OPTICAL DIAGNOSTICS OF METALS IN HIGH TEMPERATURE ENVIRONMENTS

LI-JEN HSU

2012

OPTICAL DIAGNOSTICS OF METALS IN HIGH TEMPERATURE ENVIRONMENTS

<u>Li – Jen Hsu</u>

Ph.D. thesis May 2012

Centre for Energy Technology, The Environment Institute School of Chemical Engineering Faculty of Engineering, Computer & Mathematical Sciences University of Adelaide, Australia.

Preface

The documentation is the demonstration of many years of study and submitted for the award of the Doctoral of Philosophy. The topic of research is "Optical Diagnostics of Metals in High Temperature Environments". Alkali metals released from combustion of solid-fuel particles (Loy Yang Brown coal and pine wood) in premixed methane flat flame and iron in the plasma cloud generated by gas tungsten arc welding were investigated using optical diagnostic techniques. The consumption of renewable energy resources increasingly grows owing to the issues of global climate change and rapidly diminishing reserves of energy resources. Understanding of alkali metals released during combustion is important for the industrial interests to maintain and to improve the equipment for power generation. To apply the comprehensive laser diagnostic techniques extensively in extreme environments, the studying of iron in the welding plasma could favour the understanding of dynamic chemistry and the dispersion of chemical species in the plasma fumes.

The intention of this work is to assess techniques enabling the quantitative measure of sodium (Na) and potassium (K) released during the different stages of solid-fuel combustion so that industrial concerns can be satisfied. An understanding of the behaviour of iron (Fe) in atmospheric plasma would help reduce the hazard that it poses to operators.

Li-Jen Hsu

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been referred in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that the copyright of published works arising from this thesis (as listed in Appendix J-3) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Li – Jen Hsu

Acknowledgements

I am grateful to appreciate the invaluable contributions from countless people who helped accomplish this thesis. First of all, it will be my honour to acknowledge my supervisors, Dr. **Zeyad T. Alwahabi**, Prof. **Graham (Gus) Nathan**, Prof. **Keith D. King** and A/Prof. **Peter J. Ashman** providing outstanding assistance not only for the thesis but also in the development of knowledge.

I also acknowledge Dr Zhongshan Li and Prof Marcus Aldén provided the opportunity for me to conduct part of my experiment in the Division of Combustion Physics, Lund University, Sweden. Other colleagues also helped me out in experiments and living in the Lund city.

It is also necessary to thank other colleagues, Dr. Philip van Eyk who shared his valuable experience and brilliant opinions on this thesis, Kenneth Ho who assisted with my experiments and Jian Wang helped with the data processing. I would like to thank Mary Barrow and Elaine Minerds, the Chemical Engineering School Officers, Sahn Tran from the IT support group, and Jason Peak and Jeffrey Hiorns from the workshops for their constant support throughout the course of this work. I apologize in advance for whom I have not personally thanked.

It is impossible for me to accomplish the thesis without my family's support, especially my parents, my wife and my children. My wife's support is always the strongest power for me to persist in my research while I feel depressed. Truly, I appreciate my dear families.

Abstract

The thesis presents results for the detection of metal species in high temperature environments using optical techniques. Three optical techniques, namely laser Polarisation Spectroscopy (PS), Atomic Emission Spectroscopy (AES) and Laser-Induced Breakdown Spectroscopy (LIBS) have been employed. Each technique possesses some unique characteristics to achieve the aims of this work.

The PS technique has been employed to detect atomic sodium (Na) in the seeded flames and plume of burning solid-fuel particles and to investigate atomic iron (Fe) in the welding fume plume. A mathematical equation has been developed to describe the lineshape of the target metal using PS technique in the high temperature environments, as follows:

$$I_{PS_FIT}(\omega) = I_{baseline} + I_{PS} \times \left\{ \frac{1}{1 + \left[\frac{2 \times (\Delta \omega - \Delta \omega_{shift})}{\Delta \omega_{PS}}\right]^2} \right\}^n \times exp\left[\frac{-\alpha_0 \cdot L_{abs}}{1 + \left(\frac{2 \times \Delta \omega}{\Delta \omega_{abs}}\right)^2}\right]$$

The capability of PS technique employed for the quantitative measurement has been assessed. Due to the nonlinear measurement, the quantitative measurement using PS is not applicable in this work. In particular, the atomic Na released from burning solid-fuel particles. However, the qualitative analysis of atomic Na and Fe has been demonstrated. The time-resolved records of atomic Na released from the burning solid-fuel particles and the Stark shift of atomic Fe in the welding fume have been observed.

Eq. 3-5

The AES technique has been used to record the temporal atomic Na and K released from burning solid-fuel particles. The qualitative analysis of the simultaneous release of atomic Na and K using AES has been demonstrated. However, the quantitative analysis is not applicable in the present experimental arrangement. The temporal records of atomic Na and K were associated with the instantaneous shrinkage of burning solid-fuel particles. This implies that the release of atomic Na and K is related to the burning particle size. It was observed that the peak release of atomic Na and K released from the burning solid-fuel particles occurred at the end of char phase simultaneously.

The quantitative measurement of atomic Na and K released from burning solid-fuel particles using LIBS has been achieved. The time-resolved histories of atomic Na and K released from burning solid-fuel particles are consistent with those measured using PS and AES. Unlike conventional quantitative measurement using LIBS, a particular absorption, termed as signal trapping to the calibration process, caused by the atomic Na or K in the outer seeded flames has been indentified.

The overall comparison among three optical techniques summarizes the advantages and disadvantages of the metal detection in high temperature environments. The PS technique is capable of being applied to detect metal species in strong background environments. The AES possesses the capability of multi-element detection in flames with the characteristics of low cost, good sensitivity and simple experimental arrangement. However, the quantitative analysis of target metal species is not eligible for both techniques. The LIBS technique demonstrates the quantitative analysis with an appropriate calibration curve.

V

Nomenclature

Α	Pre-factor (experimentally determined), 1/concentration
	Empirical Pre-factor Coefficient, dimensionless
AFR _{exp}	Experimental AFR, dimensionless
AFR _{stoi}	Stoichiometric AFR, dimensionless
A ₂₁	Spontaneous Emission, s ⁻¹
A_r	Surface Area of a Sphere, m ²
a_1	Pre-factor, 1/concentration
a_2	Pre-factor Constant, dimensionless
a_m	Molar Ratio, dimensionless
B_{12}/B_{21}	Einstein Coefficient of Absorption / Stimulated Emission, $m^3 {\cdot} J^{-1} {\cdot} s^{-2}$
b	Absorption Coefficient, dimensionless
С	Specific Heat, J·kg ⁻¹ ·K ⁻¹
	Light Speed, $m \cdot s^{-1}$
C_s	Concentration of Alkali Salt, $g \cdot L^{-1}$
$C_{species}$	Concentration of Atomic Na or K in the flame, ppm
C_{Na}	Concentration of Na, ppm
C_K	Concentration of K, ppm
D_0	Diameter of Pump Beam, m
D_P	Diameter of Focused Pump Beam, m
D_{SD}	Diameter of Nebulised Salt Droplet, µm
ΔΕ	Energy Difference between Two Allowable Transition States, J
E_{BS}	Systematic Error Caused by Beam Steering, dimensionless
$F_{pump-probe_geometry}(\gamma, \chi)$	Dependence of the I_{PS} on the Geometrical Polarisation Status of the

Probe and Probe Beams

f_B	Boltzmann Fraction of Target Species, dimensionless
f_i	Boltzmann Distribution at the Energy State <i>i</i> , dimensionless
fL	Focal Length of a Lens, mm
$G(\omega)$	Normalized Lineshape of the Target Species Absorption Function,
	dimensionless
<i>g</i> _i	Degeneracy of Energy State <i>i</i> , dimensionless
h	Planck's Constant (= 6.626×10^{-34}), J·s
	Surface Convection Coefficient, $W \cdot K^{-1} \cdot m^{-2}$
ħ	Planck's Constant Divided by 2π , J·s
I _{abs}	Intensity of Absorption in PS Measurement, arbitrary unit
Ibaseline	Intensity of Background in PS Measurement, arbitrary unit
I _{exp}	Experimental Radiation Intensity of Atomic Na or K, arbitrary unit
Iact	Actual Radiation Intensity of Atomic Na or K, arbitrary unit
I _{PS}	Intensity of PS Signal, arbitrary unit
I _{LIBS}	Intensity of Radiation using LIBS, dimensionless
$I_{PS_FIT}(\omega)$	Simulation of PS Lineshape
I _{probe}	Intensity of Probe Beam in PS, arbitrary unit
I _{pump}	Intensity of Pump Beam in PS, arbitrary unit
k / k_p	Thermal Conductivity Coefficient, $W \cdot K^{-1} \cdot m^{-1}$
k	Boltzmann Constant, $J \cdot K^{-1}$
[K] _{total}	Total Concentration of K, ppm
$[\mathbf{K}]_{total}^{max}$	Maximum Concentration of total K, ppm
L_{PS}	Probe Beam Path, m
М	Molar Mass, g·mol ⁻¹
ml _n	Normal Litre per Minute, L/min

<i>Mole</i> _{oxy}	Molar Ratio of Fed Oxidizer, mol			
<i>Mole_{fuel}</i>	Molar Ratio of Fed Fuel, mol			
<i>Mass_{oxy}</i>	Mass of Fed Oxidizer, g			
Mass _{fuel}	Mass of Fed Fuel, g			
Mole _{stoi-oxy}	Stoichiometric Molar Ratio of Oxidizer, dimensionless			
Mole _{stoi-fuel}	Stoichiometric Molar Ratio of Fuel, dimensionless			
Mole _{exp-oxy}	Experimental Molar Ratio of Oxidizer, dimensionless			
Mole _{exp-fuel}	Experimental Molar Ratio of Fuel, dimensionless			
N _{species}	Population of Target Species, atom·m ⁻³			
n	Refractive Index, dimensionless			
	Power of a Lorentzian function, dimensionless			
	(3: Lorentzian-cubed; 1: Lorentzian)			
n_s	Number Density of Target Species, atoms ·m ⁻³			
[Na] _{total}	Total Concentration of Na, ppm			
$[Na]_{total}^{max}$	Maximum Concentration of total Na, ppm			
Р	Atmospheric Pressure, atm			
Q	Hear Transfer, J			
q	Partition Function, dimensionless			
r	Radial Distance, m			
r _c	Radii of Unconsumed Core, m			
R	Radius of a Virgin Particle, m			
	Gas Constant, $J \cdot g^{-1} \cdot mol^{-1} \cdot K^{-1}$			
R _{K/Na}	Release Ratio of K-to-Na, dimensionless			
R _{coal}	First Order Reaction Rate of coal, s ⁻¹			
$R_{K_char/de}$	Ratio of Peak Intensities of Atomic K at the Char and			
	Devolatilisation Phases using AES, dimensionless			
$R_{K_total_char/de}$	Ratio of Peak Intensities of Atomic K at the Char and			

Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE

Devolatilisation Phases using Quantitative LIBS, dimensionless

R _{Na_char/de}	Ratio of Peak Intensities of Atomic Na at the Char and		
	Devolatilisation Phases using AES, dimensionless		
$R_{Na_total_char/de}$	Ratio of Peak Intensities of Atomic Na at the Char and		
	Devolatilisation Phases using quantitative LIBS, dimensionless		
S	Slope of Calibration Curve of LIBS Measurement, dimensionless		
Т	Local Particle Temperature, K		
ΔΤ	Temperature Variation between Two Locations, K		
T_0	Initial Particle Temperature, K		
T_c	Temperature at Core Surface, K		
T_f	Flame Temperature, K		
T_g	Gas Temperature, K		
T_P	Temperature of Coal Particle, K		
T_s	Temperature at Particle Surface, K		
T_r	Room Temperature, K (298 K)		
\mathcal{U}_a	Air Flowrate, $L \cdot s^{-1}$		
\mathcal{D}_{f}	Total Gas Flowrate, $L \cdot s^{-1}$		
\mathcal{U}_g	Methane Flowrate, $L \cdot s^{-1}$		
\mathcal{U}_m	Mass flowrate of seeding salt solution, $g \cdot s^{-1}$		
\mathcal{D}_{mf}	Molar Flowrate of Total Gas, mol·s ⁻¹		
\mathcal{D}_{ms}	Molar flowrate of seeded salt in the flame, mol·s ⁻¹		
\mathcal{U}_{s}	Consumption Rate of Salt Solution, $L \cdot s^{-1}$		
Δx	Shrinking Layer, m		
x	Absorption Length, m		
[X] _{species}	Concentration of target species, atom·m ⁻³ or ppm		

Greek Letters

	Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE
Φ	Equivalence Ratio, dimensionless
$\alpha(\omega)$	Absorption Coefficient at Angular Frequency, m ⁻¹
$\Delta \alpha_0(\omega)$	Induced Dichroism
$\sigma_a(\omega)$	Absorption Cross-Section at angular frequency, m ²
$\sigma_{J_f \leftarrow J_i}$	Absorption Cross-Section from the Initial to Final Rotational State, J
σ	Stefan-Boltzmann Constant, $W \cdot K^{-2} \cdot m^{-2}$
	Mean Relative Standard Deviation, dimensionless
θ	Angular Offset of the Two Polarisers, radians
λ	Wavelength, nm
ϕ	Phase of the Wave $(= \mathbf{k} \cdot \mathbf{L}_{PS})$
δ	FWHM of the Lineshape of Wavelength Scan Measurement, cm ⁻¹
ξ	Fractional Light Leakage, dimensionless
ρ	Particle Solid Density, kg·m ⁻³
γ	Angle between the Polarisation Axis of the Probe Beam and the
	Vertical Axis, radians
κ	An Integral Constant, dimensionless
χ	Angle between the Pump and Probe Beam in the Horizontal Plane,
	Radians
$\zeta_{J_f \leftarrow J_i}$	Polarisation Dependent Numerical Factor, dimensionless
$ au_{pump}$	Laser Pulse Duration, ns

Duration of the Devolatilisation Phase, sec τ_d

Duration of the Char Phase, sec τ_c

Duration of the Ash Cooking Phase, sec τ_a

Angular Frequency of the Transition, s⁻¹ ω_{12}/ω_{21}

Chosen Angular Frequency, cm⁻¹ ω

Transition of Target Species, cm⁻¹ ω_0

Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAI	IDE
---	-----

$\Delta \omega_{abs}$	FWHM of Absorption, cm ⁻¹	
$\Delta \omega_{collision}$	Collisional Broadening, cm ⁻¹	
$\Delta \omega^{\! H}$	Homogenous Line Broadening, cm ⁻¹	
$\Delta \omega_n$	Natural Linewidth, cm ⁻¹	
$\Delta \omega_{PS}$	FWHM of PS Signal, cm ⁻¹	
$\Delta \omega_{self}$	Self-broadening, cm ⁻¹	
ν	Frequency of Radiation, Hz	
ε	Emissivity, dimensionless	
	Ratio between Atomic Species and Total Amount of the Species,	
	dimensionless	
Ψ	Surface Tension of Liquid, Water in This Work, $mN \cdot m^{-1}$	
Λ	Total Electronic Orbital Angular Momentum Quantum Number	
Σ, Π, Δ, Φ	Electronic Energy State corresponding to $\Lambda = 0, 1, 2, 3,$	
	dimensionless	

Subscripts

0	initial
a	air, area
abs	absorption
act	actual
С	core
cone	effective volume of the cone shape
exp	experimental
f	flame
8	gas
m	molor
	mora

	Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE
max	maximum
probe	probe beam
PS	Polarisation Spectroscopy
ритр	pump beam
r	room
S	salt
species	target species, such Na, K or Fe
total	total

Acronym

AES	Atomic Emission Spectroscopy
AFR	Air-Fuel Ratio
CNT	Carbon Nanotube
EDX or EDS	Energy-Dispersive X-Ray Spectroscopy
FTIR	Fourier Transform Infrared spectrometry
FWHM	Full Width at Half Maximum
GTAW	Gas Tungsten Arc Welding
HDP	High Density Plasma
HV	Heating Value
ICCD	Intensified Charge-Coupled Device
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectroscopy
LIBS	Laser-Induced Breakdown Spectroscopy
LIPS	Laser-Induced Plasma Spectroscopy
LOD	Limit of Detection
IRPS	Infrared PS
IRLIF	Infrared LIF
LTE	Local Thermodynamic Equilibrium
MFC	Mass Flow Controller
MS	Mass Spectroscopy
ND filter	Neutral Density filter
NMR	Nuclear Magnetic Resonance
PLIF	Planar Laser-Induced Fluorescence
PS	Polarisation Spectroscopy

ppm	Part per Million
ppb	Part per Billion
SAES	Simultaneous Atomic Emission Spectroscopy
SEM	Scanning Electron Microscopy
SNR	Signal-to-Noise Ratio
TGA	Thermogravimetric Analysis
XRF	X-Ray Fluorescence
XRD	X-Ray Diffraction

Chemical Expression

Element

Aluminium	Al
Barium	Ba
Beryllium	Be
Carbon	С
Calcium	Ca
Chlorine	Cl
Chromium	Cr
Copper	Cu
Fluorine	F
Hydrogen	Н
Iron	Fe
Lead	Pb
Manganese	Mn
Nickel	Ni
Nitrogen	Ν
Oxygen	0
Potassium	K

Ph. D. THESIS	_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE
Silicon	Si
Sodium	Na
Strontium	Sr
Sulfur	S
Compounds	
Acetylene	C_2H_2
Ammonia	NH ₃
Carbon Radical	C ₂
Carbon Monoxide	СО
Carbon Dioxide	CO_2
Cyanide	CN
Methylidyne	СН
Ethane	C_2H_6
Formaldehyde	H ₂ CO
Hydrogen Cyanide	HCN
Hydroxyl Radical	ОН
Methane	CH_4
Methyl	CH ₃
Nitrogen Monohydride	NH
Nitric Acid	HNO ₃
Nitric Oxide	NO
Nitrogen Oxides	NO _x
Potassium Chloride	KCl
Potassium Sulphate	K_2SO_4
Sodium Chloride	NaCl
Sodium sulphite	Na ₂ SO ₃

Content

Preface		I
Declaration	1	II
Acknowled	gements	III
Abstract		IV
Nomenclati	ure	VI
Acronym		XIII
Content		XVI
		××××
List of Figu	ires	XXI
List of Tabl	les	XXXII
CHAPTER	1 INTRODUCTION	1
1.1	Motivation	1
1.2	Aims	4
1.3	Dissertation Layout	5
1.4	Importance of Optical Diagnostics	7
1.4.1	Overview of Laser Diagnostics	7
1.4.2	Significance of Laser Diagnostic Measurement	7
1.4.3	Atomic Emission Spectroscopy	8
1.5	Laser Diagnostic Techniques	9
1.5.1	Laser-Induced Fluorescence	10
1.5.2	Laser-Induced Breakdown Spectroscopy	11
1.5.3	Laser Polarisation Spectroscopy	14
1.6	Indirect Analysis of Solid-fuel Particles	17
1.7	Combustion Models	
1.8	Issues of Burning Coal and Wood	20
1.8.1	Alkali Species	20
1.8.2	Other Pollutant Emission	21
1.9	Particular Measurement in Welding Plasma	22
1.9.1	Low Signal-to-Noise Ratio Environment	22
CHAPTER	2 THEORIES AND EXPERIMENTAL BACKGROUND	23
2.1	Laser Diagnostic Techniques	23

	Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE	
2.1.1	Laser-Induced Fluorescence	23
2.1.2	Laser-Induced Breakdown Spectroscopy	24
2.1.3	Laser Polarisation Spectroscopy	27
2.1.3.1	Introduction	
2.1.3.2	Theory	
2.2	Atomic Spectroscopy Overview	35
2.2.1	Introduction	35
2.2.1.1	Electronic Energy	
2.2.2	Boltzmann Populations	
2.2.3	Collision Processes	
2.3	Combustion Process	
2.3.1	Premixed Methane Flame	
2.3.2	Equivalence Ratio	41
2.4	Calculation of Seeded Species in the Flames	43
2.5	Plasma Overview	44
2.5.1	Introduction	44
2.5.2	Plasma Generation	45
2.5.2.1	Methodology of Plasma Generation	45
2.5.2.2	Gas Tungsten Arc Welding	
2.6	Thermogravimetric Analysis	47
2.6.1	Introduction	47
2.7	Error Analysis	47
2.7.1	Laser Energy	48
2.7.2	Flowmeters	48
2.7.3	Mass Flow Controller (MFC)	49
2.7.4	Variation of Solid-Fuel Particles	49
2.7.5	Nebulising System	50
CHAPTER 3	3. Assessment of Polarisation Spectroscopy in Atomic Sodium Detecti	on51
3.1	Introduction	
3.2	Experimental Arrangement	53
3.2.1	Laser Diagnostic System	53
3.2.2	Power Dependence	54
3.2.3	Premixed Laminar Burner	56
3.2.3.1	Rich Flame in the Premix Laminar Burner	56
3.2.3.2	Lean Flame in the van Eyk's Diffusion Burner	58
3.2.4	Data Acquisition and Processing	59
3.3	Results and Discussion	62
3.3.1	Fitting of PS Lineshape	62
3.3.2	Saturation Curves	66
3.3.3	Lineshapes of Atomic Na in Polarisation Spectroscopy	68

334	Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE Fluence Dependence of the Pump Beam	72
335	Repeatability of the Lineshape Fitting	76
3.3.6	Beam Steering Effect.	
3.3.7	Atomic Na Detection in Lean Combustion Conditions	
3.3.8	Simultaneous Absorption Measurement	
3.3.9	Ouantitative Measurement	
3.3.9.1	Laser Absorption Measurement	
3.3.10	Wavelengthscan in the D ₂ Line of Atomic Sodium	
3.3.11	Pure Signal of Polarisation Spectroscopy	
3.3.11.1	Fluence Dependence	
3.3.12	Line Broadening	93
3.3.12.1	Collisional Broadening	
3.3.12.2	Collisional Broadening	
3.3.12.3	Power Broadening	
3.3.13	Atomic Na Released from Burning Solid-Fuel Particles	
3.3.13.1	Qualitative Measurement	
3.3.13.2	Difficulty of Quantitative Measurement	
3.3.14	Potential Quantitative Measurement using PS	
3.4	Conclusions	105
CHAPTER 4	The Application of Polarisation Spectroscopy in Atmospheric Pla	sma108
CHAPTER 4 4.1	The Application of Polarisation Spectroscopy in Atmospheric Pla	sma108
CHAPTER 4 4.1 4.2	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement	sma108 108 109
CHAPTER 4 4.1 4.2 4.2.1	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems	sma108 108 109
CHAPTER 4 4.1 4.2 4.2.1 4.2.2	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume	sma108 108 109 109 111
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing	sma108 108 109 109 111 112
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3	The Application of Polarisation Spectroscopy in Atmospheric Platering Introduction	sma108 108 109 109 111 112 112
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1	The Application of Polarisation Spectroscopy in Atmospheric Plan Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence	sma108 108 109 109 111 112 113
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2	The Application of Polarisation Spectroscopy in Atmospheric Plan Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction	sma108 108 109
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3	The Application of Polarisation Spectroscopy in Atmospheric Plate Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence	sma108 108 109 109 110 112 112 113 116 117
CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4	The Application of Polarisation Spectroscopy in Atmospheric Plate Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Energy Dependence	sma108 108 109 109 110 112 112 113 116 117 118
<pre>CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5</pre>	The Application of Polarisation Spectroscopy in Atmospheric Plate Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Introduction Introduction	sma108 108 109 109 110 112 112 113 116 117 118 119
<pre>CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6</pre>	The Application of Polarisation Spectroscopy in Atmospheric Plate Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Iron in a Radial Position Beam Steering Effect	sma108 108 109 109 109 111 112 112 112 113 116 117 118 119 119
<pre>4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4</pre>	The Application of Polarisation Spectroscopy in Atmospheric Plate Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Energy Dependence Iron in a Radial Position Beam Steering Effect Conclusion	sma108 108 109 109 109 112 112 112 113 116 117 118 119 119 119 122
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 CHAPTER 5	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Iron in a Radial Position Beam Steering Effect Conclusion Atomic Sodium and Potassium Detection using Atomic	sma108 109 109 109 109 112 112 112 113 116 117 118 119 119 119 112 119 119 119 122 Emission
 CHAPTER 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 CHAPTER 5 	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Iron in a Radial Position Beam Steering Effect Conclusion Atomic Sodium and Potassium Detection using Atomic	sma108 108 109 109 109 112 112 112 112 113 116 117 119 123 Emission 123
<pre>4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 CHAPTER 5 5.1</pre>	The Application of Polarisation Spectroscopy in Atmospheric Pla Introduction Experimental Arrangement Laser and Welding Systems Nascent Iron in Welding Fume Data Acquisition and Processing Results and Discussion Wavelength Dependence Mixture Fraction Current Dependence Energy Dependence Iron in a Radial Position Beam Steering Effect Conclusion Atomic Sodium and Potassium Detection using Atomic Spectroscopy	sma108 108 109 109 109 112 112 112 113 116 117 123 Emission 123 123

5.2.1

5.2.2

I	Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE	
5.2.3	Data Acquisition and Processing	
5.3	Results and Discussion	
5.3.1	Empirical Analysis using AES	
5.3.2	Atomic Alkali Release	
5.3.2.1	Loy Yang Brown Coal	
5.3.2.2	Pine Wood Pellet	
5.3.3	Proposed Model of a Burning Particle	140
5.3.4	Shrinking Core Model	143
5.3.5	Pore Structures	145
5.3.6	Combustion Rate	148
5.3.7	Combustion Stages	152
5.3.7.1	Loy Yang Brown Coal	
5.3.7.2	Pine Wood Pellet	
5.4	Conclusions	
CHAPTER 6	Sodium and Potassium Detection using Laser-Induced	Breakdown
	Spectroscopy	
6.1	Introduction	
6.2	Experimental Arrangement	166
6.2.1	Burner and Laminar Premixed Flame	166
6.2.2	Laser-Induced Breakdown Spectroscopy	167
6.2.3	Simultaneous Atomic Emission Spectroscopy	169
6.2.4	Signal Acquisition	
6.2.5	Data Processing	
6.2.6	Calibration Process	
6.3	Results and Discussion	175
6.3.1	Self-Absorption in Calibration	176
6.3.1.1	Nonlinear Calibration	
6.3.1.2	Flame Absorption	
6.3.2	Quantitative Measurement	
6.3.2.1	Devolatilisation Phase	
6.3.2.2	Char Phase	
6.3.2.3	Ash Phase	
6.3.3	Limit of Calibration Curve	
6.3.4	Simultaneous Atomic Emission Spectroscopy	
6.3.5	Limit of Detection (LOD)	197
6.3.6	Release Ratio ([K]/[Na])	
6.4	Conclusions	201
CHAPTER 7	Conclusions	
Outlook		210

Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE

Bibliography	i
Appendix	i
A.	Seeding Concepts i
A-1.	Cylindrical Premixed Laminar Burneri
A-2	Seeding Rate of Salt ii
В.	Analysis of solid-fuel Particlesiii
C.	Quarter-wave Plate vi
D.	ND Filter vii
E.	Kramers-Kronig relation vii
F.	Polarisation Dependent Numerical Factor viii
G.	Dichroismix
Н.	Birefringence ix
I.	Matlab Codesx
I-1	Image Process of a 9x9 Matrixx
J.	Appendix of Autobiography xii
J-1	Education xii
J-2	Experience xii
J-3	Publications xiii

List of Figures

Figure 2-1 Illustration of self-absorption occurring when the initial plasma ($P_{initial}$) reaches LTE status (P_{LTE}); the following plasma ($P_{following}$) generated in the centre of plasma is re-absorbed in the edge of P_{LTE} . Hence, the Figure 2-2 Schematic arrangement of PS measurement [16]; BS: Beam Splitter, M: Mirror, L: Lens, QWP: Figure 2-3 Difference between techniques of (a) LIF and (b) PS demonstrate the capability of suppressing strong background noise using PS. (a-1) Atomic Fe can be detected in other transition different from that used to excite Fe atoms using LIF. (a-2) The transition used to excite and detect atomic Na is identical. For PS measurement, two laser beams (two long red or short blue dash lines in b-1) are used to excite Fe or (two long red dash lines in b-2) to excite Na atoms and the polarisation variation is detected instead of the detection of fluorescence. Thus, the PS **Figure 2-4** Energy (ΔE) is used to excite the target species from the initial energy state (E_i) to a higher energy state (E_i) . In other words, the energy, ΔE_i is absorbed by the target species and excited to a higher energy state. The same Figure 2-5 A seeded flame system comprises (A) a burner, (B) a nebulising system and a gas and fuel supply system. A nebuliser (C) is used to generate salt solution droplets, which are entrained into a flame......50 Figure 3-1 Schematic diagram of PS optical arrangement, Mirrors: M1, M2, M3, M4, M5; Focal Lens: FL; Beam Splitter: BSp; Beam Stop: Bst; Iris Diaphragm: Irs; Polariser: P1, P2, P3, P4; Thin Film Polariser: TFP; Neutral Density files: ND; Pump Beam: B_{pump}; Probe Beam: B_{probe}; Reference Beam: B_{ref}; Absorption Beam: B_{abs}, Figure 3-3 Schematic structure of the premix laminar burner; the two-layer structure consists of the honeycomb and the co-flow (top layer) and a premixed chamber (bottom layer). The seeded droplets were entrained from the

bosses near the bottom and the outlet is utilized to drain out the excess condensed salt solution
Figure 3-4 Schematic structure of the van Eyk's diffusion laminar burner, which is used to provide well-defined
laminar flame environments with lean conditions (all lengths in mm) [11]. The measurement was carried out 10
mm above the burner, which is considered to be the zone of the premixed flame
Figure 3-5 Hexagonal structure of fuel and air ports; each fuel port surrounded by six air ports generates premixed
laminar methane for lean conditions
Figure 3-6 The three types of signal recorded in three locations of a single ICCD detector: (a) PS signal detects the
concentration of atomic Na. (b) The absorption measurement is used for the quantitative measurement of atomic
Na in the seeded flame. (c) The B_{ref} provides the instantaneous correction for the laser power. (a-1) and (b-1) show
the intensities of B_{probe} and B_{abs} , respectively, operated in the unseeded methane flames. (a-2) and (b-2)
demonstrate the intensities of B_{probe} and B_{abs} , respectively, performed in the Na seeded methane flames. The B_{ref} in
(c-1) and (c-2) bypasses the methane flames and remains constant
Figure 3-7 Errors and Root-Mean Square (RMS) of $n \times n$ pixel arrays show the variation of I_{PS} among n^2 pixels.
The values of n were examined from 3 to 99. The error significantly increases when $n = 11$
Figure 3-8 Illustration of image processing: 9×9 pixel array is centred on the instantaneous pixel (the red dot ●), in
which is the strongest intensity of the chosen matrix. This varies from shot to shot
Figure 3-9 The PS signal consists of pure PS and absorption signals in highly populated media: a: Probe/Pump
beams interaction length (L_{PS}), b: Probe beam absorption length (L_{abs})
Figure 3-10 Schematic description of PS lineshape (a-3 and b-3), comprising pure PS (a-1 and b-1) and absorption
(a-2 and b-2) signals; $I_{baseline}$ is the baseline of pure PS lineshape; I_{PS} and I_{abs} are the maximum intensities of pure
PS and absorption signals, respectively; $\Delta \omega_{PS}$ and $\Delta \omega_{abs}$ are FWHM of pure PS and absorption signals. (b-1)
$\Delta \omega_{shift}$ is the detuning width occurring in the PS lineshape
Figure 3-11 Saturation curves of PS measurement in the flames seeded with salt droplets of (a) 0.5 g/L (red dots
and line) (b) 1 g/L (green dots and line) (c) 5 g/L (blue dots and line) with various fluences of the pump beam; each
datum point is the average of 50 single-shot results. The solid lines are the best-fit (based on Eq. 3-6) for
determining the saturation fluences. The best-fit is based on the first five data points. The variation between the
best-fit and PS intensities at high fluences (the rest of the dot symbols) are estimated to be 20 %67

Figure 3-12 PS lineshapes with the pump fluence 6.36 GW/cm ² while $\Phi = 1.3$ with [Na] = (a) 1.503 (b) 2.254 (c)
3.757 ppm; $\Phi = 1.4$ with [Na] = (d) 1.628 (e) 2.443 (f) 4.071 ppm. The concentrations of seeded [Na] were
calculated using Eq. 2-31 ~ Eq. 2-34
Figure 3-13 Best-fit of PS lineshapes based on Eq. 3-5 indicate the absorption overpowers the PS signals resulting
in two-peak shapes. $\Phi = 1.3$ with [Na] = (a) 1.503 (b) 2.254 (c) 3.757 ppm; $\Phi = 1.4$ with [Na] = (d) 1.628 (e) 2.443
(f) 4.071 ppm with the pump fluence 6.36 GW/cm^2
Figure 3-14 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 1.503 ppm and Φ
= 1.3 were performed with fluences of (a) 6.36 , (b) 3.18 , (c) 2.01 , (d) 1.00 GW/cm^2
Figure 3-15 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 2.254 ppm and Φ
= 1.3 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 1.00 GW/cm ² 72
Figure 3-16 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 3.757 ppm and Φ
= 1.3 were performed with the fluences of (a) 6.36 , (b) 3.18 , (c) 2.01 , (d) 1.00 GW/cm^2
Figure 3-17 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 1.628 ppm and Φ
= 1.4 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 1.00 GW/cm^2 74
Figure 3-18 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 2.443 ppm and Φ
= 1.4 were performed with the fluences of (a) 6.36 , (b) 3.18 , (c) 2.01 , (d) 1.00 GW/cm^2
Figure 3-19 Lineshapes of I_{PS} wavelengthscan into the seeded flame for concentration of Na of 4.071 ppm and Φ
= 1.4 were performed with the fluences of (a) 6.36 , (b) 3.18 , (c) 2.01 , (d) 1.00 GW/cm^2
Figure 3-20 Beam steering effects are investigated under $\Phi = 1.3$ with (a) 0.5 g/L, (b) 1 g/L, (c) 5 g/L and under Φ
= 1.4 with (d) 0.5 g/L, (e) 1 g/L, (f) 5 g/L. The scale of radius is 1 mm
Figure 3-21 Illustration of the systematic error caused by the beam steering effect; the displacement of images
caused by beam steering has been identified to be around 1 mm from Figure 3-20. The distance between the
intersection location and the ICCD camera is about 1000 mm. Hence, the $\Delta\theta$ can be calculated
Figure 3-22 Saturation curves of PS signals at the $\Phi = 0.61$; the saturation fluence was found to be 0.0134 ± 0.006
GW/cm ² extracted from Eq. 3-6
Figure 3-23 Wavelength scanning profiles of atomic Na in the flame with $\Phi = 0.61$; the fluences for (a) ~ (j) are
6.36, 5.05, 4.01, 3.18, 2.53, 2.01, 1.00, 0.64, 0.09 and 0.05 GW/cm ² , respectively. (a) ~ (i) demonstrate the PS in

Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE

Figure 3-26 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of I_{PS} under the atomic [Na] of 0.127×10^{18} atoms/m³. The maximum I_{PS} in the lineshape decreases with the descending pump beam fluences of Figure 3-27 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of I_{PS} under the atomic [Na] of 0.258×10^{18} atoms/m³. The maximum I_{PS} in the lineshape decreases with the descending pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm². (e ~h) The pure I_{PS} decreases with the descending pump beam fluences.90 Figure 3-28 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of I_{PS} under the atomic [Na] of 0.241×10^{18} atoms/m³. The maximum I_{PS} in the lineshape decreases with the descending pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm². (e ~h) The pure I_{PS} decreases with the descending pump beam fluences.91 Figure 3-29 Lineshapes of pure I_{PS} are extracted from the wavelengthscan data with atomic [Na] (a) 0.428×10^{18} atoms/m³ (b) 0.466×10^{18} atoms/m³. These dot lines represent the pump beam fluences of 6.36 (red), 3.18 (blue), **Figure 3-30** Fluence dependence of the pure PS intensities under the atomic [Na] (\Box): 0.127; (\circ): 0.258; (Δ): 0.241; (∇): 0.428; (\Diamond) : 0.456 ×10¹⁸ atoms/m³; (a) Linear best-fit with R² > 0.95 (b) Polynomial best-fit with **Figure 3-31** Atomic [Na] dependence of the pure PS signals under the pump beam fluences (\Box): 6.36; (\bullet): 3.18; Figure 3-32 Normalized pure PS lineshapes experience collisional broadening under the pump beam fluences (a) 6.36 (b) 3.18 (c) 2.01 (d) 1.00 GW/cm² with atomic [Na] (\circ): 0.127; (\Box): 0.258; (\diamond): 0.241; (x): 0.428; (+): 0.456×10^{18} atoms/m³. The result of (x): 0.428×10^{18} atomis/m³ is absent in (b) due to the huge experimental

Figure 3-33 Normalized pure PS lineshapes experience the power broadening under atomic [Na] (a) 0.127 (b)
0.258 (c) 0.241 (d) 0.456 ×10 ¹⁸ atoms/m ³ with the pump beam fluences (\circ): 6.36; (\Box): 3.18; (\diamond): 2.01; (+): 1.00
GW/cm ²
Figure 3-34 (a) Power broadening under n_s of atomic Na (\Box) 0.127 (\bullet) 0.258 (\diamond) 0.241 (∇) 0.456 ×10 ¹⁸ atoms/m ³
(b) Collisional broadening under the fluence of (\Box) 1.00 (•) 2.01 (◊) 3.18 ($\mathbf{\nabla}$) 6.36 GW/cm ² ; the errors are
respectively 20% and 1% for n_s of atomic Na and broadening width
Figure 3-35 Atomic Na released during the devolatilisation phase of burning (a) Loy Yang Brown coal and (b)
pine wood particles using PS in a premixed laminar methane flame with $\Phi = 1.4$. The timeframe of devolatilisation
phase of coal and wood are 9 and 13 seconds, respectively. The chosen wavelength for the present PS measurement
was 589.590 nm and the employed pump beam fluence was 1.00 GW/cm ² 101
Figure 3-36 Atomic Na is not detectable using PS when there is a strong fluence of pump beam, 3.18 GW/cm ² was
employed in burning (a) coal and (b) wood particles
Figure 3-37 Historical release of atomic Na recorded using PS during the char and ash phases of burning (a) coal
and (b) wood particles in the premixed laminar flame with $\Phi = 1.4$ 102
Figure 4-1 Schematic arrangement of PS: (M) Mirror, (CyL) Cylindrical Lens, (BSp) Beam Splitter, (Bst) Beam
Stop, (SF) Spatial Filter, (SL) Spherical Lens, (RA) Right Angle Prism, (PL) Polariser, (GLPL) Glan Polariser, (Irs)
Iris Diaphragm, and (TFP) Thin Film Polariser
Figure 4-2 Welding fume is operated under (a) pure He (100%) with 35 A current (b) He + Ar (50 + 50 %) with
120 A current (c) pure Ar (100 %) with 120 A current
Figure 4-3 (a) Schematic diagram of PS measurement in a GTAW process; the location where the PS (red dot) is
performed is 4 mm below the anode. The dashed lines represent temperature distribution within the welding fume.
(b) Photograph shows the real-time welding fume using Ar as buffer gas and the location where the laser beam (red
dot) is applied. (c) The total arc voltage is governed by $V_{ele-ext} + V_{eff}$ between anode and cathode111
Figure 4-4 Wavelength scan across the Fe transition at 385.991 nm, using He as the buffer gas with a 32A current;
(a) Stark-shift area (b) Original transition area; the red line represents the simulation of experimental results based
on Eq. 3-5. The green dashed line separates two areas where the Stark-shift and original transition, respectively.

Figure 4-5 Intensities of neutral Fe detection using PS with mixture fractions of Ar and He under 80 A current and
2 mJ pulsed pump beam energy
Figure 4-6 PS signals significantly increase while the applied currents are tuned from 90 to 130 A. Ar is applied as
buffer gas and 2 mJ of the pulsed pump beam energy is used in the PS measurement
Figure 4-7 Fe intensity (•) using buffer gas of He and 35 A current is measured at the centre of plasma associated
with the energies of the pulsed pump beam
Figure 4-8 (a) The laser beam was employed in the centre of the welding fume, 4 mm above the cathode and
radially switched to the edge of the welding fume. (b) Intensities of Fe (\bullet) in the welding fume using PS were
measured at the radial locations from the centre to the edge of welding fume. The measurement was performed
using He as the buffer gas with a 35 A current and 0.5 mJ pump beam energy. The temperatures (\blacktriangle) were adopted
from Ref. [223] to estimate the plasma temperature
Figure 4-9 Beam steering effect of the detection of atomic Fe using PS in the GTAW process; the a, b and c
represent the ratios of beam steering effect in three areas to be 17.71, 71.35 and 10.94 %. The major beam steering
(the b area) was observed to be around 1 mm. The overall beam steering, including (a , b and c areas), was found to
be around 2 mm
Figure 5-1 A Perkin Elmer burner is used to generate the premixed laminar flame. Salt droplets, methane and air
were entrained and premixed in the bottom chamber. The drain is designated for removing the excess salt solution
in order to maintain the volume of the mixing chamber
Figure 5-2 Laminar premixed flames with $\Phi =$ (a) 1.149 (b) 1.252 (c) 1.287 (d) 1.336. Equivalence ratios of 1.149
and 1.336 are the boundary conditions for stable laminar flames
Figure 5-3 The flame was operated with the equivalence ratio, $\Phi = 1.560$. The vortex was caused by excess CH ₄
leading to an uncertain flame environment126
Figure 5-4 Measurement volumes of atomic sodium and potassium on plumes of burning wood and coal particles
were represented in the areas of the blue circles aimed 5 mm above the particles. Then particles were suspended 10
mm above the burner
Figure 5-5 Arrangement of the spectrometer (Ocean Optics USB2000, marked as C) and the laminar burner (A)

were employed for the measurement of atomic alkalis released from burning solid-fuel particles (D) suspended by
a Pt wire (B)
Figure 5-6 Lines of CH radicals (CH ₃), hydroxyl (OH) and water (H ₂ O) from pre-mixed laminar methane flames
were recorded with an integration time 300 ms. Dashed lines represent the transitions of atomic Na and K128
Figure 5-7 Typical emission spectrum of atomic Na (589.592 nm) and K (769.896 nm) during the devolatilisation
phase with integration time (3ms); this contains significant background emissions from the continuum129
Figure 5-8 The baseline obtained by averaging the left base and right base was employed to correct intensities of
atomic Na during the devolatilisation. The time-resolved intensities of atomic Na were integrated by five data
points (point 1 to point 5). The same data process was also performed at the intensity of atomic K, as presented in
Figure 5-7
Figure 5-9 Atomic (a) K and (b) Na were released during three stages of the entire combustion process of burning
Loy Yang Brown coal particles, namely devolatilisation (τ_a), char (τ_c) and ash cooking (τ_a), with four equivalence
ratios of 1.149, 1.252, 1.287 and 1.336
Figure 5-10 Atomic (a) K and (b) Na released from burning Loy Yang Brown coal particles under four
equivalence ratios of 1.149, 1.252, 1.287 and 1.336 during the devolatilisation phase which was found to be
slightly affected by the equivalence ratios
Figure 5-11 Atomic (a) K and (b) Na released during the char stage of coal were assessed under different
equivalence ratios of 1.149, 1.252, 1.287 and 1.336. Due to the cracking of coal char particle during char stage,
sudden peaks of atomic K occurred while the increased intensities of atomic Na were not intensive134
Figure 5-12 Atomic (a) K and (b) Na released during the ash phase of coal were assessed under four equivalence
ratios of 1.149, 1.252, 1.287 and 1.336. Given higher temperature occurring in the leaner conditions facilitated
faster release rates, the initial intensities atomic Na and K during the ash phase are descending with equivalence
ratios
Figure 5-13 Atomic (a) K and (b) Na were released during three stages of the entire combustion process of burning
pine wood pellets particles, namely devolatilisation (τ_d) , char (τ_c) and ash cooking (τ_a) , as presented in (b) with
four equivalence ratios of 1.149, 1.252, 1.287 and 1.336
Figure 5-14 Atomic (a) K and (b) Na released from burning pine wood pellets particles under four equivalence

ratios during devolatilisation which were found to be affected by equivalence ratios
Figure 5-15 Atomic K (a) and Na (b) released during the char phase of burning pine wood particles were assessed
under different equivalence ratios of 1.149, 1.252, 1.287 and 1.336
Figure 5-16 Atomic K (a) and Na (b) released during the ash cooking stage of pine wood were assessed under
different equivalence ratios of 1.149, 1.252, 1.287 and 1.336 possessing agreement with exponential decay 139
Figure 5-17 Solid-fuel char particles possess different densities in three areas, which are the outer-shell, mid-shell
and ash-shell layers. Density decreases along with decreasing radius to the centre of the char particle. The
outer-shell is the densest layer owing to being exposed the longest to the sintering process and the highest cooking
temperature during the devolatilisation phase141
Figure 5-18 Temperature (1800 K) during the devolatilisation phase is investigated by fitting the radiation of
continuum during the volatile combustion using Planck's Law142
Figure 5-19 Illustration demonstrates the shrinking core model for burning solid-fuel particles. T_c and T_s represent
the temperature of core and surface. r and r_c are the radii of reaction surface and unconsumed core, respectively. R
is the radius of a virgin particle and Δx is the shrinking layer
Figure 5-20 Illustration of three types of pore structure in char particles, namely micro-, meso- and macro-pores; a
radius less than 1 nm is defined as micro-pores and between 1 ~ 25 nm and greater than 25 nm are defined as meso-
and macro-pores, respectively146
Figure 5-21 Char particles of (a) coal and (c) wood were treated under $\Phi = 1.149$ and under $\Phi = 1.336$ in (b) and
(d). The initial condition (1.149 or 1.336) was switched to the other conditions at the 60 th second. The intensities of
atomic Na and K significantly increased when the condition was switched from 1.149 to three richer ones, as
shown in (a) and (c). One the other hand, the intensities decreased when the condition was switched from 1.336 to
three leaner ones, as shown in (b) and (d)147
Figure 5-22 Time-resolved particle shrinkage is based on the measurement <i>x</i> - <i>y</i> ratio. The raw particle volume can
be determined using Eq. 5-4
Figure 5-23 Images shows the shrinking burning particles of (a) pine wood (b) brown coal in stages of (1)
beginning (2) end of the devolatilisation phase and (3) and (4) periods of char phase. The green circle indicates the
location where the solid-fuel particle was burnt

Figure 5-24 Burning particle shrinkage of (a) brown coal and (b) pine wood during the devolatilisation with four
equivalence ratios of 1.149, 1.252, 1.287 and 1.336 reveal that the devolatilisation of wood particles are
significantly affected by equivalence ratios
Figure 5-25 Particle shrinkage rates of (a) brown coal and (b) pine wood during the char stage with four
equivalence ratios were investigated. The variation between shrinkage rates caused by equivalence ratio of 1.336 is
significant due to the pore structures
Figure 5-26 Releases of atomic Na and K during devolatilisation associated with shrinkage of coal particles under
four equivalence ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336. The shrinkage revealed the consistent
linearity among the four combustion conditions
Figure 5-27 Three sections of combustion process for coal char particles associated with shrinking particle sizes
(black dots) and the release of atomic Na (red dots) and K (blue dots) were observed under four equivalence ratios
of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336. The purple circles in (a), (b) and (d) represent the intense atomic Na
and K release when cracking occurs
Figure 5-28 Simultaneous measurement of atomic alkali species release (blue for atomic K and red dot-lines for
atomic Na) and shrinkage of wood particle (green dot line) during the devolatilisation phase with four equivalence
ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336
Figure 5-29 Time-resolved atomic Na (red dots) and K (blue dots) released during wood char combustion particle
shrinkage rate (black dot line) under four equivalence ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336; Section
I, II and III are the three sub-stages of the wood char phase
Figure 5-30 The second-derivative of the normalized shrinking wood particles with $\Phi =$ (a) 1.149 (b) 1.252 (c)
1.287 and (d) 1.336 in Section I were used to demonstrate the linearity of burning wood particles
Figure 5-31 Detail for the end of mid-shell layer of pine wood char particles with the equivalence ratio of 1.336
shows the consistent tendency observed in other flame conditions161
Figure 6-1 Arrangement of LIBS measurement for the time-resolved release of trace species in the plume 166
Figure 6-2 Arrangement of the LIBS measurement and the simultaneous atomic emission spectroscopy (SAES)
comprises the conventional LIBS measurement and a simple AES spectrometer. Focal Lens: FL1 and FL2; PL:
Plasma; RaP: Right Angled Prism; G: Grating; OF: Optical Fibre; BS: Beam Stopper; BF: Burner and Flame. 167

Figure 6-3 LIBS applied in (a) Seeded flame and combustion of solid-fuel particles during (b) Devolatilisation (c)
Char (d) Ash phases
Figure 6-4 Spectral interferences across (a) atomic K (b) atomic Na using LIBS with a delay time of 200 ns and a
gate width of 500 ns
Figure 6-5 Spectral intensities of atomic Na were obtained at 589.592 nm for the flame emission and LIBS. The
intensities of flame emission are stable while the intensities of LIBS emission become stable with a gate delay time
of 30 µs
Figure 6-6 The recognized spectral interferences across lines of atomic Na at 588.992 and 589.592 nm are mainly
N I and N II with 5 µs gate delay and gate width [20]171
Figure 6-7 Spectral interferences across the D_1 and D_2 lines of atomic K (769.896 and 766.490 nm, respectively)
are mainly hot water (H ₂ O) lines [20]171
Figure 6-8 Water lines decay with the longer delay times of 15.2, 20.2, 25.2 and 30.2 µs. It is evident that the water
lines diminish across the D ₁ line of atomic K172
Figure 6-9 Raw calibration curves for [Na] _{total} and [K] _{total} indicate the presence of significant absorption177
Figure 6-10 (a) A schematic is used to describe the flame absorption occurring when the radiation of trace species
emits from the LIBS plasma through the seeded flame and is focused and collected by a convex lens and the
spectrometer, respectively. (b) Diagram indicates the absorption volume is considered to be shaped like a cone
Figure 6-11 Simulation of raw calibration curves using LIBS with the consideration based on (a) Eq. 6-7 : $b = 0.52$
indicates significant self-absorption; (b) Eq. 6-6 : $b = 1$ indicates the negligible self-absorption. (c) The table lists
the simulation results with two regimes, as indicated in Eq. 6-10 and Eq. 6-11 for case (a) and Eq. 6-8 and Eq. 6-9
for case (b). □: Na; ○: K;: fitting of Na;: fitting of K
Figure 6-12 Final calibration curves for the measurement of [Na] _{total} and [K] _{total} using LIBS, corrected for signal
trapping, as shown in Eq. 6-19 and Eq. 6-20; the error was multiplied by a factor of 10 to clearly present the error
bars. The errors of the fitting equations of [Na] and [K] are respectively 2.68 and 2.89%186
Figure 6-13 Raw time-resolved measurements of [Na] _{total} and [K] _{total} at a single point of the plume of burning
solid-fuel particles using LIBS with equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336187

Figure 6-14 By applying calibration, the time-resolved [Na] _{total} and [K] _{total} can be achieved using LIBS with
equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336. τ_d , τ_c and τ_a have been defined in Chapter 5 .
Figure 6-15 [Na] _{total} and [K] _{total} during the devolatilisation of burning solid-fuel particles with equivalence ratios
of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336
Figure 6-16 Time-resolved concentrations of [Na] _{total} and [K] _{total} for Loy Yang brown coal and pine wood with
four equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336 during the char phase demonstrate the
multiple sub-stages consistent with those proposed in Chapter 5191
Figure 6-17 Time-resolved profiles of [Na] _{total} and [K] _{total} for Loy Yang brown coal and pine wood with four
equivalence ratios of (a) 1.149 (b) 1.25 (c) 1.87 and (d) 1.336 during the ash phase demonstrate different release
behaviours of [Na] and [K]193
Figure 6-18 The SAES measurement was conducted with the quantitative LIBS with the equivalence ratios of (a)
1.149 and (b) 1.336. It provides information about Na and K released at the end of char phase
Figure 6-19 Equivalence ratios, namely 1.149, 1.252, 1.287 and 1.336, dominate the release ratio of
$[K]_{total}^{max}/[Na]_{total}^{max}$ for burning solid-fuel particles. The error estimated based on the uncertainty of the
calibration curves was 5%
Figure 6-20 Time-resolved release ratio of [K] _{total} /[Na] _{total} for the devolatilisation of a burning pine wood particle
with the equivalence ratio of 1.149
Figure 6-21 Time-resolved release ratio of [K] _{total} /[Na] _{total} for the char and ash phases of a burning pine wood char
particle with the equivalence ratio of 1.149
Figure A-1 Schematic cylindrical premix laminar burner employed in Chapter 6 (Prepared by Shaun Chan)i
Figure C-1 Arrangement of the quarter-wave plate and the polariser in the path of pump beam (PB) provides the
linear polarisation of pump beam. $\alpha = 6.3^{\circ}$ in the present arrangement for d = 200 mmvi

List of Tables

Table 1-1 The chosen transitions of atomic Na, K and Fe are employed in this thesis. The spectroscopic measurements include AES, LIBS and PS. Atomic Na and Fe were measured using PS in flames and welding fume, respectively. Atomic Na and K released from burring solid-fuels were measured using AES and LIBS......5 Table 2-1 Ultimate and proximate analysis of (a) Loy Yang coal and (b) pine wood particles analyzed by HRL Table 3-1 Pump beam fluences (GW/cm²) applied in the detection of atomic Na using PS were listed. The theoretical values of the laser powers were obtained by using the laser energy multiplied by the transmittances of Table 3-2 Total seeded [Na] with the constant seeding air flowrate of 5 L/min was calculated using Eq. 2-31 ~ Eq. Table 3-3 The saturation fluences for the pump beam were obtained from the PS measurement under three concentrations of total seeded Na at the equivalence ratio of 1.3 using Eq. 3-6. The total seeded [Na] was Table 3-4 Number densities of atomic Na were obtained using laser absorption measurement, representing the **Table 3-5** Doppler width, natural width and self-broadening of atomic Na at the D_1 line $(3^2S_{1/2} - 3^2P_{1/2})$ under one **Table 3-6** Collisional broadenings of atomic Na at D_1 line $(3^2S_{1/2} - 3^2P_{1/2})$ under one atmospheric pressure (760) **Table 3-7** Collision broadening of atomic Na at the D₁ line $(3^2S_{1/2} - 3^2P_{1/2})$ perturbed by N₂, H₂O, CO/CO₂, H₂ and **Table 3-8** Collisional broadening of Na at 578.7 nm $(3^2S_{1/2} - 4^2D_{3/2.5/2})$ were reported by D.M. Bruce [219] and F.

Table 5-1 Flowrates of air and methane employed in four equivalence ratios (Φ) controlled by two MFCs; the
calculation of Φ is based on Eq. 2-30
Table 5-2 Sizes of raw solid-fuel particles presented in geometric directions in x- and y-axis can be further
employed to estimate the volume of solid-fuel particle
Table 5-3 Amount of shrinkage of burning coal and wood particles during the devolatilisation phase shows the
variation between solid-fuel particles150
Table 5-4 Periods of three sub-stages for coal char combustion under four equivalence ratios; it was found that the
sub-stages became longer associated with richer combustion conditions and the sub-stage III remained similar.
Table 5-5 Periods of three sub-stages of the wood devolatilisation associated with four equivalence ratios. Section
I and II became longer in richer conditions (compared to $\Phi = 1.149$) consistent with that reported by Yu et al. [146].
However, Section III became shorter associated with richer conditions
Table 5-6 Summary of the periods for burning wood char particles in the three major layers of wood char particles
with four equivalence ratios of 1.149, 1.252, 1.287 and 1.336
Table 6-1 Flowrates of main air, seeding air and methane for calibration process; the seeding air maintains a
constant flowrate of 0.30 ml_n providing the consistent consumption rate of salt solution. The total air flowrate
includes the seeding air flowrate providing the consistent equivalence ratios166
Table 6-2 Summary of the equipments for present LIBS measurement 168
Table 6-3 Seeded concentrations of [Na] and [K] based on the constant 0.30 ml_n seeding air flowrate and ten
amounts of salts in weight are calculated by applying Eq. 6-1 ~ Eq. 6-5
Table 6-4 Summary of the $[Na]_{total}^{max}$ and $[K]_{total}^{max}$ released from burning solid-fuel particles with four
equivalence ratios using LIBS; the errors of [Na] and [K] are respectively 2.89 and 2.69%
Table 6-5 Release ratios of [Na] _{total} and [K] _{total} for the Loy Yang brown coal and pine wood particles during the
three combustion stages with four equivalence ratios. Generally, alkali species release is inhibited with richer
equivalence ratios during the char phase. The errors of total Na and K released from burning coal and wood
particles are respectively 8.4 and 3.5%

Table 7-1 The characteristics comparison of three spectroscopic techniques employed in this work are listed. The
term "Achievable" represents the theoretical feasibility with further effort but is not applicable in this work. The
cost is only compared among three techniques
Table F-1 The factor $\zeta_{J_f \leftarrow J_i}$ gives the J dependence of the polarisation signal for circular polarised light vii

Table F-2 The factor $\zeta_{J_f \leftarrow J_i}$ gives the J dependence of the polarisation signal for linear polarised light viii