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Abstract

The distribution of the gluon action density in mesonic systems is investigated at
finite temperature. The simulations are performed in pure SU(3) Yang-Mills gauge
theory for two temperatures below the deconfinement phase. The action-density
isosurfaces display a prolate-spheroid-like shape. The curved width profile of the
flux tube is found to be consistent with the prediction of the free bosonic string
model at large distances.

In the intermediate source separation distance, where the free string picture
poorly describes the flux tube width profile, we find the topological characteristics
of the flux tube converge and compare favourably with the predictions of the free
bosonic string upon reducing the vacuum action towards the classical instanton
vacuum. As a byproduct of these calculations, we find the broadening of the QCD
flux tube to be independent of the UV filtering at large distances. Our results exhibit
a linearly divergent pattern in agreement with the string picture predictions.

We investigate the overlap of the ground state meson potential with sets of
mesonic-trial wave functions. We construct trial states with non-uniform smearing
profiles in the Wilson loop operator at T = 0. The non-uniformly UV-regulated
flux-tube operators are found to optimize the overlap with the ground state.

The gluon flux distribution of a static three quark system has been revealed
at temperatures near the end of the QCD plateau, T/Tc ≈ 0.8, and another just
before the deconfinement point, T/Tc ≈ 0.9. The flux distributions at short dis-
tance separations between the quarks display an action-density profile consistent
with a rounded filled ∆ shape iso-surface. However the ∆ shape action iso-surface
distributions are found to persist even at large inter-quark separations. The action
density distribution in the quark plane exhibits a nonuniform pattern for all quark
separations considered. We systematically measure and compare the main aspects
of the profile of the flux distribution at the two considered temperature scales for
three sets of isosceles triangle quark configurations. The radii, amplitudes and rate
of change of the width of the flux distribution are found to reverse their behavior
as the temperature increases from the end of the QCD plateau towards the decon-
finement point. Remarkably, we find the mean square width of the flux distribution
shrinks and localizes for quark separations larger than 1.0 fm at T/Tc ≈ 0.8 which
results in an identifiable Y-shaped radius profile. Near the deconfinement point, the
action-density delocalizes and the width broadens linearly with the quark separation
at large quark separations.

We present a method to include the thermal effects into the junction width of the
baryonic string model. The profile of the baryonic gluonic distribution is compared
with the width of the string picture’s junction fluctuations. The comparison reveals
that the best fits to the junction fluctuations of the baryonic string are near the
Fermat point of the triangle made up by the quarks. This result supports the
underlying picture of Y-shaped string-like flux tubes connected at a junction.
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