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Scattering phases for meson and baryon resonances on general moving-frame lattices
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A proposal by Liischer enables one to compute the scattering phases of elastic two-body systems from
the energy levels of the lattice Hamiltonian in a finite volume. In this work, we generalize the formalism to
S-, P- and D-wave meson and baryon resonances, and general total momenta. Employing nonvanishing
momenta has several advantages, among them making a wider range of energy levels accessible on a
single lattice volume and shifting the level crossing to smaller values of m L.
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L. INTRODUCTION

Most hadrons are resonances. Lattice simulations of
QCD have reached the point now where the masses of up
and down quarks are small enough so that the low-lying
hadron resonances, such as the p(770) and A(1232), can
decay via the strong interactions.

Extracting masses and widths of unstable particles from
the lattice is made difficult by the fact that resonances
cannot be identified directly with a single energy level of
the lattice Hamiltonian. Rather, the eigenstates of the
lattice Hamiltonian correspond to states that are character-
istic of the respective volume. In a series of papers [1],
Liischer has derived the scattering phase shift in the infinite
volume from the volume dependence of the energy levels
of the lattice Hamiltonian.

The original derivation was given for systems of two
identical particles with vanishing total momentum. To
compute the scattering phases for a sufficiently large set
of energies on a rest-frame lattice, one would have to
repeat the calculation on several volumes, which is com-
putationally expensive.

If the total momentum of the resonance is nonzero,
however, a wide variety of energy levels are becoming
accessible on a single lattice volume, as has been realized
by Gottlieb and Rummukainen [2]. This is illustrated in
Fig. 1, where we show the expected ground state energy
level of the p resonance for several momenta at the physi-
cal pion mass, assuming an effective range approximation
for the scattering phase with g,., = 6.0. At a lattice
volume of m_ L = 2...2.5 the ground state energy levels
of the four lowest momenta are found to cover the reso-
nance region already sufficiently well. Figure 1 tells us,
furthermore, that the energy levels of the interacting sys-
tem rapidly approach the free particle energy spectrum as
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m,L increases. For zero total momentum this limits the
region of practical use to m L =< 2.5, while for nonvanish-
ing total momenta it extends to much larger values of m L.

Of particular interest to us are baryon resonances, which
so far have not been explored at all. The low-lying baryon
resonances have a much smaller phase space than, for
example, the p meson, which makes P-wave resonances,
such as the A and 3%, especially hard to tackle. For zero
total momentum and O(200) MeV pion masses one would
need volumes of L = 6 fm for the phase shift to cover the
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FIG. 1 (color online). The ground state center-of-mass (CM)
energy levels of the p resonance at the physical point for various
momenta P = (277/L)d, together with the energy levels of the
noninteracting 77 system. The horizontal, dashed line indicates
the physical m,,/m, ratio.
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FIG. 2 (color online).
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The expected five lowest CM energy levels of the 3*(1385) resonance at a pion mass of m, = 230 MeV [3]

for zero total momentum (left) and P = 27r/Le; (right). The dashed line indicates the anticipated ms-/m,, ratio.

region 8 =~ 7/2. The reason is that the pion mass is so
much smaller than the mass of the nucleon and the A. Not
so for nonzero total momenta though, which allows the
pion to have zero momentum. In this case, the avoided
level crossing of the energy levels is shifted towards much
smaller values of m L. This is illustrated in Fig. 2, where
we compare the expected five lowest energy levels of the
3 resonance, that decays to A 7, for zero and nonzero total
momentum, assuming again an effective range approxima-
tion for the scattering phase with gs«4, = 9.2.

Considering the difficulty of computing the properties of
resonances on the lattice, how was it possible that the mass
spectrum of the pseudoscalar and vector meson octet and
the baryon decuplet computed in Refs. [3,4], using stan-
dard techniques, agreed so well with the experiment? The
answer is given in Fig. 2. In smaller, favorable volumes the
ground state energy may agree well with the resonance
mass over a wide range of m,L. In larger volumes the
ground state energy will approach the energy level of two
free particles though.

Gottlieb and Rummukainen have extended Liischer’s
work on meson resonances to nonvanishing total momen-
tum P = (277/L)e;. Their work was generalized further to
two-body systems of arbitrary mass by Davoudi and
Savage [5] and Fu [6]. Recently, Feng et al. [7] have
derived finite size formulas for the next higher momentum
P = (2w/L)(e, + e,), which has been generalized again
to particles of arbitrary masses by Leskovec and Prelovsek
[8]. In the case of unequal masses and nonvanishing mo-
menta the extraction of phase shifts from the energy levels
of the lattice Hamiltonian proves difficult, because the
partial waves of the individual scattering channels will
mix in general. Strategies of how to overcome this problem
have been discussed by Doring et al. [9] in the framework
of unitarized chiral perturbation theory, which is equivalent
to Liischer’s approach in the large-L limit. In this work,
we shall derive phase shift formulas for meson and
baryon resonances for total momenta proportional to

P = (2nw/L)es, P = 2uw/L)(e; + e;),and P = 27/L) X
(e; + e, + e3), including rotations of P. Our formulas will
cover all two-body S-, P- and D-wave meson and baryon
resonances.

Knowing the scattering phase shifts for general total
momenta, among others, we will be able to extract a great
variety of other hadronic observables, including elastic and
transition form factors of unstable particles, such as the p
form factor and the A to nucleon electromagnetic transition
form factors.

The paper is organized as follows. Section II deals with
the kinematics of two-particle states on the periodic lattice.
In Sec. III, we discuss the solutions of the Helmholtz
equation for noninteracting and interacting particles. The
Lorentz boost from the laboratory frame to the center of
mass frame deforms the cubic lattice, and only some sub-
groups (little groups) of the original cubic point symmetry
group remain. In Sec. IV, we discuss the symmetry prop-
erties of the various center of mass frames, including the
representations of the little groups. This is followed by the
reduction of the phase shift formulas according to spin,
angular momentum, and representation in Sec. V. In
Sec. VI, we give explicit expressions for the phase shifts
of the p, A and N*(1440) (Roper) resonances, and in
Sec. VII we give a sample of operators that transform
according to some of the prominent representations.
Finally, in Sec. VIII, we conclude.

II. TWO-PARTICLE KINEMATICS ON A
MOVING-FRAME LATTICE

In this section, we discuss the kinematical properties of
two noninteracting particles of mass m; and m, in a cubic
box of length L with periodic boundary conditions.
Twisted boundary conditions will be discussed elsewhere.

Let us first consider the lattice or laboratory (L) frame.
We denote the 3-momenta of the individual particles by p;,
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P>- The total momentum is denoted by P = p; + p,. The
energy of two free particles is given by

W = /p} + md +[p3 + m3. (1)
The lattice momenta p; are quantized to
2
Pi=—Tm n; € 77, (2)
and, similarly,
2
p="a4 adacp. 3)
L

Next, we consider the center-of-mass frame (CM),
which is moving with velocity

v =|v| 4)
in the laboratory frame. We denote the CM (relative)

momentum by k and the energy by E. Momentum and
energy are obtained by a standard Lorentz transformation,

k =y(p, — vpi + m}) = —y(p — vyp3 + md),

&)

where

1 W
= +p, = = _ 6
YP=7YP|TPL Y —— (6)
and
vp

Pi=v_5 pL=p—p @)

Laboratory and CM frame energies are related by

=P+ B, @®)

where

E=E, +E2=\/k2+m2+\/k2+m%,
(E? (m1 + 1712))2 4m? m2 ©)
4E?

k* =
Defining

1 1
—P=—p,+-P. (1
2 p>+ 5P, (10)

and expressing the laboratory frame energies in (5) by their
CM counterparts, the CM momentum k can be rewritten as

1
p =§(P1 —p2)=p

k=y‘1p—7_1m%;2m2%P, |
y'p=v"'p+pL b

This results in the quantization condition
kely, (12)

PHYSICAL REVIEW D 86, 094513 (2012)

with
2 - _ 1 3}
ry = {klk Ly (n 2A>,nEZ :
2_ .2 (13)
A= d(l + 4" ’”2).
E2

II1. SOLUTIONS OF THE HELMHOLTZ
EQUATION

To compute the scattering phases of the interacting two-
particle system, we need to discuss the solutions of the
Helmholtz equation [10] in the CM frame first.

In the laboratory frame the two-particle state is de-
scribed by the wave function ¢ (x;;x,), where x; =
(x9,x1), x, = (x9, x,) are the space-time coordinates in
Minkowski space. For the moment we restrict ourselves
to particles of spin zero. The wave function can then be
written

Prlosxy) = e VPO, (v, x) (14)
with
mix + myX,
= X=X — X,
m + niy (15)
myx¥ + myxl
= TR X0 =x) =X
my + my
We are interested in the case where both particles have
equal time coordinates, x{ = x3 = 1.
We denote the space-time separation in the CM frame by
r = (1% r). The transformation from the laboratory frame
to the CM is given by

(7)=Go 300 oo

(0, x) = pem(r, 1) (17)

In the case of unequal masses, m; # m,, the (relative) time
coordinate ¥ is no longer zero, even though x° is.

with

A. Noninteracting particles

For noninteracting particles the CM frame wave func-
tion obeys the equation of motion

— V2 + V2 + (E2 — (m, + 2—’"1’"2)
(~92 W3 2 gty

X pop(r®,r) =0 (18)

(-9 -

with

Eimy — E2m1>

m1+

bem(,r) = 0. (19)
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Equations (18) and (19) follow directly from the Klein-
Gordon equations of the individual particles. Writing

b]lnz Eymy (,
Seulr,r) = & i

" dem(0, 1), (20

the time dependence can be factored out, and we obtain the
Helmholtz equation

(V7 + k) deu(r) = 0 ey

with oy (r) = dem(0, r), and k given by (13).
The laboratory frame wave function is periodic under
spatial translations

Y (%159, %)

= l,bL(X(l),xl + nlL;x(z), x2 + nzL), nl’z (= ZS. (22)

Equations (14), (17), and (20), together give

$1(0,x1;0,x,) = ¢CM(") (23)

where we have inserted 7 = yvx = Px/E. This leads to
the periodicity relation for the CM wave function

dem(r) = e ™A doy(r + ynL) 24)

with n = n; — n,. While for equal masses ¢cp(r) is
either periodic (n even) or antiperiodic (7 odd) with period
L, this is no longer so for m; # m,. In this case, the CM
wave function picks up a complex phase factor e i7"4
when crossing the spatial boundary. We call this attribute
A -periodic.

1"12 Bmip

'(PX+ EonFmy) T

B. Interacting particles

Let us now turn to the interacting case. We assume that
the two-body interaction has finite range and vanishes
outside the region |r| > R with L > 2R. In the exterior
region ¢y (r) satisfies the Helmholtz equation

(VZ + K)peu(r) =0 (25)
with
K2 — (E* = (m3 + m3))? — 4m?m} _ 2 26)
4F? ’
where E now are the energy levels of the interacting
system.

We are now looking for solutions of the Helmholtz
equation (25). The (singular) case k € I'4 requires a sepa-
rate discussion, which we shall omit here. The Green
function

ipr
GA(r, k2) = y L3 Z 26_ 5
PELs p

27

is such a solution. An appropriate basis of solutions of the
Helmholtz equation is obtained from (27) by

lm(r kz) - ylm(V)GA( r, k2)’ (28)

PHYSICAL REVIEW D 86, 094513 (2012)
where
r
Irl

ylm(r) =

Obviously, GA(r, k*) and G4 (r, k*) are A-periodic. The
CM wave function can then be expanded as

bem(r) =Y 1, G, (r, k), (30)
Lm

Irl'Y,, 7, 7 (29)

which may be interpreted as a partial wave expansion. The
functions G,Am can be expanded in spherical harmonics
Y;,,(0, ) and spherical Bessel functions [11] n;(kr), j;(kr)

(= )i+
zm( k2) T["Z(kr)yl’"(a’ ©)
T
) I
+Z Z My o (kT)Y (6, (p):l (31)
I'=0m'==1
with

( l)l -1 I+l J
Z Z ﬁZA(l q2) Clmjsl’m’

j=l=rs=—ij4

A =
Mlm U'm’ 3/2

kL

q= Py (32)

where r = |r|, 0, and ¢ are the polar coordinates of r. The
generalized zeta function fo(l, g?) is obtained from

Z48.4%) = Y 7(3’_& (2)5 (33)

ZEP,

with
_ 1
Py = {zlz =y 1<n — EA)’ n € 23} (34)

by analytic continuation 6 — 1. The coefficient Cy,, j
can be expressed in terms of Wigner 3 j-symbols

Cimjorm = (D" + D@j + DRI + 1)

[ 4 [ A
% J | (35)
m s —m' J\O 0 O

In the Appendix, we give fo(l, q?) for arbitrary values of j
and s.
It is easily seen that

{zlz = y’1<n — %A(m,, mz)), n e 23}

1
= {_le = ')/71(’1 - EA(mQ, m])), n e 23} (36)
This results in
Zﬁ(m],mz)(& %) = (_1)jz?s(in2,;n1)(5’ ) (37)

and

094513-4



SCATTERING PHASES FOR MESON AND BARYON ...

2~

631

FIG. 3 (color online).
(right panel) for y = 2.

MA(m]xm2)

Im,I'm’

MA (mz,ml)’ (38)

Im,'m'

— (_ 1)l+l’

as [+ j + I' = even. Both MAMm) apg pAmem) pave

Im,'m’ Im,l'm’

the same determinant and lead to the same results, so that
the order of m,; and m, does not matter.
In the literature one often finds the expression [2,8]

P G ) L R o
M i = =7 > Z st(l’q )Clm,js i
j=ll- /'|5—7/

(39)

Though not quite correct in general, it leads to the same
results for the phase shifts as the matrix (32). Indeed, if we
denote (39) by M, we find M,y = (—1)*'M; , .,
which has the same determinant as M (see the equations
for the phase shifts given in (54) and (55) below). In the
following we shall use the shorthand notation

1 _
i, A

So far we have considered spinless particles only. Let us
now assume that one of the particles carries spin S. In the
outer region |r| > R, which we are concerned with here,
the spin operator § commutes with the Hamiltonian. The
spin-dependent part of the wave function can thus be
factored out. As we are mainly interested in meson-baryon
resonances, we consider S = 1/2. In this case, we have

Wi = “iolza (1,4%).  (40)

¢CM(r)=Z<Zm T Yem Gy (r, X, (4D

lmd

i, . .
where Y is the two-component baryon spinor. This
amounts to an expansion of the CM wave function in terms
of spin spherical harmonics

1 1
Yy, = Z(lm, 50’|J,LL>Ylm X5 (42)

m,o

In this basis, the matrix M4 reads

A cubic box of unit length deformed to a parallelepiped with d =

PHYSICAL REVIEW D 86, 094513 (2012)

(e; + e,) (left panel) and d = (e; + e, + e3)

1 1
M?l/i,f’]/,l// = z<lm,§0'|f/.L><l/m’,§a'/|J/ >an I'm'

m,o
!

(43)

IV. SYMMETRY PROPERTIES

The Lorentz boost deforms the cubic box to a parallel-
epiped, in which the length scale parallel to the direction of
the boost vector is multiplied by 7y, whereas the perpen-
dicular length scale is left unchanged.

A. Boost vectors

We will consider boost vectors
d = (d,, dy, dy), di=0, %1 (44)

and integer multiples nd, n € Z thereof. For that purpose it
is sufficient to consider

=(0,0,0) =0,
d=(0,0,1) = es,
d=(1,1,0)=e, + e,
d=(1,1,1)=¢e; + e, + e;.

(45)

The boost vectors (44) can be transformed into one of the
boost vectors (45) by a global rotation, which will leave
our final results unchanged. Results for multiples of (45)
are obtained by simply replacing d by nd in the formulas to
follow. In Fig. 3, we show two examples of the deformation
of the cubic box.

B. Properties of the functions w;,,
In the following we shall use the shorthand notation
Wi Wi—g)- (46)

As aresult of (37), wy, is no longer zero for odd values of /
in the case of unequal masses. In general, we have

4 (1;¢%) = (=1)"Z3 (1, ¢*)". (47)

wy = (Wi, w1, - .

094513-5
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1. The case d = (0,0, 1)

In this case, the system is symmetric under rotations
around e; by 7/2, which leads to
74 (1;4*>) =0, form # 0 mod 4. (48)

Furthermore, the system is symmetric under the inter-
change of axes 1+ 2, as well as reflections e, —
—e 5. This leaves us with the following elements:

l wy

0 (woo)

1 (0, wyo, 0)

2 (0, 0, W0, 0, 0)

3 (0,0,0, w3, 0,0,0)

4 (W44, 0, O, O, W40, 0, 0, 0, W44)

2. The case d = (1, 1,0)

In this case, the system is symmetric under the inter-
change of the axes 1« 2. Furthermore, the system is
symmetric under reflections e; — —es3. This leaves us
with the following elements:

l wy

0 (Woo)

1 V2Rew (e'™4,0, —e~i™/4)

2 (Wp2, 0, wag, 0, —wpy)

3 \/E(e*fﬂ/‘*Rewﬁ, 0, ¢i™/*Rews), 0,

- e_i”/4Rew31, 0, _Bm—/4ReW33)

4 (Was, 0, waa, 0, wag, 0, —wap, 0, way)

3. The cased = (1,1,1)

In this case, the only symmetry that is left is the sym-
metry under cyclic permutation 1 — 2 — 3 — 1. This
leaves us with the following elements:

l wy
0 (woo)
im/d 1 —im/4
1 wio(— ™4, 1, e7i7/4)
2 Wy (1, =+2e717/4 0, —\[2¢i7/4, —1)
0 —in/4 & im/4
3 (—ge 430, W32)%€m/ W30, W30,
6 i 10 i
_\/T_e 177/4w30’_w32’get7r/4w30)
7 7 iml4 | —im/4
4 (1—\/4—W40,_\/7_€m/ Wi, Wap, 5 € /4N 49, Wao,

%em/4 VT p—im/4 V10 )

Wap, ~Wap, — 5 W42, 714 Wao

C. Irreducible representations of the little groups

In the CM frame, the symmetry group of the cubic lattice
is the cubic group O for particles with integer spin, and its
double cover group 20 for particles with half-integer spin.
The group O consists of 24 elements R;, i.e., rotation

PHYSICAL REVIEW D 86, 094513 (2012)

TABLE 1. The elements of the cubic group, parametrized by
the rotation axis n) and rotation angle w;, divided into the
different conjugacy classes.

Class i n® w;
I 1 Any 0
8C; 2 (1,1, 1)//3 —2m/3
3 (1,1, 1)//3 27/3
4 (—1,1,1//3) —27/3
5 (= 1,1,1//3) 21/3
6 (—1,-1,1//3) —2m/3
7 (—1,-1,1/3) 21/3
8 (1, —1,1//3) —27/3
9 (1, —1,1//3) 27/3
6C, 10 (1,0, 0) —a/2
11 (1,0, 0) /2
12 (0, 1, 0) —/2
13 (0, 1, 0) /2
14 0,0, 1) —/2
15 0,0, 1) /2
6C} 16 0,1,1/32) -7
17 ©, —1,1//2) -
18 (1,1,0/v2) —7
19 1, —1,0/~/2) -7
20 (1,0, 1//2) -7
21 (—1,0,1/4/2) -7
3C, 22 (1,0, 0) -7
23 0, 1, 0) —r
24 0,0, 1) —ar

matrices, which are characterized by the axis 7 and angle
w,; of rotation (with i = 1, ..., 24). The rotation matrices
are given by

(R))ap = cOsw; 8,5 + (1 — coswi)ng)ng)

aBy=123 (49

The 24 elements of O fall into five different conjugacy
classes. They are listed in Table I. The group 2O has 48
elements R;. As for O, they are characterized by the axis
n') and angle w; (with i = 1,...,48 now). The 48 ele-
ments of 20 fall into eight different conjugacy classes.
They are listed in Table II.

The full symmetry group includes space inversions I,
which commute with the elements of O and 0. Choosing
T(I) = —1," where T(I) denotes an element of any matrix
representation of /, the elements of O and 20 combined
with I form the product groups O, = O ® {1, —1} and
20, =20 ®{1, —1}, respectively. Irreducible matrix rep-
resentations of O, and >0, have been given, for example,
in Ref. [12].

- sina)ieaﬁyn(y’),

1Alternatively, we could have chosen T(I) = 1. Both choices
are consistent with 1> = 1.
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TABLE II.  The elements of the double cover group of the
cubic group, parametrized by the rotation axis 7 and rotation
angle w;, divided into the different conjugacy classes.

Class i n® W,
1 1 Any 0
6C, 2 (1, 0, 0) 77'
3 (0, 1, 0) 77'
4 0,0, 1) 77
5 (1, 0, 0) —ar
6 (, 1, 0) —
7 0,0, 1) —a
6C} 8 (1, 0, 0) /2
9 (0, 1, 0) w/2
10 0,0, 1) /2
11 (1, 0, 0) —a/2
12 (0, 1, 0) —7/2
13 0,0, 1) —/2
6Cg 14 (1, 0, 0) 372
15 (0, 1, 0) 37/2
16 ©,0, 1) 3m/2
17 (1,0, 0) —37/2
18 (0, 1, 0) —37/2
19 0,0, 1) —37/2
8Cs 20 (1,1,1//3) 2m/3
21 (-1,1,1/3) 21/3
22 (—=1,-1,1//3) 21/3
23 a, —1,1//3) 21/3
24 (1,1, 1/3/3) —2m/3
25 (- 1,1,1/V3) —27/3
26 (—1,-1,1//3) —27/3
27 (1, —1,1//3) —27/3
8C; 28 (1,1,1//3) 47/3
29 (- 1,1,1//3) 41/3
30 (-1, -1,1//3) 47/3
31 (1, —1,1/3) 47/3
32 (1,1,1//3) —47/3
33 (—1,1,1/4/3) —4m/3
34 (—1,-1,1//3) —47/3
35 1, —1,1//3) —47/3
12} 36 ©0,1,1/~/2) 7
37 0, —1,1/3/2) 7
38 (1,1,0/2) T
39 (1, —1,0/v2) T
40 (1,0, 1/4/2) a
41 (—1,0,1/2) -
42 0,1,1//2) -7
43 0, —1,1/4/2) -7
44 (1,1,0//2) -7
45 (1, —1,0/+/2) -7
46 1,0,1//2) -7
47 (= 1,0,1/y/2) -
J 48 Any 2

PHYSICAL REVIEW D 86, 094513 (2012)

In the CM frame moving with velocity v = P/W, P =
(27/L)d in the laboratory frame, the symmetry group
reduces to certain subgroups of O, and 20, hereafter
referred to as the little groups. In the case of unequal
masses, the little group consists of elements §; =
{R;, IR;} € O,, and ?0,,, respectively, which obey

Sd = d. (50)

In the case of equal masses, the system is symmetric under
d — —d, and the little group consists of elements S;, which
obey

Sd = *d. 1)

In Table III, we list the elements R; € O and 20 that
satisfy the condition R;d = d and R;d = —d for our three
choices of d, together with the corresponding little groups.
With Id = —d, the action of the group elements S; on d is
now fully defined.

As we shall see, several of the irreducible representa-
tions of the little groups Cy,, 2C,,, 2C,,, C3, and 2C;, in
Table III, namely E, G, and G,, are two-dimensional.
Two-dimensional representations G; and G, can be built
from the matrices

(Yi)a,B = (e—én“)u'w,-)aﬁ = 6aﬂ COS% - i(n(i)a-)aﬁ Sin%,
a,B=12 (52)

withi=1,...,48.
For the two-dimensional representation E in the bosonic
case, it is convenient to introduce the matrices

1. 3
X1=]1, X2__§]1+170-2’
1 3 1 3
X3__—ﬂ_i£02, X4:_—0'3_£0'1,
2 2 2 2
5 (53)
1 3
X5—0'3, X6 _50'3"‘70'1,

! Xs=i(0'1_0'2)-
V2 V2

In Tables IV, V, VI, VII, VIII, and IX, we list the
elements {S;} of the little groups Cy,, 2C,,, Cay, 2C,,,
C;,, and 2C3v, broken into the various conjugacy classes,
the irreducible representations I” and characters y(I") of the
little groups. Note that the rotation matrices R; are speci-
fied by the rotation axes n) and angles w; given in Tables I
and II for the bosonic and fermionic case, respectively. In
the case of the two-dimensional representations, we addi-
tionally list the matrices X;, Y; corresponding to the re-
spective group elements. It is straightforward to check that
these matrices obey the group multiplication laws. Later on
we will need the whole information communicated in the
tables for the construction of basis vectors and operators
that transform according to the individual irreducible
representations.
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TABLE III. Rotations R; that obey the condition R;d = *d.

Group d Little group Rd=d Rid= —d

0, 0,0, 1) Cyy {R;li = 1, 14, 15,24} {R;|i = 18,19,22,23}
(1,1,0) Cy, {R;li = 1,18} {R;li = 19,24}
(1,1, 1) Cs, {Rili=1,23} {R;li = 17,19,21}

20, 0,0, 1) cy,, {R;li =1,4,7,10,13, 16, 19, 48} {R;li = 2,3,5,6,38,39, 44, 45}
1,1,0) 2c,, {R;li = 1,38, 44,48} {R;li = 4,7, 39, 45}
1,1, 1 2c,, {R;li = 1,20,24,28,32,48} {R;li = 37,39,41,43,45,47}

TABLE IV. Character table of the little group C,, for integer spin. The top row shows the elements of C,,, divided into conjugacy
classes. The bottom row shows the corresponding matrices for the two-dimensional irreducible representation E. The rows in between
list the characters of the various irreducible representations I" of Cy,,.

{Sl} Rl {Rl4’R15} {[Rl8? ]Rl‘)} {]RZZ’ 1R23} R24
/
Clase I 20, 2IC, 2IC, C,
r
A, 1 1 1 1 1
A, 1 1 —1 —1 1
B, 1 - —1 1 1
B, 1 - 1 —1 1
E 2 0 0 -2
E X, {—X7, X7} {Xs, —Xs} {Xs, —Xs} —X,
The results hold for the general case of unequal masses. V. PHASE SHIFTS

For equal masses (integer spin) the representations are
merely ‘doubled.” Let us explain this by giving a specific
example. Consider the representation A; in Table IV. For
equal masses two representations emerge: A" correspond-
ing to T(S) =1 for § = Rl’ R14, R15, R24, R18’ ng, R22,
R23, IRI, IR14, IRIS’ IR24, Ing, ]ng, ]Rzz, IR23, and Al_
corresponding to T(S) = 1for S = R}, R4, Rys, Ro4, IR 3,
IRy, IRy, [Rys and T(S) = —1 for S = IR, IRy, IR,s, Lo meson resonances and

IRy, Rig, Ri9, Ry, Ro3. All other representations are

‘doubled’ in a similar manner. det(M iy — 8158108y cotdy) =0 (55)

From now on we shall drop the superscript A from the
matrix M. Following Ref. [12], the scattering phase shifts &
are obtained from the determinant equation

det(Mlm,l’m’ - 51[’5mm’ C0t51) =0 (54)

TABLE V. The same as Table IV for the little group 2C,, and half-integer spin, together with the matrices of the two-dimensional
irreducible representations E, G, and G,.

{8} R, {R4, R7} {R10, Ri3} {R16, R19} {IRy, IR5, IRs, IR¢} {IR33, IR39, IR 44, IR,s} Ryg
Class 2C, 2Cy 2Cy 4ICy 4IC) J
I

Ay 1 1 1 1 1 1 1
B, 1 1 —1 —1 —1 1 1
E 2 -2 0 0 0 0 2
G, 2 0 V2 —+/2 0 0 -2
G, 2 0 ) N: 0 o -
E 1 {—1, -1} {ios, —io3} {—ios, io3} {o, =0\, 0, =0} {—0y, 09, — 0y, 05} 1

G, Y, {Yy, Y7} {10, Y13} {Y16 Y10} {=Yy, —Y3, —Ys5, =Y} {—Yis, = V39, =Vas, —Vus} Yy
G, Y, {Yy, Y7} {=Y10 = Y135} {—Yie —Yio} {Y,, Y3, s, Yo} {=Y35, = Y39, =Vas, —Yus}  Yus
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TABLE VI
integer spin.

The same as Table IV for the little group C,, and

PHYSICAL REVIEW D 86, 094513 (2012)

TABLE VIII. The same as Table IV for the little group C3, and
integer spin, together with the matrices of the two-dimensional
irreducible representation E.

Si Rl ng IR19 IR24
1 G G, 1C, {Si} R, {Ry, Rs} {IR\7, IR, IRy}
Class - . 3]C/2
r
A 1 1 1 1
A, 1 1 -1 -1 1 1 1
B, 1 -1 1 -1 1 1 -1
By 1 -1 -1 1 2 1 0
E X {X5, X3} {=X4 — X5, —Xg}

TABLE VII. The same as Table IV for the little group 2C2U
and half-integer spin, together with the matrices of the two-
dimensional irreducible representation G .

{8} Ry {Rss, Ry} {IR4, IR;}  {IR30, IRss} Rug
I 2C, aIc, 41, J
A, ) ) ) ) )
A, 1 1 ~1 ~1 1
B, 1 ~1 ~1 1 1
B, | ~1 1 -1 1
G, 2 0 0 0 )
G Yy {Yag, Yau} {=Yy —Y7} {—Y3o, —Yus} Yy

for baryon resonances. Equations (54) and (55) relate the
phases 6 in the infinite volume to the energy levels of the
lattice Hamiltonian in a finite cubic box.

A. Reduction of the phase shift formulas

In the infinite volume, the basis vectors of an irreducible
representation D' of the rotation group of total angular
momentum [ are given by |lm) with M,y =
(Im|M|I'm'y. In case of half-integer spin, the basis vectors
are given by

iy ="

m,o

2 2

lm,10'><lm,£0' |],LL> (56)

with
My = JuMIT'T p'), (57)

where u = —J,...,+Jand [ =J = % The vectors |Im)
and |JIw) are parity eigenstates with parity (—1)".

In the case of the moving frame the basis vectors of an
irreducible representation I" can be written as

\Calny = chan|m) (58)

Im

for integer spin and

IFaJin) =Y chan|Jiw) (59)
o

for half-integer spin, where « runs from 1 to the dimension
of I', and n runs from 1 to N(I', [), the number of occur-
rences of the irreducible representation I" in D!. The basis
vectors of the various frames and representations are given
in Tables X, XI, XII, XIII, XIV, and XV for / = 0, 1 and 2.

The coefficients ¢} %" and cgﬁ” can be directly read off

from these tables.

TABLE IX. The same as Table IV for the little group >C,, and half-integer spin, together with the matrices of the two-dimensional

irreducible representations E and Gj.

{S:} R, {R20, Roa} {Ras, Ry} {IR37, IRys, IR 47} {IR39, IR4;, IR,3} Ry
1 2Cq 2C, 3IC, 3]C£ J
1 1 1 1 1 1
1 1 1 —1 —1 1
1 -1 1 i —1i -1
1 -1 1 —i i -1
2 —1 -1 0 0 2
2 1 -1 0 0 -2

E X {X3, X5} X5, X3} {=X4, — X5, —X¢} {=X5, —Xo, — X4} X

G Y, {20, You} {Yas, Y3} {=Y37, —Yus, = Y43} {=Y39, = Y4y, = Y3} Yyg

094513-9



M. GOCKELER et al.

TABLE X. The basis vectors of the irreducible representa-
tions I' of the little group C,, and integer spin. « labels the
components of the basis vectors of the two-dimensional repre-
sentation E.

r l a Basis vectors
A, 0 0, 0)
A 1 1,0
E 1 1 1A =DIL =1) =3+ DI, 1)
2 —7'5i|1,—1>+7'5|1, 1)
A, 2 2, 0)
B, 2 (122 +122)
1 _9y —
B, 2 L2, -2~ 12,2)
E 2 L2 -1 - hil2 1)
2 =yl -n+ia+l2 1)
TABLE XI. The basis vectors of the irreducible representa-

tions I” of the little group 2C,, and half-integer spin. « labels the
components of the basis vectors of the two-dimensional repre-
sentations G, and G,.

r J l o Basis vectors
1 11
G, 5 0 1 3%
2 “Ih
1 11
G, 3 1 1 ]|§,§>l
. 2 3. =3
3 31
G, 5 1 1 13,1
—|3 1L
, 2 15, =3
; 33
G, 5 1 1 |3, -3
33
3 2 272
3 31
G 2 2 ! 203
3 1
2 2 2
G, 2 2 1 3,-3
—|3 3
2 155

The matrix elements of M in the new basis are given by

(Caln|MIT"a'I'n'y = Zcﬂm* A My (60)

mm
for meson resonances and
(CaJin|MII"a'J'I'n'y = 3 chamclien' My, e (61)
up!

for baryon resonances.
According to Schur’s lemma, M is partially diagonalized
in the new basis,

<Faln|M|F’ 'I'n /> - SFF’Baa
(Cadin|MII"a'J'I'n"y = Sppi8 g M

ln I'n" (62)
Jln J'U'n'

The phase shift formulas (54) and (55) then reduce to

PHYSICAL REVIEW D 86, 094513 (2012)

TABLE XII. The basis vectors of the irreducible representa-
tions I" of the little group C,, and integer spin.

r [ Basis vectors

A 0 |0, 0)

A, 1 715(—i|1,—1>+|1, 1))
B, 1 |1, 0

B, 1 HL =D+, 1)
Ay 2 12, 0)

A 2 52 -2) - 12.2))
4, 2 H(2 -1 —il2,1)
B, 2 H2 - +il2, 1)
B, 2 7'3(|2, =2y +[2,2))
TABLE XIII. The basis vectors of the irreducible representa-

tions I of the little group 2C,,, and half-integer spin. « labels the
components of the basis vectors of the two-dimensional repre-
sentation G.

r J l a Basis vectors
G 2 0 ! 15 -9
2 _lll I
G, i 1 1 2,2>
2 )
G, % 1 1 * 3}
, 2 |2’2
G 3 1 1 - %,%
2 2, -2
Gy 3 2 1 i13.3
3
3 2 LD
G, 5 2 1 |3 ;)
2 i13.3
det(Mln ' 511/5””/ COt(S[) =0 (63)

det(MT’

Jin, J'Un! — 875181y 8y cotdyy) = 0.

The partially diagonalized matrices M’ in e And ML Tin !
are given below for / =<2 and J = 1/2 and 3/2.

B. Reduced matrices M"
d = (0,0, 1)—integer spin
In this case N(I', ) = 1 for all representations, so that

we may drop the subscripts 7, n’ from M /- 1NE matrices

M have the following entries:

Moo Mo Moy
M],) =] My My, M, (64)
Myy My, Mj,
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TABLE XIV. The basis vectors of the irreducible representations I" of the little group Cs,
and integer spin. « labels the components of the basis vectors of the two-dimensional

representation E.

T ] o Basis vectors
A, 0 0, 0)
A | — il =) = (1 +)IL0) + 11, 1)
- | il =D+ I11)
) — JelL =1 + (1= DIL0) — ill, 1)
A 12 =2+ K= DI2, ~ D+ 1+ D12 1) = Fl2.2)
- | 2 -2+ 5122
) —2,0)
E ) | K12 -1 —Fil2 1)
> _ﬁ(] _i)|2’_2>_\/i6i|2,—1)+\/i6|2,1)+\/i6(1 —0[2,2)

TABLE XV. The basis vectors of the irreducible representations I" of the little group 2C;, and half-integer spin. « labels the

components of the basis vectors of the two-dimensional representation G.

r J l

a Basis vectors
Gy : 0 ! DR RN

2 — (=l =H - Fild
G, 3 1 1 % !

2 1l
G, 3 ! ! F+01, 3>+7|*, D+ Fildd

2 _%|§’72>7 2 |2:2>+%(1+l)|2)2
K, 3 I —(%5(1+i>+{—§(1—i)>|3—3>+l|3 ;>+ﬁ(1+i)|3%>+<§—§i>|g,g
K, : ~eB0+ )~ -l -H+i3-H-4La =03, ORGSR
G, 2 2 1 ﬁﬁ,_g)"‘%(l_l)" ‘>+T

2 F3 =D+ A -D5 -+ I
Ky 3 —CE+ ) - Fa -3, DL -p- f(1+z)| — @+
K, 3 B +n+La-ld -H+113 -H+20 +z>|2,2>+<f L)13,3)
with

Woo \/giwl() —\/_Wzo
M4 = —\/giwlo Woo T 2wqg 2*/_w +13\/_w30 , (65)
—VBwy  —iBE %\/_W30 woo + P wag + Bwyg
0 0
MBi=]0 O 0 , (66)
0 wo — 170 Woo + 2 Wy t @Wm
00 0
MB:=10 0 0 , (67)
0 0 woy—Rwyg + 3wy — 3\/_ Wiy
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0 0 0
ME=10 Woo — Wao _%(1 — ) (wyo — wyo) |. 68)
0 - %;_0(1 +i)(wio — w3o) woo T 3w — 172W40

2. d = (0,0, 1)—half-integer spin
In this case N(I', [) = 1 for all representations, so that we may drop the subscripts 7, n’ again. The matrices M! have the
following entries:

Mg My,
roy | Migo Mun Myy My
(MJI,J’I’) - M M M M (69)
j0 Mg 3131 32
Mpyp Mpy Mpy Mpp
with
Woo iwio l\/iwlo _\/§W20
G —iwyo Woo \/szo i\/zwlo
M= = 2 2 i 9i (70)
—iv2wyg 2wy Wwoo T Wag sWio T 5 W3
—2wy  —i2wyg —Lwio—Zwy  we + wa
0 0 0 0
0 0 0 0
MG = " (71)
00 Woo — Wao lg(W10 — W3)
.3
0 0 —iz(wip—ws) W — Wy

3. d = (1,1, 0)—integer spin
The representation A; occurs twice in D for [ = 2, N(A,, 2) = 2. In all other cases N(I', [) = 1. The matrices M' have
the following entries:

(MF,, ! ) = (72)
) ') Myio My My My
Myo My My Myxn
with
Woo —V6(1 = i)ryy 10wy, —/Swy
M — —/6(1 + i)ry, Ap Az Az, 73
—\/mwzz A;3 Az Aszy
—/5wy Ay —Azy Ay
where r;; = Rew;; and
. 310 . V15 . . . V30 . 6/5 .
AE:; = ?(1 + l)rll - T(l + l)r31 - 3(1 + l)r33, AE4 = _7(1 + l)rll + T(l + l)r31,
, 10 3 3./70
Ay = woo — Wy — V6iwn, Asy = wgy — = W20 + 7Wa0 T T W (74)
1042 34/30 10 18
Ay = ———wn t ——wp, Aas = Woo + = Wao + =Wy,
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For the remaining representations we drop the subscripts n, n' and obtain

0 0 0
M2=10 0 0 , (75)
0 0 wy + %Wzo Qw‘m Sflw + 6\/_lW
0 0 0
MB =10 woo T 2wag _@(1 + i)y — @(1 + i)y (76)
0 =300 —iyryy =211 -y, By
0 0 0
MB: = 0 woy — wyg + V6iwy, By, , (77)
0 B Woo — P wag + 3wy + 3\/_
where
5 12 56 . 6/10 . - 3./10 V15
B33 :Woo+7W20_7W4o_TlW22_ 7 Wap, By = —(1 i)y +—(1 = iry — 3(1 £ i)rs;.
(78)
= (1, 1, 0)—half-integer spin
In this case, we are concerned with the representation G, only. We have N(G,,[) = 2 for J = and [=1, 2 and
N(G,, 1) = 1 else. The matrix M% has the following entries:
(Mo Moy Moz Moz, Mpyn My \
M%l,‘() M%l il M%1,311 M%l,glz M%l 21 M%l,gzz
(MG‘ ) — Mgu 1 M%“ 1 M%n 31 M§11,;12 M%11321 Mgn,gzz (79)
HHnb ] M§12 0 Mglzll Mgum Mglzglz M§12321 Mglz,gzz
My Muniy Mypian Mz My My
M322,%0 My, 11 M;zz*n M§22;12 Mgzz 21 Mgzz,gzz)
with
[ Woo —V2G;,  —3Gj, Gy —2iwy  —2wsy
_\/ZGIE Woo 2wy \/§W20 _\/gGm _Gfr4
MGI _ _\B—GM _2W22 Woo Woo \/EWQZ G3_5 G'§_6 (80)
G, 2wy —\2wy  woo + Wy -Gy Gus
_2iW22 _\/§G;4 G;S _G:&Tﬁ Woo — Wao _\/El.WQZ
—2wyy  —Gy G5 Gy —2iwy  woy + wag
where
. . .65
G1—4=(1il)r“, G}_S:T(lil)rx),,
NG % N o
- 6 : . 2 63 .
Gy = _?(1 + i)(ryy — V6r3), G = _—(1 = iy _T(l = i)rs.
d = (1,1, 1)—integer spin

In this case, we are concerned with two representations, A, and E. The representation A, occurs only once in D/, and we

find
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Moo Mo1 Mo,
M = (Mf}/) My My, M,
Myy My, Mj,
Woo %5(1 — Dwyg 30wy,
=| 2201+ dwip weo — 2VBiwn, A , (82)
—/30wy, A% Woo — % Wao — 712\7/5 iWg — %iwzz
where
- 3 3
At __£(1+l) 10+\/—_(1+1)W30+\/_(1+l)W32 (83)
23
The representation E occurs twice in D! for [ =2, N(E, 2) = 2, and we obtain
Moo Moy Moy Mo
M M M M
ME = (Mﬁn] l’[n/]) _ 1,0 1,1 1,21 1.22
' Mg My Myp My
My My1 My Mpx
0 0 0 0
0 Woo + i\/6W22 E;S E24
o Ep woo + 5w Esy ’ ®
0 Eyy —Ej, Woo — 5 Wao T 6J_1W42 Sflwzz
|
where where
L 35, NS
E23 = —(1 + l)W]O + W(l + l)W3(), . 3\/5 3 ) 3\/5 12
By =\——7—X=i)wp+|—EF—1i)ws
34 575 575
3.5 .
Eyy = ?(WIO wio) + V6iws,, (85) N (+ V30 2415 ) (88)
>z — 1 W3,
. 56, . 910 > >
Ey = T(l T iwy — —(1 * Dwy.
and
6. d = (1, 1, 1)—half-integer spin
In this case N(I',]) =1 for all representations. The 0 0 0 0
matrices M! have the following entries: 0 0 0
MKZ = . D+ » (89)
My Moy Moy My 00 woo + V6iw Bss
292 2702 272 27 ~_ .
My Myy Myy Myp 00 Bss woo + VBiwa,
( //) — 272 272 272 27 (86)
i My My Myz Mz
272 272 272 27 Where
Mypiyy Mypy Mpy Mpyn
with s, (32 3 W2, 12
By =|—Fzi|wot+t|——=F<-i)wip
0 0 0 0 5 5 5 5
MK = _ , (87 5 5
0 0 Woo + '\/6iW22 B;:‘
0 0 B, woo + V6iwy and finally
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Woo \/76(1 — wyo V6iwg —23iwy,
MG = Jjg(l + Dwyg Woo VO(1 + iywyy B+ Dwyg ’ 1)
—6iwyy  —V6(1 = i)wyy  wog — ivow, Gy
—23iwyy V31— iwyg Gy woo — iv/6wy,

where

- 63 . V3. 3410

34 = 5 W0 T 5 iWio T o Wa (92)

VI. THREE EXAMPLES

Let us now apply the formulas derived above to a few
concrete cases. A general feature of unequal mass particles
is that spin and angular momentum mix under the Lorentz
boost, which complicates the extraction of phase shifts
significantly. In the case of baryon resonances, nonvanish-
ing momenta prove most advantageous for the evaluation
of P-wave phase shifts, as we have seen in the
Introduction. For S-wave baryon resonances nonvanishing
momenta are of no big advantage as far as moving the level
crossing to smaller values of m L is concerned.

Of primary interest are the p and the A resonance. The
calculation of the mass and the width of the p meson
provides a benchmark test, which has to be passed success-
fully before we can address more complex systems. The A
resonance is interesting for two reasons. First of all, it is
one of the very few elastic two-body baryon resonances,
and as such qualifies for a first extension of Liischer’s
method to particles carrying spin. Secondly, being a
P33 wave, its phase 6%1 can be computed directly from

representations G, and B;, B,. Finally, we consider the
N*(1440) Roper resonance. Being a P;; wave and carrying
spin 1/2, it couples to the representation G, only, which
mixes spin 1/2 with spin 3/2 and angular momentum
[ = 0 with angular momentum / = 1.

A. The p resonance

In the case of equal masses and integer spin the situation
simplifies significantly. All matrices M! turn out to be

TABLE XVI. The phase shifts of the p resonance for the
various boost vectors and representations.
d Little Group r cotd,;
(0, 0, 1) C4v Ali Woo + 2W20
E* Woo — Wag
(1, 1,0 Cyy AT Woo =~ W20 — i\/ngz
BI: Woo + 2W20
B; Woo — Woo + i\/6W22
1L, 11 Csy A7 woo — i2+/6wy,
E‘i Woo + i\/6W22

diagonal, and the phase shifts can be directly read off
from their eigenvalues. The phase shifts 6, of the p reso-
nance are given in Table XVI.

B. The A(1232) resonance

Neglecting mixing with D waves (and higher), it is
straightforward to compute 8%1 for boost vector d =

(0,0, 1) from the representation G; and for boost vector
d = (1, 1, 1) from representations B, and B,, giving

d r
0,0,1) G,
(1, 1, 1) B], Bz Woo + l.\/Esz

cotdy
2

Woo — Wao - 93)

In all other cases 8%1 mixes with lower spin and lower

partial waves.

The same formulas apply to the 3*(1385) resonance
(whose energy levels we have shown in Fig. 2), which is
a Py3 wave.

C. The N*(1440) Roper resonance

Let us consider the boost vector d = (0, 0, 1) and repre-
sentation G;. Alternatively we could consider the boost
vectors d = (1,1,0) and d = (1, 1, 1). Neglecting mixing
with J = % states for the moment, we need to solve

Woo — C0t5%0 iW]O

=0, (94)

—iw10 Woo — COt(S%l

which leads to
cotdy; cotdyy — (cotdy — cotdig)woo + w3, — wi, = 0.
(95)
The phase shift that interests us here is ;. To compute 1,

from (95) we need to know 8%0, which is most easily

obtained from eigenstates of zero total momentum, d =
(0,0, 0). It is not excluded that the spin-1/2 states mix with
the P-wave spin-3/2 state, though no resonance of that
kind has been reported by the Particle Data Group [13]. In
this case, we would have

l'\/iwlo
\/EWZO =0.

Woo + Woo — COtﬁ%l

Woo — cOtd iw
00 1o 10
— W0

—iv2wig

Woo — COta%l
\/szo
(96)
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To find out, and to solve (96), the phase 6% | can be directly

computed from representation G,. It has to be extrapolated
to the appropriate value of g* though.

VII. OPERATORS

Recently, several authors [8,14—16] have started to con-
struct operators projecting onto selected irreducible repre-
sentations of the little groups. In this section, we extend the
work to higher representations and/or particles with spin.

We start from (generally nonlocal) operators
0, (x1, x5, ). Under space rotations R they transform like

(RO),(x1, %2, 1) = Sog(R)OG(R™'x\, R\ x5, 1), (97)

where R~ !x denotes the rotated vector x, and the matrices
S, p(R) form a linear representation of the group SO(3) in
case of integer spin and SU(2) in case of half-integer spin.
The explicit form of S,4(R) is well known for scalar,
vector, and spinor fields. Under space inversions / the
operators transform as

(10),(x), x5, 1) = IaBOB(_xl; —X, 1) (98)

with I = 1. An operator O (x;, x,, f), which transforms
according to the irreducible representation I" of the little
group, is given by (see, for example, Ref. [17])

Oh(x1, x5, 1) = Y X (S)(S:0)alxr, X0, 0, (99)

where the sum runs over all elements S; of the little group,
which are either pure rotations R;, or rotations combined
with space inversion IR;. The quantities y(S;) denote the
characters in the representation I'. The operators can be
trivially Fourier transformed to momentum space.

Below we will give a few examples of single-particle
and two-particle operators, which demonstrate the proce-
dure to be followed in the general case.

A. Single-particle operators

Let us start with the simple case of quark-antiquark and
three-quark operators, and discuss this case in detail.

1. The case d = (0, 0, 1)—scalar mesons

Consider the operator

O(p, 1) = Y eP*g(x, )q(x, 1). (100)

Under rotations and space inversions the operator trans-
forms as

R(g(x, 1)q(x, 1) = G(R™'x, 1)g(R™'x, 1),

. (101)
1(g(x, t)q(x, 1)) = g(—x, t)g(—x, t).

The projected operator takes the form

PHYSICAL REVIEW D 86, 094513 (2012)

O (p, 1) = D X;(S)D e (S ' x, Dg(S; 'x, 1).  (102)

Note that the sites R; 'x and —x belong to the lattice if x
does. In the case of unequal masses, the momentum p is
left invariant by the elements of the little group, S;p = p,
so that we have

O(p, 1) = Y xS P q(x, q(x, 1)

= (Zxits0)ow. 0. (103)
1

Consequently, the operator O(p, t) transforms according to

the trivial representation A, for which }; x}-(S;) # 0.

In the case of equal masses, the number of irreducible
representations is doubled, I’ — I'*, and the momentum p
is left invariant by the elements of the little group up to a
sign, S;p = *p. Accordingly, the operators O' should be
symmetrized, or antisymmetrized, with respect to
p < —p. However, we may still work with the same
operators as for unequal masses. The advantage of these
operators is that they have definite momentum p. The
additional symmetry present in the case of equal masses
has solely the effect that even angular momenta do not mix
with odd angular momenta in the spectrum of the lattice
Hamiltonian.

2. The case d = (0,0, 1)—vector mesons

Starting from the operator

Vi(p, 1)

Va(p, 1)

V3 (P: t)

Vilp, 1) = Y e G(x, 1)y;q(x, 1),
X

Vip, 1) =
(104)

it can easily be checked that in the case of unequal masses
the operator

Vl (x, t)
VE(p, 1) = D eP*| Vy(x, 1) (105)
* 0

transforms according to the irreducible representation E. In
fact, one may use any linear combination of V| and V, to
project onto E. In contrast, the third component, V3, trans-
forms according to the irreducible representation A,

VAI(p. 1) = Y eP*Vs(x, 1). (106)

3. The case d = (1, 1, 1)—vector mesons

We start again from the operator (104). Instead of (105),
we now get
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2Vi(x, 1) — Vo(x, 1) — Vs(x, 1)
VE(p, 1) = D eP*| 2Vy(x, 1) — V3(x, 1) — Vi (x, 1)
* 2V5(x, 1) — Vi(x, 1) — Vy(x, 1)
(107)
The components of V£ are cyclic permutations, {i, j, k} =
{1, 2, 3}, of the operator 2V; — V; — V,. Note that only two
of the components of V£ are independent, in accord with
the representation E being two-dimensional.

The operator projected onto the prepresentation A; is
given by

VAI(p, 1) = Y eP*(Vi(x, 1) + V,(x, 1) + Vs(x, 7). (108)

4. The case d = (0,0,1)—A resonance

We start from the interpolating operator of the A™*
resonance,

Al (p. 1)
A(p. =1 45,(p1 (109)
A3 (p. 1)
with, for example,
AL (p. D) =D eP2(ul (x, NCy;d(x, Dy (x, 1)
+ (u” (x, )Cy,ulx, t)d,(x, 1)}
(110)

= Ze"l’foa(x, 7).

Under space rotations the operator A} (p, t) transforms as
(RA),(x, 1) = S, (R)A;;(R)AT5(R™'x, 1),
S® 0
0 SR )

where A(R) and S(R) are 3 X 3 and 2 X 2 irreducible
matrix representations of SU(2), respectively. Under space
inversions the operator transforms as

(IAA)L(x, [) = (YO)aIBA;'LB(_x) t)

Applying (99), the operators projected onto the irreducible
representations G; and G, turn out to be

Al 1) + i(55)apAig(x, 1)

(111)
S®) =(

(112)

ALO = Zeil’x A (x 1) — i(ZS)aBATB(x’ 1) (113)
* 247, (x, 1)
and
A (e 1) = i(23) 4 pA55(x, 1)
A% = e A (x 1) + iS)apd s 0 | (114)

0

PHYSICAL REVIEW D 86, 094513 (2012)

respectively, where

oy 0
3, = ( ’ ) (115)

0 g3

B. Two-particle operators
1. The case d = (0,0, 1)—product of two
(pseudo)scalar fields
We start from the operator

O(p, q.1) = P16 (x, ) py(y, 1) (116)

X,y

In the case of unequal masses the operator that transforms
according to the irreducible representation I is given by

8
O'(p.q.0) =Y xp(S)D e PH+EDCD, (x, 1) py(y, 1),

i=1 X,y

(117)

where

~.

Siq
(1, 92 93)
(92, =41, 43)
(=42 91, 43)
(=91, =92 q3)
(=492, =91, q3)
(92, 91> q3)
(=41, 92, 93)
(g1, =92 93)

(118)

00 N N Lt AW =

From this expression one readily obtains, for example, the
operator that transforms according to the representation E,

Of(p,q. 1) = Zeipx(em(x—yn — ¢ iastL)
X,y
X Mg, (x, 1) pa(y, 1),

where g = (0,0, g3) and ¢, = (¢, ¢, 0), and similarly
for x, y.

(119)

2. The case d = (1, 1, 0)—product of pion
and nucleon fields

This case is trivial, as only the irreducible representation
G, contributes. Any operator, for example,

O(p, g, 1) = Y P ar(x, )N(y, 1),
xy

(120)

will transform according to Gj.

Having the characters y(I") of the irreducible represen-
tations I" of the little groups at hand, it should be no
problem to construct operators that transform according
to any other representation. Examples of meson-baryon
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operators projected onto representations G, in the case of

= (0,0, 1) and B, B, in the case of d = (1, 1, 1) will be
given in a separate publication [18], together with numeri-
cal results.

VIII. CONCLUSIONS

In this work, we have extended previous work by
Liischer [1] and others [2,6-8] on determining the scatter-
ing phases from the energy levels of the (lattice)
Hamiltonian in a finite volume to meson and baryon reso-
nances of arbitrary masses and arbitrary total momenta
P = (2mn/L)(d,, dy, d3) with d; =0, *1, n€LZ
Explicit formulas for the phase shifts have been given for
meson resonances with angular momentum / = 2 and for
baryon resonances with spin J =< 3/2 and orbital angular
momentum [ = 2. That covers essentially all elastic two-
body resonances. There are several advantages to perform-
ing simulations with nonvanishing total momenta. This
includes making the avoided level crossing in P-wave
decays occur at a smaller volume, if the scattering particles
have different mass, and making a wider set of energy
levels available on a single lattice volume.

The drawback is that the individual partial waves will
mix in general. Neglecting D waves, this is the case for all
S-wave meson resonances and all S- and P-wave spin-1/2
baryon resonances. To compute the P-wave phase shift & 1y

for example, one will need input from & 1o- One might be

lucky though and find the latter to be small, because no
low-lying positive parity S-wave spin-1/2 pion-nucleon
resonance has been reported [13]. This is one of the mys-
teries of baryon spectroscopy.

The success of the method depends on our ability to
construct operators that will transform according to the
desired representation of the little group. We have outlined
the general procedure of how to construct such operators
from the character tables, and given a few explicit ex-
amples of single-particle and two-particle operators.
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APPENDIX: ZETA FUNCTIONS

A valid representation of the zeta function for § = 1 is
given by [10]

PHYSICAL REVIEW D 86, 094513 (2012)

@) =3 yz,,,:(z)z

|z|<A

+ Q) fo‘” [ i KA (1, 0) — 75lo5mo]

(AD)

where

KM r) = (2 an? > Yim(z)e =

lzl<a

K%, 4 (1 r) — (A2)

and K4 (t,r) is the heat kernel of the Laplace operator on

the A -periodic lattice,

Ki(r) == 3 Yy (@),

ZEP,

(2 anp (A3)

This leads to

lm(l q )
- Z ylm(z) e (@0 + [00 dry Yy (z)e @)
EREL b
_ 1
f dtl: Z Yiu(2)e 1) — s 5105m0 %/2]
0 ZEP,
T

Yy 0100 mo (A4)

with both integrals being well defined for a suitable choice
of A. Indeed, using the relation

Y V(e

ZEP,

3/2/ 1 \! '
B 7(2) (é) Z e~ imAY, (2ayn)e” CmYm? /4L

! nez?

(A5)

the sum over z € P, in the second integral can be ex-
pressed in terms of a sum over n € Z3, which finally gives

2L g%

- Z ylm(Z) 7(z_7q)+7 8100moF (q)

zEPAz - ¢

+77r3/2f dts <i>l
t3/2 2t

X 3 emimA Y, Qmyn)e T, (A6)
where
1 el‘q2 -1 00 q2n
F(g) = dt—=——2 = —_— A7
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