Intrauterine Influences on Obesity and Insulin Resistance in Pre-pubertal Children

Oana Maftei

M.D., F.Rom.C.P.

Discipline of Public Health, School of Population Health and Clinical Practice

Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health

Faculty of Health Sciences, University of Adelaide

Australia

December 2011

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

"Truth lies all around us, but is only revealed to those who search for it."

Nicolae lorga (1871-1940)

This thesis is dedicated to my mother for her immense love, trust, support and encouragement not only through the PhD candidature years, but throughout my entire life. I have learnt from her wisdom that giving anything less than all I could give meant sacrificing a gift.

Table of contents

List of tables		ix
List of figures		xii
Abstract		xiv
Declaration		xvii
Acknowledgem	ents	xviii
Abbreviations a	ind acronyms	XX
Conference pre	sentations	xxii

Chapter 1 Introduction

1.1	Developmental origins of health and disease	1
1.2	Evidence of programming of childhood obesity and insulin resistance by maternal	
	body size and glucose intolerance during pregnancy	2
1.3	Research questions and hypotheses	4
1.4	Thesis objectives	5
1.5	Overview of the thesis	6
1.6	Statement of contribution	7

Chapter 2 Theoretical framework

2.1	Early life exposures and later development	8
2.2	Conceptualising pre-birth exposures	11
2.2.1	Maternal pre-pregnancy obesity	12
2.2.1	1 Pathophysiology	12
2.2.1	2 Public health significance – Prevalence data	14
2.2.1	3 Adverse health outcomes of maternal pre-pregnancy obesity	15
2.2.1	4 Clinical response to the epidemic of maternal obesity	17
2.2.2	Glucose tolerance status during pregnancy	19
2.2.2	1 Glucose regulation during pregnancy	19
2.2.2	2 Screening and diagnostic tests for glucose intolerance during pregnancy	21

2.2.	2.3	Defining categories of gestational glucose intolerance based on oral glucose challenge test	t and
		oral glucose tolerance test	23
2.2.	2.4	Risk factors for glucose intolerance during pregnancy	24
2.2.	2.5	Public health significance – Prevalence data	26
2.2.	2.6	Adverse health outcomes of gestational glucose intolerance	29
2.2.	2.7	Management of gestational glucose intolerance	32
2.2.3	G	estational weight gain	33
2.2.	3.1	Pathophysiology	34
2.2.	3.2	Public health significance - Prevalence data	35
2.2.	3.3	Adverse health outcomes of excessive gestational weight gain	36
2.2.	3.4	Clinical response - Recommended gestational weight gain	37
2.2.4	Ir	nterrelations between maternal pre-pregnancy BMI, glucose tolerance status du	ring
	р	regnancy and gestational weight gain	37
2.3	Sp	ecific metabolic consequences in children	40
2.3.1	C	besity, body composition and fat pattern in children	40
2.3.	1.1	Public health significance – Prevalence data	42
2.3.	1.2	Adverse health outcomes of childhood obesity	44
2.3.	1.3	Measures of obesity	46
2.3.2	Ir	nsulin resistance in children	54
2.3.	2.1	Public health significance – Prevalence data	56
2.3.	2.2	Adverse health outcomes of insulin resistance	57
2.3.	2.3	Assessment of insulin resistance in children	58
2.4	Ev	idence of early origins of childhood obesity and insulin resistance	61
2.4.1	Ir	ntrauterine programming of obesity and insulin resistance by maternal pre-	
	n	regnancy obesity	61
212	۲ ار	ntrautering programming of obesity and insulin resistance by maternal glucose	
2.7.2		tradierine programming of obesity and insum resistance by material glucose	70
040	11		/ U ma'
Z.4.3	Ir	itrauterine programming of opesity and insulin resistance by maternal gestatio	nai
	W	/eight gain	88
2.5	Su	mmary	97

Chapter 3 Methodology

3.1	The Generation 1 cohort	98
3.1.1	Study design and overall aim	98
3.1.2	Baseline sampling process and selection criteria	99

3.1.3	Baseline data collection	
3.1.4	Participation until this follow-up	
3.2	Data collection for the follow-up at 9-10 years of age	
3.2.1	Approaching participant families	
3.2.2	Procedures undertaken with participant children	
3.2.2	.1 Interview	103
3.2.2	.2 Anthropometric measurements and assessment of body composition	104
3.2.2	.3 Fasting blood samples	105
3.2.3	Ethical considerations	
3.3	Data management	107
3.4	Defining variables of interest	109
3.4.1	Intrauterine exposures	109
3.4.1	.1 Maternal pre-pregnancy BMI	109
3.4.1	.2 Maternal glucose tolerance status during pregnancy	110
3.4.1	.3 Maternal gestational weight gain	111
3.4.2	Outcomes in children at the age of 9-10 years	
3.4.2	.1 Child BMI z-score	113
3.4.2	.2 Child percentage body fat	113
3.4.2	.3 Child waist-to-height ratio	113
3.4.2	.4 Child insulin resistance	113
3.4.3	Potential confounders	
3.5	Analysis plan	115
3.6	Summary	118

Chapter 4 Results

4.1 De	escriptive statistics	119
4.1.1 I	ntrauterine exposures	119
4.1.1.1	Maternal pre-pregnancy BMI	119
4.1.1.2	Maternal glucose tolerance status during pregnancy	121
4.1.1.3	Maternal gestational weight gain	125
4.1.1.4	Interrelations between maternal pre-pregnancy BMI, glucose tolerance status durin	g pregnancy
	and gestational weight gain	126
4.1.2 (Outcomes in children at the age of 9-10 years	129
4.1.2.1	Child BMI z-score	130
4.1.2.2	Child percentage body fat	131

4.1.2	.3 Child waist-to-height ratio	132
4.1.2	.4 Child insulin resistance	133
4.1.3	Potential confounders	135
4.1.4	Non-participation assessment	137
4.2	Inferential statistics	140
4.2.1	Maternal pre-pregnancy BMI and child outcomes	141
4.2.1	.1 Maternal pre-pregnancy BMI and child BMI z-score	141
4.2.1	.2 Maternal pre-pregnancy BMI and child percentage body fat	142
4.2.1	.3 Maternal pre-pregnancy BMI and child waist-to-height ratio	144
4.2.1	.4 Maternal pre-pregnancy BMI and child insulin resistance	146
4.2.2	Maternal glucose tolerance status during pregnancy and child outcomes	148
4.2.2	.1 Maternal glucose tolerance status during pregnancy and child BMI z-score	148
4.2.2	.2 Maternal glucose tolerance status during pregnancy and child percentage body fat	151
4.2.2	.3 Maternal glucose tolerance status during pregnancy and child waist-to-height ratio	154
4.2.2	.4 Maternal glucose tolerance status during pregnancy and child insulin resistance	156
4.2.3	Maternal gestational weight gain and child outcomes	159
4.2.3	.1 Maternal gestational weight gain and child BMI z-score	159
4.2.3	.2 Maternal gestational weight gain and child percentage body fat	160
4.2.3	.3 Maternal gestational weight gain and child waist-to-height ratio	162
4.2.3	.4 Maternal gestational weight gain and child insulin resistance	163
4.2.4	Two-way interactions between the three intrauterine exposures of interest in r	elation
	to child outcomes	164

Chapter 5 Discussion and conclusion

5.1	Overview of major findings	167
5.2	Study strengths and limitations	169
5.2.1	Study design	169
5.2.2	Measurements	172
5.2.3	Analyses	176
5.3	Relationship to studies on early origins of child obesity and insulin resistance	178
5.3.1	Comparison of the Generation 1 sample with previous relevant studies	178
5.3.2	Maternal pre-pregnancy BMI and child outcomes	180
5.3.3	Maternal glucose tolerance status during pregnancy and child outcomes	182
5.3.4	Maternal gestational weight gain and child outcomes	184
5.3.5	Interpreting mediation by current body size	184

5.3.6	Two-way interactions between main exposures in relation to child outcomes	. 184
5.3.7	Potential underlying mechanisms	. 186
5.4	Implications and recommendations for public health	. 190
5.5	Future directions for research	. 201
5.6	Conclusion	. 205

References	
------------	--

List of tables

Table 1.	National prevalence of overweight and obesity in women of all ages from selected developed countries	. 14
Table 2.	National prevalence of overweight and obesity among women of reproductive age in Australia	. 15
Table 3.	Cut-off values for plasma glucose levels recommended for the diagnosis of gestational diabetes in oral glucose tolerance test	. 23
Table 4.	Prevalence and incidence rates of gestational diabetes reported in Australia	. 27
Table 5.	2009 Institute of Medicine recommendations for gestational weight gain for singleton pregnancies	. 34
Table 6.	Summary of longitudinal studies examining the influence of maternal pre-pregnancy overweight / obesity on child obesity and insulin resistance	. 64
Table 7.	Summary of longitudinal studies examining the influence of maternal glucose tolerance status during pregnancy on child obesity and insulin resistance	. 75
Table 8.	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity	. 90
Table 8. Table 9.	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity Main strategies to prevent loss to follow-up and enhance response rates	. 90 102
Table 8. Table 9. Table 10	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity Main strategies to prevent loss to follow-up and enhance response rates	. 90 102 112
Table 8. Table 9. Table 10 Table 11	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity Main strategies to prevent loss to follow-up and enhance response rates	. 90 102 112 120
Table 8. Table 9. Table 10 Table 11 Table 12	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity Main strategies to prevent loss to follow-up and enhance response rates	. 90 102 112 120 121
Table 8. Table 9. Table 10 Table 11 Table 12 Table 13	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity	. 90 102 112 120 121 n 1 122
Table 8. Table 9. Table 10 Table 11 Table 12 Table 13 Table 14	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity	. 90 102 112 120 121 122 123
Table 8. Table 9. Table 10 Table 11 Table 12 Table 13 Table 14 Table 15	Summary of longitudinal studies examining the influence of maternal gestational weight gain on child obesity Main strategies to prevent loss to follow-up and enhance response rates	. 90 102 112 120 121 122 123

Table 17. Maternal gestational weight gain across categories of pre-pregnancy BMI 128
Table 18. Maternal gestational weight gain and glucose tolerance status during pregnancy
Table 19. Anthropometric measurements in Generation 1 children at 9-10 years
Table 20. Summary measures for percentage body fat in Generation 1 children
Table 21. Summary measures of central adiposity in Generation 1 children
Table 22. Summary measures for fasting glucose, fasting insulin, and HOMA-IR in Generation 1 children
Table 23. Children's anthropometric measurements and fasting measures of glucose homeostasis at 9-10 years 135
Table 24. Maternal and child characteristics in the Generation 1 participants at 9-10 year follow-up relative to the original cohort
Table 25. Child characteristics in the Generation 1 participants at 9-10 years who provided a fastingblood sample collection relative to all participating children at 9-10 years140
Table 26. Child BMI and BMI z-score across categories of maternal pre-pregnancy BMI 142
Table 27. Estimated change in child BMI z-score in relation to maternal pre-pregnancy BMI 142
Table 28. Child percentage body fat across categories of maternal pre-pregnancy BMI 143
Table 29. Estimated change in child percentage body fat in relation to maternal pre-pregnancy BMI 144
Table 30. Child waist-to-height ratio across categories of maternal pre-pregnancy BMI 145
Table 31. Estimated change in child waist-to-height ratio in relation to maternal pre-pregnancy BMI. 145
Table 32. Child HOMA-IR across categories of maternal pre-pregnancy BMI 146
Table 33. Estimated change in child HOMA-IR in relation to maternal pre-pregnancy BMI 147
Table 34. Child BMI and BMI z-score across the categories of maternal glucose tolerance during pregnancy 148
Table 35. Estimated change in child BMI z-score in relation to maternal glucose tolerance status during pregnancy 150
Table 36. Child percentage body fat across the categories of maternal glucose tolerance during pregnancy 151

Table 37.	Estimated change in child percentage body fat in relation to maternal glucose tolerance	
	status during pregnancy	3
Table 38.	Child waist-to-height ratio across categories of maternal glucose tolerance during	
	pregnancy154	1
Table 39.	Estimated change in child waist-to-height ratio in relation to maternal glucose tolerance	
	status during pregnancy155	5
Table 40.	Child HOMA-IR across categories of maternal glucose tolerance during pregnancy 156	3
Table 41.	Estimated change in child HOMA-IR in relation to maternal glucose tolerance status during	ļ
	pregnancy	3
Table 42.	Estimated change in child BMI z-score in relation to maternal gestational weight gain 160)
Table 43.	Estimated change in child percentage body fat in relation to maternal gestational weight	
	gain167	1
Table 44.	Estimated change in child waist-to-height ratio in relation to maternal gestational weight	
	gain	2
Table 45.	Estimated change in child HOMA-IR in relation to maternal gestational weight gain 164	1
Table 46.	Comparison of the Generation 1 sample with previous studies	9

List of figures

Figure 1.	Flowchart of participation	1
Figure 2.	Confounders in relation to exposures and outcomes	4
Figure 3.	Correlation between maternal self-reported pre-pregnancy weight and measured weight in early pregnancy	:0
Figure 4.	Maternal pre-pregnancy BMI status12	1
Figure 5.	Results of prenatal screening for gestational diabetes in Generation 1 women	4
Figure 6.	Maternal pre-pregnancy BMI across the spectrum of glucose tolerance during pregnancy. 12	7
Figure 7.	Maternal gestational weight gain in relation to pre-pregnancy BMI 12	7
Figure 8.	Maternal gestational weight gain across categories of pre-pregnancy BMI 12	8
Figure 9.	Maternal gestational weight gain and glucose tolerance status during pregnancy 12	9
Figure 10.	BMI z-score in Generation 1 children	0
Figure 11.	Distribution of BMI categories in Generation 1 children	1
Figure 12.	Histograms by transformation for child percentage body fat	2
Figure 13.	Histograms by transformation for child waist-to-height ratio	3
Figure 14.	Histograms by transformation for child HOMA-IR	4
Figure 15.	Child BMI z-score in relation to maternal pre-pregnancy BMI14	.1
Figure 16.	Child percentage body fat in relation to maternal pre-pregnancy BMI	.3
Figure 17.	Child waist-to-height ratio in relation to maternal pre-pregnancy BMI	4
Figure 18.	Natural logarithm of child HOMA-IR in relation to maternal pre-pregnancy BMI	6
Figure 19.	Child BMI z-score across categories of maternal glucose tolerance during pregnancy. 14	.9
Figure 20.	Child percentage body fat across the categories of maternal glucose tolerance during pregnancy	51
Figure 21.	Child waist-to-height ratio across categories of maternal glucose tolerance during pregnancy	4

Figure 22.	Child HOMA-IR across categories of maternal glucose tolerance during pregnancy	156
Figure 23.	Child BMI z-score in relation to maternal gestational weight gain	159
Figure 24.	Child percentage body fat in relation to maternal gestational weight gain	161
Figure 25.	Child waist-to-height ratio in relation to maternal gestational weight gain	162
Figure 26.	Child HOMA-IR in relation to maternal gestational weight gain	163
Figure 27.	Interaction between maternal glucose tolerance status during pregnancy and pre-	
	pregnancy BMI in relation to child waist-to-height ratio	165
Figure 28.	Interaction between maternal pre-pregnancy BMI and gestational weight gain in relatio	n
	to child waist-to-height ratio	166

Abstract

Within the paradigm of developmental origins of health and disease, an intrauterine environment that stimulates fetal overnutrition has been found to contribute to the risk of subsequent obesity in the offspring. There is compelling epidemiological evidence for a positive association between maternal obesity prior to pregnancy, gestational diabetes (GD) or excessive gestational weight gain, and the development of childhood obesity (as measured by body mass index, BMI). However, the evidence is limited and inconsistent with respect to more specific measures of adiposity (body composition or fat pattern) and insulin resistance in children. Furthermore, the long-term effects of maternal borderline gestational glucose intolerance (BGGI) on the offspring have not been considered.

Therefore, I sought to examine whether maternal obesity prior to pregnancy, gestational glucose intolerance across the entire spectrum, and gestational weight gain have deleterious effects on the development of obesity (both global and specific measures of adiposity) and insulin resistance in pre-pubertal children. These associations are particularly important from a public health perspective as, once identified, they may point towards potential windows for prevention of childhood obesity and related metabolic disorders.

This project entailed a follow-up of an existing representative, prospective birth cohort study (Generation 1 Study, n=557) in Adelaide, South Australia, recruited during 1998-2000. At the 9-10 year follow-up, rigorous anthropometric measurements were conducted in 443 children (80% of the original cohort), of whom 163 consented to provide a fasting blood sample for the estimation of insulin resistance based on homeostasis model assessment (HOMA-IR). Information on intrauterine exposures and confounders was collected from the antenatal interviews and hospital records. Maternal age, parity, smoking, pregnancy-induced hypertension, and education at the time of pregnancy were considered as potential confounders for all the associations of interest, and child current BMI z-score as a potential mediator on the pathway between the intrauterine exposures and child insulin resistance. Data were analysed using multiple linear regression and generalized linear models.

Abstract

Maternal pre-pregnancy BMI was positively associated with all three obesity-related measures considered in the 9-10 year-old children (BMI z-score, percentage body fat estimated by bioelectrical impedance analysis, and waist-to-height ratio); these relationships were robust to adjustment for potential confounders (adjusted coefficients for each one kg/m² increase in maternal pre-pregnancy BMI were 0.08 (95% confidence interval 0.06, 0.10) for child BMI z-score, 0.44 (95% CI 0.31, 0.58) for percentage body fat and 0.002 (95% CI 0.002, 0.003) for waist-to-height ratio). There was no association between maternal pre-pregnancy BMI and HOMA-IR in children (with or without adjustment); however, when child current BMI z-score was included as a mediating variable, the relationship between maternal pre-pregnancy BMI and child HOMA-IR was inverse and significant (adjusted change in child HOMA-IR for each one kg/m² increase in maternal pre-pregnancy BMI was -0.83% (95% CI -1.63, -0.02)).

Intrauterine exposure to glucose intolerance during pregnancy (either BGGI or GD) was not associated with any of the three obesity-related measures in children at 9-10 years. Children of mothers who developed GD during the index pregnancy had a higher HOMA-IR; this relationship was robust to adjustment for potential confounders (adjusted change in child HOMA-IR if exposed to maternal GD was 42.9% (95% CI 20.9, 68.9)) and partly mediated by child current BMI z-score. No association was found between exposure to maternal BGGI and child HOMA-IR (with or without confounder adjustment); however, when child current BMI z-score was added as a potential mediator, exposure to BGGI was associated with a reduction in child HOMA-IR (adjusted change in child HOMA-IR if exposed to maternal BGGI was -17.9% (95% CI -29.9, -3.96)).

There were no significant associations between maternal gestational weight gain and any of the outcome measures of interest in unadjusted models. However, adjustment for pre-pregnancy BMI led to a positive association between gestational weight gain and child BMI z-score (adjusted changes in child BMI z-score for each one kg increase in maternal gestational weight gain was 0.032 (95% CI 0.007, 0.057)). Gestational weight gain was not associated with child insulin resistance, and this did not change when child current BMI z-score was included as a potential mediator on the pathway between gestational weight gain and child insulin resistance.

Potential two-way interactions between the main exposures were investigated in relation to all outcomes of interest. Two significant interactions were identified: maternal pre-pregnancy BMI and glucose tolerance status, and maternal pre-pregnancy BMI and gestational weight gain, with a synergistic effect on child waist-to-height ratio.

These results suggest that childhood obesity and insulin resistance have origins, at least in part, in intrauterine life, particularly in relation to maternal obesity at the time of pregnancy and GD. Further research to differentiate between genetic, environmental and intrauterine programming is recommended. That said, maternal pre-pregnancy BMI was the strongest predictor of child BMI z-score, while GD appeared to have an independent effect on child insulin resistance, and both clinical and public health actions to address these maternal factors are warranted for a range of reasons.

Declaration

I, Oana Maftei certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Oana Maftei

Date: 21 December 2011

Acknowledgements

It goes without saying that the research detailed in this thesis could never have occurred, had it not been for the innumerable contributions of my supervisors, colleagues, study participants, friends and family.

I owe an immense debt of gratitude to Associate Professor Vivienne Moore, primary supervisor, who was willing to accept into her research group an overseas, head-strong Paediatrician with no experience in epidemiological research and biostatistics. I thank her for her patience in guiding me through important stages of the project, for supporting my professional development and for allowing me a great deal of independence, which I have come to value with time. Not only has her vast knowledge in so many and diverse areas of public health been an inspiration for me, but also her personal kindness.

Dr Melissa Whitrow, one of my co-supervisors, deserves a big thank you for providing feedback on all the drafts of this thesis. I have appreciated her structured way of thinking and her attention to detail.

Associate Professor Michael Davies, my other co-supervisor, has been of invaluable assistance, particularly with the theoretical underpinning of this project, stimulating critical conversations and providing feedback on the drafts of the thesis. I have admired his enthusiasm to discuss any aspects of reproductive epidemiology.

Thanks are also due to Kendall Smith, study co-ordinator, for her dedication in facilitating access to the cohort families, who were always welcoming. None of this project could have been conducted without the commitment of the families and their willingness to contribute to research, despite their busy and complicated lives. I am also thankful to the other fieldwork members (Stephanie Champion, Trish Malbon, Deb Roffe and Amanda Hillgrove) for their contribution to data collection. I thank Dr Miles DeBlasio for running the blood assays necessary for this research.

Special thanks go to Professor Phil Ryan, whose clarity in teaching biostatistics and ability to simplify complex statistical issues enabled me to conduct the analyses presented in this thesis. I gratefully acknowledge Dr Lynne Giles for backing up some of the statistical analyses contained in this thesis and also Suzanne Edwards for data cleaning and imputation of some missing data. My colleagues in the Life course and Intergenerational Health research group, all extraordinary people, Dr Emily Steele,

Dr Alice Rumbold, Dr Jennifer Marino, Dr Wendy March, and Malinda Steenkamp have contributed by constant emotional support.

I am indebted to Maria Gardiner, for mentoring me in the last year of my candidature, hence 'turbocharging' the writing of this thesis. I will always remember her words: 'writing is critical thinking'. I thank other current PhD students for their friendship and for valuable feedback on several drafts obtained from those involved in the Thesis Writing Group.

My gratitude also extends to Dr Alexia Pena, who was extremely generous in offering me a part time job in a clinical research project, believed in me at challenging times when not many other people did and encouraged me to follow my dreams despite my disillusions. Her 'can-do' attitude contributed considerably to finalising this project within a reasonable timeframe. I am likewise grateful to my best friend, Crina for her constant support.

I also acknowledge the University of Adelaide for granting me the Adelaide Scholarship International, which allowed me to have a decent life throughout my candidature.

For what I am today, I owe enormous gratefulness to my parents, Elena and Ion, for embodying in me the virtues of scholarship and for educating me to put my dreams into action in order to become successful in life. My greatest debt of appreciation is owed to my husband Bob, whose love, care, thoughtfulness and understanding empowered me to finalise this research. I cannot imagine how impoverished my existence would be without him.

Abbreviations and acronyms

%BF	percentage body fat
ACHOIS	Australasian Carbohydrate Intolerance Study in Pregnancy
ACOG	American College of Obstetricians and Gynecologists
ADA	American Diabetes Association
ADIPS	Australasian Diabetes in Pregnancy Society
ALSPAC	Avon Longitudinal Study of Parents and Children
BGGI	borderline gestational glucose intolerance
BIA	bioelectrical impedance analysis
BMI	body mass index
BW	birth weight
CDC	Centers for Disease Control and Prevention
CI	confidence interval
СТ	computed tomography
DXA	dual energy X-ray absorptiometry
EPOCH	Exploring Perinatal Outcomes among Children
FFM	fat-free mass
FGIR	fasting glucose-to-insulin ratio
FM	fat mass
FSIVGTT	frequently sampled intravenous glucose tolerance test
FTO	fat mass and obesity associated gene
GD	gestational diabetes
GLM	generalised linear model
GWG	gestational weight gain
HAPO	Hyperglycemia and Adverse Pregnancy Outcomes
HbA1c	haemoglobin A1c
HDL	high-density lipoprotein
HOMA-IR	homeostasis model assessment of insulin resistance
IGF	insulin-like growth factor
IGT	impaired glucose intolerance
IL	interleukin

IOM	Institute of Medicine
IOTF	International Obesity Task Force
IQR	interquartile range
IR	insulin resistance
LDL	low-density lipoprotein
LMS	lambda-mu-sigma
MRI	magnetic resonance imaging
NDDG	National Diabetes Data Group
NGT	normal glucose tolerance
NZSSD	New Zealand Society for the Study of Diabetes
OGCT	oral glucose challenge test
OGTT	oral glucose tolerance test
OR	odds ratio
PAR	population attributable risk
PCOS	polycystic ovarian syndrome
QUICKI	quantitative insulin sensitivity check index
r	Pearson's correlation coefficient
RCT	randomised clinical trial
RR	relative risk
SD	standard deviation
SES	socio-economic status
SFT	skinfold thickness
TBW	total body water
TNF	tumour necrosis factor
TAFE	Training and Further Education
WHO	World Health Organization
WHtR	waist-to-height ratio

Conference presentations

- Maftei O, Whitrow MJ, Moore VM, Davies MJ. Intrauterine influences on offspring obesity in prepubertal children - oral presentation, 7th World Congress on Developmental Origins of Health and Disease, Portland, Oregon, USA, 18-21 September 2011
- Maftei O, Whitrow MJ, Moore VM, Davies MJ. Intrauterine influences on insulin resistance in prepubertal children - oral presentation (ranked in top 10%), 7th World Congress on Developmental Origins of Health and Disease, Portland, Oregon, USA, 18-21 September 2011
- Maftei O, Whitrow MJ, Moore VM, Davies MJ. Insulin resistance in prepubertal children in relation to intrauterine exposure to overnutrition - oral e-poster presentation, 52nd Annual Meeting of the European Society for Paediatric Research, Newcastle, UK, 14-17 October 2011