Gluonic Profile and Confining String in Static Mesons and Baryons at Finite Temperature

Ahmed Saad El Bakry Mahmoud

Centre for the Subatomic Structure of Matter
School of Chemistry \& Physics
University of Adelaide

Contents

Statement of originality 11
Dedication 12
Abstract 13
1 Quantum Chromodynamics 14
2 Lattice Gauge Theory 20
2.1 Outline 20
2.2 Introduction 20
2.3 Path integral formulation 20
2.4 Gauge field 21
2.5 Fermion field 22
2.6 Correlation functions 24
2.7 Continuum limit 25
2.8 Quenched approximation 27
2.9 Numerical simulation errors 27
2.10 Markov chain 28
2.11 Metropolis algorithm 29
2.12 Hybrid heat bath/Overrelaxation 30
2.12.1 Heat-bath algorithm 30
2.12.2 Overrelaxation 34
3 Systematic Uncertainties in Wilson-loop 35
3.1 Outline 35
3.2 Introduction 35
3.3 Flux distribution calculation 35
3.4 Source-shape dependence 36
3.5 Stringless operators 40
3.6 Lattice QCD at finite temperature 45
3.7 Conclusion 48
4 Bosonic String Model 49
4.1 Outline 49
4.2 Introduction 49
4.3 Mesonic string 51
4.3.1 Quark-antiquark potential 51
4.3.2 Width of the string 52
4.4 The Baryonic string picture 54
4.4.1 Width of the junction 57
4.5 Summary and Conclusion 64
5 Noise Reduction in Loop Correlators 65
5.1 Outline 65
5.2 Four-dimensional smearing of the gauge field 65
5.2.1 Smearing and cooling 66
5.2.2 Smearing radius 66
5.2.3 Calibration of smearing algorithms 68
5.2.4 Quark-antiquark potential 68
5.3 Link integration 74
5.4 Multi-level algorithm 77
5.5 Conclusion 78
6 Gluonic Profile of Static Mesons 80
6.1 Outline 80
6.2 Introduction 80
6.3 Colour field measurements 82
6.4 Action density 82
6.4.1 Tube profile (qualitative picture) 82
6.4.2 Tube growth in width 92
6.5 Conclusion 94
7 Bosonic Strings and the UV Filtering of QCD 96
7.1 Outline 96
7.2 Introduction 96
7.3 Quark-antiquark potential 98
7.4 The Gluonic profile 101
7.5 Conclusion 107
8 On The Ground State of Yang-Mills Theory 109
8.1 Outline 109
8.2 Introduction 109
8.3 Wilson loop operator 111
8.4 Numerical results and discussions 114
8.5 Conclusion 119
9 Gluonic Profile of Static Baryons 121
9.1 Outline 121
9.2 Introduction 122
9.3 Measurements 124
9.4 Statistics 124
9.5 Forces in the static baryon 125
9.6 Action Density 129
9.6.1 Flux iso-surface profile 129
9.6.2 Flux radius profile 139
9.6.3 Flux amplitude profile 142
9.6.4 The broadening of the flux width 144
9.6.5 Planes aspect ratio 147
9.7 Delocalization of the junction 149
9.8 Conclusion 154
10 Summary and Conclusion 157
A Transition Form Factors 161
A. 1 Introduction 161
A. 2 The Vector-current-Hadron vertex function 161
A.2.1 Transition form factors 165
A.2.2 The ratio method 167
Bibliography 169

NOTE: Pagination of the digital copy does not correspond with the pagination of the print copy.

List of Figures

3.1 The three-quark Wilson loop operator. 36
3.2 Spatial points [1] where vacuum field fluctuations are maximally sup- pressed in the three-quark system as measured by the correlation function $C(\vec{y})$. 37
3.3 The rendered gluonic field distribution via Eq. (3.3.3) mimics the form of the spatial link configurations in Wilson loop [2]. 37
3.4 The ground-state overlap of the 3 Q system [3]. $C_{0}=\left\langle W_{3 Q}(T)\right\rangle^{T+1} /\left\langle W_{3 Q}(T+\right.$ $1)\rangle^{T}$, with the smeared link (upper data) and unsmeared link (lower data) [3]. The horizontal axis has been taken as $L_{\text {min }}$, with the min- imal length of the flux tubes linking the three quarks. For each 3Q configuration C_{0} is largely enhanced as $0.8<C_{0}<1$ by smearing. 39
3.5 The static mesonic state is constructed via two Polyakov loops wind- ing around the time in opposite directions. 43
3.6 (a) Average Polyakov loop over several successive Monte Carlo mea- surements [4], below the transition temperature (in the confined phase), (b) above the transition temperature. 44
$3.7 g\left\langle\bar{q} \sigma_{\mu \nu} G_{\mu \nu} q\right\rangle$ plotted against temperature T from Ref. [5]. The ver- tical dashed line denotes the critical temperature $T_{c}=280 \mathrm{MeV}$ in quenched QCD. 47
4.1 The mean-square width, Eq. (4.3.17), of the flux tube evaluated at all planes ξ_{1} perpendicular to the quark-antiquark line. The separation distance between the pair is $R a^{-1}=10$. 54
4.2 Fluctuating flux tubes of three static color sources Q. The junction position ϕ is measured relative to the classical location which mini- mizes the total strings length (Fermat point). 55
4.3 World sheet spanned by one of the strings during time evolution up to the junction. 56
4.4 The world sheets of the strings in a baryon and a meson. The string in the static meson is modelled as being composed of two strings connected by a junction in the middle. 60
4.5 The Δ and Y baryonic strings configurations. The delocalization of the junction in the Y-shaped string system trace a filled Δ shaped energy distribution with maximal effect at the junction of the sys- tem. The Δ string configuration implies an energy distribution of maximum effect at the edges. 62
5.1 (a) Plot of the logarithm of the average value of $n(\rho=0.06) / n(\rho)$ versus $\ln (\rho / 0.06)$. The line corresponds to a fit to a straight line passing through the origin.
5.2 The quark-antiquark potential measured at each depicted smearing level. The lines correspond to fits of the potential obtained from the string picture of Eq. (4.3.7) for each data set as described in the text. The upper plot is at $T=0.8 T_{c}$ while the lower plot is at $T=0.9 T_{c}$.
5.3 The $q \bar{q}$ force measured for all the smearing levels up to a distance of 1.4 fm . The temperature is $T=0.8 T_{c}$, and $\beta=6$. The line denotes the force as predicted by the string model at finite temperature, Eq. (4.3.7).
5.4 The diameter of smearing $2 R_{s}$ versus the number of sweeps n_{s} for the improved stout-link algorithm with $\rho=0.06$ as in Eq. (5.2.9).73
5.5 The Polyakov loop correlators measured using the heatbath integration (above), and fast link integration (below).
6.1 The flux-distribution $\overline{\mathcal{C}}\left(\vec{\rho}, \vec{r}_{1}, \vec{r}_{2}\right)$ as given by the characterization Eq. (6.3.3) in the plane of the quark-antiquark pair $\vec{\rho}\left(x, y, z=z_{0}\right)$, for separation distances R (a) 0.5 fm , (b) 0.6 fm , to (d) 0.8 fm at $T=0.8 T_{C}$. The spheres refer to the positions of the quark and antiquark.
6.2 The flux-contour-line distribution in the plane of the quark-antiquark pair z_{0}, for separation distances of (a) 0.9 fm , (b) 1.0 fm . The spheres denote the positions of the $q \bar{q}$ pair, $T=0.9 T_{C}$
6.3 The flux iso-surface passing through the quarks, plotted together with a surface plot for the density distribution in the $q \bar{q}$ plane (inverted). The measurements are taken on 80 sweeps of smearing for separation distance $R=9 a$, and $T=0.8 T_{c}$. The lattice spatial extent is 36^{3} at $\beta=6, a=0.1 \mathrm{fm}$.
6.4 The density distribution $\mathcal{C}(\vec{\rho})$ for separation distance of $R=12 \mathrm{a}$, $T=0.9 T_{c}$, plotted for the transverse planes $x=1, x=3$, and $x=6$. The lines correspond to the Gaussian fits to the density in each plane $\vec{\rho}\left(x_{i}, y, z_{0}\right)$.
6.5 The width difference $\delta W^{2}=W^{2}\left(x_{i}\right)-W^{2}\left(x_{0}\right)$ for $q \bar{q}$ separations (a) 0.7 fm , (b) 0.8 fm , (c) 0.9 fm , and (d) $1 \mathrm{fm},, \beta=6, T=0.9 T_{C}$ for each depicted smearing level. The line denotes the width difference δW^{2} as predicted by the string model Eq. (4.3.17). The lowest smearing level provides the best estimate of the width difference.
6.6 Similar to Fig. 6.5, the change in width is plotted for $q \bar{q}$ separations
(a) 1.1 fm , (b) 1.2 fm , (c) 1.3 fm , and (d) 1.4 fm .
6.7 The width $W^{2}\left(x_{i}\right)$ for $q \bar{q}$ separations $R=6 a$ to $R=13 a$ at four consecutive planes (a) $x=1$, (b) $x=2$, (c) $x=3$, and (d) $x=4$. $\beta=6, T=0.9 T_{C}$. The line denotes the string model, Eq. (4.3.17), fit of R_{0} to the data as described in the text.
7.1 (a) The temporal link U_{4} is updated based on the neighboring links. The shaded area represents the 3D spatial smeared lattice. The heat bath starts from links of a low action configuration. The overrelaxation or reflection steps starts updates the time links based on action minimal

7.2 (a) The quark-antiquark potential measured at each depicted smear
ing level for 3 dimensional smearing (above) and 4 dimensional smear
ing (below). The lines correspond to the string picture predictions of
Eq. (4.3.8). The standard value of the string tension is used. 100

7.3 Plot of the density distribution $\mathcal{C}(\vec{\rho})$ in the middle plane for source
separation $R=9 a, T=0.9 T_{c}$. 102

7.4 The mean square width of the flux tube $W_{n}^{2}(R / 2)$ in the middle plane
between the quarks. The lattice data, corresponding to the action
density minimization, approach the string model predictions at short
distances. At large distances the predicted linear divergence of the
flux tube width is manifest in lattice data.
7.5 The normalized width of the flux tube $W_{n}^{2}\left(x_{i}\right)$ versus $q \bar{q}$ separations measured in the planes (a) $x=2$, (b) $x=3$, (c) $x=4$. $\beta=6$, $T=0.9 T_{C}$. The coordinates x_{i} are lattice coordinates (lattice units) and are measured from the quark position $x=0$. The line denotes the one parameter string model, Eq. (7.4.1), fit to lattice data for $R \geq 1 \mathrm{fm}$. The numbers in the legend denote the number of smearing sweeps.
7.6 The normalized width of the flux tube $W_{n}^{2}\left(x_{i}\right)$ versus $q \bar{q}$ separations measured in the plane $x=3$. The temporal links have not been smeared in the evaluation of Polyakov loops, rather the temporal links have been integrated out. This time, the Polyakov loops are taken from the unsmeared configurations and correlated with the smeared action density. The legend denotes the number of smearing sweeps of the QCD vacuum.
7.7 The change of the tube's width $\delta W^{2}=W^{2}\left(x_{i}\right)-W^{2}\left(x_{0}\right)$ measured from the central plane for the depicted $q \bar{q}$ separations. The smearing level of the lattice data is illustrated. $\beta=6, T=0.9 T_{C}$. The line denotes the width difference δW^{2} as predicted by the string model Eq. (7.4.1).

7.8 The measured change in the ultraviolet cutoff R_{0} along the flux tube
normalized by a factor $(\pi \sigma)^{-1}$ 107
8.1 Schematic representation of link-blocking 112
8.2 Schematic representation of smearing the spatial links in the Wilson loop. Each spatial link $U_{\mu}(x), \mu \neq 4$ is smeared with the operators $\left(S^{n}\right) U$. The temporal links are left unsmeared. While not indicated in the figure, the links U^{\dagger} at the top of the figure are also smeared.
8.3 Schematic diagram of the smearing profile. h is the minimum number of smearing sweeps applied at the last link giving rise to smearing radius L_{1}, n is the maximum number of smearing sweeps in the middle resulting in the radius L_{2}.
8.4 The overlap with the ground state C_{0}, the distance between the quark anti-quark source is $R=10 a, \beta=6$.
8.5 The overlap with the ground state C_{0}, for $R=1 \mathrm{fm}$. The lines connect the states corresponding to variation of the ellipse semi-major axis for each rectangular base corresponding to sweeps $h=15$ and $h=18$. . . 116
8.6 Comparison between non-uniformly smeared profiles $n \neq h$ and flat states $n=h$ represented by the smooth line. The quark source separation distance $R=1.0 \mathrm{fm}$.
8.7 The flux tube operator Eq. (8.3.8). Each operator consists of a family of five Gaussians. The operators correspond to the states $(h=13, n=$ $34)$, $(h=15, n=32),(h=20, n=34)$ and $(h=24, n=33)$. Theses states maximize the value of the overlap with the ground state. The source separation distance $R=1.0 \mathrm{fm}$. 117
8.8 Same as Fig. 8.6, for quark-antiquark separation distance $R=1.2 \mathrm{fm} .118$
8.9 The overlap with the ground state C_{0} versus the physical width of the flux-tube operator in the middle L_{2} of the tube. Each line corresponds to a fixed ratio between the width of the tube in the middle and at the last link L_{1}. The quark-antiquark separation distance of $R=1.2$ fm is considered here.
9.1 Schematic diagram for the isosceles configuration of the 3Q system. The large spheres represent the motion of the diffused field of characteristic smearing radius of R_{s} centred at the quarks (small spheres). 126
9.2 The force for the isosceles 3Q configurations with base lengths (a) $A=0.6 \mathrm{fm}$, (b) $A=0.8 \mathrm{fm}$ and (c) $A=1.0 \mathrm{fm}$, respectively. The x-axis denotes the position R of the third quark. Smearing effects are manifest for $R<0.95 \mathrm{fm}, R<0.85 \mathrm{fm}$ and $R<0.75 \mathrm{fm}$ for $A=0.6$ $\mathrm{fm}, A=0.8 \mathrm{fm}$, and $A=1.0 \mathrm{fm}$. Only subtle smearing effects remain beyond these distance scales.
9.3 Surface plot (inverted) of the flux distribution $\mathcal{C}(\vec{\rho})$ of Eq. (9.3.1) evaluated in the plane of the (3Q) system $\vec{\rho}(x, y, 0)$, for isosceles configuration of base length $A=0.4 \mathrm{fm}$ and separation distances (a) $R=0.6$ fm , (b) $R=0.8 \mathrm{fm}$ and (c) $R=1.0 \mathrm{fm}$, at $T=0.8 T_{C}$. The spheres refer to the positions of the quarks.
9.4 The flux action iso-surface at the quark positions, plotted together with a surface plot for the density distribution $\mathcal{C}(\vec{\rho})$, in the 3Q plane at temperature $T=0.9 T_{c}$, for equilateral triangular configuration $R=1.1 \mathrm{fm}$ and $A=1.0 \mathrm{fm}$.
9.5 Surface plot in the plane of the 3 Q system $\vec{\rho}(x, y, z=0)$ and isosurface of the flux distribution $\mathcal{C}\left(\vec{\rho} ; \vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)$ for the isosceles configuration with $A=1 \mathrm{fm}$ and the third quark separation distance R as indicated. $T=0.8 T_{C}$.
9.6 Comparison of the flux contour lines of the density distribution in the 3Q plane \mathcal{C} for triangular base $A=1.0 \mathrm{fm}$ and third quark separation $R=0.9 \mathrm{fm}$ at (a) $T=0.8 T_{c}$ and (b) $T=0.9 T_{c}$, in the $z=0$ plane. As illustrated in Fig. 9.3, the maximal effect is near the Fermat point. 133
9.7 The density distribution $\mathcal{C}^{\prime}(\vec{\rho})$ for the isosceles configuration with the base, $A=1.0 \mathrm{fm}$, and height $R=0.8 \mathrm{fm}$ at $T / T_{c}=0.8\left(n_{\mathrm{sw}}=60\right.$ sweeps). Data are plotted for the transverse planes $x=1$ to $x=6$. The lines correspond to the Gaussian fits to the density in each plane $\vec{\rho}\left(x_{i}, y, 0\right)$. The highest amplitude lies close to the Fermat point plane $x=2.88$ of this 3Q configuration.
9.8 The radius profile of the flux-tube measured in the plane of the quarks for each isosceles configuration with base $A=6 a, A=8 a$ and $A=$ $10 a(a=0.1 \mathrm{fm})$, at two temperatures $T / T_{c}=0.8$ (above) and $T / T_{c}=0.9$ (below). The legend (in the upper right corner graph) signifies the third quark's position.
9.9 The radius profile of the flux-tube displaying a Y-shape like profile for quark configurations of base $A=1.0 \mathrm{fm}$ and the third quark position $R=1.3 \mathrm{fm}$ at temperature $T / T_{c}=0.8$. In the background are the corresponding flux action-density contours.
9.10 Same as Fig. 9.8 for isosceles configuration bases of $A=0.6 \mathrm{fm}$, and $A=1.0 \mathrm{fm}$. The upper and lower figures compare the measured radius profile for two levels of smearing, 60 sweeps and 80 sweeps, respectively. The radius is in lattice units.
9.11 The profile of the action density amplitude, $H_{y}\left(x_{i}\right)$ (scaled by a factor of 10^{1}) for each isosceles configuration with base $A=0.6 \mathrm{fm}, A=0.8$ fm and $A=1.0 \mathrm{fm}$, for the two temperatures $T / T_{c}=0.8$ (upper), $T / T_{c}=0.9$ (lower). The legend signifies the third quark position.
9.12 The squared flux distribution width at the depicted planes, $x_{i}=2,3$ and 7 , are compared for two smearing levels. The isosceles configuration base length is $A=1.0 \mathrm{fm}$ at temperature $T / T_{c}=0.9$. Smearing merely shifts the profile by a constant. The broadening pattern is not affected.
9.13 The squared flux-tube width at the depicted planes for the isosceles configuration $A=0.8 \mathrm{fm}$ compared at two temperatures $T / T_{c}=0.8$ (top) and $T / T_{c}=0.9$ (bottom). The plane coordinates are indicated in the legend.
9.14 Same as Fig. 9.13 for a larger isosceles base length of $A=1.0 \mathrm{fm}$.
9.15 Comparison of the mean square width of the flux distribution at three distinct planes, $x=2,3$, and 7 , for two isosceles bases $A=0.6 \mathrm{fm}$ and $A=0.8 \mathrm{fm}$. The upper graphs show the comparison at $T / T_{c}=0.9$ whereas the lower are at $T / T_{c}=0.8$.
9.16 Comparison of the ratio, α (Eq. (9.6.7)), of the mean squared width of the flux distribution parallel and perpendicular to the quark plane for three isosceles bases $A=0.6 \mathrm{fm}, A=0.8 \mathrm{fm}$ and $A=1.0 \mathrm{fm}$. The upper graphs show comparison at $T / T_{c}=0.8$ whereas the lower are at $T / T_{c}=0.9$.
9.17 Surface plot of the flux density surface in the quark plane, $\rho(x, y, z=$ $0)$, together with contour lines. The contour lines are projected onto the surface plot. The density of the contour lines increases near the edges in accord with the gradient of the density scalar field along the x-axis. The flux contours of the maximum value are the inner most lines inside the triangle. As the density plot illustrates, the fluxtube configuration is a filled Δ-shape with maximum action expulsion inside the triangle near the Fermat point of the configuration. These measurements are taken for an isosceles quark geometry of base $A=$ 0.8 , height $R=1.2 \mathrm{fm}$ and temperature $T=0.9 T_{c}$.151
9.18 Schematic diagram for the isosceles configuration of the 3Q system. L_{1}, L_{2} and L_{3} are distances from the Fermat point to the quark positions. 152

Statement of originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I give also permission for the digital version of my thesis to be made available on the web, via the university's digital research repository, the library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Ahmed Saad El Bakry Mahmoud

Dedication

To my family.

Abstract

The distribution of the gluon action density in mesonic systems is investigated at finite temperature. The simulations are performed in pure $\mathrm{SU}(3)$ Yang-Mills gauge theory for two temperatures below the deconfinement phase. The action-density isosurfaces display a prolate-spheroid-like shape. The curved width profile of the flux tube is found to be consistent with the prediction of the free bosonic string model at large distances.

In the intermediate source separation distance, where the free string picture poorly describes the flux tube width profile, we find the topological characteristics of the flux tube converge and compare favourably with the predictions of the free bosonic string upon reducing the vacuum action towards the classical instanton vacuum. As a byproduct of these calculations, we find the broadening of the QCD flux tube to be independent of the UV filtering at large distances. Our results exhibit a linearly divergent pattern in agreement with the string picture predictions.

We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions. We construct trial states with non-uniform smearing profiles in the Wilson loop operator at $T=0$. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state.

The gluon flux distribution of a static three quark system has been revealed at temperatures near the end of the QCD plateau, $T / T_{c} \approx 0.8$, and another just before the deconfinement point, $T / T_{c} \approx 0.9$. The flux distributions at short distance separations between the quarks display an action-density profile consistent with a rounded filled Δ shape iso-surface. However the Δ shape action iso-surface distributions are found to persist even at large inter-quark separations. The action density distribution in the quark plane exhibits a nonuniform pattern for all quark separations considered. We systematically measure and compare the main aspects of the profile of the flux distribution at the two considered temperature scales for three sets of isosceles triangle quark configurations. The radii, amplitudes and rate of change of the width of the flux distribution are found to reverse their behavior as the temperature increases from the end of the QCD plateau towards the deconfinement point. Remarkably, we find the mean square width of the flux distribution shrinks and localizes for quark separations larger than 1.0 fm at $T / T_{c} \approx 0.8$ which results in an identifiable Y-shaped radius profile. Near the deconfinement point, the action-density delocalizes and the width broadens linearly with the quark separation at large quark separations.

We present a method to include the thermal effects into the junction width of the baryonic string model. The profile of the baryonic gluonic distribution is compared with the width of the string picture's junction fluctuations. The comparison reveals that the best fits to the junction fluctuations of the baryonic string are near the Fermat point of the triangle made up by the quarks. This result supports the underlying picture of Y-shaped string-like flux tubes connected at a junction.

