CO₂-ASSISTED GRAVITY DRAINAGE EOR: NUMERICAL SIMULATION AND SCALING MODELS STUDY

A thesis

Submitted in the fulfilment of the requirements for the degree of

Doctor of Philosophy in Petroleum Engineering

By

Prashant Jadhawar

B. Eng. in Petroleum Eng., University of Pune, IndiaM. Eng. in Petroleum Eng., University of Pune, IndiaM. Phil. in Petroleum Eng., Heriot-Watt University, UK

Australian School of Petroleum Faculty of Engineering, Chemical and Mathematical Sciences (ECMS) The University of Adelaide, Australia

September 2010

ABSTRACT

Increasing demand of the oil and gas have given rise to surge in drilling and exploration activities to recover oil from other unexplored oil-bearing formations (such as offshore) as well as in the efforts to improve and/or modify the existing methods of the enhanced oil recovery to recover the residual oil left-behind by the applied EOR method. Nearly one-third volume of the original oil in place (OOIP) is left-behind by the current EOR technologies. Estimated 2 trillion barrels of this volume is lucrative to cater the energy needs of the respective countries. Gas injection EOR method is a major contending process in exploitation of this resource, and its application is on the rise since last decade. Continuous gas injection (CGI) and water-alternating gas (WAG) injection are the most notable and commonly field-implemented horizontal displacement type gas injection EOR processes. The limitations of CGI are the severe gravity segregation and poor sweep efficiencies. Although the reservoir sweep efficiencies are improved with the WAG, review of 59 field projects suggest that they yield only maximum of 10% incremental oil recoveries due to the detrimental effects of increased water saturation to diminish gas injectivity, reducing oil mobility, decreased oil relative permeability and oil bypassing due to gravity segregation. Conversely, vertical downward oil-displacement gas driven gravity drainage EOR methods uses the gravity forces to its advantage for enhancing the oil recovery. Gravity drainage EOR methods have been applied to dipping and reef type reservoirs in the field projects and reported to yield high incremental oil recoveries.

In this study, the CO₂-assisted gravity drainage EOR method is investigated in the non-dipping reservoir through the 3D reservoir simulations and scaling and the sensitivity analysis. Both the compositional and pseudomiscible black-oil numerical reservoir simulations are conducted in the 50 and 35 °API gravity oil-reservoirs respectively. Main objectives of this research are to (i) develop a better production strategy for the oil recovery optimization (ii) investigate the options to optimize oil recovery in the CO₂-assisted gravity drainage EOR process (numerical simulation studies) (iii) to develop a set of scaled models sufficient to completely scale the CO₂-assisted gravity drainage EOR process through the scaling and sensitivity studies.

Original contributions of this research are (i) First comprehensive demonstration of the CO₂-assisted gravity drainage EOR method application in 50 °API gravity oil-reservoir, (ii) Development and verification of a new hypothesis of the horizontal gas floodfront in

the top-down CO₂-assisted gravity drainage EOR process, (iii) Development of a general process selection map for the preliminary choice between the immiscible and miscible process, (iv) Grid size effect studies: Changes in both the x and y grid-dimensions has no impact on the CO₂-assisted gravity drainage oil recovery, (v) Grid thickness effect studies: Thin layers, even in the upper layers, facilitates the optimum CO_2 -assisted gravity drainage oil recovery (vi) Heterogeneity in permeability effect: Presence of heterogeneity in permeability ($k_v / k_v = 0.001$) improves the CO₂-assisted gravity drainage oil recovery performance (95.5% incremental oil recovery) thereby reducing the number of pore volumes and the operational time. It has been found that recovery further improves when the molecular diffusion effects are taken into account, (vii) Heterogeneity in porosity: Porosity values increasing downwards, such as in the overturned faults, promotes the CO₂assisted gravity drainage mechanism to yield better oil recovery performance, (viii) Clear identification of the overall mechanisms and the supporting micro-mechanisms through the parametric analysis of the reservoir simulation results, (ix) Development of a new correlation (combination number, NJadhawar and Sarma) that encompasses the traditional process affecting multiphase operational parameters in the form of the dimensionless groups. It is further validated using the field projects including the data from the Oseberg field, Norway. Excellent logarithmic correlation match is obtained between the new combination number, N_{Jadhawar and Sarma}, and the oil recoveries from both the immiscible and miscible reservoir simulations as well as the field projects. New combination number, N_{Jadhawar and} s_{arma} , is a useful tool to predict CO₂-assisted gravity drainage oil recoveries, and (x) Development of a set of the additional scaled models sufficient to completely scale the CO₂-assisted gravity drainage EOR process are proposed and validated.

DEDICATION

I wholeheartedly dedicate this PhD research-work to my beloved brother Late Pravin, who will not be able to see the day of my memorable success for which we strived since our childhood. His unselfish character of offering the helping hand whenever needed, passionate and vibrant support to me and my family will be remembered until the last breath of my life.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude towards my principal supervisor Professor (Dr) Hemanta Sarma for his meaningful discussions, insightful suggestions, longstanding support and guidance throughout the PhD project. I gratefully acknowledge his contribution in teaching and imbibing the peculiarities of the research project, researchethics, minute technical aspects of the research project, social aspects, constant encouragement and mentoring during the difficult end-phase of my PhD research. Thank you for believing me and creating self-belief in me. His positive goodwill towards me and my family is sincerely appreciated. His caring character will be cherished throughout the all walks of life.

I gratefully appreciate my close friend Dr Madhav Kulkarni for the week-end telephone conversations that further helped to improve my understanding of the project. His contribution will also be remembered in the long-way. I also appreciate my friend Dr. Mohan Kolhe for reviewing thesis for language, formatting etc in the last leg.

I would like to thank Mr Anjani Kumar, Mr Satya Singh, Mr Ron Kutney and Mr Don Dexter of the Computer Modelling Group for their valuable help and technical suggestions regarding the CMG's IMEX and GEM simulators, as well as multiphase properties simulation program WinProp.

I also thank Dr Motiur Rahman, Dr Ric Daniel and Dr Manucher Haghighi for their support during my PhD studies. I certainly do appreciate the moral support and the useful inputs from my colleagues and friends, Bernardus Wahyuputro, Dr Saju Menacherry, Syamol Das, Dr Jan Bon, Jacque Sayers and Zeeshan Mohiuddin.

This acknowledgement cannot be complete without mentioning an outstanding and caring support from my wife Mrs Jyoti. Unbelievably she has been my effective mentor in all aspects all along my PhD studies. Moreover, unselfish questions of my daughter Manasi about the timeline of finishing my PhD studies energized me to deliver the PhD thesis at the earliest. Thanksgiving to them in this regard is rarest opportunity.

Without the blessings of my parents, this work could not have been complete. Lots of thanks to them for showing me this beautiful world and providing the timely advises.

Thanks to my elder sister, brother-in-law and their sons for taking care of my parents since the sad demise of my beloved younger brother, Pravin in the last leg of my PhD.

This PhD research could not have been reality without the Santos postgraduate scholarship from the Australian School of Petroleum towards the tuition fees, the living cost and the health insurance. I sincerely thank and gratefully appreciate Prof Steve Begg, Dr Andy Mitchell and Maureen for all the possible help and support in this regard. Also thanks to Maxine for providing administrative support and Ian West for IT support during the candidature. I also gratefully acknowledge my supervisor Prof Hemanta Sarma for financing three conferences expenses through his CIPR funds, which helped further to hone my presentation skills at the International levels.

STATEMENT OF ORIGINALITY

The work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institutions and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subjected to the provisions of the Copyright Act 1968.

Prashant Jadhawar Australian School of Petroleum The University of Adelaide Adelaide, South Australia, Australia.

PUBLISHED PAPERS FROM THIS WORK

Journal Papers

- 1. Jadhawar, P.S. and Sarma, H.K., **2010**. *Improved Production Strategy for Enhancing the CO*₂-Assisted Gravity Drainage Oil Recovery, Journal of Petroleum Science and Engineering (JPSE) (Under review).
- Jadhawar, P.S. and Sarma, H.K., 2010. Improved Production Strategy for Enhancing the CO₂-Assisted Gravity Drainage Oil Recovery, SPE Reservoir Evaluation and Engineering (Under review).
- Jadhawar, P.S. and Sarma, H.K., 2010. Numerical Simulation and Sensitivity Analysis of Gas-Oil Gravity Drainage Process of Enhanced Oil Recovery, Journal of Canadian Petroleum Technology, Calgary, Canada; 49 (2), 64-70; February.

Conference Presentations

- Jadhawar, P.S. and Sarma, H.K., 2010. Improved Production Strategy for Enhancing the Immiscible and Miscible CO₂-Assisted Gravity Drainage Oil Recovery, to be presented at the SPE 2010 International Oil and Gas Conference and Exhibition China (IOGCEC), Beijing, China, June 8-10.
- Jadhawar, P.S. and Sarma, H.K., 2008a. CO₂-Assisted Gravity Drainage Enhanced Oil Recovery (GAGD-EOR) in Australian Reservoirs: Reservoir Simulation and Scaled Model Studies, 2008 AIE Postgraduate Student Energy Awards Sydney, Australia; Nov 18.
- Jadhawar P.S., Sarma H.K. 2008. Scaling and Sensitivity Analysis of Gas-Oil Gravity-Drainage EOR. Presented at the 2008 SPE Asia Pacific Oil & Gas Conference and Exhibition Perth, Australia, 20–22 October.
- Jadhawar P.S., Sarma H.K. 2008. Numerical Simulation and Sensitivity Analysis of Gas-Oil Gravity Drainage Process of Enhanced Oil Recovery, Canadian International Petroleum Conference, Calgary, Canada, June 17-19.

TABLE OF CONTENTS

AB	ST	RA	ACTII
DE	DIC	AT	TIONIV
ACKNOWLEDGEMENTv			
ST	ATE	CMI	ENT OF ORIGINALITY VII
TA	BLF	E O	F CONTENTSIX
LIS	ST O	F F	FIGURES XIV
LIS	ST O	F T	TABLES
NO	ME	NC	CLATURE
1.		IN	TRODUCTION1
1.1		BA	CKGROUND1
1.2		M	OTIVATION
1.3		KN	NOWLEDGE GAP
1.4		Sc	OPE OF THE STUDY
1.5		RE	SEARCH OBJECTIVES
	1.5.	1	Numerical Simulation Studies:
	1.5.	2	Scaling and Sensitivity Studies:
1.6		Οι	JTLINE OF THE THESIS7
2.		LI	TERATURE REVIEW9
2.1		EN	HANCED OIL RECOVERY (EOR)
2.2		GA	AS INJECTION EOR METHODS10
	2.2.	1	Classification of Gas Injection EOR Methods11
	2.2.	2	Choice of the Injection Gas
	2.2.	3	CO2 EOR: Mechanisms and Processes
	2.2.	4	Summary of the Worldwide CO ₂ -EOR Projects15
	2.2.	5	Australian CO ₂ -EOR Potential
2.3		CC	D2-ASSISTED GRAVITY DRAINAGE EOR PROCESS
	2.3.	1	Gravity Drainage: Process Definition and Classification
	2.3.	2	Process Description
	2.3.	3	Gravity Drainage: Fundamental Concepts and Models
	2.3.	4	Operational Parameters affecting CO ₂ -Assisted Gravity Drainage EOR
			Processes
	2.	3.4.	1 Gas injection and oil production rates

2.3.	.4.2	Gravity vs. viscous vs. capillary force effects	30
2.3.	.4.3	Type of injection and production wells, well patterns and grid block size	31
2.3.	.4.4	Grid size and thickness (layers)	33
2.3.	.4.5	Wettability and spreading coefficient	33
2.3.	.4.6	Immiscible vs. miscible displacement	35
2.3.	.4.7	Relative permeability	38
2.3.	.4.8	Secondary vs. tertiary gravity drainage EOR process	39
2.3.	.4.9	Diffusion and Dispersion	40
2.3.	.4.10	Porosity heterogeneity	41
2.3.5	Scree	ening Criteria: Gravity Drainage Oil Recovery Process	42
2.3.6	Field	Projects through Reservoir Simulation Studies	42
2.4 S	SCALIN	G AND SENSITIVITY ANALYSIS	48
2.4.1	Dime	ensional Analysis	49
2.4.2	Scale	ed Models in Porous Media	49
2.4.3	Scale	ed Models: Gravity Drainage Process	52
2.5 S	SUMMAI	RY	54
3 N	метн	IODOLOGY	56
3.1 F	Reserv	OIR MODEL CONSTRUCTION	56
3.2 F	PRODUC	TION STRATEGY DEVELOPMENT	58
3.2 F 3.3 (PRODUC DIL REC	COVERY OPTIMIZATION STUDIES	58 60
3.2 F 3.3 C 3.3.1	PRODUC DIL REC Mecl	CTION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map	58 60
3.2 F 3.3 (3.3.1	PRODUC DIL REC Mecl Deve	CTION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment	58 60 60
3.2 F 3.3 (3.3.1 3.3.2	PRODUC DIL REC Mecl Deve Effec	CTION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map elopment ct of Grid Size through Grid Refinement Studies	58 60 60
3.2 F 3.3 (3.3.1 3.3.2 3.3.2 3.3.3	PRODUC DIL REC Mecl Deve Effec Effec	CTION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development	58 60 60 61 62
3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4	PRODUC DIL REC Mecl Deve Effec Effec Effec	COVERY OPTIMIZATION STUDIES COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion	58 60 61 62 63
3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec	CTION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity	58 60 61 62 63 63
3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec	COVERY OPTIMIZATION STUDIES covery OPTIMIZATION STUDIES hanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity ct of Mode of Gas (CO ₂) Injection	58 60 61 62 63 63 64
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec Effec	CTION STRATEGY DEVELOPMENTCOVERY OPTIMIZATION STUDIES COVERY OPTIMIZATION STUDIES	58 60 61 62 63 63 64 65
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec Effec RESEI	CTION STRATEGY DEVELOPMENTCOVERY OPTIMIZATION STUDIES	58 60 61 62 63 63 64 65 68
 3.2 F 3.3 (1) 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.1 F 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec Effec RESEI RESEI	CTION STRATEGY DEVELOPMENT	58 60 61 62 63 63 64 65 68 68
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.1 F 4.2 F 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec SCALING RESEI RESERV	COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity ct of Mode of Gas (CO ₂) Injection G AND SENSITIVITY ANALYSIS OIR MODEL CONSTRUCTION OIR FLUID MODELS	58 60 61 62 63 63 64 65 68 68 68
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.1 F 4.2 F 4.2.1 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec SCALING RESEI RESERV RESERV Pseu	COVERY OPTIMIZATION STUDIES covery Optimization and the General Process Selection Map chanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity ct of Mode of Gas (CO ₂) Injection G AND SENSITIVITY ANALYSIS RVOIR MODEL CONSTRUCTION OIR MODEL DESCRIPTION OIR FLUID MODELS domiscible Black Oil Model: 35 °API Oil	58 60 61 62 63 63 64 65 68 68 68 69
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.1 F 4.2 F 4.2.1 4.2.2 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec SCALING RESEI RESERV RESERV Pseu Com	COVERY OPTIMIZATION STUDIES covery OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity ct of Mode of Gas (CO ₂) Injection G AND SENSITIVITY ANALYSIS RVOIR MODEL CONSTRUCTION OIR MODEL DESCRIPTION OIR FLUID MODELS domiscible Black Oil Model: 35 °API Oil. positional Fluid Model: 50 °API Oil from Australian Reservoir	58 60 61 62 63 63 63 64 65 68 68 69 69 70
 3.2 F 3.3 (3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.1 F 4.2 F 4.2.1 4.2.2 4.3 N 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec SCALING RESEI RESERV RESERV Pseu Com	COVERY OPTIMIZATION STUDIES COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Heterogeneity in Permeability and Porosity ct of Mode of Gas (CO ₂) Injection G AND SENSITIVITY ANALYSIS RVOIR MODEL CONSTRUCTION OIR MODEL DESCRIPTION OIR FLUID MODELS domiscible Black Oil Model: 35 °API Oil. positional Fluid Model: 50 °API Oil from Australian Reservoir MISCIBILITY PRESSURE (MMP)	58 60 61 62 63 63 63 64 65 68 68 69 70 70 77
 3.2 F 3.3 (1) 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 S 4 F 4.2 F 4.2.1 4.2.2 4.3 N 4.4 F 	PRODUC DIL REC Mecl Deve Effec Effec Effec Effec SCALING RESERV RESERV RESERV Pseu Com MINIMU ROCK-F	TION STRATEGY DEVELOPMENT COVERY OPTIMIZATION STUDIES nanisms Identification and the General Process Selection Map clopment ct of Grid Size through Grid Refinement Studies ct of Miscibility Development ct of Molecular Diffusion ct of Mode of Gas (CO ₂) Injection ct of Mode of Gas (CO ₂) Injection G AND SENSITIVITY ANALYSIS RVOIR MODEL CONSTRUCTION OIR FLUID MODELS domiscible Black Oil Model: 35 °API Oil positional Fluid Model: 50 °API Oil from Australian Reservoir IM MISCIBILITY PRESSURE (MMP)	58 60 61 62 63 63 63 64 65 68 68 69 70 77 77

4.6]	MODEL INITIALIZATION PROCEDURE
4.7	5	SUMMARY
5]	PRODUCTION STRATEGY DEVELOPMENT
5.1]	PRODUCTION HISTORY
	5.1.1	Production History - 35 °API oil: Primary Depletion and Waterflooding 81
	5.1.2	Production History - 50 °API oil: Primary Depletion
5.2]	PRODUCTION STRATEGY: INJECTION RATE OR OIL PRODUCTION RATE
	(Constraint?
	5.2.1	Critical and Stable Gas Injection Rate
	5.2.2	Effect of Gas Injection and Oil Production Rates: 35 °API Reservoir 85
	5.2.3	Effect of gas injection and oil production rates: 50 °API reservoir
5.3	,	Type of CO ₂ Injection Well - Vertical vs. Horizontal
	5.3.1	35 API Reservoir: Irregular Well Pattern
	5.3.2	2 50 API Reservoir: Regular Well Pattern (RWP)
5.4	,	WELL PATTERNS: IRREGULAR VS. REGULAR
	5.4.1	Secondary Immiscible CO ₂ -Assisted Gravity Drainage EOR 100
	5.4.2	2 Secondary Miscible CO ₂ -Assisted Gravity Drainage EOR 106
	5.4.3	Mechanisms Contributing the Enhanced Oil Recovery
5.5]	EFFECT OF CONNATE WATER SATURATION114
5.6]	EFFECT OF CAPILLARY PRESSURE
5.7	5	SUMMARY 120
6		OIL RECOVERY OPTIMIZATION 121
6.1]	MECHANISMS IDENTIFICATION AND GENERAL PROCESS SELECTION MAP
]	DEVELOPMENT: CO ₂ -Assisted Gravity Drainage EOR Process 121
	6.1.1	Overall Mechanisms: Immiscible and Miscible Process
	6.1.2	2 Contributing Mechanisms: Immiscible CO ₂ -Assisted Gravity Drainage EOR
		Process
	6.1.3	Contributing Mechanisms: Miscible CO ₂ -Assisted Gravity Drainage EOR
		Process
	6.1.4	General Process Selection Map: Immiscible vs. Miscible CO ₂ -Assisted
		Gravity Drainage EOR Process
6.2		GRID REFINEMENT STUDIES: 50 °API RESERVOIR
	6.2.1	Effect of Grid Size (x and y-dimensions) 143
	6.2.2	2 Effect of Grid Thickness (layer) 147

	6.2.3	Immiscible vs. Miscible Gravity Drainage Recovery with the New	
		Optimized Grid ($50 \times 30 \times 30$: 120 ft $\times 80$ ft $\times 50$ ft)	1
6.3	E	FFECT OF HETEROGENEITY15	5
	6.3.1	Permeability Heterogeneity15	5
	6.3.2	Porosity Heterogeneity	8
6.4	E	FFECT OF MOLECULAR DIFFUSION/DISPERSION16	1
	6.4.1	Homogeneous Reservoir $(k_v/k_h = 1.0)$	51
	6.4.2	Heterogeneous Reservoir ($k_v/k_h = 0.001$)	7
6.5	E	FFECT OF MODE OF CO ₂ Injection: Secondary vs. Tertiary Recovery	Y
	•••		<u>9</u>
	6.5.1	Tertiary CO ₂ -Assisted Gravity Drainage EOR Process: Immiscible and	
		Miscible Recovery	<u>i9</u>
	6.5.2	Secondary vs. Tertiary CO ₂ -Assisted Gravity Drainage EOR Process	
		Comparison	5
	6.5.2	.1 Immiscible process performance	76
	6.5.2	.2 Miscible process performance	79
	6.5.2	.3 Comparative analysis	32
6.6	V	DIDAGE REPLACEMENT DURING CO ₂ -Assisted Gravity Drainage Oil	
	R	ECOVERY	3
	R 1 6.6.1	ECOVERY	3
	R 1 6.6.1	ECOVERY	3
6.7	R1 6.6.1 St	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical Voidage Replacement Ratio (VRR _C) IMMARY 18	3 4 5
6.7 7	R1 6.6.1 St St	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical Voidage Replacement Ratio (VRR _C) IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18	3 4 5 6
6.7 7 7.1	R1 6.6.1 SU SU ID	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 ENTIFICATION OF OPERATIONAL MULTIPHASE PARAMETERS 18	33 34 35 6
6.7 7 7.1	R1 6.6.1 St St ID Cd	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 ENTIFICATION OF OPERATIONAL MULTIPHASE PARAMETERS 18 ONTROLLING THE CO ₂ -ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18	3 4 5 6
6.7 7 7.1 7.2	R1 6.6.1 St St ID Co St	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 ENTIFICATION OF OPERATIONAL MULTIPHASE PARAMETERS 18 CONTROLLING THE CO2-ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 CALED MODEL STUDIES: 50 °API RESERVOIR 18	33 34 35 36 36 8
6.7 7 7.1 7.2	R1 6.6.1 SU SU D C C SC 7.2.1	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 ENTIFICATION OF OPERATIONAL MULTIPHASE PARAMETERS 18 CONTROLLING THE CO ₂ -ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 Capillary Number (N _C) 19	3 4 5 6 8 8 1
6.7 7 7.1 7.2	R1 6.6.1 SU SU D C SU 7.2.1 7.2.2	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 JMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING OF OPERATIONAL MULTIPHASE PARAMETERS 18 CONTROLLING THE CO2-ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 Capillary Number (N _C) 19 Bond Number (N _B) 19	33 44 55 66 86 11 3
6.7 7 7.1 7.2	R1 6.6.1 SU SU D C C SC 7.2.1 7.2.2 7.2.3	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING AND SENSITIVITY ANALYSIS 18 CALING THE CO ₂ -Assisted GRAVITY DRAINAGE OIL RECOVERY 18 Caled Model Studies: 50 °API Reservoir. 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Gravity Number (N _G) 19	3 4 5 6 8 1 3 5
6.7 7 7.1 7.2	R1 6.6.1 SU SU D C C SU 7.2.1 7.2.2 7.2.3 7.2.4	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING OF OPERATIONAL MULTIPHASE PARAMETERS 18 CONTROLLING THE CO ₂ -ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Gravity Number (N _G) 19 Combination Models: Evaluation of the Existing Numbers 19	3 4 5 6 8 1 3 5 7
6.7 7 7.1 7.2	R1 6.6.1 SU SU D C C SU 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	ECOVERY 18 New concepts: Critical (<i>i</i> gc) and stable (<i>i</i> gs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 ENTIFICATION OF OPERATIONAL MULTIPHASE PARAMETERS 18 CALED MODEL STUDIES: 50 °API RESERVOIR 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Gravity Number (N _G) 19 Number (N _G) 19 Number (N _G) 19 New Proposed Model, its Physical Significance and Validation 20	3 4 5 6 8 1 3 5 7 0
 6.7 7 7.1 7.2 7.3 	R1 6.6.1 SU SU C SU 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 SU	ECOVERY 18 New concepts: Critical (<i>i</i> gc) and stable (<i>i</i> gs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING THE CO ₂ -ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 Caled Model Studies: 50 °API Reservoir 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Gravity Number (N _G) 19 Number (N _G) 19 Number (N _G) 19 New Proposed Model, its Physical Significance and Validation 20 Caling AND SENSITIVITY BASED ON THE DEVELOPED SCALING GROUPS: 3	3 4 5 6 6 8 1 3 5 7 0 5
 6.7 7 7.1 7.2 7.3 	R1 6.6.1 SU SU SU C SU 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 SU °A	ECOVERY 18 New concepts: Critical (igc) and stable (igs) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 JMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING THE CO ₂ -ASSISTED GRAVITY DRAINAGE OIL RECOVERY 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Gravity Number (N _G) 19 New Proposed Model, its Physical Significance and Validation 20 Caling And SENSITIVITY BASED ON THE DEVELOPED SCALING GROUPS: 3 PI RESERVOIR 20	3 4 5 6 6 8 1 3 5 7 0 5 4
 6.7 7 7.1 7.2 7.3 	R1 6.6.1 SU SU SU C SU 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 SU °A 7.3.1	ECOVERY 18 New concepts: Critical (<i>igc</i>) and stable (<i>igs</i>) Gas Injection Rates; Critical 18 Voidage Replacement Ratio (VRR _C) 18 IMMARY 18 CALING AND SENSITIVITY ANALYSIS 18 CALING THE CO ₂ -Assisted GRAVITY DRAINAGE OIL RECOVERY 18 Caled Model Studies: 50 °API Reservoir 18 Capillary Number (N _C) 19 Bond Number (N _B) 19 Combination Models: Evaluation of the Existing Numbers 19 New Proposed Model, its Physical Significance and Validation 20 Caling And SENSITIVITY BASED ON THE DEVELOPED SCALING GROUPS: 3 PI RESERVOIR 20 Sensitivity Studies 20	3 4 5 6 6 8 1 3 5 7 0 5 4 7

	7.3.3	3 Pressure Group	
	7.3.4	4 Mobility Ratio Group	
	7.3.5	5 Residual Oil Saturations	
	7.3.6	5 Validation of the Scaling Groups	
7.4		SUMMARY	
8		DISCUSSION OF RESULTS	219
8.1		PRODUCTION STRATEGY DEVELOPMENT	
8.2		OIL RECOVERY OPTIMIZATION STUDIES	
	8.2.2	1 Mechanisms Identification and the General Process Selection Map)
		Development	
	8.2.2	2 Effect of Grid Size through the Grid Refinement Studies	
	8.2.3	3 Effect of Miscibility Development	
	8.2.4	4 Effect of Molecular Diffusion	
	8.2.5	5 Effect of Heterogeneity in Permeability and Porosity	
	8.2.6	6 Effect of Mode of Gas Injection	
8.3		CONCLUDING COMMENT ON THE OIL RECOVERY MECHANISMS	
8.4		SCALING AND SENSITIVITY ANALYSIS	
9		CONCLUSIONS AND RECOMMMEDATIONS	
9.1		CONCLUSIONS	
9.2		FURTHER RECOMMENDATIONS	
RF	EFEI	RENCES	
AF	PPEI	NDIX-A	256
APPENDIX-B 257			
		NDIX C	250
Aľ	FE I	NDIA-C	
AF	PPEI	NDIX-D	260
VI	TA.		262

LIST OF FIGURES

Figure 2-1: CO ₂ EOR resources in US (left) depicting current active projects (Moritis,
2008); and in Australia outlining the potential for CO ₂ EOR (Bradshaw et al.,
2004)
Figure 2-2: Oil demand and Supply in Australia (Lund, 2006)17
Figure 2-3: Conceptual CO ₂ -Assisted Gravity Drainage process (Jadhawar and Sarma,
2008)21
Figure 4-1: Hypothetical 3-D reservoir model representing the gas, oil and water zone
thickness
Figure 4-2: Composition and phase diagram of 35 °API gravity reservoir oil depicting the
saturation pressure and temperature, and the initial reservoir condition70
Figure 4-3: Composition and phase diagram of 50 °API gravity reservoir oil71
Figure 4-4: Preliminary match of the reservoir oil properties viz. (a) relative volume (b)
GOR and Bo (c) Oil and gas specific gravity (d) Gas compressibility factor (e)
oil viscosity (f) gas viscosity74
Figure 4-5: EOS predicted match of the reservoir oil properties viz. (a) relative volume (b)
GOR and Bo (c) Oil and gas specific gravity (d) Gas compressibility factor (e)
oil viscosity (f) gas viscosity76
Figure 4-6: Relative permeability curves obtained from Stone-II correlations (a) water-oil
(b) gas-oil
Figure 4-7: Capillary pressure curves adapted from Ren (2002)78
Figure 4-8: (A) and (C) - Irregular well patterns; (B) and (D) - Regular Well patterns of
vertical /horizontal CO2 injection wells and horizontal oil production wells79
Figure 5-1: Primary depletion and waterflood performance for 35 API reservoir
Figure 5-2: Effect of grid size on GOR and WOR
Figure 5-3: Oil saturation at the start CO ₂ flood (Case-II)
Figure 5-4: CO ₂ -assisted gravity drainage EOR performance in four gas injection (i_g) and
oil production rate (q _o) combinations86
Figure 5-5: Oil saturations in layer-6 and 7 at the start; 65 years later and at the end of CO_2
flood in Case-II
Figure 5-6: Average reservoir pressure during CO ₂ -assisted gravity drainage EOR process
for all the cases

Figure 5-7: Effect of the varying oil production rates at constant gas injection rates on the
CO ₂ -assisted gravity drainage oil recovery90
Figure 5-8: Comparison: Effect of the varying gas injection rate vs. oil production rate on
the field oil recovery (% OOIP)91
Figure 5-9: Effect of the horizontal versus vertical gas injection wells on CO ₂ -assisted
gravity drainage oil recovery in 35 °API reservoir oil
Figure 5-10: Vertical vs. horizontal CO_2 injection well effect (q_o and GOR) on CO_2 -
assisted gravity drainage oil recovery in the immiscible process
Figure 5-11: Vertical vs. horizontal CO_2 injection well effect (q_o and GOR) on the CO_2 -
assisted gravity drainage oil recovery in miscible process
Figure 5-12: Effect of vertical versus horizontal CO ₂ injection wells in the <i>immiscible</i> CO ₂ -
assisted gravity drainage EOR process: Cumulative oil recovery (NP)96
Figure 5-13: Effect of vertical versus horizontal CO ₂ injection wells in the <i>miscible</i> CO ₂ -
assisted gravity drainage EOR process: Cumulative oil recovery (N_P) 97
Figure 5-14: Average reservoir pressure in the <i>immiscible</i> CO ₂ -assisted gravity drainage
EOR process during injection well type studies
Figure 5-15: Average reservoir pressure in the <i>miscible</i> CO ₂ -assisted gravity drainage EOR
process during injection well type studies98
Figure 5-16: Effect of well pattern - irregular vs. regular in immiscible CO_2 flood on q_o and
GOR in 4 combinations of Ig and qo102
Figure 5-17: Effect of well pattern (irregular vs. regular) in immiscible CO ₂ flood on water
cut % and Np in 4 combinations of I_g and q_o 103
Figure 5-18: Effect of well pattern - irregular vs. regular (immiscible CO ₂ flood) on (A) qo
vs. Np; and (B) incremental oil recovery vs PV _{CO2inj}
Figure 5-19: Effect of well pattern on the reservoir pressure (P_R) in (C) IWP (D) RWP . 105
Figure 5-20: Effect of well pattern - irregular vs. regular (miscible CO ₂ flood) on (A) qo
and (B) GOR in 4 combinations of Ig and qo; and (C) gas saturation front not
fingering through the oil zone107
Figure 5-21: Effect of well pattern in miscible CO_2 flood - IWP vs. RWP: (A) q_o vs N_p and
(B) Field oil recovery for the respective pore volumes of CO ₂ injected in 4
combinations of I_g and q_o 108
Figure 5-22: Average pressure distribution in (A) irregular well pattern and (B) regular
well pattern

Figure 5-23: Gas saturation and the respective oil saturation and the viscosity profile in the
<i>immiscible</i> CO ₂ flood111
Figure 5-24: Gas saturation and the respective oil saturation and the viscosity profile in the
miscible CO ₂ flood113
Figure 5-25: Viscosity changes during miscible CO ₂ flood (Case-IV)
Figure 5-26: Comparison of GAGD-EOR performance at three S_{wc} values: 0.08, 0.15 and
0.22116
Figure 5-27: Effect of Capillary pressure in (irregular well pattern) on - q _o , GOR and water
cut (%)118
Figure 5-28: Effect of Capillary pressure in (irregular well pattern) - qo vs. Np (top); and
Field recovery (%OOIP) vs HCPVinj, % (bottom)
Figure 6-1: Comparison of the incremental immiscible and miscible CO ₂ -assisted gravity
drainage oil recovery in rate-constraints from Case-I to Case-IV
Figure 6-2: Comparison - Incremental CO ₂ -assisted gravity drainage oil recoveries in both
the immiscible and miscible process from Case-V to Case-VII125
Figure 6-3: Gas-oil ratio (GOR) comparison from Case-IV through Case-VII during
operation of the immiscible and miscible CO ₂ -assisted gravity drainage EOR
process126
Figure 6-4: Water breakthrough in all the seven immiscible and miscible CO ₂ -assisted
gravity drainage floods
Figure 6-5: Profile of the oil rate, GOR and average reservoir pressure in (A) immiscible
and (B) miscible process (Case-V)
Figure 6-6: Average reservoir pressure comparison in Case-IV through Case-VII (A)
immiscible and (B) miscible process
 immiscible and (B) miscible process
 immiscible and (B) miscible process
immiscible and (B) miscible process

Figure 6-11: Comparative oil saturation in layer-6 and layer-7 (Areal view) in the year
2126 in immiscible and miscible flooding (Case-VII)
Figure 6-12: 3D representation of the oil recovered in immiscible and miscible process of
Case-VII rate-constraint
Figure 6-13: General selection map for immiscible versus miscible process - Case-I
through Case-VII
Figure 6-14: Effect of grid size on the incremental EOR, GOR and water cut, % in Case-
VII145
Figure 6-15: Effect of grid size on the incremental EOR, GOR and water cut, % in Case-IV
Figure 6-16: Effect of grid layer thickness on the incremental EOR (%), Gas-Oil Ratio
(GOR) and water cut (%) in Case-VII well rate-constraint combination 148
Figure 6-17: Effect of grid thickness on the incremental EOR (%), GOR and water cut (%)
in Case-IV
Figure 6-18: Incremental oil recovery (%) in the (A) respective pore volumes of CO_2
injected (fraction) and (B) years taken for this PV_{CO2} injection for all three
grid sizes in Case-IV151
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: 120 ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}; k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: 120 ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: 120 ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$; $k_v/k_h = 1.0$)
Figure 6-19: Immiscible vs. miscible process performance in CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}; k_v/k_h = 1.0$)

Figure 6-25: Effect of porosity heterogeneity on CO ₂ -assisted oil gravity drainage oil
recovery in Setting-I and Setting-II161
Figure 6-26: Effect of molecular diffusion in miscible process (Case-IV; optimized grid: 50
× 30 × 30: 120 ft × 80 ft × 50 ft; $k_v/k_h = 0.001$)
Figure 6-27: Effect of molecular diffusion in the miscible process (Case-IV) using
optimized grid ($k_v/k_h = 1.0$); Gas saturation, oil viscosity and saturation at the
middle of 24 th layer block (21, 14, 24)164
Figure 6-28: Effect of molecular diffusion in immiscible process (Case-IV, optimized grid,
$k_{\rm v}/k_{\rm h} = 1.0$)
Figure 6-29: Effect of diffusion in heterogenic reservoir ($k_v/k_h = 0.001$; optimized grid)
(Case-IV)168
Figure 6-30: Immiscible vs. miscible process performance in the <i>tertiary</i> CO ₂ -assisted
gravity drainage EOR process (optimized grid: 50 \times 30 \times 30: 120 ft \times 80 ft \times
50 ft; $k_v/k_h = 1.0$)
Figure 6-31: Average reservoir pressure profile during <i>tertiary</i> mode immiscible and
miscible CO ₂ -assisted gravity drainage EOR process (optimized grid: 50×30
× 30: 120 ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-32: Oil viscosity, gas and oil saturation profile during tertiary mode
immiscible/miscible CO2-assisted gravity drainage EOR process (optimized
grid: $50 \times 30 \times 30$: 120 ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-33: Effect of diffusion phenomenon on the incremental EOR in the <i>tertiary</i> mode
immiscible and miscible CO2-assisted gravity drainage EOR process
Figure 6-34: Secondary vs. Tertiary <i>immiscible</i> CO ₂ -assisted gravity drainage EOR process
performance comparison (optimized grid: $50 \times 30 \times 30$: 120 ft \times 80 ft \times 50 ft;
$k_{\rm v}/k_{\rm h} = 1.0$)
Figure 6-35: Effect of Secondary vs. Tertiary mode CO ₂ injection on <i>immiscible</i> CO ₂ -
assisted gravity drainage EOR process (optimized grid: 50 \times 30 \times 30: 120 ft \times
80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-36: Effect of the secondary vs. tertiary mode of CO ₂ injection in the <i>miscible</i>
CO ₂ -assisted gravity drainage EOR process (optimized grid: $50 \times 30 \times 30$: 120
ft × 80 ft × 50 ft; $k_v/k_h = 1.0$)
Figure 6-37: Effect of secondary vs. tertiary mode of CO ₂ injection on average reservoir
pressure in miscible CO ₂ -assisted gravity drainage EOR process

Figure 6-38	8: Comparison of average oil saturation at the end of secondary and tertiary
	mode CO ₂ injection in both the immiscible and miscible CO ₂ -assisted gravity
	drainage EOR process (optimized grid: $50 \times 30 \times 30$: $120 \text{ ft} \times 80 \text{ ft} \times 50 \text{ ft}$;
	$k_{\rm v}/k_{\rm h} = 1.0$)
Figure 7-1:	Tornado diagram depicting the relative dominance of multiphase parameters
	operational in the CO ₂ -GAGD EOR process
Figure 7-2:	Effect of Capillary number on oil recovery in <i>immiscible</i> CO ₂ -GAGD EOR
	process. Green squares: N_C from field projects. Green hollow diamonds: N_C
	from this study
Figure 7-3:	Effect of Capillary number on oil recovery in miscible CO ₂ -GAGD EOR
	process. Red Squares: N_C from field projects. Red Hollow diamonds: N_C from
	this study
Figure 7-4:	Effect of N_B on oil recovery in the immiscible CO ₂ -GAGD EOR process.
	Green Squares: N_{B} - field projects. Green Hollow diamonds: N_{B} - this study194
Figure 7-5:	Effect of N_B on oil recovery in the <i>miscible</i> CO ₂ -GAGD EOR process. Red
	Squares: N_B - field projects. Red Hollow diamonds: N_B - this study195
Figure 7-6:	Effect of Gravity number on oil recovery in <i>immiscible</i> CO ₂ -GAGD EOR
	process. Green squares: N_G from field projects. Green hollow diamonds: N_G
	from this study
Figure 7-7:	Effect of Gravity number on oil recovery in miscible CO ₂ -GAGD EOR
	process. Red Squares: N_G from Field projects. Red Hollow diamonds: N_G from
	this study
Figure 7-8:	Effect of the combination model of kulkarni (2005) on oil recovery in the
	immiscible CO ₂ -GAGD EOR process. Green squares: N_K - field projects.
	Green hollow diamonds: N_K - this study
Figure 7-9:	Effect of the combination model of kulkarni (2005) on oil recovery in the
	miscible CO ₂ -GAGD EOR process. Red squares: N_K - field projects. Red
	hollow diamonds: N_K - this study
Figure 7-10	D: Effect of combined model of Rostami (2009) on oil recovery in <i>immiscible</i>
	CO ₂ -GAGD EOR process. Green squares: $N_{Rostami}$ - field projects. Green
	hollow diamonds: N _{Rostami} - this study199
Figure 7-1	1: Effect of combined model of Rostami (2009) on oil recovery in miscible CO ₂ -
	GAGD EOR process. Red squares: N_K - field projects. Red hollow diamonds:
	N _{Rostami} - this study

Figure 7-12: Effect of viscosity ratio on the oil recovery in miscible CO ₂ -GAGD EOR . 201
Figure 7-13: Effect of new scaled model on oil recovery in the <i>immiscible</i> CO ₂ -GAGD
EOR process. Green squares: NJadhawar and Sarma - field projects. Green
hollow diamonds: NJadhawar and Sarma - this study
Figure 7-14: Effect of new scaled model on oil recovery in the <i>miscible</i> CO ₂ -GAGD EOR
process. Red squares: N _{Jadhawar and Sarma} - field projects. Red hollow diamonds:
NJadhawar and Sarma - this study
Figure 7-15: Total superficial velocity (u _T) vs dimensionless recovery (R _D)209
Figure 7-16: Effect of the i_g based N_g on the dimensionless CO ₂ -assisted gravity drainage
oil recovery
Figure 7-17: Dimensionless oil recovery performance of CO ₂ -assisted gravity drainage
EOR process over the respective Pore values of CO ₂ injected: Gravity number
(<i>i</i> g based)
Figure 7-18: Dimensionless oil recovery performance of CO ₂ -assisted gravity drainage
EOR process over the respective Pore values of CO ₂ injected: Pressure based
Gravity number
Figure 7-19: Effect of pressure group on EOR performance in the CO ₂ -assisted gravity
drainage EOR process. Other scaling group values are kept constant
Figure 7-20: Effect of water-oil mobility ratio (M_{wo}) on EOR performance in CO ₂ -assisted
gravity drainage EOR process. Other Scaling group values are kept constant.
Figure 7-21: Effect of gas-oil mobility ratio (M_{wo}) on EOR performance in the CO ₂ -
assisted gravity drainage process. Other Scaling group values are kept
constant
Figure 7-22: Sensitivity of the residual oil saturations to water (S_{orw}) on the oil recovery
performance in the CO ₂ -assisted gravity drainage EOR process
Figure 7-23: Sensitivity of the residual oil saturations to gas (S_{org}) on oil recovery
performance in the CO ₂ -assisted gravity drainage EOR process
Figure 7-24: Dimensionless oil recovery performances of 3 sample reservoirs. Very similar
recoveries represent successful scaling of the CO2-assisted gravity drainage
EOR process
Figure 8-1: Summary of the final incremental EOR obtained in all the cases of immiscible
and miscible - secondary / tertiary mode CO_2 -assisted gravity drainage EOR
Methods

Figure 8-2:	Final incremental EOR obtained in all the <i>no-diffusion</i> cases of immiscible and
	miscible - secondary / tertiary mode CO_2 -assisted gravity drainage EOR
	Methods
Figure 8-3:	Final incremental EOR obtained in all the <i>diffusion</i> cases of immiscible and
	miscible - secondary / tertiary mode CO_2 -assisted gravity drainage EOR
	Methods
Figure 8-4:	Incremental EOR (%) in all the no-diffusion and no-diffusion cases of CO ₂ -
	assisted gravity drainage EOR Methods
Figure 8-5:	Incremental EOR (%) in all the cases of CO ₂ -assisted gravity drainage EOR
	Methods at (A) 2.5 PV_{CO2inj} and (B) 1.5 PV_{CO2inj}

LIST OF TABLES

	2
Table 2-2: Status of World CO2-EOR projects	5
Table 2-3: Classification of gravity drainage processes 19	9
Table 2-4: Summary of the gas injection rate (critical and stable) equations2	8
Table 2-5: Screening Criteria for gas assisted gravity segregation processes 42	2
Table 2-6: Summary of 11 commercial gravity drainage field projects 44	8
Table 2-7: Dimensionless numbers in gravity drainage process 52	3
Table 3-1: Summary of the parametric research plan	7
Table 4-2: HC-HC interaction coefficients of 50 °API gravity oil EOS model77	7
Table 4-3: Reservoir Volumetrics	0
Table 5-1: Gas injection (ig) & oil production (q _o) rate settings	5
Table 6-1: Rate constraints of the wells	2
Table 6-2: Details of grid thickness (layers) and grid size studies for both the Case-VII and	ł
Case-IV	3
Table 6-3: Porosity heterogeneity settings	8
Table 7-1: Ranges of the parameters (CO ₂ -GAGD EOR process) values used in the risk	
analysis 18'	7
unur joionna 10	/
Table 7-2: Dimensionless numbers used in evaluation of CO ₂ -asssited gravity drainage	/
Table 7-2: Dimensionless numbers used in evaluation of CO ₂ -asssited gravity drainage EOR process	, 9
Table 7-2: Dimensionless numbers used in evaluation of CO ₂ -asssited gravity drainage EOR process	, 9 1
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	9 1
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	9 1 1 6
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	9 1 1 6
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	7 9 1 6 7
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	7 9 1 6 7
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	7 9 1 6 7
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	, 9 1 1 6 7
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	, 9 1 6 7 9 6
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	, 9 1 6 7 9 6
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process. Table 7-3: Key dimensionless numbers calculated using results of this reservoir simulation study in the CO₂-GAGD EOR process and the gravity drainage field data 19 Table 7-4: Dimensionless Groups obtained through Buckingham-Pi Analysis	, 9 1 6 7 9 6 7
 Table 7-2: Dimensionless numbers used in evaluation of CO₂-asssited gravity drainage EOR process	, 9 1 6 7 9 6 7

Table A-I: PVT properties of 35 °API gravity reservoir oil	256
Table A-II: End-point saturations used in the Stone-II model to generate relative	
permeability curves	256

NOMENCLATURE

Nomenclature and units used throughout this thesis are as follows:

ENGLISH	
Symbol	Description
Bo	Formation Volume Factor of the oil, Res bbl/STB, $[L^3/L^3]$
Bg	Formation Volume Factor of the gas, SCF/STB, $[L^3/L^3]$
B _{solvent}	Formation Volume Factor of the solvent $[L^3/L^3]$
g	Acceleration due to gravity, $ft/s^2 [L/T^2]$
Н	Thickness of the reservoir, ft [L]
i _g	Rate of gas injection, SCFD
k _v	Vertical permeability, mD, psia [L ²]
k _h	Horizontal permeability within the reservoir, mD, psia $[L^2]$
k _{ro}	Permeability to oil of the porous medium, mD, psia $[L^2]$
k _{rg}	Permeability to gas of the porous medium, mD, psia [L ²]
k _{rw}	Permeability to water of the porous medium, mD, psia $[L^2]$
L	Characteristic length of reservoir or Well spacing, ft [L]
Μ	Mobility ratio
$M_{ m wo}$	Water-oil mobility ratio, bbls [L ³]
M_{go}	Gas-oil mobility ratio, bbls [L ³]
N _B	Bond number, dimensionless
N _B	Capillary number, dimensionless
N _G	Gravity number, dimensionless
$N_{Kulkarni}$	Kulkarni number, dimensionless
N _{Rostami}	Dimensionless number of Rostami et al.
$\mathbf{N}_{Jadhawar}$ and Sarma	Capillary number, dimensionless
N _p	Cumulative oil production, bbls $[L^3]$
N_{gI}	Gravity number based on the gas injection rate, dimensionless
N_{gP}	Gravity number based on the pressure difference between the gas
	injection and oil production wells, dimensionless
P _{avg}	Average reservoir pressure, psia [M/LT ²]
Pc	Capillary pressure, psia [M/LT ²]
P _{inj}	Gas injection pressure, psia [M/LT ²]
P _{prod}	Oil recovery (producing) pressure, psia [M/LT ²]
P _{MM}	Minimum miscibility pressure, psia [M/LT ²]

ΔP	Difference of pressure between the gas injection pressure and oil	
	recovery pressure, psia [M/LT ²]	
ΔP_R	Change in the reservoir pressure, psia [M/LT ²]	
PV _{CO2inj}	Pore volume of the CO_2 injected, psia $[M/LT^2]$	
qo	Rate of the oil production, bpd, $[L^3/T]$	
R _L	Effective Aspect ratio, dimensionless	
R _s	Solution gas-oil ratio	
R _D	Dimensionless recovery	
S_o	Spreading Coefficient	
S _{orw}	Residual oil saturation to water (water-oil system)	
S _{org}	Residual oil saturation to gas (gas-oil system)	
$S_{\scriptscriptstyle WC}$	Connate water saturation	
t	Time [T]	
t _D	Dimensionless time	
Т	Temperature, ^o F [θ]	
uc	Critical Velocity, ft/D, [L/T]	
u _T	Average superficial velocity, ft/s, [L/T]	
W	Width (diameter of core) of the reservoir, ft [L]	
GREEK		
ρ _o	Density of reservoir fluid (oil), lb/ ft ³ [M/L ³]	
$ ho_g$	Density of the gas, $lb/ ft^3[M/L^3]$	
Δρ	Difference of the density between the reservoir fluid (oil) and the	
	injected gas, lb/ ft ³ [M/L ³]	
λ_{ro}	Mobility of oil within the porous medium	
λ_{rg}	Mobility of gas within the porous medium	
$\lambda_{\rm rw}$	Mobility of water within the porous medium	
φ	Porosity, fraction	

Angle of dip (tilt) of a particular reservoir section with respect to the
horizontal

μ_{o}	Viscosity of the oil, cP [M/LT]
μ_g	Viscosity of the gas, cP [M/LT]
$\mu_{solvent}$	Viscosity of the solvent, cP [M/LT]
σ_{wg}	Water-gas interfacial tension, dyne/cm, [M/T ²]
σ_{go}	Gas-oil interfacial tension, dyne/cm, [M/T ²]
$\sigma_{\rm ow}$	Oil-water interfacial tension, dyne/cm, [M/T ²]

α

Subscripts

X	x-direction
У	y-direction
Z	z-direction
V	Vertical
Н	Horizontal
S	Solution
g	Gas
0	Oil
S	Solvent

ACRONYMS

Acronym	Description
B-L	Buckley-Leverett
CCE	Constant Composition Expansion
CVD	Constant Volume Depletion
DL	Differential Liberation
EOR	Enhanced Oil Recovery
FVF	Formation Volume Factor
GOC	Gas-Oil Contact
GOR	Gas-Oil Ratio
GRR	Gravity Drainage Reference Rate
НС	Hydrocarbon gas
HZGI	Horizontal Gas Injection
Imm	Immiscible
IWP	Irregular Well Pattern
Misc	Miscible
MMP	Minimum Miscibility Pressure
PVT	Pressure, Volume, Temperature
RWP	Regular Well Pattern
Sec	Secondary CO ₂ injection
Tert	Tertiary CO ₂ injection
VGI	Vertical Gas Injection
VRR	Voidage Replacement Ration
WOC	Water-Oil Contact