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Abstract

Multi-target tracking is a problem that involves estimating target states from noisy data whilst
simultaneously deciding which measurement was produced by each target. The Probabilistic
Multi-Hypothesis Tracker (PMHT) is an algorithm that solves the multi-target tracking problem.
This thesis presents extensions to the PMHT to address problems that may arise in the use of
real sensors and considers multi-target tracking techniques for use in other applications such as
autonomous vehicles.

It is generally assumed that a sensor collects a set of noisy position measurements at known
times. In some situations, the time information may not be reliable and cause filtering issues.
This thesis derives an extension to the PMHT that introduces an assignment index that identifies
the true time at which a measurement was collected. This extension of the PMHT allows for
tracking on measurements with time errors, such as time delays. A further extension allows the
PMHT algorithm to simultaneously estimate the time error parameters whilst tracking targets.

The above extension is applied to the problem of planning paths for multiple platforms to
explore an unknown area. Given a set of locales to be visited and the platform initial positions,
the path planning problem has the same mathematical form as a multi-target tracking problem,
with locales as measurements and the platforms as targets. The extended PMHT algorithm uses
hypothesised time-stamps to associate locales to platforms and times simultaneously.

Autonomous vehicles are expected to use information from their sensors to navigate and
map their environment. Simultaneous localisation and mapping (SLAM) is the name given
to this task and is essentially a multi-target tracking problem. This thesis proposes the use
of PMHT and landmark classification information received with measurements to improve the
performance of SLAM.
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