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Employing our previous framework to treat nonperturbative effects self-consistently, including duality

violations, we update the determination of the strong coupling, �s, using a modified version of the 1998

OPAL data, updated to reflect current values of exclusive-mode hadronic �-decay branching fractions. Our

best nf ¼ 3 values from the updated OPAL data are �sðm2
�Þ ¼ 0:325� 0:018 and �sðm2

�Þ ¼ 0:347�
0:025 in fixed-order and contour-improved perturbation theory, respectively. To account for nonperturba-

tive effects, nonlinear, multiparameter fits are necessary. We have, therefore, investigated the posterior

probability distribution of the model parameters underlying our fits in more detail. We find that OPAL data

alone provide only weak constraints on some of the parameters needed to model duality violations,

especially in the case of fits involving axial-vector channel data, making additional prior assumptions on

the expected size of these parameters necessary at present. We provide evidence that this situation could

be greatly improved if hadronic spectral functions based on the high-statistics BABAR and Belle data were

to be made available.

DOI: 10.1103/PhysRevD.85.093015 PACS numbers: 13.35.Dx

I. INTRODUCTION

In a previous article [1], henceforth referred to asP1, we
developed a new framework for the determination of the
strong coupling, �sðm2

�Þ, from nonstrange vector (V) and
axial-vector (A) hadronic �-decay data. The new frame-
work starts from the usual finite-energy sum-rule (FESR)
analysis, but improves this approach in two ways with
regard to the small, but quantitatively significant nonper-
turbative corrections present in the theoretical representa-
tion of the FESR spectral integrals below the �mass. First,
contributions from higher orders in the operator product
expansion (OPE) are taken into account self-consistently.
Second, in view of the fact that duality violations (DVs) are
clearly present in the experimental spectral distributions,
we use an explicit parametrization of violations of quark-
hadron duality in our fits. As explained in detail in P1,
these two improvements are intricately connected: esti-
mates of the nonperturbative contribution to the sum rules
with controlled errors cannot be obtained without taking
both of these effects into account.

Our framework was tested in P1 by applying it to data

from the OPAL Collaboration [2]. We showed that fits to

the data using this new framework are indeed feasible in

practice. The resulting value for �s acquires larger errors

than seen in previous extractions of �s from hadronic �

decays. The most important reason for this is that, in order

to take DVs into account, our fits necessarily contain more

parameters, while we are limited to presently available

data.
More recent data are in principle available. First, there

are the ALEPH data [3], updated in 2005=08 [4,5].
Presently, use of the 2005=08 ALEPH data is questionable
because correlations due to unfolding were inadvertently
omitted in the 2005=08 ALEPH update and hence from the
publicly available covariance matrices [6]. Alternatively,
more precise spectral functions can in principle be ex-
tracted from BABAR or Belle data. This would be very
interesting, because one expects such spectral functions to
have significantly smaller errors in the energy region near
the �mass important for the extraction of�s. Wewill argue
in this article that it should be possible to determine the
nonperturbative contributions to the sum rules, and thus�s,
with much smaller errors were such data to become
available.
It is nevertheless possible to make some progress with the

OPALdata beyond the results presented inP1. The reason is
that in Ref. [2] the normalizations of the exclusive � decay

modes, as well as the values of a number of physical con-

stants (such as the �mass, the electronic branching fraction

Be, etc.) were taken from the 1998 Particle Data Group

(PDG) tables. More precise values for these branching

fractions and constants are now available from Refs. [7,8],

and, using these, it is thus possible to, at least partially,

update the OPAL spectral functions. Carrying out this
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update, and refitting the resulting modified weighted spec-
tral integrals using the methods developed and tested inP1,
is the primary aim of the present article.

We have also investigated the probability distribution of
the model parameters that underlies the various fits to the
OPAL data in much more detail, using a Markov-chain
Monte Carlo (McMC) code in order to map out the
a posteriori distribution. This is useful since the fits we
perform are nonlinear in the parameters, so that not much
is known a priori about the shape of the probability distri-
bution. This exploration helps with understanding various
potential instabilities in the fits (as already detected in P1),
as we will discuss in detail below.

As in P1, we carry out the analysis using both fixed-
order perturbation theory (FOPT) and contour-improved
perturbation theory (CIPT) [9].1 In both cases, we find that
the central values for �s increase compared to the values
found in P1, though the two sets of values are consistent
within errors. The errors themselves stay approximately
the same, which is no surprise, because they are primarily
determined by the errors on the OPAL spectral data.

In Sec. II, we briefly review the essentials of the theory
needed to understand the parametrization used in our fits to
the OPAL data. In Sec. III, we explain in detail howwe used
recent results from the Heavy Flavor Averaging Group
(HFAG) [7] to update the OPAL spectral functions. Some
details are relegated to the Appendix. Then, in Sec. IV we
discuss what can be learned from the posterior probability
distribution obtained with the McMC code. We present the
results of our fits in Sec.Vand summarize them inSec.VI. In
Sec. VII, we argue that the reduction of errors on the spectral
functions expected from the BABAR or Belle data are likely
to be of significant help in reducing the nonperturbative
uncertainties. Section VIII contains our conclusions.

II. THEORETICAL PARAMETRIZATION

We start with a very brief review of the theory under-
lying our fits, referring the reader to P1 for more details.
Our fits are based on FESRs of the form [15,16]

IðwÞV=Aðs0Þ �
Z s0

0

ds

s0
wðsÞ�ð1þ0Þ

V=A ðsÞ

¼ � 1

2�i

I
jsj¼s0

ds

s0
wðsÞ�ð1þ0Þ

V=A ðsÞ; (2.1)

where the weight wðsÞ is a polynomial in s, and �ð1þ0Þ
V=A ðsÞ

with s ¼ q2 ¼ �Q2 is defined by

i
Z

d4xeiqxh0jTfJ�ðxÞJy� ð0Þgj0i
¼ ðq�q� � q2g��Þ�ð1þ0ÞðsÞ þ q2g���

ð0ÞðsÞ: (2.2)

Here, J� is one of the nonstrange V or A currents �u��d or

�u���5d, and the superscripts (0) and (1) label spin.

The spectral functions �ð1þ0Þ
V=A are taken from OPAL [2],

and the integral on the left-hand side of Eq. (2.1) is then
approximated by a sum over bins, with s0 2 ½smin; smax�,
which is our fitting interval. These data do not contain the
pion pole, which needs to be added by hand. Other
(pseudo)scalar contributions are numerically negligible,
being suppressed by two powers of the light quark masses,2

�ð0Þ
V ðsÞ¼O½ðmu�mdÞ2�;

�ð0Þ
A ðsÞ¼2f2�ð�ðs�m2

�Þ��ðsÞÞþO½ðmuþmdÞ2�:
(2.3)

In our fits, we will use the value f� ¼ 92:21� 0:14 MeV
[8]. The right-hand side of Eq. (2.1) provides the connec-
tion to theory, and is parametrized in terms of the strong
coupling �sðm2

�Þ, the OPE condensates, and a parametri-

zation of the DV part of �ð1þ0Þ
V=A ðsÞ. We write (for both V

and A)

�ð1þ0ÞðsÞ ¼ �ð1þ0Þ
pert ðsÞ þ�ð1þ0Þ

OPE ðsÞ þ�ð1þ0Þ
DV ðsÞ; (2.4)

with the subscripts ‘‘pert,’’ ‘‘OPE,’’ and ‘‘DV’’ denoting
the perturbative, OPE (of dimension larger than zero), and

DV contributions to �ð1þ0ÞðsÞ.
The perturbative part of the right-hand side of Eq. (2.1)

can, by partial integration, be written in terms of the
perturbative Adler function

Dð1þ0Þ
pert ðsÞ ¼ �s

d�ð1þ0Þ
pert ðsÞ
ds

¼ 1

4�2

X1
n¼0

ans ð�2Þ Xnþ1

k¼1

kcnk

�
log

�s

�2

�
k�1

; (2.5)

where asð�2Þ � �sð�2Þ=� with �sð�2Þ the running cou-

pling at scale �2 in the modified minimal-subtraction MS
scheme. Since DðsÞ is independent of �, we can choose
(for instance) �2 ¼ s0 in Eq. (2.1), which corresponds to
the FOPT scheme, or �2 ¼ �s, which corresponds to the
CIPT scheme [9]. We will use values for the coefficients
cn1 calculated in Ref. [17] up to order n ¼ 3 and in
Ref. [18] up to order n ¼ 4; for c51, we use the estimate
c51 ¼ 283� 283 of Ref. [10]. The values of cnk for k > 1
follow from the cn1 using a renormalization-group analysis
based on the fact that the Adler function is independent of
� [19].
The (higher-dimension) OPE contribution can be ex-

pressed in terms of the OPE coefficients CD¼2k as

1For recent investigations of these two resummation schemes,
see Refs. [10–14].

2The second � function in �ð0Þ
A ðsÞ comes from the kinematical

singularity in Eq. (2.2). However, the combination �ð1þ0Þ is free
from kinematical singularities.
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�ð1þ0Þ
OPE ðsÞ ¼ X1

k¼1

C2kðsÞ
ð�sÞk : (2.6)

In our fits, we will set C2 ¼ 0 (it is purely perturbative and
suppressed by two powers of the light quark masses),3 and
we will treat C4, C6, and C8 as constant, neglecting loga-
rithmic s dependence; we will have no need for the coef-
ficients CD>8. To leading order in �s, and ignoring tiny
isospin-breaking effects and perturbative light-quark mass
contributions, C4 is the same in the V and A channels; this
is not the case for C6 and C8. For a more detailed dis-
cussion, including references, see P1.

Finally, the DV contribution to the right-hand side of
Eq. (2.1) can be expressed in terms of the DV part of the
spectral function

�DVðsÞ ¼ 1

�
Im�ð1þ0Þ

DV ðsÞ; (2.7)

as [22]

Dwðs0Þ ¼ � 1

2�i

I
jsj¼s0

ds

s0
wðsÞ�ð1þ0Þ

DV ðsÞ

¼ �
Z 1

s0

ds

s0
wðsÞ�DVðsÞ: (2.8)

In a slight variation on Ref. [22], we parametrize �DV
V=A as

�DV
V=AðsÞ ¼ expð��V=A � �V=AsÞ sinð�V=A þ 	V=AsÞ: (2.9)

This adds four new parameters per channel, in addition to
�s and the OPE coefficients, to the fits to Eq. (2.1). The
interval ½smin; smax� has to be chosen such that the expres-
sions (2.5), (2.6) and (2.8) with (2.9) provide an accurate
representation of the right-hand side of Eq. (2.1) over the
whole interval. The ansatz (2.9) was developed in
Refs. [23,24], based on the earlier ideas of Ref. [25].4

In Eq. (2.9), we have traded the parameters 
V=A of P1
for the parameters �V=A; they are related (for both V
and A) by


 ¼ e��: (2.10)

The reason for making this change is that the fit errors on �
are much more symmetric than those on 
. The (strong)
correlations between 
 and � in each channel correspond
to correlations between � and � which are much closer to
linear.

In this article, as in P1, we will employ the weights

ŵ0ðxÞ ¼ 1; ŵ2ðxÞ ¼ 1� x2;

ŵ3ðxÞ ¼ ð1� xÞ2ð1þ 2xÞ; x � s=s0:
(2.11)

The weight ŵ3 corresponds to the (spin-1) kinematic
weight that appears in the hadronic branching ratio
R�. Note that, with SEW the usual short-distance electro-
weak correction and Vud the flavor ud CKM matrix
element,

Rð1þ0Þ
VþA;udðs0Þ ¼ 12�2SEWjVudj2Iðŵ3Þ

VþAðs0Þ (2.12)

is, for s0 ¼ m2
�, equal to the (1þ 0) contribution to the

ratio of the nonstrange hadronic decay width and the
electronic decay width of the �. In the following, we will

find it convenient to distinguish between IðwÞex ðs0Þ, denoting
the left-hand side, and IðwÞth ðs0Þ, denoting the right-hand side
of Eq. (2.1).
If we choose C4, C6;V=A, and C8;V=A constant, it follows

that none of these coefficients contribute to Iðŵ0Þ
th , only

C6;V=A contribute to Iðŵ2Þ
th , and both C6;V=A and C8;V=A

contribute to Iðŵ3Þ
th .5 Since we will not use weights of degree

larger than 3, there is no need to consider the OPE coef-
ficients CD with D> 8.
Weights wðxÞ which are functions of the dimensionless

variable x ¼ s=s0 are chosen in order to facilitate the

separation of OPE contributions to IðwÞth ðs0Þ having different
D ¼ 2k which, with this choice, scale as 1=sk0. While

nonperturbative contributions are small at the scales of
typical �-decay analyses, at the level of precision claimed
in recent �s determinations they are definitely not negli-
gible. For example, almost the entire difference between
the results of Refs. [5,27] are due to differences in the fitted
nonperturbative contributions. As discussed in detail in
Ref. [27] and P1, taking advantage of the s0 dependence

of the moments IðwÞex ðs0Þ is crucial for properly constraining
such higher-D contributions. For further discussion of the
selection of the particular set of weights chosen above, we
refer the reader to P1.

III. THE OPAL DATA UPDATE

The 1998 OPAL inclusive �V and �A distributions were
constructed as sums over exclusive-mode distributions. In
this process, the distributions of the three main hadronic
modes in each channel (���0, ��3�0 and ���þ���0

for the V channel and ��2�0, ���þ��, and
���þ��2�0 for the A channel) were explicitly measured,
while the small residual contributions associated with other
modes were typically Monte Carlo generated using
TAUOLA 2.4 [2]. The normalizations of the exclusive
modes (residual or not) were, however, not measured by
OPAL, but rather fixed by the 1998 PDG values for

3For a alternative view of the D ¼ 2 contribution in this
context, see Refs. [20,21].

4The parametrization of DVs is also discussed in Ref. [26].

5We have checked the influence of higher-order �s corrections
to the D ¼ 4 contributions in the OPE. Numerically, the differ-
ences are tiny, and can safely be neglected. For more discussion,
see P1.
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the exclusive-mode branching fractions. Significant
improvements to these branching fractions have been
made since 1998.

Since the distributions for the main exclusive modes
noted above are publicly available, it is possible to update
the dominant contributions to the inclusive V and A dis-
tributions by simply rescaling these contributions with the
ratio of the new and old branching fractions for these
exclusive modes. Unfortunately, this is not the case for
the residual-mode contributions since the individual
Monte-Carlo-generated residual exclusive-mode distribu-
tions are not publicly available. The distribution for the
sum of residual modes in each channel is, however, recon-
structable from the publicly accessible inclusive- and
exclusive-mode distributions. This distribution may then
be updated in an averaged sense by computing the new and
old versions of the sum of residual-mode branching frac-
tions and rescaling the old combined residual-mode distri-
bution by the ratio of these results. Since different
exclusive modes have different s-dependent distributions,
this average updating of the residual distributions is not
perfect. Fortunately, however, the residual modes do not
play a major role in the spectral functions in the kinemati-
cally accessible region (accounting, for example, for only
2.6% of the inclusive branching fraction in the V channel
and only 1.7% in the A channel). The average rescaling
required for the combined V-channel residual branching
fraction turns out to be small (reducing the OPAL com-
bined residual-mode branching fraction sum by only
1.7%). In contrast, the HFAG version of the A-channel
combined residual branching fraction is 1.394 times the
corresponding OPAL value, making the average residual-
distribution rescaling procedure much safer for the V
channel than it is for the A channel.

We perform the updates of both exclusive-mode distri-
butions and the combined residual-mode distributions us-
ing branching fractions from a recent unitarity-constrained
HFAG fit.6 The particular fit we employ is that incorporat-
ing standard-model expectations based on ��2 and K�2

data for B½� ! ���� and B½� ! K��� in addition to the
results for these branching fractions measured directly in �
decays [7].7

It is important to note that the conventions for quoting
the various exclusive branching fractions are not identical
for OPAL and HFAG. HFAG quotes !��, !���0, and
����0 branching fractions corresponding to all ! and �
decay modes, and excludes ! and � substate contributions
in quoting branching fractions for all other modes.
In contrast, for OPAL, (i) the quoted ���þ��,
���þ���0, and ���þ��2�0 branching fractions in-
clude, respectively, !��, !��, and !���0, and

!���0 and ����0 components, and (ii) the !�� and
!���0 branching fractions are quoted excluding! ! 3�
contributions. With these conventions, the tabulated
OPAL exclusive branching fractions and distributions in-
clude small ‘‘wrong-current contaminations’’ associated
with isospin-breaking ! ! �þ�� and � ! �þ���0

decays. Explicitly, ! ! �þ�� decays cause the
V-current-induced !�� mode to populate the nominally
A-current ���þ�0 distribution and the A-current-induced
!���0 mode to populate the nominally V-current
���þ���0 distribution, while � ! �þ���0 decays
cause the V-current-induced ����0 mode to populate
the nominally A-current ���þ��2�0 distribution. In
forming the inclusive V and A spectra, OPAL corrects for
this contamination by including an appropriate negatively
weighted version of the relevant non-! ! 3� and
non-� ! 3� !��, !���0, and ����0 distributions in
the wrong-current inclusive distribution sum. The negative
weights employed by OPAL were determined using the
1998 PDG values for the branching fractions of the
relevant � and ! decay modes.
In order to perform the rescaling of the OPAL exclusive-

mode distributions, the relevant updated wrong-current
contaminations must be added to the HFAG exclusive
branching fractions. The HFAG-updated !�� (excluding
! ! 3�), !���0 (excluding ! ! 3�), and ����0

(excluding � ! 3�) branching fractions, and updated
negative-weight, wrong-current contamination corrections
must, analogously, be incorporated in the updated version
of the combined residual-mode branching fractions in both
channels. These updates are performed using the HFAG
exclusive branching fractions, together with 2010 PDG
results for the relevant � and ! branching fractions.
Numerical details may be found in the Appendix.
OPAL has also tabulated the covariance matrices for the

three main exclusive modes in each channel, as well as the
VV, VA, and AA covariances for the inclusive V and A
distributions. The absence of information on the covarian-
ces among the different exclusive-mode distributions lim-
its our ability to update the inclusive VV, VA, and AA
covariances. Updates for improvements in factors such as
Be and Vud which enter when converting the differential
branching fraction distributions, dBV=AðsÞ=ds, to the cor-

responding spectral functions, can, however, be performed.
Details on carrying out this procedure may also be found in
the Appendix.

IV. THE POSTERIOR PROBABILITY
DISTRIBUTION

The fit functions used in the sum rules (2.1) are nonlinear
in �sðm2

�Þ and the DV parameters. It is therefore not
obvious what the posterior probability distribution of the
model parameters looks like, even if we assume the data
errors to follow a (multivariate) Gaussian distribution.

6The updated OPAL data are available on request.
7We refer to http://www.slac.stanford.edu/xorg/hfag/tau/hfag-

data/tau/2009/TauFit_Mar2011/BB_PiKUniv/ConstrainedFit.pdf
for details.

DIOGO BOITO et al. PHYSICAL REVIEW D 85, 093015 (2012)

093015-4



In order to study this distribution, we have used an
McMC code, Hrothgar [28], in order to generate the
conditional probability distribution, which we take to be
proportional to exp½��2ð ~pÞ=2�, given the data, where ~p
represents the array of fit parameters. With the data fixed,
these parameters are varied stochastically, and a
Metropolis-Hastings accept-reject step is used to generate
a statistical picture of the probability distribution. In this
section, we will describe our findings in more detail for the
case of a fit to the FESR with weight ŵ0, first in the V
channel.

The McMC code generates points in the five-
dimensional space spanned by the five parameters
�sðm2

�Þ, �V , �V , �V , and 	V , and also computes the value
of �2 at each of the generated points. These points are
distributed following exp½��2ð ~pÞ=2�, with �2ð ~pÞ eval-
uated on the (updated) OPAL data (including the full
covariance matrix) and the values of the parameters ~p at
these points.

The probability distribution thus obtained can be pro-
jected onto two-dimensional planes. In Fig. 1, we show �2

as a function of �sðm2
�Þ, choosing smin ¼ 1:5 GeV2, using

FOPT for the perturbative part.8 Since for each �sðm2
�Þ

points with many different values for the other four
parameters are generated stochastically, the distribution
appears as the cloud shown in the figure.9

Figure 1 shows a bimodal distribution, with one local
minimum near �sðm2

�Þ ¼ 0:28, and a global minimum near
�sðm2

�Þ ¼ 0:32, with a difference in the locally minimal
values of �2 equal to about 1.6. As a consequence, a
standard �2 minimization, which estimates the parameter

covariance matrix from the Hessian at the (global) mini-
mum,10 will miss the other local minimum entirely.
The origin of the problem appears to be the fact that �V

is not well constrained by the data. This can be seen in
Fig. 2, which shows the projections onto the �sðm2

�Þ � �
and �� � planes, in this case as contour plots showing
the regions containing 68% (blue) and 95% (green) of the
distribution. The right panel shows a very strong correla-
tion between the two parameters, �V and �V , which
together control the ‘‘strength’’ of the DV part of the
spectral functions in the low-s part of our fitting
windows, cf. Eq. (2.9). Clearly, external input is required
to narrow down which part of the distribution is most
likely to correspond to physics. This will be discussed in
Sec. V.
Figure 3 shows analogous results for a V and A channel

combined (V & A) fit, again for smin ¼ 1:5 GeV2, again
using FOPT. In this case, there are 9 fit parameters, and
the figure shows a projection of the ten-dimensional space
spanned by the 9 parameters and �2. The four panels
show a fit of the V & A FESRs with moment ŵ0, similar
to the V channel fit shown in Fig. 1. In the upper left
panel, we used the full set of s0 values corresponding to
the right end points of all bins starting from smin ¼
1:504 GeV2, whereas the other three panels show fits in
which the s0 values employed have been thinned out by a
‘‘thinning factor’’ n, chosen equal to 2, 3, and 4, respec-
tively, in the upper right, lower left, and lower right
panels.11 Contour plots for the combinations �sðm2

�Þ �
�V and �V � �V look very similar to those shown for the
V case in Fig. 2.
Again, as in Fig. 1, there appear to be two local minima,

one centered around �sðm2
�Þ ¼ 0:315, and one centered

around �sðm2
�Þ ¼ 0:28. However, in this case the two

minima are much closer to being degenerate than in the
V-channel fit. For n ¼ 4, it is difficult to discern two
separate minima; the two minima appear to merge.
Similar behavior as a function of the thinning factor is

observed in fits to only the V channel as well, but the two
minima are alwaysmore clearly separated, as in Fig. 1. This
may explain why theV &A combined fits inP1were found
to be less stable than V channel fits. Figure 3 may also
explain why fits with n ¼ 3 led tomore stable results inP1,
since for n ¼ 3 the two minima appear to be somewhat
more clearly separated than for other values of n.12

One should also bear in mind, in assessing the relative
reliability of the results of the V channel and combined V
& A channel fits, that the much larger average rescaling of

FIG. 1. �sðm2
�Þ versus �2; V channel, with smin ¼ 1:5 GeV2

(200 000 points).

8The distribution for CIPT looks essentially the same, except
that the projections shown in Figs. 1 and 2, left panel, are shifted
to the right by an amount �0:02.

9If a new point is rejected by the accept-reject step, the old
point is retained. Therefore, each point in the plot may represent
multiple points in the ensemble.

10Or from the minimum value of �2 plus one.
11If the thinning factor is equal to n, we use every nth value of
Iðŵ0Þ
ex ðs0Þ in the fit, see also P1. We emphasize that all data are
used: only integrated data are thinned out.
12We have checked that the behavior of the posterior probabil-
ity distributions with the nonupdated data we used in P1 is very
similar to what we find with the updated data.
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the sum-of-residual-modes branching fraction in the A
channel makes the updating of the spectral function
much less reliable in the A channel than it is in the V
channel.

For both the V-only and the V & A fits, we have also
studied the behavior of the �2 distribution as a function of
smin. We find that by lowering smin, the minimum at the
lower value of �sðm2

�Þ ‘‘moves up,’’ i.e., the value of �2 at
that local minimum increases relative to that at the other
minimum.

V. FITS

In this section, we present the results of fits to a range
of different moments, obtained by minimizing various
different ‘‘fit qualities,’’ (positive-definite quadratic
forms in the differences between theory and data). In

Sec. VA, we discuss fits to the FESR with moment Iðŵ0Þ,
whereas in Sec. VB we will consider simultaneous fits

to FESRs with the moments Iðŵ0;2;3Þ, using the weights of
Eq. (2.11).

FIG. 3. �2 versus �sðm2
�Þ, thinning out the integrated data by factors 1 (upper left), 2 (upper right), 3 (lower left), and 4 (lower right);

V and A channel combined, with smin ¼ 1:5 GeV2 (200 000 points).

FIG. 2 (color online). Two-dimensional contour plots showing �sðm2
�Þ versus �V and �V versus �V . Left panel: projection onto

�sðm2
�Þ � �V plane. Right panel: projection onto �V � �V plane. V channel, smin ¼ 1:5 GeV2. Blue (darker) areas and green (lighter)

areas contain 68%, respectively, 95% of the distribution.
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In the first case, we choose the fit quality to be the
standard �2, already discussed in the previous section,
constructed with the complete (updated) covariance ma-
trix. In the second case, in which we combine more than
one moment, it turns out, as discussed in P1, that the
correlations are too strong to allow for a fit based on the
standard �2 function.13 We therefore employ a somewhat
simpler fit quality Q2. Working with a set of values of s0,
{sk0g in some fitting window, we define

Q2 ¼ X
w

X
si0;s

j
0

ðIðwÞex ðsi0Þ � IðwÞth ðsi0; ~pÞÞðCðwÞÞ�1
ij ðIðwÞex ðsj0Þ

� IðwÞth ðsj0; ~pÞÞ; (5.1)

with Cw the covariance matrix for moments with fixed
weight w and s0 running over the chosen fit window.14

The fit quality Q2 is thus similar to a standard �2, but with
cross correlations between different moments omitted.
Treating Q2 as if it were the standard �2 would thus lead
to incorrect errors and covariances for the fit parameters.
To take the cross correlations properly into account,
errors and covariances for Q2-based fits are obtained using
the linear-fluctuation analysis described in the Appendix
of P1.

In view of (i) the results of Sec. IV and (ii) the fact that
the updating scheme is much more reliable for the
V-channel than for the A-channel OPAL data, we will
use the V-channel fits of Sec. VA to determine our central
value for �sðm2

�Þ. The remaining fits are used only to
investigate whether our fit function, which parametrizes
DVs using Eq. (2.9), provides a good description of the
data for the moments ŵ2 and ŵ3 as well. The issue of the
choice of weights is discussed in more detail in P1.

As we have seen in Sec. IV, the posterior probability
distribution generally has a rather complicated structure,
showing almost always two fairly close but different min-
ima. We thus need to address the question which minimum
is more likely to correspond to a physical solution. The
situation is more complicated in the case of V & A fits, for
which the two minima are essentially degenerate. We will
argue that the minimum corresponding to the larger value
of �sðm2

�Þ is more likely to correspond to the correct
physics.

First, there is evidence for this choice from the fits
themselves. We note that, in the V-only case, the minimum
of �2 for the larger value of �sðm2

�Þ is always the lower one
by a significant amount, cf. Fig. 1. This is confirmed by fits
with lower values of smin, for which this separation be-
comes more pronounced.

We may also refer to the model study of Ref. [24], which
led to the form of the ansatz (2.9) used to parametrize DVs.
It was shown there that the model underlying this ansatz
leads naturally to the following values for the parameters:

���log

�
F2

�2

�
�4 and �� 1

Nc

1

�2
�0:3GeV�2; (5.2)

where F� 0:1 GeV is a typical value for a resonance
decay constant, and �� 1 GeV is a typical QCD scale.
Figure 2 shows that for such values the global �2 mini-
mum, which occurs at the larger value of �V , and thus at
the larger value of �sðm2

�Þ, is preferred. [We will see below
that the estimates of Eq. (5.2) are less well satisfied for the
A channel.] Henceforth, we will refer to the minima at
larger values of �V as ‘‘physical’’ minima, and to those at
smaller values of �V as ‘‘unphysical.’’

A. Fits with ŵ0

In Table I, we show V channel fits of I
ðŵ0Þ
th ðs0Þ to Iðŵ0Þ

ex ðs0Þ
[cf. Eq. (2.1)], for s0 2 ½smin; smax�, with smax ¼
3:136 GeV2 and varying smin.

15 In all the fits contained
in this table, we have used initial parameter estimates
which roughly correspond to the physical minima, i.e.,
the minima corresponding to larger values of �V found
with the McMC code. There is excellent stability for smin

ranging from 1.4 to 1:7 GeV2. In a slight deviation from
P1, we will use the average of the fits with smin ¼ 1:4, 1.5,
and 1:6 GeV2 to determine �sðm2

�Þ. Since the fit is non-
linear, one expects the fit errors to be asymmetric. For
instance, for the FOPT fit with smin ¼ 1:5 GeV2 we find

�sðm2
�Þ ¼ 0:323þ0:016

�0:018; �V ¼ 4:21þ0:53
�0:88;

�V ¼ 0:12þ0:57
�0:33 GeV�2; �V ¼ �0:48þ0:75

�0:81;

	V ¼ 3:38þ0:42
�0:38 GeV�2:

(5.3)

We note that the error on �sðm2
�Þ is nearly symmetric, and

that the error on �V is much closer to symmetric than the
error on 
V ¼ expð��VÞ in P1. A typical parameter cor-
relation matrix, that for the FOPT fit with smin ¼
1:5 GeV2, is shown in Table II. Results for other values
of smin, or for CIPT fits, show the same pattern.
Recalling our choice to obtain a central value by aver-

aging results for smin ¼ 1:4, 1.5, and 1:6 GeV2, we obtain
from these fits for �s at the � mass the results

�sðm2
�Þ¼0:325�0:016�0:002�0:007 ðFOPTÞ;

�sðm2
�Þ¼0:347�0:024�0:002�0:005 ðCIPTÞ: (5.4)

The first error is the smin ¼ 1:5 GeV2 fit error shown in
Table I, the second the variation of the central values over

13When more than one weight is employed, the correlation
matrix for the full set of weighted spectral integrals, labeled by
the weights and s0 values employed, acquires a number of
machine-precision zero eigenvalues.
14The fit quality Q2 corresponds to Q2

block defined in P1.

15This value of smax corresponds to the highest bin available in
the OPAL data; the bin width is 0:032 GeV2. In the axial
channel, the highest bin available corresponds to smax ¼
3:104 GeV2.
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the smin ¼ 1:4 ! 1:6 GeV2 averaging window, and the
third the result of the�283 variation of c51 about its central
value c51 ¼ 283.

Figure 4 shows the ŵ0-FESR fit for smin ¼ 1:5 GeV2

(left panel), and the corresponding theoretical curves for
the spectral function in comparison with the (updated)
experimental data (right panel). Agreement with data is
good in the full fit window s0 � smin ¼ 1:5 GeV2. The
black curves show the OPE parts of the theoretical curves,
i.e., the curves obtained by removing the DV contributions
from the blue and red curves. Clearly, DVs are needed to

give a good description of the data for I
ðŵ0Þ
ex and the spectral

function itself. We emphasize that the right panel of Fig. 4

is not a fit; only the moments Iðŵ0Þðs0Þ were used in the fits
reported in Table I.
Fits with weight ŵ0 to the combined V and A channels

are tabulated in Table III, where again initial parameter
estimates were chosen close to the physical minima. In
view of our findings of Sec. IV for this case, we chose the
thinning factor n equal to 2. We do not show plots of these
fits, or of the corresponding spectral functions, because
they look very similar to those shown in Fig. 4 and the
corresponding figures in P1. The CIPT fit with smin ¼
1:7 GeV2 appears to correspond to an unphysical solution
of the type discussed in Sec. IV; we did not find a physical
solution in this case.
Following the same prescription as for Eq. (5.4), we

obtain for �s the values

�sðm2
�Þ¼0:319�0:015�0:007�0:005 ðFOPTÞ;

�sðm2
�Þ¼0:338�0:021�0:010�0:004 ðCIPTÞ (5.5)

from the V & A fits. The errors have the samemeaning as in
Eq. (5.4). The values in Eq. (5.5) are in good agreement
with those of Eq. (5.4). It should, however, be kept in mind

TABLE II. Parameter correlation matrix for the FOPT fit with
smin ¼ 1:5 GeV2 shown in Table I.

�s �V �V �V 	V

�s 1 0.68 �0:67 0.74 �0:68
�V 0.68 1 �0:99 0.47 �0:44
�V �0:67 �0:99 1 �0:49 0.45

�V 0.74 0.47 �0:49 1 �0:98
	V �0:68 �0:44 0.45 �0:98 1

1.0 1.5 2.0 2.5 3.0
0.025

0.030

0.035

0.040

s0 GeV2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s GeV2

FIG. 4 (color online). Left panel: comparison of Iðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1:5 GeV2 V-channel fits of Table I. Right panel:
comparison of the theoretical spectral function resulting from this fit with the experimental results. CIPT fits are shown in red (dashed)
and FOPT in blue (solid). The (much flatter) black curves represent the OPE parts of the fits. The vertical dashed line indicates the
location of smin.

TABLE I. Standard �2 fits to Eq. (2.1) with wðsÞ ¼ 1, V channel. FOPT results are shown above the horizontal line, CIPT results
below. Errors are standard �2 errors; �V and 	V in GeV�2.

smin dof �2=dof �s �V �V �V 	V

1.3 53 0.41 0.338(18) 3.91(62) 0.27(43) 0.53(54) 2.89(29)

1.4 50 0.33 0.326(16) 4.11(63) 0.16(41) �0:29ð68Þ 3.29(35)

1.5 47 0.34 0.323(16) 4.21(62) 0.12(40) �0:48ð79Þ 3.38(40)

1.6 44 0.35 0.325(18) 4.04(86) 0.20(53) �0:37ð87Þ 3.33(44)

1.7 41 0.35 0.323(19) 4.37(99) 0.05(53) �0:48ð91Þ 3.37(44)

1.3 53 0.43 0.360(32) 3.47(64) 0.53(47) 0.57(58) 2.83(32)

1.4 50 0.34 0.349(25) 3.84(65) 0.30(44) �0:31ð67Þ 3.28(35)

1.5 47 0.34 0.345(24) 3.99(64) 0.22(42) �0:54ð77Þ 3.39(40)

1.6 44 0.36 0.347(26) 3.82(90) 0.32(56) �0:45ð86Þ 3.35(44)

1.7 41 0.37 0.344(25) 4.2(1.1) 0.12(57) �0:57ð90Þ 3.40(44)

DIOGO BOITO et al. PHYSICAL REVIEW D 85, 093015 (2012)

093015-8



that (i) the physical and unphysical minima of the �2

function are close to degenerate for these fits
(cf. Sec. IV) and (ii) the averaged rescaling of the sum-
of-residual-modes part of the OPAL spectral functions is
considerably less reliable for the A channel than for the V
channel.

B. Fits with ŵ0;2;3

In this section, we report on simultaneous fits to
moments with weights ŵ0, ŵ2, and ŵ3, using the fit quality
Q2 of Eq. (5.1). FOPT and CIPT results are shown for the
V channel in Table IV, for the same set of smin values as
before. To properly account for the cross correlations

between moments with different weights, errors and
covariances are computed through the linear-fluctuation
analysis of P1. We do not show any plots based on these
fits, as they look very similar to those in P1.
In this case, we have not carried out an investigation

along the lines of Sec. IV. The reason is that we cannot
compute a fully correlated posterior probability distribut-
ion, and the interpretation of the probability distribution
associated with Q2 would be less clear. Our only reason
for considering these multiple-moment fits is to check
that DVs in higher moments, and, in particular, the
moment with the kinematic weight, can be described
by our ansatz, Eq. (2.9). We find that this is indeed the case.

TABLE III. Standard X2 fits to Eq. (2.1) for wðsÞ ¼ 1, combined V and A channels. FOPT results are shown above the horizontal
line, CIPT results below. The first line for each smin gives the V DV parameters; the second line the A ones. Every second value of s0 in
the range above and starting at smin is included in the fits. Errors are standard X2 errors; �V=A and 	V=A in GeV�2.

smin dof �2=dof �s �V=A �V=A �V=A 	V=A

1.3 49 0.58 0.327(12) 3.71(55) 0.38(39) 0.24(51) 3.00(30)

1.62(86) 1.66(55) 2.48(77) 3.60(46)

1.4 46 0.47 0.325(11) 4.28(44) 0.02(30) �0:54ð58Þ 3.43(31)

1.6(1.0) 1.68(64) 1.8(1.2) 4.00(68)

1.5 43 0.53 0.312(15) 3.90(71) 0.29(46) �1:02ð85Þ 3.64(45)

1.82(72) 1.46(44) �2:5ð1:3Þ 2.91(74)

1.6 40 0.40 0.320(13) 4.23(57) 0.05(35) �0:79ð70Þ 3.55(37)

1.56(94) 1.64(53) 2.8(1.7) 3.47(91)

1.7 37 0.54 0.312(17) 3.7(1.4) 0.42(78) �0:9ð1:0Þ 3.60(51)

0.3(1.8) 2.15(86) �1:7ð2:1Þ 2.5(1.1)

1.3 49 0.61 0.348(18) 3.38(51) 0.58(38) 0.30(54) 2.93(32)

1.95(78) 1.48(50) 2.51(83) 3.61(49)

1.4 46 0.49 0.347(15) 4.03(46) 0.14(32) �0:60ð54Þ 3.44(30)

1.97(82) 1.48(53) 2.0(1.1) 3.93(64)

1.5 43 0.54 0.328(21) 3.69(77) 0.39(51) �1:08ð83Þ 3.66(45)

1.94(71) 1.39(42) �2:4ð1:3Þ 2.90(72)

1.6 42 0.40 0.339(17) 4.09(61) 0.12(38) �0:90ð67Þ 3.59(35)

1.73(94) 1.54(52) 2.9(1.5) 3.42(83)

1.7 37 0.47 0.294(17) �0:9ð2:8Þ 3.3(1.6) 3.1(2.3) 8.2(1.2)

0.8(1.7) 1.76(78) �0:9ð1:7Þ 2.12(87)

TABLE IV. Fits to Eq. (2.1) with weights ŵ0;2;3, V channel, using fit quality (5.1). FOPT results are shown above the horizontal line,
CIPT fits below. �V and 	V in GeV�2, C6;V in GeV6, and C8;V in GeV8.

smin dof Q2=dof �s �V �V �V 	V 102C6;V 102C8;V

1.3 167 0.42 0.307(13) 2.68(75) 1.10(51) 0.29(80) 2.89(47) �0:51ð35Þ 0.68(66)

1.4 158 0.33 0.313(13) 3.37(69) 0.63(46) �0:69ð87Þ 3.45(49) �0:47ð28Þ 0.79(44)

1.5 149 0.33 0.315(14) 3.74(60) 0.40(39) �0:9ð1:0Þ 3.55(57) �0:45ð28Þ 0.80(45)

1.6 140 0.33 0.317(17) 3.42(76) 0.59(48) �0:7ð1:4Þ 3.48(75) �0:42ð39Þ 0.72(68)

1.7 131 0.33 0.318(19) 4.26(73) 0.14(39) �0:8ð1:3Þ 3.53(68) �0:46ð38Þ 0.86(61)

1.3 167 0.38 0.362(45) 3.55(80) 0.47(57) 0.53(98) 2.85(52) �0:18ð51Þ 0.06(82)

1.4 158 0.30 0.349(30) 3.85(66) 0.30(44) �0:3ð1:0Þ 3.28(55) �0:40ð33Þ 0.53(55)

1.5 149 0.30 0.345(30) 3.97(61) 0.24(40) �0:5ð1:3Þ 3.39(66) �0:46ð35Þ 0.66(61)

1.6 140 0.31 0.347(42) 3.71(71) 0.38(47) �0:4ð1:8Þ 3.33(92) �0:42ð55Þ 0.6(1.0)

1.7 131 0.31 0.344(40) 4.21(74) 0.13(42) �0:6ð1:8Þ 3.40(88) �0:50ð50Þ 0.77(92)
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The fit results, reported in Table IV, are in good agree-
ment with those of Sec. VA. Following the same method as
before, we obtain for �s the values

�sðm2
�Þ¼0:315�0:014�0:002�0:007 ðFOPTÞ;

�sðm2
�Þ¼0:347�0:030�0:002�0:005 ðCIPTÞ; (5.6)

where again the errors have the same meaning as in
Eq. (5.4). For the CIPT case, we see that adding more
moments has not improved the determination and, in
fact, has somewhat increased the total error. In view of
this observation, and the fact that the errors in Eqs. (5.6)
and (5.4) were, in any case, produced using different
minimizing functions, we stick with the standard �2

V-channel fit results of Eq. (5.4) as our central ones.
In Table V, we show similar results for theV &A analysis.

In this case, we found the most stable results with the
thinning factor n ¼ 3, i.e., thinning out the moments

I
ðŵ0;2;3Þ
ex ðs0Þ by a factor three. Even so, we did not find a
physical minimum for the FOPT case with smin ¼
1:6 GeV2, as can be seen from the table. The distinction
between the physical minima we found at lower values of
smin and the unphysical minima at higher values of smin

is very clear from the values of the DV parameters.16 In
particular, �V and �V both differ by a large amount
between physical and unphysical solutions, much as shown
in the simpler case displayed in Fig. 2. Averaging only the

FOPT fits at smin ¼ 1:4 and 1:5 GeV2, and averaging as
before the CIPT fits at smin ¼ 1:4, 1.5 and 1:6 GeV2, we find
for �sðm2

�Þ,

�sðm2
�Þ¼0:311�0:011�0:002�0:007 ðFOPTÞ;

�sðm2
�Þ¼0:337�0:017�0:002�0:005 ðCIPTÞ; (5.7)

with errors again as in Eq. (5.4).

VI. SUMMARY OF RESULTS

Through a more detailed statistical study of the data than
we carried out in P1, we showed that our fits of the OPAL
data sometimes allow for different local mimina of the �2

function, cf. Sec. IV. These solutions are most clearly
distinguished by the values of the DV parameters �V and
�V , and in the introduction to Sec. V we argued that the
solutions with large values of �V (of order 4) and small
values of �V (of order 0.3) should be considered as physi-
cal, while the other minima, which always have small
values of �V (negative, in fact), and large values of �V

(typically of order 3) should not be considered physical.
As in P1, we have used both Weinberg sum rules [29]

and the sum rule for the electromagnetic pion mass differ-
ence [30] to test our fit results. All three sum rules are well
satisfied, at a level of precision similar to that found in P1.
We have also confirmed, again as in P1, that our theoreti-

cal description of Rð1þ0Þ
VþA;udðs0Þ [Eq. (2.12)] agrees, within

errors, with data for s0 down to below 1:5 GeV2.

TABLE V. Fits to Eq. (2.1) with weights ŵ0;2;3, combined V and A channels, using fit quality (5.1). FOPT results are shown above the
horizontal line, CIPT fits below. �V=A and 	V=A in GeV�2, C6;V and C6;A in GeV6, and C8;V and C8;A in GeV8. The first line for each

smin gives the V channel DV and OPE parameters; the second line the A channel ones. Every third value of s0 in the range above and
starting at smin is included in the fits.

smin dof Q2=dof �s �V=A �V=A �V=A 	V=A 102C6;V=A 102C8;V=A

1.3 104 0.64 0.309(9) 2.80(74) 1.00(50) �0:25ð72Þ 3.18(43) �0:54ð26Þ 0.82(49)

2.51(43) 1.11(28) 3.03(71) 3.37(41) 0.56(20) �0:58ð37Þ
1.4 98 0.49 0.310(11) 3.33(72) 0.64(48) �1:07ð82Þ 3.66(47) �0:55ð23Þ 0.93(38)

2.26(50) 1.22(32) �2:89ð95Þ 3.17(54) 0.50(29) �0:40ð59Þ
1.5 92 0.48 0.312(11) 3.70(62) 0.40(41) �1:23ð95Þ 3.75(53) �0:52ð22Þ 0.92(36)

2.16(78) 1.28(43) �2:9ð1:2Þ 3.17(68) 0.53(34) �0:45ð76Þ
1.6 86 0.38 0.292(14) �0:8ð3:0Þ 3.2(1.8) �0:9ð1:8Þ 7.0(1.0) �1:14ð18Þ 2.10(32)

1.8(1.1) 1.38(56) �1:7ð1:4Þ 2.55(73) �0:09ð62Þ 0.96(1.7)

1.7 80 0.44 0.312(17) 3.78(89) 0.36(50) �1:1ð1:4Þ 3.69(74) �0:52ð37Þ 0.91(66)

�0:4ð2:3Þ 2.5(1.0) �1:6ð3:2Þ 2.5(1.7) 0.27(78) 0.5(2.4)

1.3 104 0.53 0.346(18) 3.45(58) 0.54(41) 0.02(70) 3.09(40) �0:38ð27Þ 0.43(46)

1.97(69) 1.46(44) 2.33(76) 3.73(44) 0.71(22) �1:02ð43Þ
1.4 98 0.43 0.339(17) 3.75(57) 0.34(39) �0:72ð83Þ 3.49(46) �0:51ð22Þ 0.73(38)

2.03(60) 1.39(39) 2.8(1.0) 3.48(59) 0.59(26) �0:76ð55Þ
1.5 92 0.43 0.337(17) 3.89(53) 0.26(36) �0:95ð98Þ 3.60(53) �0:55ð23Þ 0.82(41)

2.13(78) 1.34(45) 2.8(1.4) 3.47(74) 0.58(31) �0:74ð68Þ
1.6 86 0.44 0.335(23) 3.56(77) 0.45(48) �0:9ð1:4Þ 3.57(73) �0:55ð34Þ 0.79(65)

1.7(1.1) 1.51(58) 3.1(1.8) 3.31(99) 0.50(46) �0:5ð1:1Þ
1.7 80 0.42 0.332(30) 3.79(84) 0.33(47) �1:0ð1:7Þ 3.61(85) �0:58ð43Þ 0.88(84)

�0:3ð2:4Þ 2.14(1.0) �2:1ð3:5Þ 2.7(1.9) 0.30(85) 0.2(2.5)

16The value of �2 is always smaller at the unphysical minimum
in these particular fits.
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A. The value of �sðm2
�Þ

Wewill choose the values of the strong coupling at the �

mass obtained from the V-channel fit of Iðŵ0Þ
ex as our best

values. Our reasoning for doing so is twofold. First, while
the simultaneous fits to multiple moments are in good
agreement with this simple fit, no standard �2 fit is possible
in this case. While we believe that the error estimates based
on linear-fluctuation analysis are reasonable, it is less clear
how they should be interpreted than those obtained from a
standard�2 analysis.17 Second, including also theA channel
makes the fits more complicated, because of the larger
number of parameters. This effect is compounded by the
much larger, and hence less certainly reliable, approximate
rescaling that must be applied to the residual distribution in
the A channel. In addition, we note that the only feature
visible in theA channel is thea1 resonance, and it is not clear
whether the ansatz we use to parametrize the DV part of the
spectral function can be expected to apply to this resonance,
even if we assume that the ansatz works well for higher
resonances in each channel. Finally, related to this, we
note that the typical values of the DV parameters we find
in the axial channel satisfy the expectation of Eq. (5.2) less
well.

We thus find our best values for the strong coupling from
Eq. (5.4):

�sðm2
�Þ¼0:325�0:018 ðMS;nf¼3;FOPTÞ;

�sðm2
�Þ¼0:347�0:025 ðMS;nf¼3;CIPTÞ;

(6.1)

where we added the errors in Eq. (5.4) in quadrature.
Running these values up to the Z mass MZ [31] yields18

�sðM2
ZÞ¼0:1191�0:0022 ðMS;nf¼5;FOPTÞ;

�sðM2
ZÞ¼0:1216�0:0027 ðMS;nf¼5;CIPTÞ;

(6.2)

where we symmetrized the resulting slightly asymmetric
errors.

B. Nonperturbative results

In P1, we estimated the relative deviation of the values
found for the dimension-6 condensates from those given
by vacuum-saturation approximation. To this end, these

condensates, parametrized by C6;V=A, are expressed in

terms of the quantities �1 and �5 by

C6;V=A ¼ 32

81
�2ash �qqi2 2�1 � 9�5

11�1

� �
: (6.3)

Vacuum-saturation values for C6;V=A then correspond to

�1 ¼ �5 ¼ 1. Performing the analogous analysis for the
updated OPAL spectral functions, we find (employing
h �qqiðm2

�Þ ¼ �ð272 MeVÞ3 [32])

�1 ¼ 3:1� 2:0; �5 ¼ 4:4� 1:4 ðFOPTÞ;
�1 ¼ 3:1� 1:6; �5 ¼ 4:3� 1:3 ðCIPTÞ; (6.4)

using as representative values C6;V=A and �sðm2
�Þ of

Table V for smin ¼ 1:5 GeV2.19 As in P1, the values of
�1 and �5 are insensitive to the perturbative resummation
scheme.We note that �1 changes sign relative to the central
value found in P1, but also that, given the large uncertain-
ties, there is no inconsistency between our earlier fits and
those presented here.
Analyses of the strong coupling from � decays are

sometimes based on the ratio, R�
VþA, of the total inclusive

nonstrange branching fraction to the electron branching
fraction Be [16],

R�
VþA ¼ NcSEWjVudj2ð1þ �P þ �NPÞ; (6.5)

where �P stands for the perturbative, and �NP stands for
the nonperturbative contributions beyond the parton
model. Determining �P, and hence �s, from R�

VþA of

course requires input for �NP. In the past, shortcomings
in the methods used to obtain this input have led to a
significant underestimate of the corresponding uncertain-
ties. Analyses (such as those of Refs. [2,4]) including
additional higher-degree-weight FESRs, for example,
were forced to assume that D> 8 contributions could be
neglected for all additional FESRs.20 Reference [27]
avoided this problem, but, being unable to fit all required
D � 8 OPE parameters using an s0 window within which
neglect of integrated DVs was self-consistent, was forced
to rely on external input for the gluon condensate, the
renormalon ambiguity of which makes this external input
potentially problematic. As shown inP1 and Ref. [33], it is
not possible to avoid these problems without considering
lower s0 and FESRs for which integrated DVs are not
negligible in the full s0-fitting window employed. The

17Of course, we have found that the posterior probability
distribution has a complicated behavior, so that physical input
is required to decide which local minimum is physical, as
discussed in detail in Secs. IV and V.
18We evolved �s to the Z mass in the same way as was done in
Ref. [10]. Uncertainties in the running, associated with the use of
4-loop truncated 	 functions, uncertainties in the charm and
bottom masses, and the choice of the nf ¼ 3 ! nf ¼ 4 and
nf ¼ 4 ! nf ¼ 5 matching thresholds are negligible on the
scale of the quoted errors.

19We neglect the errors on �s and h �qqi.
20This assumption has since been tested (and found to be poorly
satisfied) by comparing the s0 dependence of the fitted theory
side to that of the experimental data side of the various additional
FESRs [27].
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framework presented in P1 and in the present article is the
first to allow for a reliable estimate of �NP from such an
analysis, and hence to bring these systematic issues on the
theory side under control. Expressing the D ¼ 6, 8 OPE
terms, as well as the DV contributions to �NP, in terms of

�ð6Þ, �ð8Þ, and �DV, respectively, we obtain from our fits
with smin ¼ 1:5 GeV2,

�ð6Þ ¼ ð0:0�1:9Þ �10�2; �ð8Þ ¼ ð�3:7�7:6Þ �10�3;

�DV¼ð�0:1�1:0Þ �10�3 ðFOPTÞ;
�ð6Þ ¼ ð�0:1�1:8Þ �10�2; �ð8Þ ¼ ð�0:6�7:6Þ �10�3;

�DV¼ð�0:6�1:4Þ �10�3 ðCIPTÞ: (6.6)

Correlations among these quantities are shown for the
FOPT case in Table VI. Similar correlations are found
for the CIPT case.

While individually for the V and A channels the hier-
archy of the nonperturbative terms is such that dimension-6
is the largest, dimension-8 smaller, and the DV contribu-
tion the smallest, due to strong cancellations in the D ¼ 6
and DV contributions for the sum V þ A, the D ¼ 8 con-
tribution turns out to be dominant. However, in view of the
large uncertainties, it is impossible to conclude that these
cancellations will also persist once more precise data are
available.

Combining the OPE contributions as well as the DV
term of Eq. (6.6) including correlations, the total nonper-
turbative contribution to R�

VþA turns out to be

�NP ¼ ð�0:4� 1:2Þ � 10�2 ðFOPTÞ;
�NP ¼ ð�0:2� 1:2Þ � 10�2 ðCIPTÞ: (6.7)

These estimates, despite having errors larger than those
quoted previously in the literature, must be considered
more reliable, as they are the only ones based on an
analysis which deals explicitly with the theoretical system-
atic issues discussed above.

Care must be taken in drawing conclusions from the
results of Eq. (6.6). While the results do establish that
integrated DV contributions to R�

VþA are small, it does

not follow, as repeatedly assumed in the literature,21 that

DVs can be neglected in the determination of �s from
hadronic �-decay data. The reason is that, even if one
restricts attention to only the quantity R�

VþA, one still needs

to determine the D ¼ 6 and D ¼ 8 contributions to �NP.
This cannot be done in a controlled manner without in-
cluding values of s0 significantly lower than m2

� and
weights for which integrated DV contributions are cer-
tainly not negligible (cf. P1 and Ref. [33]). Many values
of �P in the literature have been obtained using values of
�NP taken from analyses with the limitations noted above.
In view of the results given in Eq. (6.7), the errors on such
estimates of �P are evidently underestimated, often by a
significant amount. Only improved data will allow these
errors to be further reduced.

VII. FUTURE PERSPECTIVES

In this section, we speculate on possible improve-
ments relative to the results presented in Sec. IV if
data with significantly smaller errors were to become
available. As mentioned before, in principle such data
can be extracted from the BABAR and Belle experimen-
tal results, and it is not unlikely that such an analysis
would lead to hadronic spectral functions with errors
about 2 or 3 times smaller than those of the OPAL
data, especially in the upper part of the kinematic re-
gion, where OPAL statistics are low.
Therefore, in Figs. 5 and 6, we consider how the results

shown in Figs. 1 and 2 would change if we used the same
central values for the V spectral function as used in Sec. IV,
but with a covariance matrix scaled by a factor 1=4 or 1=9.
We emphasize that this is just a speculative exercise. For
instance, given that the values of the �2 per degree of
freedom in Table I are of order one, fits with these scaled
covariance matrices would give rise to fits yielding the
same central values, but with poor values of the �2 per
degree of freedom. This observation reflects just the fact
that the data can, of course, not be improved by rescaling
the covariance matrix, simply because fluctuations in the
actual data correspond to the size of the actual covariance
matrix.
However, it is of some interest to see what would happen

to the properties of the conditional probability distribution
we explored in Sec. IV. The new figures all show that the
unphysical minimum of Fig. 1 disappears as a function of
the rescaling factor, while leaving the physical minimum in
place. We interpret this as evidence that better data, i.e.,
data with smaller errors, may help resolve the problem that
with current data the parameter �V [and therefore, because
of the strong correlations, the parameters �V and �sðm2

�Þ]
cannot be reliably determined without external consider-
ations (cf. Sec. V). Of course, this exercise assumes that
better data would be equally well described by our theo-
retical parametrization of the spectral-function moments
we consider in this article.

TABLE VI. Correlation matrix for the quantities �ð6Þ, �ð8Þ, and
�DV of Eq. (6.6) (FOPT).

�ð6Þ �ð8Þ �DV

�ð6Þ 1 �0:98 0.59

�ð8Þ �0:98 1 �0:54
�DV 0.59 �0:54 1

21For a recent review, see, e.g., Ref. [34].
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VIII. CONCLUSION

In this article, we continued our analysis of hadronic �
decays. The main goal is the precision determination of the
strong coupling at the � mass, �sðm2

�Þ, with good control
not only over statistical, but also over systematic errors. In
our previous article, P1, we presented a new framework
for such an analysis, in which nonperturbative contribu-
tions to the nonstrange vector and axial hadronic � decays,
both from the operator product expansion and from viola-
tions of quark-hadron duality, can be quantitatively esti-
mated. Since complete spectral functions for these

channels are available from experiment, the energy depen-

dence of these effects can be taken into account. The

results of Ref. [27], P1, and the present article show

unambiguously that it is imperative to take this energy

dependence into account in order to arrive at a fully

consistent understanding of nonperturbative effects. This

requires the use of a model to parametrize duality viola-

tions. We emphasize that a quantitative approach to duality

violations cannot be avoided, simply because they are

clearly present in the spectral-function data. The assump-

tion that duality violations are negligible, while perhaps

FIG. 6 (color online). Two-dimensional contour plots showing �sðm2
�Þ versus �V and �V versus �V . Top: covariance matrix reduced

by factor 4; bottom: covariance matrix reduced by factor 9. Left panel: projection onto �sðm2
�Þ � �V plane; right panel: projection onto

�V � �V plane. V channel, smin ¼ 1:5 GeV2. Blue (darker) areas and green (lighter) areas contain 68%, respectively, 95% of the
distribution.

FIG. 5. �sðm2
�Þ versus �2, covariance matrix reduced by factor 4 (left panel) and factor 9 (right panel), V channel, with smin ¼

1:5 GeV2.
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reasonable in the past, is no longer acceptable given the
current-claimed level of precision.22

The specific aim of the present article is twofold. First,
the analysis of P1 was based on the 1998 OPAL spectral-
function data. The construction of these spectral functions
included the use of the then-available values for the
branching fractions for the most important exclusive
modes. Since these branching fractions are now more
precisely known, it is possible to update the central values
for the spectral functions as well as the corresponding
diagonal errors.23 This update was carried out in Sec. III,
and the results were subsequently used in our fits to the
data.

Our second aim was a more detailed investigation of
the quality of the fits that go into our analysis. Since
these are nonlinear, multiparameter fits, they are of
considerable complexity. The use of a Markov-chain
Monte Carlo program made it possible to investigate
the full posterior probability distribution underlying our
most important fits. This allowed us to delineate the
landscape in parameter space in more detail than
through simple minimization. This investigation was
carried out in Sec. IV.

Let us summarize what we learned from our new analy-
sis. First, as the reader will note, our new results for the
value of �sðm2

�Þ, contained in Eq. (6.1), are very close to
the OPAL results of Ref. [2], but with somewhat larger
errors. Since the two sets of results correspond to sets of
data with different normalizations, the near-equality of
central values is, in fact, purely accidental; as shown in
P1, an analysis of the same data as that used by OPAL
leads instead to significantly smaller values of �sðm2

�Þ. A
related observation applies to the errors. The errors found
in Ref. [2] are smaller simply because systematic effects
associated with the operator product expansion and duality
violations were not considered in that analysis. In our
opinion, the same observation applies to essentially all
determinations of �sðm2

�Þ from hadronic � decays preced-
ing the framework presented in P1.

Second, while we argued in P1 and here that duality
violations cannot be reliably left out from a quantitative
analysis of the spectral functions below the � mass, it turns
out that the multiparameter fits thus needed to determine all
parameters are at the edge of what is possible with currently
available data. This is demonstrated in Figs. 1–3, which
show that the probability distributions underlying our fits
may have several minima, which together span a range of
�s values of about 0:27–0:34.

24 Therefore, physical argu-
ments, given in Sec. V, are needed in order to narrow down

the error on�sðm2
�Þ, and our result (6.1) is obtained with the

help of these arguments.
Given this state of affairs, we believe that it would

be very interesting to apply our analysis to data with
much better statistics, which are in principle available
from the BABAR and Belle experiments. If the non-
strange spectral functions that can be extracted from
these data would be made available, this would allow
us to put our analysis framework to a much more
stringent test. This was demonstrated quantitatively in
Sec. VII, where it was shown that with much reduced
statistical errors one may expect to resolve the ambi-
guities present in the probability distribution constructed
from the OPAL data.
Of course, at present we do not know what the outcome

of such an investigation would look like. Since fit parame-
ter errors scale as the square root of the scale of the data
covariance matrix, a factor of 3 improvement in data errors
has the potential to produce individual CIPT and FOPT fits
with errors on �s competitive with those of current lattice
determinations. Such errors would then be significantly
smaller than the difference between current CIPT and
FOPT results. Theoretical progress on the reliability of
various perturbative resummation schemes, as embodied
in the current discrepancy between CIPT and FOPT, will
thus most likely also be necessary. Whether the outcome of
such a BABAR- or Belle-based analysis will be a more
precise determination of the strong coupling near the �
mass, or an indication of the need to construct more
sophisticated representations of nonperturbative effects,
remains to be seen. Either way, we believe that much can
be learned from an analysis of the already-existing BABAR
and Belle data.
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APPENDIX: A PARTIAL UPDATE OF THE
OPAL SPECTRAL FUNCTIONS AND

COVARIANCE MATRICES

OPAL has made publicly available the spectral functions
and covariances for the three main exclusive modes and
inclusive sum over all modes in each of the V and A
channels. The contributions to the spectral functions cor-
responding to other exclusive modes (which, with the
exception of !���0, are not measured but constructed
using Monte Carlo) are not available. The covariances
between contributions from different modes are similarly
unavailable. This limits the extent to which the OPAL
inclusive distributions can be updated for improvements
to the exclusive branching fractions and quantities such as
Vud and Be which enter the conversion between the inclu-
sive differential decay distributions dBV=A=ds and the

spectral functions �V=AðsÞ.
The procedure for updating �V=AðsÞ was discussed

already in the text. The ingredients needed for this update
are the HFAG branching fractions and the following !
and � branching fractions, taken from the 2010 PDG
compilation:

B½! ! 3�� ¼ 0:892� 0:007;

B½! ! �þ��� ¼ 0:0153þ0:0011
�0:0013;

B½� ! �þ���0� ¼ 0:2274� 0:0028:

(A1)

The latter are needed to convert from the quoted HFAG 3�,
4�, and 5� branching fractions (corresponding to modes
defined such that ! and � substate contributions are ab-
sent) to the analogous branching fractions of those exclu-
sive modes tabulated by OPAL (defined such that ! and �
substate contributions are included). The corrections to be
applied to the HFAG branching fractions in order to ac-
complish this conversion include, in addition to those
corresponding to the wrong-current contaminations dis-
cussed already in the main text, those corresponding to
the contributions of !�� to the ���þ���0 distribution
and !�0�0 to the ���þ��2�0 distribution produced by
the ! ! �þ���0 decay mode. The remainder of the

!�� contribution represents a mode contribution to be
assigned to the V distribution, and likewise, the !�0�0

contributions, and the ����0 (excluding � ! �þ���0)
contribution, represent mode contributions to be assigned
to the A and residual V distributions in the OPAL conven-
tion, respectively. The remainder of the residual-mode
contributions consist of the wrong-current contamination
corrections and (i) for the V channel, the �KK, 6�, �KK�,
and �KK�� contributions, and (ii) for the A channel, the
3��2�þ, ��4�0, �KK�, �KK��, and a1 (! ���) con-
tributions. We follow OPAL in assuming a fully anticorre-
lated 50� 50% breakdown of the �KK� distribution into V
and A channel contributions, and employ the same assump-
tion for the very small �KK2� contributions not listed by
OPAL. The HFAG branching fraction for the similarly
small a1 (! ���) mode, also not listed by OPAL, has
also been included in the combined A residual branching
fraction sum.
The inaccessibility of cross correlations between differ-

ent exclusive modes limits our ability to update the OPAL
covariance matrices. We can, however, perform a partial
update to take into account improvements in the determi-
nations of the constant factors Be, SEW, and Vud appearing
in the conversion step

�V=AðskÞ ¼
dBV=AðskÞ=ds

Bk

; (A2)

where sk is the midpoint of the kth OPAL bin,

Bk ¼ 12�2SEWjVudj2Bew�ðykÞ=m2
� � Bw�ðykÞ=m2

�;

(A3)

with yk ¼ sk=m
2
� and w�ðyÞ the (1þ 0) kinematic weight

w�ðyÞ ¼ ð1� yÞ2ð1þ 2yÞ. From this, it follows that the
relation between the covariances of the spectral function
obtained from the same dBV=AðsÞ=ds distribution using

new (primed) and old (unprimed) OPAL values for the
constants SEW, Vud, Be, and m2

�, incorporating also, for
completeness, in the updated version, the contributions of
the uncertainty on m� neglected by OPAL, is [�i runs over
all �VðsiÞ and �AðsiÞ]

h��0
i��

0
ji¼

BiBj

B0
iB

0
j

�
h��i��jiþ�i�j

��
�B0

B0

�
2�

�
�B

B

�
2
�
þ
�
�m�

m�

�
2
�ð�2þ18y2i �16y3i Þð�2þ18y2j �16y3j Þ

w�ðyiÞw�ðyjÞ
�
�i�j

�
: (A4)

For the current values of the physical quantities appearing in these conversions, wewill use SEW ¼ 1:0201ð3Þ [35], jVudj ¼
0:974 25ð22Þ [36], Be ¼ 0:178 27ð40Þ [7], andm� ¼ 1:776 77ð15Þ GeV [7]. The error onm� plays no significant role in our
analysis.
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[24] O. Catà, M. Golterman, and S. Peris, Phys. Rev. D 77,

093006 (2008).
[25] B. Blok, M.A. Shifman, and D.X. Zhang, Phys. Rev. D

57, 2691 (1998); 59, 019901(E) (1998); I. I. Y. Bigi, M.A.
Shifman, N. Uraltsev, and A. I. Vainshtein, Phys. Rev. D
59, 054011 (1999); At the Frontier of Particle Physics/
Handbook of QCD, edited by M. Shifman (World
Scientific, Singapore, 2001), Vol. III.

[26] M. Jamin, J. High Energy Phys. 09 (2011) 141.
[27] K. Maltman, T. Yavin, Phys. Rev. D 78, 094020

(2008).
[28] A. Mahdavi, H. Hoekstra, A. Babul, J. Sievers, S. T.

Myers, and J. P. Henry, Astrophys. J. 664, 162 (2007).
[29] S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).
[30] T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E.

Young, Phys. Rev. Lett. 18, 759 (1967).
[31] K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Phys.

Rev. Lett. 79, 2184 (1997).
[32] M. Jamin, Phys. Lett. B 538, 71 (2002).
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