilter.if_path)
128 filterIdx = filterIdx + 1;
129 filterSettings.if_path.beta = thisBeta ;
130 filterInfo.textKeys{filterIdx} = 'if_path ' ;
131 filterInfo.fullNames{filterIdx} = 'Tikhonov IF: Path' ;
132 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
133 cputimeBeforeFilterDesign = cputime;
134 filterData.if_path.inverseIRFsBBLS = . . .
135 CreateInverseFilter(channelIRFsBBLS, 'Tikhonov IF: Path' , filterSettings.if_path);
136 filterData.if_path.receiverFilterBBLS = ones(1, size(channelIRFs,2));
137 filterData.if_path.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;
138 end
139

140 i f (jobOptions.boolTestFilter.if_chan)
141 filterIdx = filterIdx + 1;
142 filterSettings.if_chan.beta = thisBeta ;
143 filterInfo.textKeys{filterIdx} = 'if_chan ' ;
144 filterInfo.fullNames{filterIdx} = 'Tikhonov IF: Channel ' ;
145 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
146 cputimeBeforeFilterDesign = cputime;
147 filterData.if_chan.inverseIRFsBBLS = . . .
148 CreateInverseFilter(channelIRFsBBLS, 'Tikhonov IF: Channel ' , filterSettings.if_chan);
149 filterData.if_chan.receiverFilterBBLS = ones(1, size(channelIRFs,2));
150 filterData.if_chan.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;
151 end
152

153 i f (jobOptions.boolTestFilter.if_fmimo)
154 filterIdx = filterIdx + 1;
155 filterSettings.if_fmimo.beta = thisBeta ;
156 filterInfo.textKeys{filterIdx} = 'if_fmimo' ;
157 filterInfo.fullNames{filterIdx} = 'Tikhonov IF: Full MI−MO' ;
158 fprintf (' ∗ %s\n' , filterInfo.fullNames{filterIdx});
159 cputimeBeforeFilterDesign = cputime;
160 filterData.if_fmimo.inverseIRFsBBLS = . . .
161 CreateInverseFilter(channelIRFsBBLS, 'Tikhonov IF: Full MI−MO' , filterSettings.if_fmimo);
162 filterData.if_fmimo.receiverFilterBBLS = ones(1, size(channelIRFs,2));
163 filterData.if_fmimo.cputimeFilterDesign = cputime − cputimeBeforeFilterDesign;
164 end
165

166 %===
167 % Convert the inverse f i l t ers and the receiver f i l t ers to the higher sampling rate
168 %===
169 fprintf ([' (b) Resample the inverse IRFs and the receiver from freqSamplingBB to ' . . .
170 'freqSampling\n']) ;
171 i f (config.downSampleForFilterDesign)
172 for filterIdx2 = 1: filterIdx ;
173 fn = filterInfo.textKeys{filterIdx2};

A.3 Code used for the simulation 235

174 filterData.(fn).inverseIRFsBB = . . .
175 ResampleIRFs(filterData.(fn).inverseIRFsBBLS,freqSampling,freqSamplingBB);
176 receiverFilterBBLSSize1 = size(filterData.(fn).receiverFilterBBLS ,1);
177 % Don' t bother re−sampling i f it ' s a unity f i l t e r
178 i f (receiverFilterBBLSSize1 == 1)
179 filterData.(fn).receiverFilterBB = filterData.(fn).receiverFilterBBLS;
180 else
181 filterData.(fn).receiverFilterBB = . . .
182 ResampleIRFs(filterData.(fn).receiverFilterBBLS ,freqSampling,freqSamplingBB);
183 end
184 end
185 else
186 for filterIdx2 = 1: filterIdx ;
187 fn = filterInfo.textKeys{filterIdx2};
188 filterData.(fn).inverseIRFsBB = filterData.(fn).inverseIRFsBBLS;
189 end
190 end
191

192 %===
193 % Normalise the inverse and receiver f i l t ers
194 %===
195 fprintf (' (c) Normalising the inverse f i l ters according to root−mean−square:\n')
196 for filterIdx2 = 1: filterIdx ;
197 fn = filterInfo.textKeys{filterIdx2};
198 inverseIRFsBBRMS = sum(abs(filterData.(fn).inverseIRFsBB) .^2,1);
199 filterData.(fn).inverseIRFsBB = . . .
200 filterData.(fn).inverseIRFsBB./sqrt(sum(inverseIRFsBBRMS(:))) ;
201

202 for i i = 1: size(channelIRFs,2)
203 receiverFilterBBRMS = sqrt(sum(abs(filterData.(fn).receiverFilterBB(: , i i)) . ^2));
204 filterData.(fn).receiverFilterBB(: , i i) = . . .
205 filterData.(fn).receiverFilterBB(: , i i) ./receiverFilterBBRMS;
206 end
207 end
208

209 %===
210 % TESTING STAGE
211 %===
212 fprintf (' (d) Determining the ful l Virtual −> Reciever transfer function:\n')
213 for filterIdx2 = 1: filterIdx ;
214 fn = filterInfo.textKeys{filterIdx2};
215 fprintf (' ∗ %s \n' , filterInfo.fullNames{filterIdx2});
216 filterData.(fn).fullResponseBB = . . .
217 MatrixConvolve(channelIRFsBB, filterData.(fn).inverseIRFsBB);
218 end
219

220 fprintf (' (e) Iterative through each f i l ter design\n');
221 modulationSignalBB = txSignalInfo.PSK.signalBBRaisedCosine(: ,1);
222

223 for filterIdx2 = 1: filterIdx ;
224 fn = filterInfo.textKeys{filterIdx2};
225 fprintf (' ∗ %s \n' , filterInfo.fullNames{filterIdx2});
226 for targetReceiverIdx1 = 1:length(config.targetReceiverRange)
227 targetReceiverIdx = config.targetReceiverRange(targetReceiverIdx1);
228 crosstalkReceiverIdx = config.crosstalkReceiverRange(targetReceiverIdx1);
229 fprintf (' − Target receiver , crosstalk receiver : %d, %d\n' , . . .
230 targetReceiverIdx , crosstalkReceiverIdx);
231

232 %===
233 % Calculate transmission signal , and measure the peak and RMS of the signal
234 %===
235 i f (config.examineTransmitSignal)
236 fprintf (' . Peak and power measurement of transmitter signals\n');
237 matrixModulationSignalBB = zeros(size(modulationSignalBB,1) ,2 ,1);
238 matrixModulationSignalBB(: , targetReceiverIdx) = modulationSignalBB;

236 Chapter A Program developed for the experiment and simulation

239 filteredSignalForTxBB = . . .
240 MatrixConvolve(filterData.(fn).inverseIRFsBB,matrixModulationSignalBB);
241 measureTransmittedRMS = sqrt(mean(abs(filteredSignalForTxBB(:) . ^2)));
242 measureTransmittedPeak = max(abs(filteredSignalForTxBB(:))) ;
243 thisResults.(fn).txpeak(betaIdx, targetReceiverIdx) = measureTransmittedPeak;
244 thisResults.(fn).txpower(betaIdx, targetReceiverIdx) = measureTransmittedRMS;
245 end
246

247 %===
248 % Calculate the target receiver signal , and measure various powers
249 %===
250 % The receiver signal power is measured for three regions of the received signal :
251 %
252 % [.........SSSSSSSSSSSSSSSSSSS..]
253 % |<−−−−−−−−−−−−−−0−−−−−−−−−−−−−>|
254 % |<−−−1−−−>| |
255 % | |<−−−−−−−−−2−−−−−−−−>|
256 % |
257 % peakIndex
258 %
259 % where peakIndex is the index of the peak in the fu l l response , and should also be
260 % the delay of the signal.
261 % Essentially :
262 % 0 the entire received power
263 % 1 the ISI noise floor
264 % 2 the data signal
265 %
266 fprintf ([' . Calculate the signal at the target receiver ' . . .
267 '\n']) ;
268 targetReceiverSignalBB = conv(. . .
269 filterData.(fn).fullResponseBB(: , targetReceiverIdx , targetReceiverIdx) , . . .
270 modulationSignalBB . . .
271);
272 [dummy peakIndex] = . . .
273 max(filterData.(fn).fullResponseBB(: , targetReceiverIdx , targetReceiverIdx));
274 measureReceiverSignalRMS0 = sqrt(mean(abs(. . .
275 targetReceiverSignalBB) .^2));
276 measureReceiverSignalRMS0Time = length(targetReceiverSignalBB) ∗ freqSampling;
277 measureReceiverSignalRMS1 = sqrt(mean(abs(. . .
278 targetReceiverSignalBB(1:peakIndex)) .^2));
279 measureReceiverSignalRMS1Time = peakIndex ∗ freqSampling;
280 measureReceiverSignalRMS2 = sqrt(mean(abs(. . .
281 targetReceiverSignalBB(peakIndex + 1 . . .
282 : length(txSignalInfo.PSK.complexSymbols)∗symbolLength)) .^2));
283 measureReceiverSignalRMS2Time = . . .
284 length(txSignalInfo.PSK.complexSymbols) ∗ symbolLength ∗ freqSampling;
285

286 thisResults.(fn).prerx_power(betaIdx, targetReceiverIdx) = . . .
287 measureReceiverSignalRMS0;
288 thisResults.(fn).prerx_power_t(betaIdx, targetReceiverIdx) = . . .
289 measureReceiverSignalRMS0Time;
290 thisResults.(fn).prerx_power1(betaIdx, targetReceiverIdx) = . . .
291 measureReceiverSignalRMS1;
292 thisResults.(fn).prerx_power1_t(betaIdx, targetReceiverIdx) = . . .
293 measureReceiverSignalRMS1Time;
294 thisResults.(fn).prerx_power2(betaIdx, targetReceiverIdx) = . . .
295 measureReceiverSignalRMS2;
296 thisResults.(fn).prerx_power2_t(betaIdx, targetReceiverIdx) = . . .
297 measureReceiverSignalRMS2Time;
298

299 %===
300 % Apply the receiver f i l ter , and measure the total power
301 %===
302 fprintf (' . Apply the receiver f i l ter\n');
303 targetReceiverSignalRXFilteredBB = conv(. . .

A.3 Code used for the simulation 237

304 targetReceiverSignalBB, . . .
305 filterData.(fn).receiverFilterBB(: , targetReceiverIdx));
306

307 measureReceiverSignalRXFilteredRMS0 = . . .
308 sqrt(mean(abs(targetReceiverSignalRXFilteredBB) .^2));
309 measureReceiverSignalRXFilteredRMS0Time = . . .
310 length(targetReceiverSignalRXFilteredBB) ∗ freqSampling;
311

312 thisResults.(fn).postrx_power(betaIdx, targetReceiverIdx) = . . .
313 measureReceiverSignalRXFilteredRMS0;
314 thisResults.(fn).postrx_power_t(betaIdx, targetReceiverIdx) = . . .
315 measureReceiverSignalRXFilteredRMS0Time;
316

317 %===
318 % Perform symbol synchronisation
319 %===
320 % Use the function , FindSignalFirstPeak to find the f irs t peak in the signal.
321 % If the returned firstPeakIndex is empty, or does not allow enough samples to
322 % obtain the transmitted signal , then signal is obviously too distorted to obtain any
323 % samples, and thus further processing should be skipped.
324 %
325 fprintf (' . Performing symbol synchronisation\n');
326 signalLength = length(targetReceiverSignalRXFilteredBB);
327 %We need this many points after the firstPeakIndex , so don' t bother searching for a
328 % peak in them.
329 samplesNeeded = symbolLength∗length(txSignalInfo.PSK.complexSymbols);
330 [firstPeakIndex firstPeakAmpPhaseInverse] = . . .
331 FindSignalFirstPeak(. . .
332 targetReceiverSignalRXFilteredBB(1:signalLength−samplesNeeded) , . . .
333 symbolLength);
334

335 performSymbolDetection = 1;
336 i f length(firstPeakIndex) == 0
337 performSymbolDetection = 0;
338 else
339 i f (firstPeakIndex + symbolLength + length(txSignalInfo.PSK.complexSymbols) − 1) . . .
340 > length(targetReceiverSignalRXFilteredBB)
341 performSymbolDetection = 0;
342 end
343 end
344 i f performSymbolDetection == 0
345 disp('Skipping! ') ;
346 thisResults.(fn).skipping(betaIdx, targetReceiverIdx) = 1;
347 else
348 thisResults.(fn).skipping(betaIdx, targetReceiverIdx) = 0;
349

350 % Store the f irs t peak index
351 thisResults.(fn).idx(betaIdx, targetReceiverIdx) = firstPeakIndex ;
352

353 %===
354 % Sample the signal at the sampling instances (normal and fractional)
355 %===
356 sampledSignal = . . .
357 targetReceiverSignalRXFilteredBB(. . .
358 firstPeakIndex + . . .
359 symbolLength∗[. . .
360 txSignalInfo.PSK.leadInSequenceLength . . .
361 : length(txSignalInfo.PSK.complexSymbols) − 1]) . ' ;
362

363 sampledSignalFS = . . .
364 targetReceiverSignalRXFilteredBB(. . .
365 firstPeakIndex + . . .
366 floor ([. . .
367 symbolLength∗txSignalInfo.PSK.leadInSequenceLength . . .
368 :symbolLength/config.fractionalSpacing . . .

238 Chapter A Program developed for the experiment and simulation

369 :symbolLength∗length(txSignalInfo.PSK.complexSymbols) − 1])) . ' ;
370

371 %===
372 % Compute some standard deviations
373 %===
374 % The standard deviations are calculated for two cases , both against the original
375 % transmitted complex sequence, and adjusting the phase and amplitude according to
376 % the mean difference. The two methods of measuring the standard deviation are:
377 %
378 % 1. Isolating the various constellation positions , and computing the standard
379 % deviation fo each position , and performing the appropriate summation.
380 %
381 % 2. Subtracting the original complex sequence from the phase and amplitude
382 % compensated signal and calculating the standard deviation of this signal.
383 %
384 % Note that both methods should be effectively the same.
385 %
386 fprintf (' . Computing the standard deviations\n');
387

388 % Obtain the original complex sequence
389 originalComplexSequence = . . .
390 txSignalInfo.PSK.complexSymbols(. . .
391 txSignalInfo.PSK.leadInSequenceLength+1 . . .
392 : length(txSignalInfo.PSK.complexSymbols));
393

394 pskIndexesPos1 = find(real(originalComplexSequence) > 0.9);
395 pskIndexesPosI = find(imag(originalComplexSequence) > 0.9);
396 pskIndexesNeg1 = find(real(originalComplexSequence) <−0.9);
397 pskIndexesNegI = find(imag(originalComplexSequence) <−0.9);
398

399 % Number of samples at [1 i −1−i] respectively
400 pskIndexesCounts = [. . .
401 length(pskIndexesPos1) . . .
402 length(pskIndexesPosI) . . .
403 length(pskIndexesNeg1) . . .
404 length(pskIndexesNegI) . . .
405] ;
406

407 % Average amplitude / phase adjustment for a l l symbols.
408 meanSymbolAmpPhaseInverse = 1./(mean(. . .
409 sampledSignal([. . .
410 pskIndexesPos1 . . .
411 pskIndexesPosI . . .
412 pskIndexesNeg1 . . .
413 pskIndexesNegI]) . . .
414 ./ . . .
415 originalComplexSequence([. . .
416 pskIndexesPos1 . . .
417 pskIndexesPosI . . .
418 pskIndexesNeg1 . . .
419 pskIndexesNegI]) . . .
420));
421

422 % Standard deviation each of the various constellation position after applying
423 % the amplitude and phase adjustment. The standard deviation is calculated
424 % against the meanSymbolAmpPhaseInverse, so the gain is s l ight ly different than
425 % firstPeakAmpPhaseInverse!
426

427 pskIndexesStandardDeviationsAPAdjusted = [. . .
428 std(meanSymbolAmpPhaseInverse ∗ sampledSignal(pskIndexesPos1)) . . .
429 std(meanSymbolAmpPhaseInverse ∗ sampledSignal(pskIndexesPosI)) . . .
430 std(meanSymbolAmpPhaseInverse ∗ sampledSignal(pskIndexesNeg1)) . . .
431 std(meanSymbolAmpPhaseInverse ∗ sampledSignal(pskIndexesNegI))] ;
432

433 % Calculate standard deviation from the summation of each individual

A.3 Code used for the simulation 239

434 % constellation position.
435 measureStandardDeviation1 = . . .
436 sqrt(sum(. . .
437 pskIndexesStandardDeviationsAPAdjusted.̂ 2 .∗ pskIndexesCounts . . .
438)/sum(pskIndexesCounts));
439

440 % Calculate standard deviation from the difference between amplitude and phase
441 % adjusted sampled sequence and the original complex sequence.
442 measureStandardDeviation2 = . . .
443 std(meanSymbolAmpPhaseInverse ∗ sampledSignal − originalComplexSequence);
444

445 % Store the mean symbol amplitude and phase compensation
446 thisResults.(fn).gain(betaIdx, targetReceiverIdx) = abs(meanSymbolAmpPhaseInverse);
447

448 % Store the measured standard deviations.
449 thisResults.(fn).total_std(betaIdx, targetReceiverIdx) = measureStandardDeviation1;
450 thisResults.(fn).total_std2(betaIdx, targetReceiverIdx) = measureStandardDeviation2;
451

452 %===
453 % Compute the symbol error
454 %===
455 % The symbol error is computed by passing both the received signal , and the original
456 % transmitted sequence through the detector and counting a l l the instances where
457 % they are not the same.
458 %
459 fprintf (' . Computing the symbol error\n');
460 basisInfo.dummyVariable = 1;
461

462 [receivedSignalSignalError receivedSignalDetectedSymbols] = . . .
463 DetectorNonAdaptive(. . .
464 'PSK' , . . .
465 [. . .
466 real(meanSymbolAmpPhaseInverse∗sampledSignal); . . .
467 imag(meanSymbolAmpPhaseInverse∗sampledSignal)] . ' , . . .
468 basisInfo , txSignalInfo.PSK.modulationSettings);
469

470 [originalComplexSequenceSignalError originalComplexSequenceDetectedSymbols] = . . .
471 DetectorNonAdaptive(. . .
472 'PSK' , . . .
473 [. . .
474 real(originalComplexSequence) ; . . .
475 imag(originalComplexSequence) . . .
476] . ' , . . .
477 basisInfo , txSignalInfo.PSK.modulationSettings);
478

479 measureSymbolError = sum([. . .
480 receivedSignalDetectedSymbols−originalComplexSequenceDetectedSymbols . . .
481] ~= 0);
482

483 % Store the measured symbol error
484 thisResults.(fn).symbolerr(betaIdx, targetReceiverIdx) = measureSymbolError;
485

486 %===
487 % Run the adaptive f i l t e r algorithms
488 %===
489 i f (config.performAdaptiveFiltering)
490 fprintf (' . Running the adaptive filtering algorithms\n');
491 %−−−
492 % Initial ise some parameters for the f i l t ers
493 %−−−
494 constellationValues = . . .
495 GetConstellationValues('PSK' ,0 ,txSignalInfo.PSK.modulationSettings);
496

497 zfa.filterTaps = [1 zeros(1 ,config.adaptiveFilterLength)] ;
498 zfat.filterTaps = [1 zeros(1 ,config.adaptiveFilterLength)] ;

240 Chapter A Program developed for the experiment and simulation

499 msea.filterTaps = . . .
500 [zeros(1,config.filterPeakIndex−1) . . .
501 1 . . .
502 zeros(1,config.adaptiveFilterLength−config.filterPeakIndex)] ;
503 rlsa.filterTaps = . . .
504 [zeros(1,config.filterPeakIndex−1) . . .
505 1 . . .
506 zeros(1,config.adaptiveRLSFilterLength−config.filterPeakIndex)] ;
507 mseat.filterTaps = msea.filterTaps ;
508 rlsat.filterTaps = rlsa.filterTaps ;
509

510 msea.feedbackFilterTaps = zeros(1,config.adaptiveFeedbackFilterLength);
511 rlsa.feedbackFilterTaps = zeros(1 ,config.adaptiveRLSFeedbackFilterLength);
512 mseat.feedbackFilterTaps = msea.feedbackFilterTaps;
513 rlsat.feedbackFilterTaps = rlsa.feedbackFilterTaps ;
514

515 %−−−
516 % Initial ise some history collection parameters
517 %−−−
518 zfa.averageErrorHistory = [] ;
519 zfat.averageErrorHistory = [] ;
520 msea.averageErrorHistory = [] ;
521 mseat.averageErrorHistory = [] ;
522 rlsa.averageErrorHistory = [] ;
523 rlsat.averageErrorHistory = [] ;
524

525 zfa.signalErrorHistory = [] ;
526 zfat.signalErrorHistory = [] ;
527 msea.signalErrorHistory = [] ;
528 mseat.signalErrorHistory = [] ;
529

530 %−−−
531 % Define two training sequences (none, and 40 symbols)
532 %−−−
533 trainingSequenceNone = [] ;
534 trainingSequence40Symbols = txSignalInfo.PSK.complexSymbols(. . .
535 txSignalInfo.PSK.leadInSequenceLength + [1:40] . . .
536);
537

538 %−−−
539 % Run the RLSA algorithm (with and without a training sequence) once
540 %−−−
541 i f (config.runRLSAAlgorithm)
542 % Two passes of RLS are performed to allow the rlsa algorithm to f i l t e r
543 % the f irs t few samples better than i t would with just one pass
544 for i i = 1:2
545 % Run the algorithm for no training sequence.
546 [rlsa.signalError rlsa.detectedSymbols rlsa.filterTaps . . .
547 rlsa.filterTapHistory rlsa.filteredSignal rlsa.feedbackFilterTaps] . . .
548 = DetectorAdaptiveRLS(. . .
549 constellationValues , . . .
550 meanSymbolAmpPhaseInverse∗sampledSignalFS.' , . . .
551 0.999 , . . .
552 rlsa.filterTaps , . . .
553 trainingSequenceNone, . . .
554 config.fractionalSpacing , . . .
555 rlsa.feedbackFilterTaps , . . .
556 config.filterPeakIndex);
557

558 % Run the algorithm with a training sequence of 40 Symbols
559 [rlsat.signalError rlsat.detectedSymbols rlsat.filterTaps . . .
560 rlsat.filterTapHistory rlsat.filteredSignal . . .
561 rlsat.feedbackFilterTaps] . . .
562 = DetectorAdaptiveRLS(. . .
563 constellationValues , . . .

A.3 Code used for the simulation 241

564 meanSymbolAmpPhaseInverse∗sampledSignalFS.' , . . .
565 0.999 , . . .
566 rlsat.filterTaps , . . .
567 trainingSequence40Symbols, . . .
568 config.fractionalSpacing , . . .
569 rlsat.feedbackFilterTaps , . . .
570 config.filterPeakIndex);
571

572 % Cumulate the average error history
573 rlsa.averageErrorHistory . . .
574 = [rlsa.averageErrorHistory mean(abs(rlsa.signalError))] ;
575 rlsat.averageErrorHistory . . .
576 = [rlsat.averageErrorHistory mean(abs(rlsat.signalError))] ;
577 fprintf (' RLSA: %.4f RLSA(T): %.4f\n' , . . .
578 mean(abs(rlsa.signalError)) , . . .
579 mean(abs(rlsat.signalError)));
580 end
581 else
582 fprintf (' Skipping rlsa\n');
583 end
584

585 %===
586 % Loop through al l the deltaSteps , and perform adaptive fi l tering
587 %===
588 for deltaStepIdx = 1:length(config.deltaSteps)
589 thisDelta = config.deltaSteps(deltaStepIdx);
590 fprintf (' thisDelta %.4f : : ' ,thisDelta);
591

592 % Run the zero forcing algorithm without a training sequence
593 [zfa.signalError zfa.detectedSymbols zfa.filterTaps . . .
594 zfa.filterTapHistory zfa.filteredSignal] . . .
595 = DetectorAdaptiveZF(constellationValues , . . .
596 meanSymbolAmpPhaseInverse∗sampledSignal. ' , . . .
597 thisDelta , . . .
598 zfa.filterTaps , . . .
599 trainingSequenceNone);
600

601 % Run the LMS algorithm without a training sequence
602 [msea.signalError msea.detectedSymbols msea.filterTaps . . .
603 msea.filterTapHistory msea.filteredSignal msea.feedbackFilterTaps] . . .
604 = DetectorAdaptiveMSE(constellationValues , . . .
605 meanSymbolAmpPhaseInverse∗sampledSignal. ' , . . .
606 thisDelta , . . .
607 msea.filterTaps , . . .
608 trainingSequenceNone, . . .
609 1, . . .
610 msea.feedbackFilterTaps , . . .
611 config.filterPeakIndex);
612

613 % Run the zero forcing algorithm with a training sequence of 40 symbols
614 [zfat.signalError zfat.detectedSymbols zfat.filterTaps . . .
615 zfat.filterTapHistory zfat.filteredSignal] . . .
616 = DetectorAdaptiveZF(constellationValues , . . .
617 meanSymbolAmpPhaseInverse∗sampledSignal. ' , . . .
618 thisDelta , . . .
619 zfat.filterTaps , . . .
620 trainingSequence40Symbols);
621

622 % Run the LMS algorithm with a training sequence of 40 symbols
623 [mseat.signalError mseat.detectedSymbols mseat.filterTaps . . .
624 mseat.filterTapHistory mseat.filteredSignal mseat.feedbackFilterTaps] . . .
625 = DetectorAdaptiveMSE(constellationValues , . . .
626 meanSymbolAmpPhaseInverse∗sampledSignal. ' , . . .
627 thisDelta , . . .
628 mseat.filterTaps , . . .

242 Chapter A Program developed for the experiment and simulation

629 trainingSequence40Symbols, . . .
630 1, . . .
631 mseat.feedbackFilterTaps , . . .
632 config.filterPeakIndex);
633

634 fprintf (' ZFA: %.4f ZFA(T): %.4f MSEA: %.4f MSEA(T): %.4f\n' , . . .
635 mean(abs(zfa.signalError)) ,mean(abs(zfat.signalError)) , . . .
636 mean(abs(msea.signalError)) ,mean(abs(mseat.signalError)));
637

638 %−−−
639 % Reset f i l t e r taps i f error increase since last deltaStep
640 %−−−
641 i f (deltaStepIdx == 1)
642 lastDelta.zfa.averageSignalError = mean(abs(zfa.signalError));
643 lastDelta.zfat.averageSignalError = mean(abs(zfat.signalError));
644 lastDelta.msea.averageSignalError = mean(abs(msea.signalError));
645 lastDelta.mseat.averageSignalError = mean(abs(mseat.signalError));
646 else
647 i f (lastDelta.zfa.averageSignalError > mean(abs(zfa.signalError)))
648 lastDelta.zfa.averageSignalError = mean(abs(zfa.signalError));
649 else
650 disp('zfa taps reset ! ') ;
651 zfa.filterTaps = lastDelta.zfa.filterTaps ;
652 end
653

654 i f (lastDelta.zfat.averageSignalError > mean(abs(zfat.signalError)))
655 lastDelta.zfat.averageSignalError = mean(abs(zfat.signalError));
656 else
657 disp(' zfat taps reset ! ') ;
658 zfat.filterTaps = lastDelta.zfat.filterTaps ;
659 end
660

661 i f (lastDelta.msea.averageSignalError > mean(abs(msea.signalError)))
662 lastDelta.msea.averageSignalError = mean(abs(msea.signalError));
663 else
664 disp('msea taps reset ! ') ;
665 msea.filterTaps = lastDelta.msea.filterTaps ;
666 msea.feedbackFilterTaps = lastDelta.msea.feedbackFilterTaps ;
667 end
668

669 i f (lastDelta.mseat.averageSignalError > mean(abs(mseat.signalError)))
670 lastDelta.mseat.averageSignalError = mean(abs(mseat.signalError));
671 else
672 disp('mseat taps reset ! ') ;
673 mseat.filterTaps = lastDelta.mseat.filterTaps ;
674 mseat.feedbackFilterTaps = lastDelta.mseat.feedbackFilterTaps ;
675 end
676 end
677

678 lastDelta.zfa.filterTaps = zfa.filterTaps ;
679 lastDelta.zfat.filterTaps = zfat.filterTaps ;
680 lastDelta.msea.filterTaps = msea.filterTaps ;
681 lastDelta.mseat.filterTaps = mseat.filterTaps ;
682 lastDelta.msea.feedbackFilterTaps = msea.feedbackFilterTaps;
683 lastDelta.mseat.feedbackFilterTaps = mseat.feedbackFilterTaps ;
684

685 % Cumulate the signal error history
686 zfa.signalErrorHistory = [zfa.signalErrorHistory zfa.signalError] ;
687 zfat.signalErrorHistory = [zfat.signalErrorHistory zfat.signalError] ;
688 msea.signalErrorHistory = [msea.signalErrorHistory msea.signalError] ;
689 mseat.signalErrorHistory = [mseat.signalErrorHistory mseat.signalError] ;
690

691 % Cumulate the average error history
692 zfa.averageErrorHistory = . . .
693 [zfa.averageErrorHistory mean(abs(zfa.signalError))] ;

A.3 Code used for the simulation 243

694 msea.averageErrorHistory = . . .
695 [msea.averageErrorHistory mean(abs(msea.signalError))] ;
696 zfat.averageErrorHistory = . . .
697 [zfat.averageErrorHistory mean(abs(zfat.signalError))] ;
698 mseat.averageErrorHistory = . . .
699 [mseat.averageErrorHistory mean(abs(mseat.signalError))] ;
700 end
701

702 %===
703 % Record the average error history
704 %===
705 i f (config.runRLSAAlgorithm)
706 thisResults.(fn).rle_ee (: ,betaIdx, targetReceiverIdx) = . . .
707 rlsa.averageErrorHistory ;
708 thisResults.(fn).rlet_ee (: ,betaIdx, targetReceiverIdx) = . . .
709 rlsat.averageErrorHistory ;
710 end
711 thisResults.(fn).zfa_ee(: ,betaIdx, targetReceiverIdx) = . . .
712 zfa.averageErrorHistory ;
713 thisResults.(fn).zfat_ee(: ,betaIdx, targetReceiverIdx) = . . .
714 zfat.averageErrorHistory ;
715 thisResults.(fn).msea_ee(: ,betaIdx, targetReceiverIdx) = . . .
716 msea.averageErrorHistory;
717 thisResults.(fn).mseat_ee(: ,betaIdx, targetReceiverIdx) = . . .
718 mseat.averageErrorHistory;
719

720 %===
721 % Record the standard deviation of the adaptive fi l tered signal
722 %===
723 i f (config.runRLSAAlgorithm)
724 rlsa.filteredSignalErrors = rlsa.filteredSignal − originalComplexSequence;
725 rlsat.filteredSignalErrors = rlsat.filteredSignal − originalComplexSequence;
726 end
727 zfa.filteredSignalErrors = zfa.filteredSignal − originalComplexSequence;
728 msea.filteredSignalErrors = msea.filteredSignal − originalComplexSequence;
729 zfat.filteredSignalErrors = zfat.filteredSignal − originalComplexSequence;
730 mseat.filteredSignalErrors = mseat.filteredSignal − originalComplexSequence;
731

732 i f (config.runRLSAAlgorithm)
733 rlsa.filteredSignalErrorStdDev = std(rlsa.filteredSignalErrors);
734 rlsat.filteredSignalErrorStdDev = std(rlsa.filteredSignalErrors);
735 end
736 zfa.filteredSignalErrorStdDev = std(zfa.filteredSignalErrors);
737 zfat.filteredSignalErrorStdDev = std(zfat.filteredSignalErrors);
738 msea.filteredSignalErrorStdDev = std(msea.filteredSignalErrors);
739 mseat.filteredSignalErrorStdDev = std(mseat.filteredSignalErrors);
740

741 i f (config.runRLSAAlgorithm)
742 thisResults.(fn).rlsa_std(betaIdx, targetReceiverIdx) = . . .
743 rlsa.filteredSignalErrorStdDev ;
744 thisResults.(fn).rlsat_std(betaIdx, targetReceiverIdx) = . . .
745 rlsat.filteredSignalErrorStdDev ;
746 end
747 thisResults.(fn).zfa_std(betaIdx, targetReceiverIdx) = . . .
748 zfa.filteredSignalErrorStdDev ;
749 thisResults.(fn).zfat_std(betaIdx, targetReceiverIdx) = . . .
750 zfat.filteredSignalErrorStdDev ;
751 thisResults.(fn).msea_std(betaIdx, targetReceiverIdx) = . . .
752 msea.filteredSignalErrorStdDev;
753 thisResults.(fn).mseat_std(betaIdx, targetReceiverIdx) = . . .
754 mseat.filteredSignalErrorStdDev ;
755

756 %===
757 % Record the symbol error of the adaptive fi l tered signal
758 %===

244 Chapter A Program developed for the experiment and simulation

759 i f (config.runRLSAAlgorithm)
760 rlsa.detectedSymbolsErrorCount = . . .
761 sum(rlsa.detectedSymbols − originalComplexSequence ~= 0);
762 rlsat.detectedSymbolsErrorCount = . . .
763 sum(rlsat.detectedSymbols − originalComplexSequence ~= 0);
764 end
765 zfa.detectedSymbolsErrorCount = . . .
766 sum(zfa.detectedSymbols − originalComplexSequence ~= 0);
767 zfat.detectedSymbolsErrorCount = . . .
768 sum(zfat.detectedSymbols − originalComplexSequence ~= 0);
769 msea.detectedSymbolsErrorCount = . . .
770 sum(msea.detectedSymbols − originalComplexSequence ~= 0);
771 mseat.detectedSymbolsErrorCount = . . .
772 sum(mseat.detectedSymbols − originalComplexSequence ~= 0);
773

774 i f (config.runRLSAAlgorithm)
775 thisResults.(fn).rlsa_symbolerr(betaIdx, targetReceiverIdx) = . . .
776 rlsa.detectedSymbolsErrorCount;
777 thisResults.(fn).rlsat_symbolerr(betaIdx, targetReceiverIdx) = . . .
778 rlsat.detectedSymbolsErrorCount;
779 end
780 thisResults.(fn).zfa_symbolerr(betaIdx, targetReceiverIdx) = . . .
781 zfa.detectedSymbolsErrorCount;
782 thisResults.(fn).zfat_symbolerr(betaIdx, targetReceiverIdx) = . . .
783 zfat.detectedSymbolsErrorCount;
784 thisResults.(fn).msea_symbolerr(betaIdx, targetReceiverIdx) = . . .
785 msea.detectedSymbolsErrorCount;
786 thisResults.(fn).mseat_symbolerr(betaIdx, targetReceiverIdx) = . . .
787 mseat.detectedSymbolsErrorCount;
788 end
789

790 %===
791 % Examine the cross−talk
792 %===
793 i f (config.examineCrossTalk)
794 fprintf (' . Examining the cross talk\n');
795 % Determine the index range of the received signal at which a signal
796 % would received desired to be transmitted to the cross talk location having the
797 % same duration as the transmitted signal for (1) before and (2) after the
798 % receiver f i l t e r .
799 %
800 [dummy crosstalkPeakIndex1] = max(. . .
801 filterData.(fn).fullResponseBB(: , crosstalkReceiverIdx , crosstalkReceiverIdx));
802 crossTalkSignalRangePreRXFilter = . . .
803 crosstalkPeakIndex1 . . .
804 + [1:symbolLength ∗ (length(txSignalInfo.PSK.complexSymbols) − 1)];
805

806 [dummy crosstalkPeakIndex2] = max(conv(. . .
807 filterData.(fn).fullResponseBB(: , crosstalkReceiverIdx , crosstalkReceiverIdx) , . . .
808 filterData.(fn).receiverFilterBBLS(: , crosstalkReceiverIdx)));
809 crossTalkSignalRangePostRXFilter = . . .
810 crosstalkPeakIndex2 . . .
811 + [1:symbolLength ∗ (length(txSignalInfo.PSK.complexSymbols) − 1)];
812

813 % Calculate the entire cross−talk on the target Receiver from a signal
814 % desired for the cross−talk receiver.
815 crosstalkReceiverSignal = conv(. . .
816 filterData.(fn).fullResponseBB(: , targetReceiverIdx , crosstalkReceiverIdx) , . . .
817 modulationSignalBB);
818

819 % Apply the receiver f i l t e r to the received signal
820 crosstalkReceiverSignalPostRXFilter = conv(. . .
821 crosstalkReceiverSignal , . . .
822 filterData.(fn).receiverFilterBB(: , targetReceiverIdx));
823

A.4 Thesis MATLAB library 245

824 measureCrosstalkPreRXSignalRMS = sqrt(mean(abs(crosstalkReceiverSignal) .^2));
825 measureCrosstalkPreRXSignalRMSTime = . . .
826 sqrt(mean(abs(crosstalkReceiverSignal(crossTalkSignalRangePreRXFilter)) .^2));
827 measureCrosstalkPostRXSignalRMS = . . .
828 sqrt(mean(abs(crosstalkReceiverSignalPostRXFilter) .^2));
829 measureCrosstalkPostRXSignalRMSTime = . . .
830 sqrt(mean(abs(. . .
831 crosstalkReceiverSignalPostRXFilter(crossTalkSignalRangePostRXFilter)) .^2));
832

833 % Record measurements
834 thisResults.(fn).crosstalk_prerx(betaIdx, targetReceiverIdx) = . . .
835 measureCrosstalkPreRXSignalRMS;
836 thisResults.(fn).crosstalk_postrx(betaIdx, targetReceiverIdx) = . . .
837 measureCrosstalkPostRXSignalRMS;
838 thisResults.(fn).crosstalk_postrx_rng(betaIdx, targetReceiverIdx) = . . .
839 measureCrosstalkPostRXSignalRMSTime;
840 end
841 end
842 thisResults.(fn).cputime(betaIdx) = filterData.(fn).cputimeFilterDesign ;
843 end
844 end
845 thisResults.times(betaIdx) = toc − tocStartBetaLoop;
846 tocStartBetaLoop = toc ;
847 end
848 thisResults.totaltime = toc ;

A.4 Thesis MATLAB library
The following MATLAB scripts form a library of functions used in the scripts
required to perform both Experiments 1 and 2.

A.4.1 BasebandToPassband.m
1 function outSignal = BasebandToPassband(inSignal , freqCarrier , freqSampling)
2 %USAGE: outSignal = BasebandToPassband(inSignal , freqCarrier , freqSampling)
3 %
4 % This function converts the three dimensinal complex signals , inSignal , from baseband to Passband
5 % using formula (4.1−14) given in [Proakis 2001], Section 4.1.1 , Page 151:
6 %
7 % s(t) = Re[s(l)e^{j2\pif_{c}t}
8 %
9

10 sampleLength = size(inSignal ,1);
11 outSignal = zeros(size(inSignal));
12 for j j = 1: size(inSignal ,2)
13 for kk = 1: size(inSignal ,3)
14 outSignal (: , jj ,kk) = real(inSignal (: , jj ,kk) . . .
15 .∗exp(j∗2∗pi∗(freqCarrier/freqSampling)∗[0:(sampleLength−1)]') . . .
16) ' ;
17 end
18 end

246 Chapter A Program developed for the experiment and simulation

A.4.2 BitSequenceToBlockValues.m
1 function outNumericalValues = BitSequenceToBlockValues(inSequence,blockSize)
2 %USAGE: outNumericalValues = BitSequenceToBlockValues(inSequence, blockSize)
3 %
4 % This function takes the input stream, inSequence, which should consist of binary values (0 or 1)
5 % and converts i t into a sequence of numerical values , outNumericalValues, made from blocks of
6 % blockSize bits .
7

8 % Convert into a row vector (in case i t wasn' t)
9 inSequence2 = inSequence(:) ' ;

10

11 % Append zeros so that we can resize i t easily
12 i f (rem(size(inSequence2,2) ,blockSize) > 0)
13 inSequence2 = [inSequence2 zeros(1 , blockSize−rem(size(inSequence2,2) ,blockSize))] ;
14 end
15

16 sequenceBlockMatrix = reshape(inSequence2,blockSize , fix (size(inSequence2,2)/blockSize));
17 outNumericalValues = (2 .^[blockSize−1:−1:0])∗sequenceBlockMatrix;

A.4.3 BitSequenceToComplexSequence.m
1 function outComplexSequence = . . .
2 BitSequenceToComplexSequence(inSequence,modulationMethod,modulationsSettings)
3 %USAGE: outComplexSequence = . . .
4 % BitSequenceToComplexSequence(inSequence,modulationMethod,modulationsSettings)
5 %
6 % This function takes the input stream, inSequence, which should consist of binary values (0 or 1)
7 % and converts i t into a sequence of complex values according modulation method given by the
8 % variable , modulationMethod. Extra settings for the modulation method can be provided through
9 % the variable , modulationsSettings.

10

11 i f strcmp(modulationMethod, 'DSB_PAM')
12 % Implementation of Pulse Amplitude Modulation (PAM)
13 % See [Proakis 2001] − Page 169, 4.3.1
14 k = modulationsSettings.k ;
15

16 % Split input stream into blocks of k bits
17 inSequenceBlocked = BitSequenceToBlockValues(inSequence,k);
18

19 % Convert each block into the grey encoded value :
20 greyMap = GreyEncodeMap(k);
21

22 % Normalise so the values are between −1 and 1.
23 greyMap = (greyMap∗2 − 2^k + 1) ./(2^k−1);
24

25 % Map the block values to complex values
26 outComplexSequence = greyMap(inSequenceBlocked+1);
27

28 elsei f strcmp(modulationMethod, 'PSK')
29 % Implementation of Phase Shift Keying
30 % See [Proakis 2001] − Page 171, 4.3.1
31 k = modulationsSettings.k ;
32

33 % Split input stream into blocks of k bits
34 inSequenceBlocked = BitSequenceToBlockValues(inSequence,k);
35

36 % Convert each block into the grey encoded value :
37 greyMap = GreyEncodeMap(k);
38

39 % Map the block values to complex values
40 inSequenceBlockedMapped = greyMap(inSequenceBlocked+1);
41

A.4 Thesis MATLAB library 247

42 % Create the complex vector
43 outComplexSequence = exp(j∗2∗pi∗(inSequenceBlockedMapped−1)/(2^k) + j∗modulationsSettings.addphase);
44

45 elsei f strcmp(modulationMethod, 'QAM')
46 % Implementation of Quadrature Amplitude Modulation
47 % See [Proakis 2001] − Page 174, 4.3.1 ,
48 % This method requires that a constellation map is provided.
49

50 k = modulationsSettings.k ;
51

52 % Split input stream into blocks of k bits
53 inSequenceBlocked = BitSequenceToBlockValues(inSequence,k);
54

55 % Map the block values to complex values
56 outComplexSequence = modulationsSettings.constellation(inSequenceBlocked+1). ' ;
57 end

A.4.4 CentralPeakSignalTrim.m
1 function outSignal = CentralPeakSignalTrim(inSignal ,trimdBLevel,blockSize)
2 %USAGE: outSignal = CentralPeakSignalTrim(inSignal ,trimdBLevel, blockSize)
3 %
4 % This function performs a trim about the peak value to the times at which the signals to less than
5 % timdBLevel dB, rounding up to integer values of blockSize.
6

7 [maxValue peakIndex] = max(abs(inSignal));
8

9 % ignore the log10(0) warnings.
10 warning off
11 minIndex = min(find(20∗log10(abs(inSignal) / maxValue) > trimdBLevel));
12 maxIndex = max(find(20∗log10(abs(inSignal) / maxValue) > trimdBLevel));
13 warning on
14

15 halfTrimRange = max([peakIndex − minIndex maxIndex− peakIndex]) ;
16 halfTrimRange = ceil (halfTrimRange/blockSize)∗blockSize ;
17

18 outSignal = inSignal(peakIndex + [−halfTrimRange:halfTrimRange−1]);

A.4.5 ComplexSequenceToSignal.m
1 function outSignalBB = ComplexSequenceToSignal(inComplexSequence, spectralShapingFilter ,symbolLength)
2 %USAGE: outSignalBB = ComplexSequenceToSignal(inComplexSequence, spectralShapingFilter ,symbolLength)
3 %
4 % This function takes the input sequence, inComplexSequence, which should consist of complex values
5 % and using the spectral shaping f i l ter , spectralShapingFilter , creates a base−band signal having
6 % symbols of symbolLength long. The spectral shaping f i l t e r must have been created for the specific
7 % symbolLength provided , and be an integer number symbol lengths.
8 %
9 % The output signal is formed from overlapping the signals in the matrix , i .e . the output should

10 % look like :
11 %
12 % outputSignalBB = [ms(1: sf l ,1) zeros(. . .)]
13 % + [zeros(1:1∗ s l) ms(1: sf l ,2) zeros(. . .)]
14 % + [zeros(1:2∗ s l) ms(1: sf l ,3) zeros(. . .)]
15 %
16 % where
17 % ms = matrixSymbolsShapedToSignals
18 % sf l = length(spectralShapingFilter)
19 % syl = symbolLength
20 % . . . is the zero−padding to the end of the matrix... (dependent on number of symbols)

248 Chapter A Program developed for the experiment and simulation

21 %
22 % However, since this requires a for loop to loop through every symbol, MATLAB can be rather slow at
23 % this process. To reduce the for−loop size , that calculations can equivalently implemented
24 % as:
25 %
26 % outputSignalBB = [ms([1: syl]+0,1) ms([1: syl]+0,2) ms([1: syl]+0,3) ms([1: syl]+0,4) . . .]
27 % + [0 , 0 ms([1: syl]+1,1) ms([1: syl]+1,2) ms([1: syl]+1,3) . . .]
28 % + [0 , , . 0 ms([1: syl]+2,1) ms([1: syl]+2,2) . . .]
29 % . . .
30

31 spectralShapingFilterLength = size(spectralShapingFilter ,2);
32 i f rem(spectralShapingFilterLength ,symbolLength) > 0
33 fprintf ('ERROR: The size of spectralShapingFilter is not a multiple of symbolLength. ') ;
34 end
35

36 % Generate base−band symbol waveforms
37 matrixSymbolsShapedToSignals = spectralShapingFilter. '∗inComplexSequence;
38

39 noSymbols = length(inComplexSequence);
40 outSignalBB = zeros((noSymbols∗symbolLength) + spectralShapingFilterLength ,1);
41

42 sourceRange = [1:symbolLength] ;
43 targetRange = [1:noSymbols∗symbolLength] ;
44 for symbolIntervalIndex = 1: fix (spectralShapingFilterLength/symbolLength)
45 offset = (symbolIntervalIndex−1)∗symbolLength;
46 targetSignals = matrixSymbolsShapedToSignals(sourceRange + offset , :) ;
47 outSignalBB(targetRange + offset) = outSignalBB(targetRange + offset) + targetSignals (:) ;
48 end

A.4.6 CreateInverseFilter.m
1 function [inverseIRFs , extraInfo] = CreateInverseFilter(inIRFs, filterType , filterSettings)
2

3 filterLength = size(inIRFs,1);
4 noChannelsOut = size(inIRFs,3);
5 noChannelsIn = size(inIRFs,2);
6 fprintf ('Creating Filter : %−25s ' , filterType);
7

8 switch filterType
9 case 'No Filtering ' %==

10 for i i = 1:noChannelsOut
11 for j j = 1:noChannelsIn
12 inverseIRFs(: , i i , j j) = i i==jj ;
13 end
14 end
15

16 case 'TimeReversal ' %==
17 for i i = 1:noChannelsOut
18 for j j = 1:noChannelsIn
19 inverseIRFs(: , i i , j j) = conj(inIRFs(filterLength:−1:1, jj , i i))/max(abs(inIRFs(: , jj , i i)));
20 end
21 end
22

23 case 'Tikhonov IF: Path' %==
24 % Put the IRF' s into the frequency domain...
25 for i i = 1:noChannelsOut; s (: , : , i i) = fft ([inIRFs(: , : , i i)]) ; end
26

27 maxval = max(abs(s (:))) ;
28

29 for ii_w = 1:filterLength
30 i f (rem(ii_w, floor(filterLength/50)+1) == 0) fprintf (' . ') ; end
31 %C_w− Frequency transfer matrix
32 %H_w− Inverse frequency transfer matrix

A.4 Thesis MATLAB library 249

33 % Essentially : h(i , j)=(abs(c(j , i))^2+beta∗maxval)^(−1)∗conj(c(j , i))
34 C_w= squeeze(s(ii_w, : , :)) ;
35 H_w(ii_w, : , :) = [([abs(C_w). '] . 2̂+filterSettings.beta∗maxval) .^(−1)].∗C_w' ;
36 end
37

38 % Convert the iIRF' s into the time domain...
39 for i i = 1:noChannelsIn; this_iIRF(: , : , i i) = i f f t (H_w(: , : , i i)) ; end
40

41 % apply a half temporal sh i f t . .
42 inverseIRFs = this_iIRF([floor(filterLength/2)+1:filterLength 1: floor(filterLength /2)] , : , :) ;
43

44 % Normalise the each f i l t ers (seperatly)
45 for i i = 1:noChannelsOut
46 for j j = 1:noChannelsIn
47 inverseIRFs(: , i i , j j) = inverseIRFs(: , i i , j j) ./max(abs(inverseIRFs(: , i i , j j)));
48 end
49 end
50

51 case 'Tikhonov IF: Channel ' %==
52 % Put the IRF' s into the frequency domain...
53 for i i = 1:noChannelsOut; s (: , : , i i) = fft ([inIRFs(: , : , i i)]) ; end
54

55 maxval = max(abs(s (:))) ;
56 for ii_w = 1:filterLength
57 i f (rem(ii_w, floor(filterLength/50)+1) == 0) fprintf (' . ') ; end
58 %C_w− Frequency transfer matrix
59 %H_w− Inverse frequency transfer matrix
60 C_w= squeeze(s(ii_w, : , :)) ;
61 this_H = [] ;
62 for j j = 1:noChannelsIn
63 C_row =C_w(jj , :) ;
64 warning off MATLAB:nearlySingularMatrix
65 this_H = [this_H inv(C_row'∗C_row+filterSettings.beta∗eye(noChannelsOut)∗maxval)∗C_row'] ;
66 warning on MATLAB:nearlySingularMatrix
67 end
68 H_w(ii_w, : , :) = this_H;
69 end
70

71 % Convert the iIRF' s into the time domain...
72 for i i = 1:noChannelsIn; this_iIRF(: , : , i i) = i f f t (H_w(: , : , i i)) ; end
73

74 % apply a half temporal sh i f t . .
75 inverseIRFs = this_iIRF([floor(filterLength/2)+1:filterLength 1: floor(filterLength /2)] , : , :) ;
76

77 % Then we normalise
78 for j j = 1:noChannelsIn
79 inverseIRFs(: , : , j j) = inverseIRFs(: , : , j j) ./max(max(abs(inverseIRFs(: , : , j j))));
80 end
81

82 case 'Tikhonov IF: Full MI−MO' %==
83 % Put the IRF' s into the frequency domain...
84 for i i = 1:noChannelsOut; s (: , : , i i) = fft ([inIRFs(: , : , i i)]) ; end
85

86 maxval = max(abs(s (:))) ;
87

88 for ii_w = 1:filterLength
89 i f (rem(ii_w, floor(filterLength/50)+1) == 0) fprintf (' . ') ; end
90 C_w= squeeze(s(ii_w, : , :)) ; % C(w) − transfer matrix
91

92 warning off MATLAB:nearlySingularMatrix
93 H_w(ii_w, : , :) = inv(C_w'∗C_w+ filterSettings.beta∗eye(noChannelsOut)∗maxval)∗C_w' ;
94 warning on MATLAB:nearlySingularMatrix
95 end
96

97 % Convert the iIRF' s into the time domain...

250 Chapter A Program developed for the experiment and simulation

98 for i i = 1:noChannelsIn; this_iIRF(: , : , i i) = i f f t (H_w(: , : , i i)) ; end
99

100 % apply a half temporal sh i f t . .
101 inverseIRFs = this_iIRF([floor(filterLength/2)+1:filterLength 1: floor(filterLength /2)] , : , :) ;
102

103 % Then we normalise
104 inverseIRFs = inverseIRFs/max(abs(inverseIRFs(:)));
105

106 case 'Milica : One−Side Filter ' %==
107 % Put the IRF' s into the frequency domain...
108 for i i = 1:noChannelsOut; s (: , : , i i) = fft ([inIRFs(: , : , i i)]) ; end
109

110 maxval = max(abs(s (:))) ;
111 gammas = sum(abs(s.^2),3);
112

113 for i i = 1:noChannelsOut
114 for j j = 1:noChannelsIn
115 H_w(: , i i , j j) = (gammas(: , j j) + filterSettings.beta∗maxval) .^(−1).∗conj(s (: , jj , i i)) ;
116 end
117 end
118

119 % Convert the iIRF' s into the time domain...
120 for i i = 1:noChannelsIn; this_iIRF(: , : , i i) = i f f t (H_w(: , : , i i)) ; end
121

122 % shift , and normalise.
123 this_iIRF = this_iIRF([floor(filterLength/2)+1:filterLength 1: floor(filterLength /2)] , : , :) ;
124 inverseIRFs = this_iIRF./max(abs(this_iIRF(:))) ;
125

126 case 'Milica : Two−Side Filter ' %==
127 % Put the IRF' s into the frequency domain...
128 for i i = 1:noChannelsOut; s (: , : , i i) = fft ([inIRFs(: , : , i i)]) ; end
129

130 maxval = max(abs(s (:))) ;
131 gammas = sum(abs(s.^2),3);
132

133 for j j = 1:noChannelsIn
134 H_w_0(: , j j) = (gammas(: , j j) + filterSettings.beta∗maxval) .^(−1/4);
135 end
136

137 for i i = 1:noChannelsOut
138 for j j = 1:noChannelsIn
139 H_w(: , i i , j j) = (gammas(: , j j) + filterSettings.beta∗maxval) .^(−3/4).∗conj(s (: , jj , i i)) ;
140 end
141 end
142

143 % Convert the iIRF' s into the time domain...
144 for i i = 1:noChannelsIn; this_iIRF(: , : , i i) = i f f t (H_w(: , : , i i)) ; end
145 this_iIRF_0 = i f f t (H_w_0);
146

147 % shift , and normalise.
148 this_iIRF_0 = this_iIRF_0([floor(filterLength/2)+1:filterLength 1: floor(filterLength/2)] , :) ;
149 this_iIRF = this_iIRF([floor(filterLength/2)+1:filterLength 1: floor(filterLength /2)] , : , :) ;
150 inverseIRFs = this_iIRF./max(abs(this_iIRF(:))) ;
151 extraInfo.rxFilter = this_iIRF_0./max(abs(this_iIRF_0(:))) ;
152

153 otherwise
154 fprintf ('Sorry ! ! Don' ' t know that type of f i l t e r . . . ') ;
155 end
156 fprintf ('\n');

A.4 Thesis MATLAB library 251

A.4.7 DetectorAdaptiveMSE.m
1 function [signalError detectedSymbols filterTaps filterTapHistory filteredSignal . . .
2 feedbackFilterTaps] = DetectorAdaptiveMSE(constellationValues ,sampledSignal , delta , . . .
3 filterTaps , trainingSequence , fractionalSpacing , . . .
4 feedbackFilterTaps , filterPeakIndex)
5 %USAGE: [signalError detectedSymbols filterTaps filterTapHistory filteredSignal . . .
6 % feedbackFilterTaps] = DetectorAdaptiveMSE(constellationValues ,sampledSignal , delta , . . .
7 % filterTaps , trainingSequence , fractionalSpacing , . . .
8 % feedbackFilterTaps , filterPeakIndex)
9 %

10 % This function implements the decision−feedback lease mean square (LMS) algorithm that is focused
11 % on the minimisation of the mean−square−error (MSE) . The adaptive LMS algorithm is described in
12 % greater detail in [Proakis 2001] Section 11.1.2 , pages 663−666. The algorithm is implemented as:
13 %
14 % filteredSignal_{k} = \sum_{j=−K_1}^{K_2} c_{j} ∗ sampledSignal_{k−j}
15 % + \sum_{j=0}^{K_d} d_{j} ∗ detectedSymbols_{k−j}
16 %
17 % and then the f i l t e r taps are updated according to :
18 %
19 % c_{j} = c_{j} + delta∗signalError(k)∗conj(sampledSignal_{k−j})
20 % d_{j} = d_{j} + delta∗signalError(k)∗conj(detectedSymbols_{k−j})
21 %
22 % where
23 %
24 % signalError_{k} = filteredSignal_{k} − detectedSymbol_{k}
25 %
26 % Note that this description varies from Proakis [2001] in that seperate coefficients are used for
27 % the feedforward , c_{j}, and the feedback , d_{j}, taps and introduces K_2 (which is set to 0 in
28 % Proakis [2001]) . This is because the non "decision−feedback" equaliser has K_d=0 and K_2 != 0.
29 %
30 % For this implementation, the vectors , filterTaps and feedbackFilterTaps contains the coefficients :
31 %
32 % filterTaps = [c_{0} c_{1} . . . c_{K−1} c_{K}] for filterPeakIndex = 1
33 % filterTaps = [c_{−1} c_{0} . . . c_{K−2} c_{K−1}] for filterPeakIndex = 2
34 % . . .
35 % filterTaps = [c_{−K} c_{−K+1} . . . c_{−1} c_{0}] for filterPeakIndex = K
36 % and
37 % feedbackFilterTaps = [d_(1) d_(2) . . .]
38 %
39 % where K is filterLength. before calling this function for the f irs t time, the variables ,
40 % filterTaps should be initialised such that c_{j} = (j==0)?1:0 and feedbackFilterTaps = 0.
41 %
42 % Note: To implement a DFE−MSE equaliser , filterPeakIndex with the feedforward only fi l tering
43 % the past and current symbols , then set filterPeakIndex = K.
44

45 filterLength = length(filterTaps);
46 feedbackFilterLength = length(feedbackFilterTaps);
47 trainingLength = length(trainingSequence);
48

49 sampledSignalZP = [zeros(filterLength−(filterPeakIndex−1)∗fractionalSpacing−1,1); . . .
50 sampledSignal ; . . .
51 zeros((filterPeakIndex−1)∗fractionalSpacing ,1)] ;
52

53 detectedSymbols = zeros(1, feedbackFilterLength);
54

55 sampleIndexFSHistory = [] ;
56 sampleIndex = 0;
57

58 % Cycle through al l fractional stepped values in input signal
59 for sampleIndexFS = 1:length(sampledSignalZP)−filterLength + 1;
60 i f mod(sampleIndexFS−1,fractionalSpacing) == 0
61 sampleIndexFSHistory = [sampleIndexFSHistory sampleIndexFS] ;
62 sampleIndex = sampleIndex + 1;
63

252 Chapter A Program developed for the experiment and simulation

64 % Apply f i l t e r
65 i f (feedbackFilterLength > 0)
66 filteredSignal(sampleIndex) = . . .
67 filterTaps∗sampledSignalZP([filterLength:−1:1]+sampleIndexFS−1) . . .
68 + feedbackFilterTaps∗detectedSymbols(sampleIndex−1+[feedbackFilterLength:−1:1]) . ' ;
69 else
70 filteredSignal(sampleIndex) = . . .
71 filterTaps ∗ sampledSignalZP([filterLength:−1:1]+sampleIndexFS−1);
72 end
73

74 filterTapHistory (: ,sampleIndex) = [filterTaps feedbackFilterTaps] ;
75

76 % Detect current symbol or use training symbol
77 i f (sampleIndex > trainingLength)
78 [dummy id] = min(abs(filteredSignal(sampleIndex)−constellationValues));
79 detectedSymbols(sampleIndex+feedbackFilterLength) = constellationValues(id);
80 else
81 detectedSymbols(sampleIndex+feedbackFilterLength) = trainingSequence(sampleIndex);
82 end
83 % Calculate the error
84 signalError(sampleIndex) = . . .
85 detectedSymbols(sampleIndex+feedbackFilterLength) − filteredSignal(sampleIndex);
86

87 % Update the f i l t e r taps
88 filterTaps = filterTaps . . .
89 + delta∗signalError(sampleIndex)∗sampledSignalZP([filterLength:−1:1] . '+sampleIndexFS−1)';
90 i f (feedbackFilterLength)
91 feedbackFilterTaps = feedbackFilterTaps . . .
92 + delta ∗ signalError(sampleIndex) . . .
93 ∗ conj(detectedSymbols([feedbackFilterLength:−1:1] . '+sampleIndex−1));
94 end
95 end
96 end
97 detectedSymbols = detectedSymbols(feedbackFilterLength+1:end);

A.4.8 DetectorAdaptiveRLS.m
1 function [signalError detectedSymbols filterTaps filterTapHistory filteredSignal . . .
2 feedbackFilterTaps] = DetectorAdaptiveRLS(constellationValues ,sampledSignal , delta , . . .
3 filterTaps , trainingSequence , fractionalSpacing , . . .
4 feedbackFilterTaps , filterPeakIndex)
5 %USAGE: [signalError detectedSymbols filterTaps filterTapHistory filteredSignal . . .
6 % feedbackFilterTaps] = DetectorAdaptiveRLS(constellationValues ,sampledSignal , delta , . . .
7 % filterTaps , trainingSequence , fractionalSpacing , . . .
8 % feedbackFilterTaps , filterPeakIndex)
9 %

10 % This function implements the recursive least square (RLS) algorithm that is described in [Proakis
11 % 2001] Section 11.4.1 , pages 683−686. The equations describing the algorithm are to extensive to
12 % include here.
13 %
14 % For this implementation, the vectors , filterTaps and feedbackFilterTaps contains the coefficients :
15 %
16 % filterTaps = [c_{0} c_{1} . . . c_{K−1} c_{K}] for filterPeakIndex = 1
17 % filterTaps = [c_{−1} c_{0} . . . c_{K−2} c_{K−1}] for filterPeakIndex = 2
18 % . . .
19 % filterTaps = [c_{−K} c_{−K+1} . . . c_{−1} c_{0}] for filterPeakIndex = K
20 % and
21 % feedbackFilterTaps = [d_(1) d_(2) . . .]
22 %
23 % where K is filterLength. before calling this function for the f irs t time, the variables ,
24 % filterTaps should be initialised such that c_{j} = (j==0)?1:0 and feedbackFilterTaps = 0.
25 %
26 % Note: To implement a DFE−MSE equaliser , filterPeakIndex with the feedforward only fi l tering

A.4 Thesis MATLAB library 253

27 % the past and current symbols , then set filterPeakIndex = K.
28

29 filterLength = length(filterTaps);
30 feedbackFilterLength = length(feedbackFilterTaps);
31 trainingLength = length(trainingSequence);
32

33 sampledSignalZP = [zeros(filterLength−(filterPeakIndex−1)∗fractionalSpacing−1,1); . . .
34 sampledSignal ; . . .
35 zeros((filterPeakIndex−1)∗fractionalSpacing ,1)] ;
36

37 detectedSymbols = zeros(1,feedbackFilterLength);
38

39 C = [filterTaps feedbackFilterTaps] . ' ;
40 P = eye(length(C));
41

42 sampleIndexFSHistory = [] ;
43 sampleIndex = 0;
44 for sampleIndexFS = 1:length(sampledSignalZP) − filterLength + 1;
45 i f mod(sampleIndexFS−1,fractionalSpacing) == 0
46 sampleIndexFSHistory = [sampleIndexFSHistory sampleIndexFS] ;
47 sampleIndex = sampleIndex + 1;
48

49 % Define the vector of samples used to perform the fi l tering on
50 i f (feedbackFilterLength)
51 Y = [sampledSignalZP([filterLength:−1:1] + sampleIndexFS − 1); . . .
52 detectedSymbols(sampleIndex − 1 + [feedbackFilterLength:−1:1]) . '] ;
53 else
54 Y = [sampledSignalZP([filterLength:−1:1] + sampleIndexFS − 1)];
55 end
56

57 % Perform the fi l tering for the current sample
58 filteredSignal(sampleIndex) = Y.'∗C;
59 filterTapHistory (: ,sampleIndex) = C. ' ;
60

61 % Detect current symbol or use training symbol
62 i f (sampleIndex > trainingLength)
63 [dummy id] = min(abs(filteredSignal(sampleIndex)−constellationValues));
64 detectedSymbols(sampleIndex+feedbackFilterLength) = constellationValues(id);
65 else
66 detectedSymbols(sampleIndex+feedbackFilterLength) = trainingSequence(sampleIndex);
67 end
68

69 % Calculate the error
70 signalError(sampleIndex) = . . .
71 detectedSymbols(sampleIndex+feedbackFilterLength) − filteredSignal(sampleIndex);
72

73 i f (delta > 0)
74 % Compute the Kalman gain vector
75 K = P∗conj(Y)/(delta + Y.'∗P∗conj(Y));
76

77 % Update the inverse of the correlation matrix
78 P = (1/delta)∗(P−K∗Y.'∗P);
79

80 % Update the f i l t e r taps
81 C = C + K∗signalError(sampleIndex);
82 end
83 end
84 end
85

86 % Retrieve the f i l t e r taps for returning to the calling function.
87 filterTaps = C(1: filterLength) . ' ;
88 feedbackFilterTaps = C(filterLength + [1: length(feedbackFilterTaps)]) . ' ;
89

90 detectedSymbols = detectedSymbols(feedbackFilterLength+1:length(detectedSymbols));

254 Chapter A Program developed for the experiment and simulation

A.4.9 DetectorAdaptiveZF.m
1 function [signalError detectedSymbols filterTaps filterTapHistory filteredSignal] = . . .
2 DetectorAdaptiveZF(constellationValues ,sampledSignal , delta , filterTaps , trainingSequence)
3 %USAGE: [signalError detectedSymbols filterTaps filterTapHistory filteredSignal] = . . .
4 % DetectorAdaptiveZF(constellationValues ,sampledSignal , delta , filterTaps , trainingSequence)
5 %
6 % This function implements the zero forcing (ZF) algorithm that is described in greater detail in
7 % [Proakis 2001] Section 11.1.1 , pages 661−662. The algorithm is implemented as:
8 %
9 % filteredSignal_{k} = \sum^{J}_{j=0} filterTaps_{j}∗sampledSignal_{k−j}

10 %
11 % and the f i l t e r taps are updated according to :
12 %
13 % filterTaps^{k+1}_{j} = filterTaps^{k}_{j} + delta ∗ signalError_{k} ∗ conj(detectedSymbols_{k−j})
14 %
15 % where
16 %
17 % signalError_{k} = filteredSignal_{k} − detectedSymbol_{k}
18 %
19

20 filterLength = length(filterTaps);
21 trainingLength = length(trainingSequence);
22

23 % Zero Pad sampledSignal
24 sampledSignalZP = [zeros(filterLength ,1); sampledSignal] ;
25 detectedSymbols = zeros(1, filterLength);
26

27 % Cycle through al l symbols in input signal
28 for sampleIndex = 1:length(sampledSignalZP)−filterLength ;
29

30 % Perform the fi l tering for the current sample
31 filteredSignal(sampleIndex) = filterTaps∗sampledSignalZP(sampleIndex+[filterLength:−1:1]);
32 filterTapHistory (: ,sampleIndex) = filterTaps ;
33

34 % Detect current symbol or use training symbol
35 i f (sampleIndex > trainingLength)
36 [dummy id] = min(abs(filteredSignal(sampleIndex)−constellationValues));
37 detectedSymbols(sampleIndex+filterLength) = constellationValues(id);
38 else
39 detectedSymbols(sampleIndex+filterLength) = trainingSequence(sampleIndex);
40 end
41

42 % Calculate the error
43 signalError(sampleIndex) = detectedSymbols(sampleIndex+filterLength)−filteredSignal(sampleIndex);
44

45 % Update the f i l t e r taps
46 filterTaps = filterTaps + . . .
47 delta∗signalError(sampleIndex)∗conj ([detectedSymbols(sampleIndex+[filterLength :−1:1])]);
48 end
49

50 detectedSymbols = detectedSymbols(filterLength+1:length(detectedSymbols));

A.4 Thesis MATLAB library 255

A.4.10 DetectorNonAdaptive.m
1 function [signalError detectedSymbols constellationValues] = . . .
2 DetectorNonAdaptive(modulationMethod,sampledSignalComponents,BasisInfo ,modulationSettings)
3 %USAGE: [signalError detectedSymbols constellationValues] = . . .
4 % DetectorNonAdaptive(modulationMethod,sampledSignalComponents,BasisInfo ,modulationSettings)
5 %
6 % This performs symbol detection on the sampled signal without the use of an adaptive equaliser.
7

8 constellationValues = GetConstellationValues(modulationMethod,BasisInfo ,modulationSettings);
9

10 constellationValueComponents(: ,1) = real(constellationValues);
11 constellationValueComponents(: ,2) = imag(constellationValues);
12

13 % Perform the euclidean distance calculations :
14 for (sampleIndex = 1: size(sampledSignalComponents,1))
15 for constelValueIndex = 1: size(constellationValueComponents,1)
16 constellationErrors(sampleIndex,constelValueIndex) = . . .
17 sqrt(sum([. . .
18 constellationValueComponents(constelValueIndex,:)−sampledSignalComponents(sampleIndex, :) . . .
19 ;] . ^2));
20 end
21 end
22 [signalError detectedSymbols] = min(constellationErrors , [] , 2) ;

A.4.11 FindSignalFirstPeak.m
1 function [peakIndex peakValueInverse] = FindSignalFirstPeak(inputSignal ,symbolLength)
2 %USAGE: [peakIndex peakValueInverse] = FindSignalFirstPeak(inputSignal ,symbolLength)
3 %
4 % This function returns the largest peak within 2 symbolLength' s after the signal goes above 0.3
5 % times the maximum level of the signal.
6

7 inputSignal = inputSignal (:) ;
8

9 peakSearchRangeStartIndex = min(find(abs(inputSignal) > 0.3∗max(abs(inputSignal))));
10 peakSearchRangeEndIndex = min(peakSearchRangeStartIndex + 2∗symbolLength, length(inputSignal));
11

12 [dummy peakIndex] = max(abs(inputSignal(peakSearchRangeStartIndex:peakSearchRangeEndIndex)));
13 peakIndex = peakSearchRangeStartIndex + peakIndex − 1;
14

15 peakValueInverse = inputSignal(peakIndex) .^−1;

A.4.12 GetConstellationValues.m
1 function constellationValues = GetConstellationValues(modulationMethod,BasisInfo ,modulationSettings)
2 %USAGE: constellationValues = GetConstellationValues(modulationMethod,BasisInfo ,modulationSettings)
3 %
4 % This function creates a complex vector that containing the complex values of the constellation
5 % for a modulation method.
6 %
7

8 i f strcmp(modulationMethod, 'DSB_PAM')
9 k = modulationSettings.k ;

10 M= 2^k;
11

12 greyEncodeMap = GreyEncodeMap(k);
13 complexSymbolVectors = (greyEncodeMap∗2 −M+ 1) ./(M−1)∗sqrt(BasisInfo.E_g/2);
14 constellationValues = complexSymbolVectors. ' ;
15

256 Chapter A Program developed for the experiment and simulation

16 elsei f strcmp(modulationMethod, 'PSK')
17 k = modulationSettings.k ;
18 M= 2^k;
19

20 greyEncodeMap = GreyEncodeMap(k);
21 complexSymbolVectors = exp(j∗2∗pi∗(greyEncodeMap−1)/M+ j∗modulationSettings.addphase);
22 constellationValues = complexSymbolVectors. ' ;
23

24 elsei f strcmp(modulationMethod, 'QAM')
25 complexSymbolVectors = bbgenstruc.constellation(1:M) ';
26 constellationValues = complexSymbolVectors. ' ;
27

28 else
29 error(sprintf('Modulation method, %s , not implemented\n' ,modulationMethod));
30 end

A.4.13 GreyDecodeMap.m
1 function greyDecodeMap = GreyDecodeMap(M)
2 %USAGE: greyDecodeMap = GreyDecodeMap(M)
3 %
4 % This function returns the map to obtain the original sequence of numbers from a grey−encoded
5 % numerical sequence.
6 %
7 % See the help for GreyEncodeMap for more information , and an example usage.
8

9 [a,greyDecodeMap] = sort(GreyEncodeMap(M));
10 greyDecodeMap = greyDecodeMap− 1;

A.4.14 GreyEncodeMap.m
1 function greyEncodeMap = GreyEncodeMap(M)
2 %USAGE: greyEncodeMap = GreyEncodeMap(M)
3 %
4 % This function generates a mapping so that numbers are mapped to binary numbers such that the
5 % variations between adjacent binary number contain only a single bit fluctuation :
6 %
7 % i.e .
8 % 0 −> 000 4 −> 111
9 % 1 −> 001 5 −> 110

10 % 2 −> 010 6 −> 101
11 % 3 −> 011 7 −> 100
12 %
13 % A simple algorithm for M bits was derived from the example presented in [Proakis 2001], Page 171.
14 % The algorithm involves using the previous map (M−1), and appending the previous map in reverse
15 % order , and the M' th bit to 1.
16 %
17 % The condition that only a single bit change occurs between each bit can easily be verified using
18 % Mathematical Induction. (Given the previous map satisfies the condition , that the reversal of the
19 % order of the map with a fixed additional bit also satisfies the condition ; andthe bits for the
20 % last value in the f irs t half and the f irs t value in the second half only contain a single bit
21 % change, then given that the map for M=1 satisfies the condition , then the map for M>1 must also
22 % satisfy the condition.)
23 %
24 %EXAMPLEUSAGE:
25 %
26 % greyEncodeMap = GreyEncodeMap(M);
27 % greyMappedNumericalSequence = greyEncodeMap(originalNumericalSequence + 1);
28 %
29 % %. . . transmission / reception...

A.4 Thesis MATLAB library 257

30 %
31 % greyDecodeEncodeMap = GreyEncodeMap(M);
32 % receivedNumericalSequence = greyDecodeEncodeMap(greyMappedNumericalSequence + 1);
33 %
34 % where originalNumericalSequence contains values between 0 and M,
35 % greyMappedNumericalSequence is the mapped sequence of values (also between 0 and M) ,
36 %
37 % Note that the '+ 1' is required since MATLAB indexes from 1 rather than 0.
38

39 greyEncodeMap = [0 1];
40 for i i = 1:(M− 1);
41 greyEncodeMap = [greyEncodeMap (greyEncodeMap(end:−1:1)+2^i i)] ;
42 end

A.4.15 MatrixConvolve.m
1 function matrixC = MatrixConvolve(matrixA,matrixB)
2 %USAGE: matrixC = MatrixConvolve(matrixA,matrixB)
3 %
4 % This function performs the matrix impulse response convolution.
5 %
6 % [matrixC] = [matrixA] [matrixB]
7 %
8 % where matrixC, matrixA and matrixB are 3−dimensional matricies. The f irs t dimension being time and
9 % the second and third dimensions those that get multiplied in normal matrix. The calculations

10 % performed by this function can be expressed in latex math notation as:
11 %
12 % c(: , i , j) = \sum_t (a(: , i , t) ∗ b(: , t , j))
13

14 i f (size(matrixA,3) ~= size(matrixB,2))
15 error('Sorry, the dimensions don' ' t add up');
16 end
17

18 matrixC = zeros(size(matrixB,1)+size(matrixA,1)−1,size(matrixA,2) , size(matrixB,3));
19

20 for i_m = 1: size(matrixA,2)
21 for i_n = 1: size(matrixB,3)
22 for i_t = 1: size(matrixA,3)
23 matrixC(: ,i_m,i_n) = matrixC(: ,i_m,i_n) + conv(matrixA(: ,i_m,i_t) ,matrixB(: , i_t,i_n));
24 end
25 end
26 end

A.4.16 PassbandToBaseband.m
1 function outIRFsBB = PassbandToBaseband(inIRFs,freqSampling, freqCarrier)
2 %USAGE: outIRFsBB = PassbandToBaseband(inIRFs, freqSampling , freqCarrier)
3 %
4 % This function uses the f f t function to shift impulse responses from passband to baseband.
5 % [Proakis 2001] page 153, Eq. 4.1−26 defines that :
6 %
7 % H_l(f−f_c) = { H(f) for f > 0
8 % { 0 for f < 0
9 %

10 % where H is the frequency response of the impulse responses. Setting
11 %
12 % fdash = f−f_c
13 %
14 % this becomes:
15 %

258 Chapter A Program developed for the experiment and simulation

16 % H_l(fdash) = { H(fdash+f_c) for fdash > f_c
17 % { 0 for fdash < f_c
18 %
19 % Now the f f t and i f f t function convert a time−based signal into a frequency based signal according
20 % to :
21 %
22 % 0 1 . . . noSamples/2
23 % [H(0) H(f_s/N) H(2∗f_s/N) . . . H((N/2−1)∗f_s/N) . . .
24 %
25 % 1+noSamples/2 2+noSamples/2 . . . noSamples
26 % H(−f_s/2) H(−(N/2−1)∗f_s/N) . . . H(fs/N)]
27 %
28 % where
29 % N is the number of time−samples being converted
30 % f_s is the sample rate.
31 %
32 % Using the above relationship between H_l(f) and H(f) , the values are mapped as follows :
33 %
34 % f_s/2−f_s/N
35 % f_c |
36 % | |
37 % H(f) [++++++++++++++++++++++++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
38 % |−−−− R2−−−−||−−−−−− R1−−−−−−|
39 % | | i1 i2
40 % i3 i4
41 %
42 %
43 % H_l(f) [++++++++++++++++++++++++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
44 % |−−−−−− R1−−−−−−| 0 0 |−−−− R2−−−−|
45 % i1 i2 i3 i4
46 %
47

48 noSamples = size(inIRFs,1);
49

50 index1 = ceil (freqCarrier/freqSampling∗noSamples);
51 index2 = noSamples/2;
52

53 index3 = 1;
54 index4 = index1 − 1;
55

56 noZeros = noSamples − (index2 − index1 + 1) − (index4 − index3 + 1);
57

58 for i i = 1: size(inIRFs,3)
59 for j j = 1: size(inIRFs,2)
60 fftIRFs = fft (inIRFs(: , jj , i i)) ;
61 fftIRFsBB = [fftIRFs(index1: index2) ; zeros(noZeros,1) ; fftIRFs(index3: index4)] ;
62 outIRFsBB(: , jj , i i) = i f f t (fftIRFsBB);
63 end
64 end

A.4 Thesis MATLAB library 259

A.4.17 RaisedCosineFrequencySpectrum.m
1 function outSpectrum = RaisedCosineFrequencySpectrum(frequencyValues ,symbolPeriod,beta)
2 %USAGE: outSpectrum = RaisedCosineFrequencySpectrum(frequencyValues ,symbolPeriod, beta)
3 %
4 % This function returns the frequency spectrum for a raised−cosine waveform. The formulas used are
5 % those given by [Proakis 2001] on page 560, Equation. 9.2−29:
6 %
7 % X_{rc}(f) = { T for 0 <= | f | <= (1−beta)/(2T)
8 % { (T/2)(1+cos((phi∗T/beta)∗(| f | − ((1−beta)/(2T)))))
9 % for (1−beta)/(2T) < | f | <= (1+beta)/(2T)

10 % { 0 for (1+beta)/(2T) < | f |
11 %
12 %
13 for freqIdx = 1:length(frequencyValues)
14 frequency = frequencyValues(freqIdx);
15 i f abs(frequency)>= 0 && abs(frequency) < (1−beta)/(2∗symbolPeriod)
16 outSpectrum(freqIdx) = symbolPeriod;
17

18 elsei f (1−beta)/(2∗symbolPeriod)<=abs(frequency) && abs(frequency)<=(1+beta)/(2∗symbolPeriod)
19 outSpectrum(freqIdx) = . . .
20 (symbolPeriod/2) . . .
21 ∗ (1 + cos((pi∗symbolPeriod/beta)∗(abs(frequency)−(1−beta)/(2∗symbolPeriod))) . . .
22);
23

24 else
25 outSpectrum(freqIdx) = 0;
26

27 end
28 end

A.4.18 ResampleIRFs.m
1 function outIRFs = ResampleIRFs(inIRFs,freqTo,freqFrom)
2 for i i = 1: size(inIRFs,2)
3 for j j = 1: size(inIRFs,3)
4 outIRFs(: , i i , j j) = . . .
5 resample(real(inIRFs(: , i i , j j)) ,freqTo,freqFrom) . . .
6 + i ∗ resample(imag(inIRFs(: , i i , j j)) ,freqTo,freqFrom);
7 end
8 end

A.4.19 SignalPhaseEstimatorPassbandToBaseband.m
1 function [basebandSignal maxValIdx phiPeak gain] = . . .
2 SignalPhaseEstimatorPassbandToBaseband(receivedSignal , freqCarrier , freqSampling, lowPassFilter , . . .
3 symbolLength)
4 %USAGE: [basebandSignal maxValIdx phiPeak gain] = . . .
5 % SignalPhaseEstimatorPassbandToBaseband(receivedSignal , freqCarrier , freqSampling , lowPassFilter , . . .
6 % symbolLength)
7 %
8 % This function takes a passband signal that is the response of a signal resulting from a baseband
9 % signal commencing with a value of '1 ' . The received passband signal is converted to baseband, and

10 % the f irs t peak is used to perform a phase estimate , phiPeak, for the entire received signal. This
11 % function also returns the index of the maximum peak in order to provide a form of synchronisation.
12 %
13

14 receivedSignalLength = size(receivedSignal ,1);
15

16 receivedSignalSin = (receivedSignal ' .∗sin(2∗pi∗freqCarrier/freqSampling∗[0:(receivedSignalLength−1)]));

260 Chapter A Program developed for the experiment and simulation

17 receivedSignalCos = (receivedSignal ' .∗cos(2∗pi∗freqCarrier/freqSampling∗[0:(receivedSignalLength−1)]));
18

19 basebandSignal = conv(receivedSignalCos+i∗receivedSignalSin , lowPassFilter);
20

21 % To find the peak, set an index at a trigger when signal f i rs t goes above 0.4∗max peak in signal
22 % then find peak level in 0:symbolLength following this point.
23

24 absSignal = abs(basebandSignal);
25 triggerIdx = min(find(absSignal > 0.4 ∗ max(absSignal)));
26 [maxVal maxValIdx] = max(absSignal(triggerIdx + [0:symbolLength])) ;
27 maxValIdx = triggerIdx + maxValIdx− 1;
28

29 gain = abs(1/basebandSignal(maxValIdx));
30 phiPeak = angle(basebandSignal(maxValIdx));
31 basebandSignal = basebandSignal/basebandSignal(maxValIdx);

B Figure Attributions

This thesis includes figures that are artwork created by other people or a
modified / digitised version thereof. For the following figures, attribution is
as follows:

Figure 3.9 “Modern french double horn in F/B-flat and Kruspe valve or-
dering (Besson BE 702), seen from back”, Hk kng http://commons.
wikimedia.org/wiki/File:French_Horn_back.svg. Licensed under
the Creative Commons Attribution ShareAlike 3.0 Licence.

Figure 3.9 “An icon from the GNOME-icon-theme”, 2007 GNOME icon
artist, http://commons.wikimedia.org/wiki/File:Gnome-multimedia-player.
svg. Licensed under the GNU General Public License.

Figure 5.14 Images of computer and server adapted from the Tango icon
library http:///tango.freedesktop.org/Tango_Icon_Library. The
Tango base icon theme is released to the Public Domain.

261

	TITLE PAGE: THE APPLICATION OF TIKHONOV REGULARISED INVERSE FILTERING TO DIGITAL COMMUNICATION THROUGH MULTI-CHANNEL ACOUSTIC SYSTEMS
	Abstract
	Statement of originality
	Acknowledgements
	Contents
	List of Figures

	Chapter 1 Introduction
	Chapter 2 Background Theory
	Chapter 3 Literature Review
	Chapter 4 Influences of amplifier sensitivities on Tikhonov inverse filtering
	Chapter 5 Experiment and Simulation
	Chapter 6 Performance of Tikhonov regularised inverse filter design structures
	Chapter 7 Conclusions and Future Work
	References
	Appendices
	Appendix A.1 Program developed for the experiment and simulation
	Appendix A.2 Code used for the experiment using inverse filter designs in an air-acoustic channel
	Appendix A.3 Code used for the simulation
	Appendix A.4 Thesis MATLAB library
	Appendix B Figure Attributions

