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Abstract

Communication between underwater vessels such as submarines is difficult
to achieve over long distances using radio waves because of their high rate of
absorption by water. Using underwater acoustic wave propagation for digital
communication has the potential to overcome this limitation. In the last 30
years, there have been numerous papers published on the design of com-
munication systems for shallow underwater acoustic environments. Shallow
underwater acoustic environments have been described as extremely difficult
media in which to achieve high data rates. The major performance limita-
tions arise from losses due to geometrical spreading and absorption, ambient
noise, Doppler spread and reverberation from surface and seafloor reflections
(multi-path), with the latter being the primary limitation. The reverberation
from multi-path in particular has been found to be very problematic when
using the general communication systems that have been developed for radio
wave communication systems.

In the early 1990s, the principal means of combating multi-path in the
shallow underwater environment was to use non-coherent modulation tech-
niques. Coherent techniques were found to be challenging due to the diffi-
culty of obtaining a phase-lock and also that the environment was subject
to fading. Designs have since been presented that addressed both of these
problems by using a complex receiver design that involved a joint update
of the phase-lock loop and the taps of the decision feedback filter (DFE). In
recent years a technique known as time-reversal has been investigated for use
in underwater acoustic communication systems. A major benefit of using the
time-reversal filter in underwater acoustic communication systems is that it
can provide a fast and simple method to provide a receiver design of low
complexity.

A technique that can be related to time-reversal and possibly used in un-
derwater acoustics is Tikhonov regularised inverse filtering. The Tikhonov
regularised inverse filter is a fast method of obtaining a stable inverse fil-
ter design by calculating the filter in the frequency domain using the fast
Fourier transform, and was originally developed for use in audio reproduc-
tion systems. Previous research has shown that the Tikhonov regularised
inverse filter design outperformed time-reversal when using a Dirac impulse
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transmission within a simulated underwater environment. This thesis aims
to extend the previous work by examining the implementation of Tikhonov
regularised inverse filtering with communication signals. In addressing this
goal, two topics have been examined: the influence of the sensitivities in
the filter designs, and an examination of various design implementations for
Tikhonov regularised inverse filtering and similar filtering techniques.

The influence of transducer sensitivities on the
Tikhonov regularised inverse filter
During the implementation of the Tikhonov regularised inverse filter it was
observed that both the Tikhonov regularised inverse filter and the time-
reversal filter were influenced by the sensitivity of the transducers to the
acoustic signals, which is determined by the transducer design and the amp-
lifying stages. Unlike single channel systems, setting the sensitivities of the
transducers to their maximum value for multi-channel systems does not al-
ways maximise the coherence between the input and output of the entire sys-
tem consisting of the inverse filter, the sensitivities and the electro-acoustic
system where the channel is the electro-acoustic transfer function between the
transmitter and receiver. The influence the sensitivities have on the perform-
ance of the multi-channel Tikhonov regularised inverse filters and the time-
reversal filter was examined by performing a mathematical examination of
the system. An algorithm was developed that adjusted gains to compensate
for the decrease in performance that results from the poor sensitivities. To
test the algorithm, a system with an inappropriate set of sensitivities was
examined. The performance improvement of the communication system was
examined using the generated gains to scale the signal. The algorithm was
found to reduce the signal degradation and cross-talk. If the gains were used
in the digital domain (after the analog to digital and before the digital to
analog converters) then the quality of the signal was improved at the expense
of the signal level.

During this examination it was found that the time-reversal filter is equi-
valent to the Tikhonov regularised inverse filter with infinite regularisation.

Variations of the Tikhonov regularised inverse
filter and performance comparisons
In this thesis, various design structures for the implementation of the Tik-
honov inverse filter were proposed and implemented in an experimental di-
gital communication system that operated through an acoustic environment
in air. It was shown that the Tikhonov inverse filter and related filter design
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structures could be classified or implemented according to three different
classifications. The Tikhonov inverse filter was implemented according to
each of these classifications and then compared against each other, as well
as against two other filter designs discussed in the literature: time-reversal
filtering, and the two-sided filter developed by Stojanovic [2005]. Due to
the number of parameters that could be varied, it was difficult to identify
the influence each parameter had on the results independently of the other
parameters. A simulation was developed based on a model of the experiment
to assist in identifying the influences of each parameter. The parameters ex-
amined included the number of transmitter elements, carrier frequency, data
rate, and the value of the regularisation parameter.

When the communication system consisted of a signal receiver, the Sto-
janovic two-sided filter generally outperformed the Tikhonov regularised in-
verse filter designs when communicating. However, at higher data rates,
the Stojanovic two-sided filter required the addition of a regularisation para-
meter to allow it to continue to operate. However, given an appropriately
selected regularisation parameter, the difference between the performance of
the Tikhonov filter and the Stojanovic two-sided filter was minimal.

When performing multi-channel communications, the full MIMO imple-
mentation of the Tikhonov regularised inverse filter design was shown to have
the best performance. For the environment considered, the Tikhonov regu-
larised inverse filter was the only design that was able to eliminate all symbol
errors.
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