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When do memory limitations lead to regularization?
An experimental and computational investigation

Amy Perfors

School of Psychology, University of Adelaide, Adelaide, SA 5005, Australia

Abstract

The Less is More hypothesis suggests that one reason adults and children differ

in their ability to learn language is that they also differ in other cognitive ca-

pacities. According to one version of this hypothesis, children’s relatively poor

memory may make them more likely to regularize inconsistent input (Hudson

Kam and Newport, 2005, 2009). This paper reports the result of an experimental

and computational investigation of one aspect of this version of the hypothesis.

A series of seven experiments in which adults were placed under a high cognitive

load during a language-learning task reveal that in adults, increased load during

learning (as opposed to retrieval) does not result in increased regularization. A

computational model offers a possible explanation for these results. It demon-

strates that, unless memory limitations distort the data in a particular way,

regularization should occur only in the presence of both memory limitations

and a prior bias for regularization. Taken together, these findings suggest that

the difference in regularization between adults and children may not be solely

attributable to differences in memory limitations during learning.

Keywords: regularization, less is more, computational modelling, language

acquisition

1. Introduction

In many ways, ranging from phonetic perception to aspects of syntax, chil-

dren are superior language learners than adults. Adults have difficulty with

many aspects of language acquisition, from phonetic perception (Werker and
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Tees, 1984; Werker and Lalonde, 1988; Kuhl, 2004), to language processing

(Clahsen and Felser, 2006), to certain aspects of syntax (e.g., Johnson and

Newport, 1989; Johnson et al., 1996; Birdsong, 2006). Scientists have proposed

many theories to account for the difference between children and adults; these

theories differ in both the degree and type of contribution made by pre-existing

language-specific biases.

Some argue that language acquisition in children is guided by language-

specific acquisition procedures, whereas adult acquisition is directed by more

domain-general learning mechanisms (e.g., Bley-Vroman, 1990). However, there

are many other possibilities, since children and adults also differ profoundly

in their cognitive capabilities, knowledge, assumptions, and typical linguistic

input. Learning a second language is made more difficult by interference from

the first language (e.g., Mayberry, 1993; Iverson et al., 2003; Tan, 2003; Weber

and Cutler, 2003; Hernandez et al., 2005). Adults and children also differ in the

plasticity of their brains (Elman et al., 1996; MacWhinney, 2005), their style of

learning (Ullman, 2004), and the nature of the social support (Snow, 1999) and

linguistic input (Fernald and Simon, 1984) they receive.

One hypothesis, often called Less is More, suggests that the relative cogni-

tive deficits in children may actually help with language acquisition. There are

several versions of the Less is More hypothesis. The most general suggests that

“starting small” – whether via restricted input, or as a byproduct of limited

cognitive capacity – can help a learner to isolate and analyze the separate com-

ponents of a linguistic stimulus (Newport, 1988, 1990). There is considerable

support for this version of the hypothesis. Cochran et al. (1999) taught adults a

novel sign language normally as well as under conditions of memory load. They

found that adults who were not under memory load learned faster but made

more errors caused by producing signs holistically, rather than analyzing the

individual components. In a similar study, Kersten and Earles (2001) found

that adults taught a miniature artificial language learned better if they were

first presented with individual words and only later presented with complex

sentences. Starting small has also been found to help adults learning recursion
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in artificial grammars (Lai and Poletiek, 2010) and foreign natural languages

(Chin and Kersten, 2010). In addition, Elman (1993) discovered that neural

networks could be trained to process complex sentences, but only if, during the

initial stages of training, the network had limited memory and was given limited

input (though other modelers have found different results; see, e.g., Rohde and

Plaut, 1999).

Another version of Less is More suggests that limited capacity may lead

children to regularize inconsistent input (Hudson Kam and Newport, 2005, 2009;

Hudson Kam and Chang, 2009). Regularization may be a beneficial strategy

when the variability in the observed forms is not conditioned on a previous

linguistic context. Unpredictable variation of this sort is not commonly found

in most languages, at least in the speech of native speakers (e.g., Chambers

et al., 2003); however, it is much more common when learning from non-native

speakers (Wolfram, 1985; Johnson et al., 1996). In such circumstances, when

the input is truly inconsistent, regularization can be beneficial.

It is precisely in those circumstances that regularization is often observed.

Deaf children produce regular grammatical forms despite being exposed to the

inconsistent sign language of their hearing parents (Singleton and Newport,

2004), as will children exposed to inconsistent input in an artificial language

(Hudson Kam and Newport, 2005, 2009). Childrens’ tendency to regularize

may even lead to the creolization of initially inconsistent languages (Senghas

and Coppola, 2001). By contrast, adult language learners are known to produce

highly variable, inconsistent utterances, even after years of experience with the

language and after their grammars have stabilized (Johnson et al., 1996).

This difference between children and adults has also been found in non-

linguistic domains. If adults must predict some phenomenon, like a light flashing

or a certain card being drawn from a deck, in most circumstances they will tend

to probability match: if the phenomenon occurs 70% of the time, they will

predict it 70% of the time, even though predicting it 100% of the time would

result in more correct predictions (see Myers, 1976, for an overview). Children

are more likely to predict that the phenomenon will occur closer to 100% of
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the time (e.g., Weir, 1964; Derks and Paclisanu, 1967), although many still do

not. A similar pattern has been found in causal reasoning: children regularize

by assuming that causes are deterministic, while adults do not (Schulz and

Sommerville, 2006).

Although children’s tendency toward regularization is fairly well-established,

the reason for the difference between adults and children is less clear. The Less is

More hypothesis suggests that regularization may be due to some limitations on

children’s cognitive capacity, but exactly how and why such limitations should

lead to regularization is somewhat underspecified. Memory is often identified

as a possible culprit. For instance, in one of the clearest statements of how

Less is More relates to regularization, Hudson Kam and Newport (2009, page

61) suggest that “one possibility is that children are worse at directed memory

search than adults. Another possibility is that children are less efficient at

laying down memory traces, with the consequence that they have more difficulty

retrieving specific forms (therefore especially those that are lower in frequency

or less broadly or consistently used).”

This clearly identifies memory as a potential issue, but the precise details are

still unclear: what predicts which forms should be hard to lay down or access,

and why? Is the issue with encoding, storage, retrieval, or all of the above?

Are the relevant limitations in working memory, short-term memory, long-term

memory, or an interaction between them? What specific model of memory is

being assumed, where does the limitation lie, and why would that limitation

result in regularization?

Hudson Kam and Chang (2009) are slightly more specific, suggesting that

memory limitations may interfere with accurate retrieval (although not ruling

out the possibility that differences during encoding might also have an effect).

Consistent with this, they found that adults who were given cues that made

retrieval easier ended up probability matching more precisely than adults who

were not given such cues. However, the details of how and why retrieval limita-

tions should lead to regularization are still somewhat underspecified. The most

precise explanation suggests that “when retrieval is difficult, the most easily
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accessible form is likely to be retrieved repeatedly, resulting in regularization.”

(page 816) However, why this is likely or what assumptions about memory

should lead to this are not made clear.

This relative lack of detail is natural given the newness of the Less is More

hypothesis as regards regularization. However, it does mean that many open

questions remain. If regularization is due to limitations on memory, under what

circumstances and for what assumptions about memory might we expect it to

occur? Should we expect it to be limited to retrieval, or might effects arising

during learning – while information is being processed, encoded, and stored –

matter as well? If so, why, and under what circumstances?

These questions lead to the two main goals of this paper. The first goal is

to empirically explore whether and to what extent memory limitations during

encoding might affect regularization. This has not been investigated before and

is an open question. To that end, the first section reports the result of seven ex-

periments in which adults were placed under memory load while simultaneously

learning a simple artificial “language” composed of nouns paired inconsistently

with determiners. This load, which occurred during the encoding phase of lan-

guage learning, did not increase regularization in any of the conditions.

The second goal of the paper is make precise – and then systematically inves-

tigate – a range of possibilities about how and why memory limitations during

learning could affect the generalizations (and hence the extent of regularization)

of the learner. This is accomplished with a computational model that examines

a variety of different theories about how memory limitations during learning

might affect the pattern of data available to the learner. The modeling also

explores how these memory limitations might interact with prior biases for or

against regularization. Results indicate that regularization only occurs when

both memory limitations and a prior bias for regularization are present; nei-

ther alone is sufficient. Regularization can only occur without a prior bias if

the memory process itself distorts the pattern of data available to the learner

in a particular way, which does not at present appear to correspond to any

well-established models of memory encoding.
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Taken together with the experimental findings, these results suggest that

adult-child differences in regularization probably do not emerge from differences

in memory limitations during encoding. I conclude the paper by discussing

other possibilities, among them that adults and children have different prior

biases about how to respond to inconsistent input; that regularization is caused

by limitations in other cognitive capacities; and that any effects due to memory

are more likely to occur during retrieval rather than encoding.

2. Experiments

2.1. Method

179 English-speaking adults were recruited from the University of Adelaide

and surrounding community. They were paid $10 or received course credit for

their participation; of these, four were excluded due to equipment failure (2) or

a refusal to say anything during the word-learning task (2). Thus there were

25 participants in each of the conditions. All conditions within the experiment

consisted of two parts, both presented on a computer in the Computational

Language and Cognition Lab at the University of Adelaide. The experiment was

programmed in matlab and auditory stimuli were presented over headphones.

In the first part of the experiment, individual differences in working memory

capacity were estimated using a standard complex span task (Conway et al.,

2007; Unsworth et al., 2009). In the second part of the experiment, subjects

completed a word-learning task modelled on the paradigm described by Hudson

Kam and Newport (2009) in which they were taught 10 two-word labels from

a new language. Interspersed with the word-learning task, participants in six

of the seven conditions completed an interference task designed to tax their

working memory; these conditions will be described in detail later. In a control

condition, the no load condition, participants performed the word-learning

task only.

2.1.1. Complex span task

Complex span tasks are widely used to measure the capacity of the working

memory system (Conway et al., 2005; Unsworth et al., 2009). In a complex
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span task, items to be remembered (e.g., random letters, digits, shapes, or spa-

tial locations) are interspersed with an unrelated cognitive activity (e.g., solving

equations, reading sentences, or evaluating the symmetry of patterns). After

several trials, participants are asked to recall the items to be remembered in

the correct serial order. This sort of task is differentiated from a simple span

task (e.g., Digit Span from the Wechsler scales), which only includes the mem-

orization component. It has been argued that complex span tasks provide a

measure of working memory, as opposed to span memory, because they entail

the requirement to process as well as to store information, although both types

of task provide measures of memory capacity and maintenance. Complex span

tasks have good internal consistency (Kane et al., 2004; Conway et al., 2007)

and test-retest reliability (Klein and Fiss, 1999). They have been shown to cor-

relate with cognitive processes that are believed to depend on working memory

(Conway et al., 2007; Unsworth and Engle, 2007), and are linked to disorders in-

cluding Alzheimer’s disease (Rosen et al., 2002) and schizophrenia (Stone et al.,

1998). They have also been widely used to explore age differences in working

memory capacity (Case et al., 1982; Salthouse and Babcock, 1991).

Two common span tasks incorporate demands on either operational span

(Turner and Engle, 1989) or on verbal span (Daneman and Carpenter, 1980).

In an operational span task, participants are presented with equations such as

4/2 + 2 = 3 and told to say, as quickly as possible, whether the equation is

correct. In a typical verbal span task, subjects are presented with an 11-15

word sentence and told to say, as quickly as possible, whether the sentence

makes sense. In order to enable comparison across participants, in the first

part of the experiment all participants were presented with an operational span

task regardless of condition. On each trial people first saw an equation and

were asked whether it was correct or not. After each response, a random letter

was shown. At the end of a set of n letters, participants were asked to repeat

the list of letters in order, given unlimited time to do so. To make sure that

they understood the task, they were first trained on two sets of two trials each.

The full task comprised two sets each of sizes ranging from an n of three to
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an n of seven, for a total of 50 trials. For each participant a working memory

capacity score was calculated, reflecting the number of correct letters recalled

in the correct position.

2.1.2. Word-learning task

After the complex span task, all participants took part in an artificial lan-

guage learning task modelled after a similar task described by Hudson Kam and

Newport (2009). Their language contained 51 words, including 36 nouns and

12 verbs, among other lexical items, taught over the course of eight separate

sessions extending for 9-12 days. Of critical interest in their study was the pro-

duction of the determiners, which were associated with nouns in an inconsistent

fashion: participants heard the main determiner only 60% of the time. In one

condition, they heard nothing the other 40% of the time; in other conditions,

they heard increasingly more noise determiners: for instance, two determiners

(each 20% of the time), and so forth up to 16 determiners (each 2.5% of the

time). Performance was measured in a sentence completion task in which par-

ticipants had to provide the noun and determiner associated with a scene after

being prompted with the beginning part of the sentence (the verb).

The present research sought to remove extraneous elements of the task so

as to focus only on the production of the inconsistent input. Participants were

therefore presented with a “language” of 10 items that for simplicity I will

call “nouns”, all two-syllable nonsense words1 mapped to images representing

common objects.2 Each noun was followed by a one-syllable consonant-vowel-

consonant (CVC) “determiner”: the main determiner occurred 60% of the time

with each noun, and each of the four noise determiners occurred 10% of the

time with each noun.3 The distribution of determiners across items thus pre-

cisely matched the global distribution of determiners, making the determiners

completely inconsistent. After seeing the image-label pairs, participants were

1Noun words used were: dragnip, raygler, churbit, tramdel, shelbin, pugbo, wolid, foutray,
nipag, and yeetom.

2Objects used were: babies, balls, beds, birds, books, cars, cats, cups, dogs, and shoes.
3The five determiners were: mot, ped, sib, kag, and zuf.
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asked to produce novel labels of their own; the key question was whether they

would regularize by producing a determiner (or no determiner) close to 100% of

the time, rather than the amount it occurred in the input. The specific details of

which word mapped to which meaning and which determiner was the main de-

terminer were randomized for each participant. Participants were not told there

were two “parts” (noun and determiner) to each label, and since the labels were

presented orally this was not made obvious through visual presentation.4

All labels were recorded by a female speaker on a Windows computer from

mono input using the software program Cubase. In order to ensure that the

speech was as natural as possible, each noun was recorded with each determiner,

rather than recording them individually and playing them one after another,

which would produce odd coarticulation effects. Each label was spoken clearly

and with normal intonation at the pace of standard adult-directed speech.

Over the course of the task, participants saw 200 trials of image-label pairs;

since there were 10 labels and 10 objects, participants saw each possible object-

label pair 20 times during the experiment. There were 10 different image tokens

for each object (e.g., ten different pictures of babies) and each image appeared

once in the first 100 trials and once in the second 100 trials. On each trial, an

image appeared on the computer screen and, at the same time, the person heard

a female voice provide the label: for instance, participants might see a picture

of a baby and hear the words churbit mog.

In the no load condition, participants went to the next trial by clicking

a Next button. In the load conditions, explained below, participants had to

perform additional tasks interspersed with the word learning. In all conditions,

learning was tested with 10 questions every 50 trials, for a total of 40 test

questions. At each test, the participant was presented with a novel image and

4It is not critical that these be called nouns and determiners, respectively; in fact, since the
determiners lack any semantics, it might be more appropriate to call them particles. However,
for clarity, I chose to follow the convention established by Hudson Kam and Newport (2009).
The critical point is that part of the label (the “noun”) maps consistently to the image, while
the other part (the “determiner”) doesn’t; we are interested in how participants respond to
this sort of inconsistent input.
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Figure 1: Schematic illustration of the six load conditions. Each box represents a different
screen seen by the participant. In all conditions, participants were presented with the word
learning trials. The load conditions differed according to the task required of the participant
either in between or concurrently with the word learning task.

asked to verbally produce the label for it, which the experimenter wrote down

as accurately as possible. No feedback was given, and the experimenter was

blind to the correct mapping of labels and objects for that participant.

2.1.3. Conditions

There were six different load conditions, described below and illustrated in

Figure 1. A wide range of conditions were investigated in order to thoroughly

explore the space of possible ways that memory could be tasked in a word-

learning experiment such as this. The goal was to be as certain as possible that

at least some of the load tasks substantially taxed working memory while still

allowing some learning.

In all conditions the adults were told that we were interested in how well

people could learn words when the task was difficult. Thus, while they were

learning the words, they would be asked to do something else (the details differed
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by condition as explained below). Participants were informed that they would

be tested on their understanding of the language by the experimenter every 50

trials. They were also told that would be expected to simultaneously do as well

on the load task as possible and would be given feedback throughout on their

performance on it. It was acknowledged that high performance in both tasks

might be difficult, but we were interested in how well they could achieve this.

The first two load conditions were modelled after the operational and verbal

span tests used to measure working memory. These conditions taxed load by

interspersing word-learning trials with items from these working memory tasks.

Verbal load. This task was modelled after the verbal span test of Daneman

and Carpenter (1980). After each image-label pair, participants were presented

with an 11-15 word sentence, told to read it aloud, and then asked to respond

as quickly as possible whether it was sensible or not. Half of the sentences were

sensible, and half were made non-sensible by replacing a content word with a

semantically inappropriate one. For example, a typical sentence is “Cats really

love to sit in the sun, since they are desert animals” while the corresponding non-

sensible sentence would replace animals with chimneys. No participant saw both

the sensible and non-sensible version of a sentence. Accuracy and elapsed time

was displayed in order to encourage peak performance.

Operational load. This condition was modelled after the operational span

test of Turner and Engle (1989). After each image-label pair, participants were

presented with an equation and told to respond as quickly as possible whether it

was correct or not. Half of the equations were correct, and half gave an answer

that was one digit away from correct. In order to encourage participants to

be as fast and correct as possible, a running total of their cumulative number

correct and elapsed time was displayed on the screen.

These two load conditions have the advantage that they are modelled after

tasks designed to load on working memory, but they have the disadvantage that

they are interspersed with the word learning task rather than concurrent with

it. It is therefore possible that they might not interfere enough with concurrent
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working memory to have an effect on the pattern of word learning. The next

two conditions address this possibility.

Low concurrent load. In this condition, each image was preceded by a

list of three letters to memorize, randomly selected from the following set of

letters: F, H, J, K, L, N, P, Q, R, S, T, and Y. No single list contained the same

letter twice. After viewing the list for 2.5 seconds, the image was displayed for

1.5 seconds while the label was heard. This was followed by a response phase

in which participants reported the last set of letters in order. At that point

memorization accuracy and the time taken to respond were displayed, in order

to encourage participants to continue responding quickly and accurately. When

the participant pressed Next the next set of letters to memorize appeared.

High concurrent load. This condition is identical to the low concurrent

load condition except that participants were presented with lists of six rather

than three letters. The list was visible for the same duration and subject to the

same constraints, and the procedure by which list and image-label presentation

were combined was also identical.

Although the two concurrent load conditions are specifically designed to tax

concurrent working memory, there is still one shortcoming: the word learning

task is linguistic, and this type of load may not provide the best conflict with

a language-based task. Therefore, two additional conditions were added that

were designed based on the literature investigating what kinds of tasks disrupt

linguistic processing.

Concurrent operational load. In a study investigating the extent of the

domain-specificity of the verbal working memory resources used during linguis-

tic processing, Fedorenko et al. (2007) discovered that linguistic processing is

disrupted by tasks that involve arithmetic integration. In their experiments,

participants read sentences of varying complexity while simultaneously solving

equations. Sentences were presented phrase by phrase, and each phrase was

paired with part of an equation; participants were expected to parse the sen-
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tence while maintaining a running total for the equation. This task is quite

different from the word-learning task in this study, since the Fedorenko et al.

(2007) study was focused on information integration during the course of reading

a complex sentence. However, because it reported a load task that demonstra-

bly did disrupt some aspect of linguistic processing, I thought it valuable to

include a condition that mimicked that load task as closely as possible.

Thus, in the concurrent operational load condition, participants were

presented with an equation to solve at the same time as they were shown each

image-label pair. Each equation was similar to those in the complex span task,

and consisted of one term involving a simple multiplication followed by another

term involving addition or subtraction (e.g., 6/6+4 or 4/2-1). As in the complex

span task, equations were constrained so that all answers and terms were integers

between zero and ten, exclusive. As in previous conditions, the image was

visible for 1.5 seconds. Immediately following it, participants were asked for

the solution to the equation. As soon as they entered the solution, they were

presented with a new equation and image-label pair. Feedback about whether

they answered the previous equation correctly was displayed in the upper left

corner of the screen.

Concurrent verbal load. Work by Gordon et al. (2002) suggests that

interference with a linguistic task is higher when the interfering task consists of

similar items. These authors found that syntactic processing was disrupted when

participants had to parse sentences while simultaneously having to memorize

lists of words that were similar to the words in the sentences. To illustrate

this, consider a sentence like “It was Tony that Joey liked before the argument

began.” Participants performed more accurately on a comprehension test about

the sentence if they were asked to simultaneously remember a list of common

nouns (e.g., poet-cartoonist-voter) than if they were asked to simultaneously

remember a list of proper male names like those in the sentence (e.g., Joel-

Greg-Andy).

I mimicked this situation as closely as possible by requiring participants
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to memorize lists of four nonsense CVC words. These nonsense words had a

similar form as the determiners, and thus potentially provided a high amount

of interference. The set of possible nonsense words was: nid, zep, lum, dit,

vok, pob, faz, kiv, sug, bef, rin, and tal. No single list presented to participants

contained the same word twice. The Gordon et al. (2002) study used lists of

three words, but I decided to use lists of four because participants seemed to

be able to manage lists of six letters in the high concurrent load condition

and I wanted to make the task as difficult as possible; however, since nonsense

words are more difficult than letters, I thought six might be too much. As in

the high and low concurrent load conditions, participants viewed each list for

2.5 seconds and the image was displayed for 1.5 seconds. This was followed by a

response phase in which participants reported the last set of letters in order, and

memorization accuracy and elapsed time were displayed. When the participant

pressed Next the next set of words to memorize appeared.

2.2. Results

There are three natural questions one must answer in order to properly

understand this experiment. First, are the load tasks difficult enough? Second,

did participants in any of the load conditions regularize the determiners more?

Third, did individual differences in performance on the initial complex span

task predict performance on the word learning task? The answer to the first

question is an essential pre-requisite to interpreting the answers to the other

two because if the load tasks were not challenging enough, comparisons between

conditions are meaningless. The answers to the other two bear directly on the

questions motivating this work: does putting adults under cognitive load cause

them to make the same regularization errors that children do? Were adults with

poorer performance on the complex span task, who have lower working memory

capacity, more likely to make those errors? I address each of these questions in

turn.

14



2.2.1. Were the load tasks difficult enough?

It is non-trivial to definitively determine whether the load tasks difficult

enough to significantly impair working memory capacity while still being easy

enough that something could be learned in the first place. What is “enough”?

Although this question is difficult to answer, we can at least evaluate converging

evidence from several different directions by investigating a variety of possible

indicators.

One possible indicator relates to accuracy learning the noun-image map-

pings. Each of the 10 images was randomly but consistently paired with one

of the 10 possible nouns, and the accuracy with which the participant learned

those mappings is an indication of how difficult they found the task. One would

expect that performance would be substantially worse in the load conditions if

the secondary task provided a sufficient challenge to the cognitive capacities of

our participants.

To explore this, each person’s answers were coded as correct if the noun

they produced was identical to or phonologically similar to the correct noun for

that image (e.g., wolin instead of wolid). Nouns were counted as “phonologically

similar” if they had at least one syllable in common with the correct noun, and

it was obvious which of the ten nouns was the intended target. For instance,

dragler would not be counted as correct if the correct noun was dragnip, be-

cause although there is considerable phonological overlap, there is an equivalent

amount of overlap with another possibility (raygler). However, dragzoo would

be counted as an instance of the word dragnip, because there are no words that

end in zoo. All nouns were coded by the author, but in order to ensure ac-

curacy and objectivity, reliability analysis was undertaken. A random subset

of approximately 10% of the participants (17 people, two to three from each

condition) were recoded by a second coder who was blind to the decisions made

by the first coder. The reliability between the two coders was high, reflected in

a Cronbach’s α of 0.9703 (N=680).

Figure 2 demonstrates that participants in all of the load conditions got fewer
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Figure 2: Performance by condition in the noun-learning task. Participants in the load con-
ditions learned significantly fewer nouns than in the no load condition, suggesting that the
load task provided sufficient cognitive challenge to impair performance.

nouns correct than in the no load condition. This suggests that the interference

tasks did indeed impose a significant strain on their cognitive resources. A

one-way ANOVA on nouns correct by condition was significant (F (6, 168) =

6.298, p < 0.0001). Planned comparisons using the Holm-Bonferroni method to

adjust for multiple comparisons indicated that the mean nouns correct in the no

load condition was significantly different from all other conditions.5 In order

to establish that the load tasks were more difficult throughout word learning,

rather than just at the beginning, the same analysis was performed for the first

half (twenty) and last half (twenty) test trials, as well as for the last ten trials.

There was a significant effect of condition in all cases (first half: F (6, 168) =

6.554, p < 0.0001; last half: F (6, 168) = 5.134, p < 0.0001; final ten: F (6, 168) =

5concurrent verbal: p < 0.0001; concurrent operational: p < 0.0001; high con-
current: p = 0.0034; verbal: p = 0.0207; low concurrent: p = 0.0295; operational:
p = 0.0234.
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4.515, p = 0.0002). Planned comparisons using the Holm-Bonferroni method

revealed that the no load condition was significantly different from all other

conditions in the first half of the trials, and from the concurrent verbal,

concurrent operational, and high concurrent conditions in the second

half and final ten trials.6

Another indication that participants were attending to the load task and

took it seriously is their performance on it. For three of the conditions, chance

performance on the load task was 50%: participants were asked questions with

two possible answers. One-sample t-tests reveal that in all of these condi-

tions, performance was significantly higher than chance (operational load:

M = 0.95, SD = 0.06, t = 36.33, df = 23, p < 0.0001; verbal load: M =

0.80, SD = 0.18, t = 8.42, df = 24, p < 0.0001; concurrent operational

load: M = 0.76, SD = 0.11, t = 11.63, df = 24, p < 0.0001).7 The other three

conditions required participants to memorize lists. Although it is difficult to

elucidate a standard that one would expect participants to attain in this task,

people in all conditions succeeded in memorizing many words. They memorized

an average of 3.36 letters per trial in the high concurrent load condition

(56% of the letters they were presented with), 2.54 letters per trial in the low

concurrent load condition (84% of the letters they were presented with),

and 1.78 words per trial in the concurrent verbal load condition (44% of

the words they were presented with).

To what extent is performance on the load task correlated with accuracy in

learning nouns? A negative correlation between performance on the load task

and accuracy might suggest that different participants adopted different strate-

gies during the experiment: perhaps some focused most of their effort on the

6First half: concurrent verbal: p < 0.0001; concurrent operational: p = 0.0002;
high concurrent: p = 0.0105; verbal: p = 0.0074; low concurrent: p = 0.0344; op-
erational: p = 0.0235. Second half: concurrent verbal: p < 0.0001; concurrent op-
erational: p = 0.0001; high concurrent: p = 0.0028. Final ten: concurrent verbal:
p < 0.0001; concurrent operational: p = 0.0008; high concurrent: p = 0.0023.

7Note that for one participant in the operational load condition, an equipment failure
meant that performance on the load items was not recorded; however, the rest of their data
was retained so they were included.
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load tasks and others focused theirs on the word learning task. However, the

correlation between performance on the load task and overall accuracy was posi-

tive, suggesting instead that the participants who learned more nouns performed

more highly on the interference task rather than less (r = 0.344, p < 0.0001).

This suggests that the participants were performing on the load task to the

limits of their abilities, and those participants with greater abilities were able

to perform better on both the load task and the word learning task.

2.2.2. Did adults regularize more when under cognitive load?

The central question motivating this research was whether adults placed

under cognitive load could be made to look more like children. To evaluate this,

following Hudson Kam and Newport (2009), I excluded all participants who did

not get at least 9 out of the final 20 nouns correct on the test trials.8 Then,

on every valid trial (i.e., every trial for which a correct noun was produced) I

defined a participants’ regularization index as the proportion of relevant trials

on which that person produced their most frequent determiner (including none

as one of the possible determiner types). The index is therefore higher for those

participants who regularize more.

A one-way ANOVA revealed a significant effect of condition (F (6, 109) =

3.84, p = 0.002), but as Figure 3 demonstrates, the trend, if anything, was for

people in the load conditions to regularize less than in the no load condition.

Planned comparisons using the Holm-Bonferroni adjustment method indicated

that the only condition that was significantly different than no load was con-

current verbal – and in that condition people regularized less (p = 0.002).

How much were these results driven by the exclusion of participants who

did not get 9 out of the final 20 nouns correct? To test this, I performed the

same ANOVA on regularization by condition, but included all participants. The

results were qualitatively identical.9 The same results were attained when reg-

8This resulted in 23 subjects in the no load condition, 19 in low concurrent load, 18
in operational load, 17 in verbal load, 15 in high concurrent load, 14 in concurrent
operational load, and 10 in concurrent verbal.

9There was once again a significant effect of condition (F (6, 165) = p = 0.002), with the

18



Figure 3: Regularization by condition. The regularization index (plotted on the y axis) is the
proportion of trials on which each person produced their most frequent determiner. A higher
index therefore reveals more regularization. Participants in the load conditions were no more
likely to regularize than participants in the no load condition, and the trend was toward less
regularization in the load conditions.

ularization was evaluated on trials in which participants produced any response

at all, instead of just the trials where the noun was correct,10 on the second half

of test trials,11 and on the final ten test trials.12 There was no significant effect

of condition at all on the first half of the test trials (F (6, 108) = 1.07, p = 0.386).

In order to ensure that these results were not driven by some characteristic

of the regularization index, I also calculated percentage of time either the main

no load condition having the second-highest regularization index (although this time the
planned comparisons showed that no conditions were significantly different from no load).

10There was a significant effect of condition (F (6, 109) = 3.26, p = 0.006), and planned com-
parisons (Holm-Bonferroni) indicated that the only condition that was significantly different
than no load was concurrent verbal, in which people regularized less (p = 0.002).

11The effect of condition was significant (F (6, 109) = 3.34, p = 0.005) and planned com-
parisons (Holm-Bonferroni) indicated that the only condition that was significantly different
than no load was concurrent verbal, in which people regularized less (p = 0.002).

12The effect of condition was significant (F (6, 109) = 3.06, p = 0.008) and planned com-
parisons (Holm-Bonferroni) indicated that the only condition that was significantly different
than no load was concurrent verbal, in which people regularized less (p = 0.003).
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determiner, a noise determiner, or no determiner was produced. There were no

significant differences between conditions in terms of determiner production for

any of the three determiner types: that is, participants in the load conditions did

not produce any of the three determiners more often according to this measure

either.13 As before, there were no qualitative differences to this result when all

of the participants were included, when the trials in which participants produced

any response at all were evaluated, and when the analysis was restricted to the

first half, second half, or final ten test trials. In all cases, there was no significant

effect of condition on determiner production; as before, if anything the trend

was for there to be less regularization in the load conditions.

A final possibility is that, even if global regularization was not affected by

memory load, lexically-specific regularization might have been. This possibil-

ity is inspired by Hudson Kam and Newport (2009), Smith and Wonnacott

(2010), and Wonnacott (2011), which found that people may sometimes impose

regularization on a lexical level even if the global statistics remain unchanged.

That is, they might use some determiners consistently with some nouns, even

if overall the distribution of determiners matches the input data. Examining

lexically-specific regularization was not an original goal of this study, and it is

difficult to do with reliability since each noun occurred only four times over

the course of all of the test trials. With this caveat in mind, I nevertheless

followed Smith and Wonnacott (2010) and calculated the average conditional

entropy for each participant of their determiners given each noun; lower ab-

solute conditional entropy reflects more rgularization. A one-way ANOVA on

the average entropy across conditions revealed no significant effect of condi-

tion (F (6, 109) = 1.60, p = 0.154), suggesting that the load did not increase

regularization on the lexical level any more than it did on the global level.

These findings are suggestive, but because it is an analysis of mean perfor-

mances this outcome may be hiding individual regularization in different direc-

13Main: F (6, 109) = 1.99, p = 0.074; none: F (6, 109) = 1.48, p = 0.191; noise: F (6, 109) =
1.65, p = 0.140).
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(a) (b)

(c) (d)

Figure 4: Individual consistency in determiner production by condition. For the most part, few
participants showed any consistency in their pattern of determiner usage, and those in the load
conditions did not tend to be more consistent. The top row shows results when performance
was coded as “consistent” if a response was the same for 90% of trials; the bottom shows
results for a threshold of 80%. (a) Results following the exclusion conditions of Hudson Kam
and Newport (2009), in which only participants who got at least 9 out of 20 nouns correct
were included, and only valid trials (in which the noun was correct) were examined. (b)
Results including all participants and all trials in which the participant offered any response.
(c) Results following the Hudson Kam and Newport (2009) exclusion conditions when the
consistency threshold is 80%. (d) Results without the exclusion conditions for a consistency
threshold of 80%.

tions. To evaluate this possibility, I followed Hudson Kam and Newport (2009)

and set a “consistency threshold” of 90%: each participant was coded as con-

sistent main or consistent none if they produced the main or no determiner,

respectively, on at least 90% of the valid trials. They were coded as consistent

noise if they produced one of the noise determiners consistently on at least 90%
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of the valid trials, and not consistent if they did not produce any determiner

type more than 90% of the time. As Figure 4(a) shows, few participants were

consistent in any way, and differences between conditions were not significant

(p = 0.796, Fisher’s exact test).

In order to ensure that this result was not a by-product of the exclusion cri-

teria, I ran the same analysis for all subjects, not just those that got 9 out of 20

correct, and included all trials in which the participant produced any response

at all. This result, shown in Figure 4(b), is qualitatively identical (p = 0.373,

Fisher’s exact test). I also repeated the two analyses with a consistency thresh-

olds of 80%; the results are shown in Figure 4(c) and 4(d). Although the anal-

ysis with exclusion criteria showed a significant difference between conditions

(p = 0.034, Fisher’s exact test), Figure 4(c) suggests that this is because par-

ticipants in some conditions were actually less consistent than in the no load

condition. The analysis without exclusion criteria did not show a significant

difference between conditions (p = 0.059, Fisher’s exact test).

2.2.3. Does working memory span have any effect on performance?

The results presented thus far suggest that people with less available work-

ing memory capacity (i.e., those in the load conditions) did not regularize more

than did those in the control condition. The experiment also provides another

way to evaluate how working memory capacity affects regularization: by ana-

lyzing whether individual differences in performance on the initial complex span

task predicts differential performance on the word-learning task. As one would

expect, performance on the complex span task is positively and significantly

correlated with accuracy for nouns (r = 0.2653, p = 0.005) and performance

on the load task (r = 0.225, p = 0.031) when considering only participants and

trials that fit the exclusion criteria. When evaluating the full dataset, the same

is true (complex span to noun accuracy: r = 0.343, p < 0.0001; complex span

to load task performance: r = 0.235, p = 0.004). Regardless of whether the ex-

clusion criteria are applied, participants with greater working memory capacity

learned more noun labels, and did better on the interference task.
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Did participants with lower working memory capacity regularize more? The

correlation between working memory capacity and the regularization index is

non-significant regardless of whether the exclusion criteria are applied (with ex-

clusion criteria: r = 0.024, p = 0.803; without exclusion criteria: r = −0.029, p =

0.706). This suggests that working memory capacity has no relationship to the

tendency to regularize in this experiment.

2.2.4. Conclusion

Overall, these results suggest that adult participants placed under cognitive

load during language learning do not tend to regularize inconsistent linguistic

input. First, the load tasks in this experiment did appear to tax the participants,

as evident in their performance on the load tasks as well as their decreased

ability to learn nouns when under load. Second, participants under load did not

regularize more, regardless of the exclusion criteria used. Finally, there was no

relationship between working memory and tendency to regularize in this task.

What is going on here? One possibility is that children simply have a prior

bias to favor regularization, whereas adults do not. This bias might be language-

specific (e.g., Bickerton, 1984) or more domain-general (which would be consis-

tent with observed age-related differences in probability matching); either way,

it would result from something other than age-related differences in memory.

It is also possible that memory limitations during learning (as opposed to re-

trieval, as suggested by Hudson Kam and Chang, 2009), should not result in

regularization.

I explore this possibility in the next section by using a computational model

to investigate the expected effects of both prior biases and memory limitations,

and how they trade off against each other. Because the Less is More hypothe-

sis does not specify under what precise assumptions about memory one would

expect limitations to result in regularization, the model is designed to evaluate

a variety of possible such assumptions, ranging from more to less realistic, and

aiming to qualitatively capture effects stemming from both working and long-

term memory. The model demonstrates that in the absence of any prior bias for
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regularization, memory limitations affecting encoding and/or storage should not

result in regularization unless they distort the data in a particular way. When

there is a prior bias for regularization, a memory-limited learner should show

regularization but a non-memory limited learner should not. When there is no

such bias, even a memory-limited learner will not regularize. This implies that

child-adult differences in regularization are probably not due to memory limi-

tations on encoding or storage, at least given the current well-accepted models

of memory considered here.

3. Computational analysis

Most tasks in which there is the potential for regularization can be described

abstractly as tasks in which there are k possible outcomes and the learner must

learn the distribution over those outcomes. In the experiment in this paper there

are six outcomes associated with each noun (five for each of the determiners,

and one for no determiner), while in a typical probability matching task, the

outcomes might be the frequency of different colors of flashing lights or cards in

a deck.

This situation is captured mathematically by the multinomial distribution,

where θi denotes the probability of outcome i, θ = (θ1, . . . θk) is a vector repre-

senting the probabilities associated with each outcome category, and
∑k
i=1 θi =

1. Since the experiment has multiple words, each of which could potentially be

associated with a different distribution over outcomes, it is necessary to capture

a separate θ(j) for each word j. For notational clarity, the (j) superscript is

suppressed throughout the rest of this paper. In a multinomial distribution, the

data for the observed outcomes y (where each yi is a count of the number of

times the ith category occurred) are generated from the underlying vector of

outcome probabilities θ according to the following equation:

p(y|θ) =

(
N

y1 . . . yk

) k∏
i=1

θyii . (1)

where N is the total number of observations. The task of the learner is to
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reason backward from the outcomes y to infer the nature of the underlying

“true” distribution θ. For instance, imagine observing three instances of one

determiner and two instances of another: we would write this as y = [3 2]. A

learner who probability matched would infer that θ = [0.6 0.4], whereas one

that regularized might infer that θ =[1.0 0.0].

Which distribution is learned will depend on two things: the nature of the

data y and any prior beliefs about what θ should look like. The importance of

the data is obvious, but the presence of a prior is also key. A complete absence

of prior belief would mean that θ should always match the observed distribution

y precisely; such a learner would never generalize beyond the input at all and

would always precisely probability match. It is possible to have very mild prior

beliefs – e.g., the weak expectation that any outcome is equally likely – which

would still enable some generalization.

3.0.5. Modeling prior biases

The most natural and widely used prior for multinomial data is the Dirichlet

distribution (Gelman et al., 2003). This model uses a symmetric Dirichlet dis-

tribution, which imposes no prior bias in favor of any one outcome more than

another across the whole dataset. Symmetric Dirichlet distributions have one

parameter, α, which captures the degree to which each item (each noun, in this

case) is expected to be associated with only one outcome (determiner); it gov-

erns the extent of the bias for regularization. If α is very small, the model will

assume that each noun is associated with only one determiner (although, be-

cause the prior is symmetric, it will have no prior bias about which determiner is

most likely); this constitutes a strong prior bias for regularization. When α = 1,

there is no bias for regularization; it is weakly assumed that each outcome will

occur with equal probability. I evaluate the role of the prior by considering four

values of α: 1 (no bias), 0.1 (weak bias), 0.01 (medium bias), and 0.001

(strong bias).

Can a prior ever be learned? In the present case, the prior is simply

higher-level knowledge about the expected distribution of determiners (out-
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comes) across nouns (items). It is indeed possible to learn this sort of informa-

tion; formally, this corresponds to learning about α rather than pre-specifying

it (Kemp et al., 2007; Perfors et al., 2010). Doing so would entail making

higher-level inferences not just about the nouns and determiners that have been

observed, but also about nouns and determiners in general. For instance, if in

case A one observed many nouns, each associated with only one determiner, one

might learn that α was closer to 0.01 or 0.001; conversely, in case B, observing

many nouns, all associated with many determiners, would imply that α is closer

to 1. This sort of “learning on multiple levels” can license more appropriate

inferences; it enables the learner to correctly respond to a new noun, rather

than being guided by a prior bias that might be inappropriate.

Because a prior is necessary, learning about α doesn’t mean removing any

bias entirely; it simply means setting the prior bias one level higher. Just as

α governs the behavior of θ, so too does a parameter at the higher level (call

it λ) govern α. Intuitively, λ places constraints on α in a similar way that α

places constraints on θ; an extreme value of λ would constrain which values of

α were probable. However, since λ is one level “removed” from the data, the

constraints it places on the range of probable values of θ are correspondingly

weaker. Put another way, a learner who could learn α would essentially have a

weaker prior about the nature of θ, and more flexibility to account for a range

of data – being able to respond sensibly to both cases A and B above. There is

some evidence that adults and children are capable of learning α in a linguistic

context (Perfors et al., 2010; Wonnacott, 2011).

Because of these considerations, in addition to systematically varying values

of α, I also model the situation in which α is learned. This model is a special

case of a model specified in detail elsewhere (Kemp et al., 2007; Perfors et al.,

2010). Formally, α is generated by an exponential distribution parameterized

by λ, which is set to 1; this reflects weak prior knowledge that α does not have

an extreme value.

Predictions about the expected distribution over outcomes given the data

and the priors are given by Bayes Rule, shown in Equation 2. (During the cases
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in which α is not learned, P (α|λ) is a constant). The integral is approximated by

using an MCMC algorithm to draw 10,000 samples of the posterior distribution

over θ. The results are calculated based on 100 independent runs for each

condition and level of memory limitation.

P (θ|y, α, λ) =
P (y|θ)P (θ|α)P (α|λ)∫

θ′
P (y|θ′)P (θ′|α)P (α|λ)dθ′ (2)

3.0.6. Modeling memory limitations

In addition to varying the strength of the prior bias for regularization, it is

necessary to also model the effects of memory. The modelling approach in this

paper is focused on the computational level of analysis (Marr, 1982): the cen-

tral question is about how altering or deleting the data available to the learner

affects the inferences that can be made. I am not concerned with modelling

the time course and/or cause of forgetting (e.g., Anderson and Schooler, 1991;

Hitch et al., 1996; Brown et al., 2007; Lewandowsky et al., 2009) or capturing

how memory is integrated with other aspects of human cognition, like central

processing (e.g., Atkinson and Shiffrin, 1968; Baddeley and Hitch, 1974; Ober-

auer et al., 2003; Barrouillet et al., 2004; Unsworth et al., 2009). This vastly

simplifies the nature of the modelling choices that must be made: it is only

necessary to capture the ways that different hypotheses about the nature of

memory limitations predict changes in the pattern or quantity of data available

to the learner. I consider four different ways, inspired by different current the-

ories of memory, in which the pattern and/or quantity of the data might be

altered by memory limitations. Note that this framework does not assume that

limitations on memory encoding lead to forgetting per se; just that the effect of

both forgetting and failure to accurately encode is to distort or lessen the data

available to the learner.

Drop. One possibility is to assume, as a first approximation, that memory loss

means dropping data at random. Memory limitations can therefore be modeled

by changing the probability m that a given data point will be dropped (we vary
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m from 20%, 40%, 60%, 80%, and 90%).14 Although extremely simplistic, this

approach is roughly consistent with theories of memory loss that suggest that it

primarily acts on individual tokens, and is a function of temporal processes or

interference (e.g., Murdoch, 1960; Brown et al., 2007) or cognitive factors like

processing or rehearsal (e.g., Carpenter et al., 1990; Salthouse, 1991; Fry and

Hale, 1996; Lewandowsky, 2011). This is because issues like the temporal nature

of forgetting or the effects of rehearsal do not impact the overall shape of what

data is ultimately remembered by the system, at least assuming all of the data

are presented randomly in the first place (as they are in all of the experiments

considered here).

Another possibility is to assume that memory limitations result in data being

forgotten and then reconstructed by the mind. The following two conditions

capture different ways of implementing this possibility.

Random. A trivial way to reconstruct forgotten data would be to randomly

reassign it to any of the possible outcomes with equal probability; this is the

random condition. Thus, an error rate of m% would mean that a forgot-

ten determiner is randomly reassigned to another determiner outcome with

m%probability. Although this condition is not very realistic, including it serves

as a baseline to compare others to.

Prior. Most of the research on memory-based reconstruction suggests that

forgotten data is not reconstructed randomly (e.g., Estes, 1997; Schacter et al.,

2011). Rather, remembering reactivates the brain regions associated with the

experience of the information (Wheeler et al., 2000). Memories appear to be

reconstructed to line up with the “gist” or associates of the items that are re-

membered (Roediger and McDermott, 1995; Brainerd and Reyna, 2005; Gallo,

14It is occasionally possible for high error rates that all data may be eliminated. Although it
would be possible to capture this simply by giving the model no data, it is not straightforward
to determine how that model would generate new data, since the model has effectively seen
no possible outcomes. We therefore capture the “zero data” case (in all conditions) by giving
the model one data point for “no determiner.” This is a bit ad hoc, but any choice made here
would be similarly ad hoc. Because it is rare for all data to be completely eliminated, this
case is does not drive the main findings here.
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2006) or to match the schemas we use to interpret the world (Bartlett, 1932;

Lichtenstein and Brewer, 1979; Loftus, 2005). It is possible to roughly capture

this basic idea within our framework by assuming that forgotten data is re-

constructed according to its prior probability. This can be modelled using the

Chinese Restaurant Process (CRP):

P (determiner i|previous data) =
ni

N + α

P (new determiner|previous data) =
α

N + α

where ni refers to the number of observations involving determiner i made so far,

N is the number of observations total, and α is the same parameter that captures

the prior bias. The Chinese Restaurant Process gives the same distribution that

draws from a Dirichlet process do, which is why the CRP is a natural way to

capture memory loss within this model. In this condition, an error rate of m%

would mean that a data point has m% chance of being “forgotten” and then

reconstructed according to the CRP. Note that when α is learned, it is not

straightforward to model this sort of reconstruction, since the inferred prior (α)

would be constantly changing; I therefore do not attempt to do so.

So far, these conditions have presumed that memory limitations involve dis-

tortions to the data on the token level; that is, individual tokens are forgotten

or reconstructed. However, some models of memory make a distinction between

types and tokens. The final condition attempts to capture the spirit of this

distinction.

Decay. More neurologically-inspired models of memory sometimes make an

important distinction between types and tokens (e.g., Kanwisher, 1987; Chun,

1997; Bowman and Wyble, 2007). For instance, Bowman and Wyble (2007)

propose that memory involves two stages. The first is devoted to processing,

which effectively establishes fragile type representations. For an item to be

represented more durably, it must make it through a second stage, which is

the entrance to working memory. It is in this second stage that the system

attempts to associate each type with a discrete episode, or token. Working
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memory encoding is thus the process of binding a token to a type. Items at the

first stage (types) are subject to rapid decay, but are reactivated by new tokens.

There are many complexities within the Bowman and Wyble (2007) model

that are not relevant to the grain at which memory is being modeled here.

However, the basic picture – of types that decay but can be reactivated by new

tokens – is something that can be captured within this framework. To do so, the

amount of decay d is modeled as 1−m, wherem is the error rate. This quantity is

multiplied by the distribution of data in the input. Fractional numbers of tokens

are converted to integers by rounding proportional to their distance from the

nearest integer. For instance, consider a determiner distribution for one noun

of [6 1 1 1 1 0], indicating that six tokens of one determiner, one token each of

the other five, and no tokens with no determiner have been observed. An error

rate of 20% would be modeled by multiplying that determiner distribution by

0.8, producing [4.8 0.8 0.8 0.8 0.8 0]. Each resulting token would be rounded up

with 80% probability (because their fractional portion is 0.8); thus, a possible

version of this data with the memory limitation applied would be [5 1 1 0 1 0].

These four conditions are not intended to capture all of the details of current

theories of memory. Most of the details are largely relevant on the algorithmic

rather than the computational level, and contain many complexities that are

beyond the scope of this paper. The conditions are intended to capture the

range of ways that memory might affect the pattern and quantity of data that

is available to the learner, since the central question is how that changes the

nature of the inferences such a learner might make.

3.0.7. Results

Figure 5 shows expected performance by prior bias and memory. To make the

model results comparable to the experimental findings, consistency is calculated

the same way as in the experiment: e.g., consistent main means that on that

iteration the model predicted that 90% or more of the determiners should be

the main one, while consistent noise means that on that iteration the model

predicted that 90% or more of the determiners should be a particular noise one.
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Figure 5: Model performance varying the strength of the prior bias (columns) and the effect of
different kinds of memory limitation (rows). Each graph shows the proportion of consistent
classifications out of 100 iterations (on the y axis) as a function of the percentage of memory
affected (on the x axis): m% means that m% of the data are either dropped (Drop), flipped
randomly (Random), reconstructed based on the prior (Prior), or had a proportional affect
on the decay rate of types (Decay). Across all conditions, regularization only occurs when
memory is limited and there is a prior for regularization.

Each of the stacked bars reflects the proportion of runs (out of 100) in which

the model achieved any of each kind of consistency.

The first thing to notice about these results is that they are all quite similar:

with one exception, the qualitative pattern is the same regardless of how the

memory limitations are modeled. The one exception is the random condition,

which shows no regularization at all, ever. Of course, that condition was the least

grounded in the literature and was intended mainly as a comparison condition

for the more realistic possibilities. All of the other conditions demonstrate two

basic effects.

First, simply having a prior bias for regularization is insufficient to cause

regularization. In all memory conditions, even when the prior bias is strong,

there is no regularization when the error rate is small (i.e., there are few memory

limitations during encoding). The reason for this is clear: a prior for regulariza-

tion only has a noticeable effect when there is a tiny amount of data. Memory

limitations have the effect of limiting the quantity of (accurate) data, but other

data-limiting factors might also include bottlenecks in the input or attentional
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restrictions.15 The reason that a prior bias alone is insufficient is because a

sufficient quantity of data will always overcome any prior; a rational learner

should think it much more likely that a given determiner actually occurs 60%

of the time if it is observed in 600 out of 1000 observations rather than 3 out of

5. Because quantity of the data matters, a prior bias only has an effect when

there is little veridical data available. The exact amount of data that counts as

“little” will depend a great deal on other characteristics of the learner, but this

qualitative pattern – of any effect of the prior being swamped by enough data

– is a general hallmark of rational reasoning.

The second implication of these results is that memory limitations alone do

not result in regularization either. No models showed any hint of regularization

in the no bias or learned alpha conditions, and only the prior-based recon-

struction model (prior) regularized in the weak bias condition. The reason

a prior bias is necessary is because without it, none of the memory limitations

change the overall pattern of data towards an regularized one. To illustrate this,

consider one noun whose determiners followed the distribution in the data. If

the learner randomly forgot 60% of those datapoints (as in the drop condition),

it is unlikely that they would forget all of the noise determiners; it is much more

likely that they would forget some of the noise ones and some of the main ones.

Reconstructing forgotten data according to the prior partially counterbalances

this effect, thus amplifying a weak bias, but if the prior is not biased at all

then reconstructing according to it does not impose a bias. Reconstructing

data randomly (as in the random condition) makes the “remembered” data

more uniform, thus destroying any tendency for regularization, regardless of the

nature of the prior. And finally, modeling forgetting as gradual decay (as in the

decay condition) does not change the pattern of data at all.

What about situations with very high memory loss, like 80% or 90%? It is

15Another factor might be that there simply isn’t much data to begin with. However,
although children’s linguistic input is impoverished in many ways, this alone cannot drive the
observed experimental differences between adults and children, since both are generally given
the same amount of input (e.g., Hudson Kam and Newport, 2005); nor does it apply to the
present experiment.
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true that in those situations, so much is forgotten or distorted that the pattern

has been somewhat altered. For instance, in most of the memory conditions,

at 90% memory loss it is more likely for the main determiners to be remem-

bered than any of the noise determiners, simply because there are more main

determiners in the first place. However, when memory loss is that high, there

are very few data points remembered at all. When there is little data available,

it is outweighed by the prior; and if the prior does not favor regularization, the

learner will assume that any outcome is possible. Thus, there is a bit of a catch-

22 inherently built in. When memory loss is low, it isn’t sufficient to change

the pattern of the data; when it is high, the pattern is changed, but there is

so little data that the prior plays the main role in guiding generalization. In

either case, memory limitations shouldn’t lead to regularization unless there is

already a prior bias favoring it.

Of course, the preceding analysis depends critically on the premise that a

high memory loss leaves so little data that the prior plays the main role in

guiding generalization. But suppose there were more data to learn from in

the first place? In that case, might high memory loss significantly distort the

pattern while still retaining enough data to not be outweighed by the prior? To

test this, I reran all of the analyses in Figure 5 with 100 times as much data.

The results still show no regularization in the absence of a prior bias. There is

less regularization overall – not a surprise, since there is so much data and any

prior biases are outweighed by sufficient data. But the same catch-22 applies:

if there is enough memory limitation to change the pattern, the amount of data

is so low that the prior plays the main role in guiding generalization.

This analysis suggests that the only model of forgetting that would change

the underlying pattern would be one in which all of the less-frequent outcomes

(like the noise determiners) are preferentially forgotten – that is, forgotten more

than would be predicted by any of the memory models considered here. In other

words, memory itself would have to distort the data towards regularization.

This is what happened in the prior condition, which is why we observe more

regularization in that condition than in any other. But even this only occurs
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when there is at least a weak bias for regularization: are there models of memory

that predict this sort of distortion regardless of the nature of the prior bias?

One model that might have this effect could be a threshold model, in which

types are remembered only if a threshold number of tokens have been seen. If

that threshold is higher than the number of noise determiners but lower than

the number of main determiners, such a model could effectively distort the

data so that the only input that makes it past the memory filter are main

determiners.

Such a model, however, does not appear to be very realistic, at least not

for explaining this situation. First, the pattern of data it would produce is

somewhat odd. It suggests an all-or-nothing type of response in which the

main determiner is always regularized if the data falls into the “sweet spot”

where the threshold is higher than the noise determiners but lower than the

main determiners, but is never regularized otherwise. In particular, any kind

of threshold or all-or-none-type model predicts a sudden and large qualitative

shift as the amount of data falls below threshold – from always remembering

and using a given type, to never doing so. This appears to contradict decades’

worth of experiments showing that memory degradation is gradual. Although

it might be possible to address this objection by allowing the threshold to be

noisy, there is a more severe problem: any such model would only predict reg-

ularization while the quantity of data falls below the threshold. As soon there

is enough data to cross the threshold, regularization should cease. Yet creole

speakers do not eventually abandon creole and come to resemble pidgin speak-

ers despite spending their entire lives exposed to pidgin, the deaf child Simon

did not gradually become more inconsistent with age, and adult learners in our

experiment do not show an initial stage of regularization before their data su-

passed their threshold. In fact, memory limitations cannot be an explanation for

differences between adult learners and native speakers (who acquired the lan-

guage during childhood) unless the effects should remain even as the quantity

of data increases; this is not the case for a threshold-type model.

Second, there are no models of memory encoding that I am aware of that
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qualitatively correspond to this kind of model. The threshold models of memory

that do exist are dual-process models of the conscious recognition of whether a

particular item has been seen before (e.g., Swets, 1986; Batchelder and Riefer,

1990; Yonelinas et al., 1996); they are not models of the sort of memory relevant

to this kind of task, which is generation based and requires a recall model.

Moreover, these threshold models presume that the underlying memory trace is

continuous and that the threshold governs conscious recognition of the episodic

memory event only. Even these models have been criticised (e.g., Dunn, 2008),

and continuous analogues have been proposed in an effort to better fit the

empirical data (e.g., Wixted and Mickes, 2010).

What if memory operated in such a way that a separate forgetting process

applied to types and tokens? Although this possibility is not consistent with

any memory models I am aware of, it may fit within the learning framework of

Goldwater et al. (2011). This approach is a model of inference that envisions

language as generated by a two-stage model. The first stage is responsible

for generating the allowable word types, while the second generates different

numbers of tokens of each type, thus transforming the word frequencies of the

first stage so that they more closely match natural language. Although the

framework is a model of word generation rather than forgetting, if we make the

additional assumptions that types and tokens are also forgotten separately, it

can be captured within the modelling framework here. Doing so requires setting

an error level for types and a separate error level for tokens. I performed a this

analysis and found that for a wide range of error levels, particularly those most

consistent with the best performance of the model16 in Goldwater et al. (2011),

regularization again does not occur without a prior bias.

A final type of memory process that is worth thinking about is one that is

more neurologically based and therefore difficult to incorporate into the mod-

elling framework here. For instance, memory has been argued to be captured

16These are errors in which the probability of forgetting types and the probability of for-
getting tokens are not widely divergent from each other.
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by a network where multiple constraints support gradual learning of repeated,

interleaved items (as in, e.g., McClelland et al., 1995). This model hypothesizes

two complementary learning systems. One, centered in the hippocampus, is de-

signed for rapidly learning specific events, and assigns distinct representations

to individual stimuli. The other, in the neocortex, slowly learns statistical reg-

ularities, and thus forms an abstraction based on the shared structure amongst

the individual tokens. The closest thing this maps (very roughly) onto in the

modeling framework in this paper are for the vector of observed counts y to

be represented in the hippocampus and the inferred distribution θ to be rep-

resented in the neocortex. Notably, these network-type models assume that

learning and forgetting in both cases is gradual – which would be most closely

captured within this framework in a way analogous to the DROP condition.

These network-type models would only distort the data in the peculiar way nec-

essary to cause regularization if, somehow, in the transfer from the hippocampus

to the neocortex (i.e., the process of abstracting from y to θ) the less frequent

outcomes were to be forgotten more than their frequency would predict. This

does not seem to follow from the structure of the model (McClelland et al.,

1995), although we should always be cautious about trying to map such dif-

ferent frameworks onto each other. I return to the larger issue of investigating

memory limitations on a more process or neurological level in the discussion.

It is of course always possible that I have missed a model, or that one can

be created that distorts data in the pattern necessary to cause regularization.

To explain how memory limitations alone lead to regularization it would have

to be independently motivated by other memory phenomena, as well as address

the difficulties raised earlier.

3.0.8. Conclusion

These modeling results suggest that under a wide variety of assumptions

about the nature of memory, memory limitations during encoding and storage

alone do not lead to regularization: a prior bias to favor regularization is also

necessary. This is because in the absence of such a prior bias, such memory
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limitations do not change the underlying pattern of data. Memory limitations

would lead to regularization only if human memory distorted the pattern data in

a particular way – remembering frequent items more than their frequency would

warrant and less frequent items less than their frequency would warrant. The

next section discusses the implications and limitations of these results, along

with the experimental findings.

4. Discussion

The central question addressed in this paper concerned the relationship be-

tween memory limitations and regularization. What assumptions about memory

are necessary for memory limitations to lead to regularization, and why? Previ-

ous work suggests that facilitating memory retrieval can increase the tendency to

probability match (Hudson Kam and Chang, 2009), but it was unclear whether

limitations in encoding or storage should affect regularization, or why. This

study was designed to explore the effect of this kind of memory limitation using

both experimental and computational methods. The experimental results indi-

cate that adults who are placed under memory load while learning an artificial

language do not regularize more than adults who are not. The computational

results offer one explanation for these findings, suggesting that under realistic

models of memory encoding and storage, regularization should only occur in the

presence of both memory limitations and a prior bias for regularization.

In the next pages I critically discuss these results. I first concentrate on the

experiment, followed by the model, and finally conclude by exploring what these

findings mean about the role of memory in regularization and the implications

for language learning more broadly.

4.1. Experiment

Participants were placed under memory load while simultaneously learning

a simple artificial “language” composed of nouns paired inconsistently with de-

terminers. In order to explore the effects of different kinds of load – and to

ensure that the load tasks actually taxed working memory – there were six
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different conditions, which differed according to the type of load. Although

all of the load conditions were difficult enough to significantly impair overall

learning, participants did not regularize more than participants in a control

(non-load) condition. Moreover, complex memory span did not predict regular-

ization. These results suggest that memory limitations during the encoding and

storage stage do not lead to regularization.

Although it is in theory possible that the load tasks did not sufficiently chal-

lenge our participants, this is unlikely. Divided attention during encoding is

known to cause deficits in memory performance (e.g., Craik et al., 1996). More-

over, it is clear that participants took the load tasks seriously, performing far

above chance in them. In addition, people who did well on the load tasks did

better, rather than worse, at the language learning task, suggesting that partic-

ipants were not disregarding the load task in order to focus on word learning.

This result also implies that participants did not disregard the word learning

task in order to focus on the load task; in fact, they appeared highly motivated

to do well on the word learning task, since they had to label answers in front

of the experimenter and could not hide behind the safe anonymity of a com-

puter screen. Anecdotally, the participants found the task extremely challenging

(several complained afterword that it was the hardest experiment they had ever

done), and indeed the presence of load had a large and significant effect on noun

learning.

What about the converse possibility? Perhaps the task was so difficult that

with more training, regularization might emerge. This is also unlikely, since

there was no tendency toward increased regularization over the course of the

experiment. It is also worth noting that this number trials was sufficient to

observe regularization in much of the probability matching literature (Weir,

1964; Derks and Paclisanu, 1967; Pecan and Schvaneveldt, 1970) and that this

experiment had a similar number of observations per noun as in Hudson Kam

and Newport (2005) and Hudson Kam and Newport (2009), where children

did regularize. More generally, if difficulty of the load tasks is an issue in either

direction, it implies that the dependence of regularization on memory limitations
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must be extremely precisely calibrated: memory limitations cannot be so high

as to render learning impossible, nor so low as to not lead to regularization.

This is a balancing act that, if nothing else, seems unlikely to precisely describe

the state of most child language learners.

Another concern lies in the applicability of this experiment to the previous

studies, and to child language acquisition in general. There are a number of

differences between the experiments in this paper and the Hudson Kam exper-

iments, and even more differences between our experiments and the process of

language learning over developmental time. The Hudson Kam and Newport

(2005) studies involved learning and producing noun-determiner pairs in the

context of a limited grammar over multiple days rather than one session, and

the same is true a thousandfold in the case of child language acquisition in the

real world. How can we be certain that the lack of regularization under load

that was observed in our studies would occur if the language were richer or the

learning process more prolonged?

The answer is that we cannot be certain of this, and this is an area where

further work would be very useful. However, there are several reasons this

concern does not invalidate the present work. For instance, consider the issue

that the language learning task in this experiment was far simpler than learning

a real language. Might this cause the participants to therefore treat it more like

paired-associate learning rather than like learning a language with rich internal

structure? It is hard to say, but even if they did, according to Less is More this

shouldn’t affect their tendency to regularize: there is nothing in the hypothesis

that predicts that people should only regularize in linguistic contexts. Indeed,

part of the empirical support for the hypothesis comes from the fact that children

but not adults regularize in non-linguistic contexts like prediction tasks (Weir,

1964; Derks and Paclisanu, 1967; Myers, 1976).

It is also worth asking why we should expect the complexity of the system

in which the nouns and determiners are embedded to matter. One possibility

might be that if learning is embedded in a complex linguistic system, the learner

might have fewer resources to apply to learning the pairing. In other words, the

39



complexity of the system might play the exact same role that the load tasks

do. Yet here there was no additional regularization with load, and the more

difficult load tasks (as measured by impact on noun learning) did not have

more regularization than the simpler ones. Another possibility might be that

people bring different prior assumptions to word learning tasks than grammar

learning tasks. Yet even though the Hudson Kam tasks were embedded within

a grammar learning framework, they still consisted of the fundamentally same

task: mapping noun-determiner pairs onto referents. Why would people treat

one as word learning and one as grammar learning? Plus, even if they did, there

is no reason to think that this would make them less likely to regularize in the

word-learning case. If anything, biases like mutual exclusivity would imply that

regularization was more likely in a word learning context; even if such biases did

not apply, there is evidence that statistical learning in the presence of variable

input looks similar in both situations (e.g., Vouloumanos, 2007).

Another potential factor is that these experiments took place in one session

rather than spread over multiple days (as in the case of the previous Hudson

Kam work) or multiple years (as with child language acquisition). Is it possible

that regularization requires a more extended learning phase, or consolidation

due to intervening sleep? There is indeed research suggesting that sleep may be

useful for both consolidating specific episodic memories (Gais and Born, 2004)

and generalizing to new stimuli (Fenn et al., 2003; Gomez et al., 2006). Thus,

the hypothesis that sleep might be critical for regularization, perhaps because

of how it interacts with memory formation, is an intriguing one that cannot

be ruled out. If it were correct, it would suggest that whatever is happening

during sleep has the effect of distorting the data available to the learner in the

way predicted by the modelling results here; left unexplained, however, is why

that type of distortion should occur given what we currently know about sleep

and the brain (e.g., McClelland et al., 1995; Walker, 2009).

A final question is what the load tasks actually disrupted. In general, they

were designed to disrupt many aspects of cognition, all of which can affect

what is processed, encoded, and stored. The tasks require people to retrieve
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information (word meanings in the verbal load condition, number and sym-

bol meanings in the operational and concurrent operational conditions,

memorized letters and nonsense words in the other conditions), to store informa-

tion in short-term memory (the numbers in the equation conditions, the words

and letters in the others), to manipulate representations (to determine the cor-

rect answer to the load questions), and to regulate attention between the load

task and the word learning task. These considerations make it quite likely that

the load tasks disrupted the process of word learning – in particular, the pro-

cess of attending, encoding, and storing the information about noun-determiner

pairings. One thing that they did not directly disrupt was retrieval, precisely

because the intent of this work was to explore whether and to what extent lim-

itations on non-retrieval aspects of memory lead to regularization. (Retrieval

was still an element of the task, but it did not differ between conditions.) In-

deed, the retrieval aspect of this task – the production test – was very similar to

that of the studies by Hudson Kam and colleagues. Although their participants

learned verbs as well as nouns and determiners, during the production task they

were given the verb, and thus only had to produce the noun-determiner pairs, as

in the present study (although some of the time they had to produce transitive

sentences with two noun-determiner pairs in a row).

Why would limitations during learning, rather than retrieval, not affect reg-

ularization? To explore that, we turn to the computational results.

4.2. Computational

The computational model systematically explored how different degrees and

types of realistic memory limitation affect the pattern of data available to the

learner, and how memory limitations interact with prior biases for or against

regularization. The model was deliberately designed to be extremely simple in

order to minimize the extent to which these results depend on arbitrary mod-

eling choices. The only free parameter in the model, α, governed the extent of

the prior bias for regularization and was systematically varied. The underlying

distribution being learned, the multinomial, is the most obvious and statisti-
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cally widely-used way of capturing distributional data when many outcomes

are likely, and the Dirichlet distribution is likewise the most widely-used and

mathematically elegant prior for multinomial data.

Memory limitations were modeled on Marr’s computational level, since the

central question was about how a learner’s generalizations are affected by the

input available to the cognitive system. The underlying premise was that mem-

ory limitations have the net effect of distorting the input available to the learner

in different ways. Modeling different distortions of that input – mostly differ-

ent patterns of deletion and alteration – allows us to explore the effect of these

distortions on the nature of generalizations made by the learner. We consid-

ered several different ways of distorting the input, inspired by leading models of

memory. These ranged from simply dropping data at random, to reconstructing

it based on one’s prior assumptions, to dropping types according to a decay pro-

cess. Under all of these assumptions about memory, regularization only occurs

when both memory limitations and a prior bias for regularization are present. In

general, regularization can only occur without a prior bias if the memory pro-

cess itself distorts the pattern of data available to the learner so as to remember

the most frequent items more than their frequency would warrant and the less

frequent items less. However, this type of distortion does not appear to emerge

naturally from any of the theories of memory captured here.

One assumption inherent in the model is that it is Bayesian, meaning that

it predicts the behavior of a rational learner. This means that the importance

of previous biases (the prior) and fitting the data (likelihood) are balanced

in a particular way (according to Bayes’ Rule). However, every model needs to

perform some tradeoff between these factors. Because of this, models that weigh

these tradeoffs differently might vary quantitatively, but all models except for

the most pathological17 should show that regularization is more likely when the

input is limited and the prior bias for it is strong.

17“Pathological models” include those that don’t learn at all from data or never generalize
at all beyond the data. Humans, of course, do neither of these things.
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It is also worth noting that, although the model is Bayesian, this is not a

typical ideal learning analysis; because the model incorporates different kinds

of memory limitations, it should be more properly understood as a “capacity

limited” rational model. It thus allows us to investigate what a rational learner

with certain capacity constraints might be expected to do. In particular, it pro-

vides a means to systematically evaluate the effect of different kinds of capacity

constraints, as I have done here. This sort of approach is an important step

toward bridging computational-level and process-level accounts of cognition.

Relatedly, because this is a computational-level model, there are many as-

pects of memory that I have not attempted to capture here. The model does not

include many of the issues that memory researchers most care about, from the

time course of memory and forgetting, to the low-level details of how memory

is implemented in the human brain, to the step-by-step integration of memory

and other aspects of cognition. The goal here is to abstract away from these

issues and to explore how different patterns of data distortion during learning

affect the types of inferences a rational learner makes. These findings can thus

inform future work investigating the effects of memory on a more process level.

What do our results suggest about memory? In one way, the findings are

more general than may first appear, since they apply to more cognitive capac-

ities than memory; in another, they are more limited, since they do not apply

to all kinds of memory. On the first point, these results are about how input

is distorted during learning; thus, any cognitive capacity that might distort

the input during learning is theoretically relevant. The main finding of this

research is that the only pattern of data distortion that leads to regulariza-

tion in the absence of a prior bias is one that retains high-frequency items and

drops or alters low-frequency items beyond what their frequency would warrant.

Because the particular distortions considered in this paper were motivated by

the memory literature, I am hesitant to conclude that attentional or execu-

tive processes do not have qualitative effects that distort the data in this way

(although they might). In terms of memory, none of the theories of memory

captured by my model resulted in that pattern of distortion. Threshold or “all
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or none” models of memory are one type of model that would be able to cap-

ture it, although such models have other problems. They do not correspond to

any current independently-motivated memory models that I am aware of, and

since they predict that regularization should eventually cease, they cannot ex-

plain the difference between native speakers and second-language learners (since

native speakers eventually have more data than second-language learners, and

thus should eventually regularize less rather than more). This is not meant as

a conclusive argument that no realistic memory model could distort data in the

precise way that would lead to regularization; however, it does seem unlikely at

this point.

It is important to note that the model presented here is a model of distortions

of the input that occurred before generalization. In other words, it is a model of

how cognitive or memory limitations affect what is learned – not a model of how

such limitations affect what is produced. It is therefore more about processing,

encoding, and storage rather than retrieval. This was deliberate, because the

main intent of this paper was to explore whether and to what extent non-

retrieval memory limitations affect the inferences and generalizations a learner

should make.

An additional important consideration is that the models captured here

mainly focus on memory in general rather than memory development in par-

ticular. This is mainly because it was unclear how to map what we know about

developmental changes in memory onto differences that would make a differ-

ence at the level of the model. For one thing, aside from children having smaller

working memory spans for the most part, there appear to be few behaviorally

observed differences between children and adults on simple working memory

tasks (e.g., Gathercole, 1999; Davidson et al., 2006). The differences that have

been observed or postulated are at the neurological level: the pre-frontal cortex

of children is more immature, and children recruit more of their hippocampus

during working memory tasks than do older adolescents and adults (Finn et al.,

2010). This is intriguing research, but at this stage it doesn’t make clear predic-

tions about what particular patterns or distortions, if any, should be imposed
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on the data available to the learner as a result of differential hippocampal in-

volvement and/or PFC immaturity. In fact, there is reason to believe any of

the possible alternatives: that they should cause children to regularize more,

or regularize less, or have no effect. On one hand, as discussed later, an im-

mature PFC is consistent with the suggestion that adults should probability

match more (Thompson-Schill et al., 2009), although this would affect cognitive

control more than memory. On the other hand, hippocampal involvement is

consistent with the stimuli being more novel or complex for children, in which

case one would expect more binding of individual patterns and therefore less

abstract learning and generalization on their part.

Conversely, if the relative novelty of the stimuli leads to differences in the

actual phonological representation, then this is not a difference which would

show up in this modelling framework (in which the word representations are

discrete). To the extent that the lack of a detailed phonological representation

has an effect on the nature or pattern of forgetting – if it does – this might mat-

ter. If words are encoded according to their phonological features in some way,

being presented with multiple different novel words could cause interference ef-

fects on the level of the phonological encoding, such that none are remembered

well. This is probably not what is going on in the experiments in this paper –

or if it is, it is not leading to regularization – since if it were, one might expect

the concurrent verbal condition to show interference effects and thus regu-

larization. But effects due to distributed representations more generally cannot

at this point be ruled out, and indeed may be occurring in other experiments,

such as Hudson Kam and Newport (2009). Further research investigating the

effects of memory limitation using distributed representations is necessary.

4.3. Bringing it all together

How do these results compare to previous studies? In Hudson Kam and

Newport (2009), adults were found to regularize when presented with extremely

small probabilities (for instance, 16 determiners each occurring 2.5% of the

time, rather than four determiners each occurring 10% of the time, as in our
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experiment). It is tempting to conclude that perhaps a threshold model of

memory is appropriate in this case, and 2.5% of the time is “below threshold”

whereas 10% was not. This is probably unlikely, not just because a simplistic

threshold model of memory does not appear to otherwise have independent

support, but because it would predict that adults in our experiment should

have regularized at the beginning of the experiment (while the data were still

below threshold). However, there were no differences in regularization over the

course of the experiment. Although I can only speculate, it is probably more

likely that other cognitive factors, like attention or metacognitive reasoning,

explain the Hudson Kam and Newport (2009) results. Perhaps once there are

enough alternatives, or each occurs rarely enough, the alternatives are simply

disregarded. One possible reason for this might be that adults recognize that

real language contains errors; perhaps determiners that occur rarely enough

are ignored because they are thought to be errors (Perfors, 2012). It is also

possible that such determiners could not be encoded in enough phonological

detail (either because of their low frequency or due to interference with the many

other determiners) for them to be generated, as hypothesized above. Future

work is necessary to explore these possibilities.

In Hudson Kam and Chang (2009), adults were made to probability match

more by being given assistance with retrieval: instead of being expected to

generate words on their own, they were presented with a list of all possible words

and simply asked to pick which words from the list they would say. This converts

the task to more of a recognition than a pure production task. In this situation,

people probability matched more precisely, producing main determiners around

60% of the time rather than around 70% of the time, as they do without help

during retrieval. What explains these results?

The most likely explanation is that Hudson Kam and Chang (2009) found the

pattern they did because they were manipulating memory retrieval rather than

encoding or storage. The present modeling results aren’t relevant to retrieval

– indeed, one can imagine several different retrieval processes that might make

a learner regularize in production but still have an underlying representation
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that more closely matches the probabilities in the input. However, it is also

worth noting that Hudson Kam and Chang (2009) aimed to make adults less

like children by making the cognitive load easier, rather than to make adults act

more like children by making it harder. There may be an inherent asymmetry to

adults’ performance: perhaps it is relatively easy to make adults regularize less,

but making them regularize more is difficult. This is the case in the decision-

making literature, in which great efforts have been made to stop adults from

probability matching, often to no avail.

That said, if retrieval entirely drives regularization, it raises some prob-

lematic questions. It is unclear how retrieval effects – or, indeed, any sort of

performance-driven effect – can constitute the full explanation for children’s ten-

dency to learn languages that are more consistent than their input, as in the case

of deaf children like Simon (Singleton and Newport, 2004) or creolization (e.g.,

Mühlhäusler, 1986). If the underlying inconsistency is reproduced in the repre-

sentation (as the judgment task in Hudson Kam and Newport (2009) might sug-

gest), one would expect that once children’s retrieval difficulties lessen – whether

due to age or additional practice – then regularization would cease. Although

this happens with some regularization (e.g., verbs like “goed” or “maked”),

probably because the variation is not truly inconsistent, creole speakers do not

turn into pidgin speakers as they get older, and Simon did not gradually be-

come more inconsistent with age. The fact that these learners do not revert

to a more inconsistent language as their retrieval limitations decrease implies

that retrieval is not the only constraint, and that their actual representations

were regularized versions of the input. The analysis in this paper suggests that

most known models of memory limitations do not change one’s representations

in the way necessary for regularization; taken together, this suggests that some-

thing else – perhaps a prior bias for regularization – is necessary to explain the

difference between children and adults.

But what is meant by “a prior bias for regularization”? The model does not

make any claims or statements about where one might originate. As such, there

are many possibilities, most of which have yet to be explored. One possibility
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is that, consistent with a different version of Less is More; such a bias might

reflect other cognitive differences between children and adults. For instance, in

addition to memory and processing speed, children and adults differ in their

levels of cognitive control, which has been identified as a potentially important

factor during language acquisition (Thompson-Schill et al., 2009). If children

struggle to engage in top-down processes to figure out general rules, they may

instead rely more strongly on more bottom-up or data-driven thinking. This

has been argued to cause them to take up the most frequent and reliable pat-

terns, whereas adults are capable of using their cognitive control to override this

tendency (Ramscar and Yarlett, 2007; Thompson-Schill et al., 2009). The effect

of limitations on cognitive control is not tested directly in the current paper,

although the interference-based load tasks may have taxed cognitive control to

at least some extent.

Executive control is related to other cognitive differences between children

and adults, such as the ability to use metacognitive strategies (e.g., Flavell et al.,

1995). It may be that adults’ ability to introspect and reason about their own

cognition makes them more likely to rely on explicit rather than implicit learn-

ing (Ullman, 2004) – a difference that has been hypothesized to be the root

of child-adult differences in language acquisition. Such metacognitive ability

might also make adults more likely to try to capture patterns in the input that

do not exist; this tendency has been suggested as an explanation for why adults

probability match in non-language tasks (Estes, 1976). It might result from

a generalized preference for simplicity or tendency to ignore exceptions on the

part of children. Might such attentional or strategic differences be themselves

related to memory? That is an open question, although at least in the catego-

rization literature, individual differences in working memory appear unrelated

to differences in strategy use (Craig and Lewandowsky, in press) or attention

(Sewell and Lewandowsky, in press). Another possibility is that children’s lim-

ited capacity means they are not capable of rapidly learning a prior bias, while

adults can; since regularization does not occur in the learned bias condition,

this might explain the difference between adult and child performance. These

48



options are all speculative; much more work in this area needs to be done.

Overall, this paper does not argue against the Less is More hypothesis in

general. These results are irrelevant to the version of the hypothesis that is not

focused on regularization; in fact, there is a great deal of converging evidence

supporting the idea that “starting small” can help a learner to isolate and

analyze the separate components of a linguistic stimulus. The results also do

not argue against the idea that memory limitations in the form of retrieval affect

regularization. What this work does suggest, based on converging evidence from

computational modeling and seven experiments, is that cognitive limitations

during learning do not result in regularization in the absence of a prior bias

unless they distort the input in a particular way. Although much work remains

to be done, these findings place key empirical and theoretical constraints on how

and why cognitive limitations are predicted to affect regularization, and thus

have important implications for understanding the difference between child and

adult language acquisition.
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