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STEADY-STATE BEHAVIOR OF LARGE WATER1

DISTRIBUTION SYSTEMS: THE ALGEBRAIC MULTIGRID2

METHOD FOR THE FAST SOLUTION OF THE LINEAR3

STEP4

A. C. Zecchin1, P. Thum2, A. R. Simpson3, and C. Tischendorf45

ABSTRACT6

The Newton-based global gradient algorithm (GGA) (also known as the Todini and Pilati7

method) is a widely used method for computing the steady-state solution of the hydraulic8

variables within a water distribution system (WDS). The Newton-based computation in-9

volves solving a linear system of equations arising from the Jacobian of the WDS equations.10

This step is the most computationally expensive process within the GGA, particularly for11

large networks involving up to O (105) variables. An increasingly popular solver for large12

linear systems of the M-matrix class is the algebraic multigrid (AMG) method, a hierarchical-13

based method that uses a sequence of smaller dimensional systems to approximate the origi-14

nal system. This paper studies the application of AMG to the steady-state solution of WDSs15

through its incorporation as the linear solver within the GGA. The form of the Jacobian16

within the GGA is proved to be an M-matrix (under specific criteria on the pipe resistance17

functions), and thus able to be solved using AMG. A new interpretation of the Jacobian18

from the GGA is derived enabling physically based interpretations of AMG’s automatically19

created hierarchy. Finally, extensive numerical studies are undertaken where it is seen that20

AMG outperforms the sparse Cholesky method with node reordering (the solver used in21
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EPANET2), incomplete LU factorization (ILU) and PARDISO, which are standard iterative22

and direct sparse linear solvers.23

Keywords: water distribution systems, global gradient algorithm, steady-state, algebraic24

multigrid methods.25

INTRODUCTION26

The steady-state solution of the hydraulic state variables within a water distribution system27

(WDS) involves the solution of a system of nonlinear equations. Many different formulations28

of these equations exist utilizing either the link flows, the nodal heads, the loop flows, or29

combinations thereof, as the primary variables. A popular method used to solve the WDS30

equations is the Newton-based global gradient algorithm (GGA) (also known as the Todini31

and Pilati method) (Todini and Pilati 1988; Todini 2011). Given the nonlinearity of the32

system of equations, the Newton-based computation of the solution involves an iterative two-33

step process. The first step (termed the inner step) involves computing the state variable34

update, which requires the solution of a linear system derived from the Jacobian of the35

WDS equations. The second step (termed the outer step) involves updating estimates of36

the state variables. The inner step is typically the most computationally expensive process37

within the GGA. For large systems of a practical size, the size of the Jacobian can be38

on the order of 105, making the use of efficient linear solvers important for the inner step.39

The computational cost of the steady-state solution of large networks becomes particularly40

critical for computations involving repeated network evaluations, such as extended period41

simulations, or network design involving iterative optimization methods.42

An increasingly popular solver for large linear systems of the M-matrix class is the alge-43

braic multigrid (AMG) method (Stüben 2001a). This method uses a hierarchical approach to44

solve the linear systems. Within this hierarchical approach, a sequence of lower dimensional45

systems are constructed that, in some sense, approximate the original system. The solutions46

of these lower dimensional systems are used to refine an approximate solution to the original47

system, where only the smallest system requires a direct solution. In this way, AMG pro-48
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vides an extremely computationally efficient approach to large systems. Typical applications49

for AMG are the numerical solution of elliptic partial differential equations involving large50

computational grids, which can be found in ground water simulation, oil reservoir simulation51

or fluid dynamics (Stüben et al. 2003; Stüben 2001b).This paper studies the application of52

AMG to the solution of the linear system that arises in the inner step of the GGA.53

The structure of the paper is as follows. First, a brief background of WDS solution54

methods is given, the network equations are formulated, and the GGA is presented. Second,55

an overview of AMG is outlined. Third, issues pertaining to the application of AMG to the56

GGA are explored. In particular, the conditions under which the Jacobian in the GGA is57

an M-matrix, and hence suitable for solving using AMG, are demonstrated. Also within this58

section a new derivation for the Jacobian is presented which facilitates a physical network59

based interpretation of the AMG operations of coarse variable selection, and the construction60

of its hierarchy. Fourth, a detailed numerical study is presented where two variants of61

AMG are compared to the EPANET2 solver sparse Cholesky method with nodes reordering62

(SC+NR) (Rossman 2000), incomplete LU factorization (ILU) preconditioned conjugate63

gradient method, a popular sparse linear solver, and PARDISO, a fast and robust sparse64

direct linear solver. Finally, the conclusions are given.65

THE STEADY-STATE SOLUTION OF WATER DISTRIBUTION SYSTEMS66

Brief history of solution methods67

Since Cross’ seminal work (Cross 1936) on the solution of looped pipe networks through68

successive iterative corrections, many different solution methods have been proposed of which69

notable methods are: the first application of Newtons method to the solution of the pressure70

head form of the network equations (Martin and Peters 1963); the content minimisation71

model (Collins et al. 1978); the preconditioned Newton-Raphson method (Nielson 1989);72

and the famous global gradient method (Todini and Pilati 1988), which exploits a matrix73

block decomposition of the Newton-Raphson method. Notable recent work has focused74

on fundamental extensions to the steady-state network problem through the incorporation75
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of head driven demand (Wu et al. 2009); nonlinear programming methods for reliably76

modelling control devices (Deuerlein et al. 2009); the inclusion of the exact analytic form77

of the Jacobian (by including the derivative of the friction factor) to improve convergence78

(Simpson and Elhay 2011); and the development of a regularization technique to enable the79

application of the global gradient method to networks containing small or near zero flows80

(Elhay and Simpson 2011). The current paper considers the utilisation of AMG, within the81

context of the global gradient method, for the fast solution of the Newton update step as82

this step is, typically, the most computationally expensive step within the solution process.83

The WDS network equations84

A WDS is a network of pipeline elements interconnected at nodes. Within this work, only85

nodes of the form of junctions and reservoirs are used. Consider a network comprised of86

np pipes, nj variable-head nodes (junctions) and nr fixed-head nodes (reservoirs). Given87

that the pipelines contain fully pressurised flow, and the losses within junctions are taken88

as negligible, there are fundamentally three types of equations that govern the steady-state89

behavior of the hydraulic variables (pressure and flow) of a WDS. The first type of equation,90

the headloss equation, describes the steady-state pressure along a pipe as a function of the91

flow through the pipe. That is, for a flow of Qj in pipe j, the headloss ∆hj = huj − hdj92

(where huj is the upstream head, and hdj is the downstream head) is given by93

huj − hdj = Rj(Q) = rj |Qj|Qj (1)

where Rj is the hydraulic resistance function, and rj = rj(Qj) is the resistance coefficient94

which is given by rj = fj(8/π
2g)(Lj/D

5
j ) where g = gravity, Lj = pipe length, Dj = pipe95

diameter, and fj = Darcy-Weisbach friction factor, which is a function of the Reynolds96

number Re = |V |D/ν (ν is the kinematic viscosity and V is the average velocity) and the97

relative roughness ε/D (ε is the pipe wall roughness) (Streeter et al. 1997). The functional98

dependence of rj on Qj is through the friction factor fj.99
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The second network equation is associated with the lossless nature of a node, and it100

requires that all link ends connected to a common node share the same value of head. That101

is, the upstream and downstream heads of link j are related to the nodal heads at the102

variable-head nodes by103

huj = hi for all links j ∈ Λui, and hdj = hi for all links j ∈ Λdi (2)

where hi is the variable head at node i, Λui [Λdi] are the set of all links with their upstream104

[downstream] node being the variable-head node i = 1, . . . , nj, and to the nodal heads at the105

fixed-head nodes by106

huj = eli for all links j ∈ Λf
ui, and hdj = eli for all links j ∈ Λf

di (3)

where eli is the fixed elevation of reservoir i, Λf
ui [Λf

di] are the set of all links with their107

upstream [downstream] node being the reservoir i = 1, . . . , nr.108

The third type of network equation is associated with the mass conservation at the109

variable-head nodes, where, as there is no accumulation of mass within the node the net110

inflow of fluid is equal to the mass outflow. That is111

∑
j∈Λdi

Qj −
∑

j∈Λui

Qj = dmi (4)

where dmi is the nodal demand at node i = 1, . . . , nj.112

From (2)-(4), it can be observed that the complete state-space for the network is the113

vector of nodal heads h = [h1 · · ·hnj
]T and the vector of link flows q = [Q1 · · ·Qnp ]T . Given114

these state variables, a matrix representation of (1)-(4) is (Todini and Pilati 1988)115

 G −A1

−AT
1 0


 q

h

 =

 A2el

dm

 (5)
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where el = [el1 · · · elnr ]T , dm = [dm1 · · · dmnj
]T , G = G (q) is a diagonal np × np matrix116

function with diagonal elements [G]jj = rj|Qj|, and A1 (np × nj) and A2 (np × nf ) are117

topological matrices given by118

[A1]ji =


1 if j ∈ Λui

−1 if j ∈ Λdi

0 otherwise

, [A2]ji =


1 if j ∈ Λf

ui

−1 if j ∈ Λf
di

0 otherwise

(6)

where A1 is associated with the connectivity of the links to the variable-head nodes, and A2119

is associated with the connectivity of the links to the fixed-head nodes (note that for both120

matrices in (6), the first case corresponds to the upstream node of a link, the second case121

corresponds to the downstream node of a link, and the third case corresponds to any other122

node that a link is not incident to). The first matrix equation in (5) is nonlinear, of size np,123

and is associated with the link headlosses, and the second matrix equation in (5) is linear,124

of size np, and is associated with the nodal continuity.125

The Global Gradient Algorithm126

By applying a standard Newton’s method approach to solving (5), Todini and Pilati (1988)

derived the following sequence of iterates for solving the link flows and nodal heads

h[m+1] = V −1
[
AT

1 F−1
(
(G− F ) q[m] −A2el

)
− dm

]
, (7)

q[m+1] = q[m] + F−1A1h
[m+1] − F−1

(
Gq[m] −A2el

)
(8)

which requires an arbitrary initial point q[0] = q0 to commence the iterative solution process,

where matrix functions G, F (np × np), and V (nj × nj) are evaluated at q = q[m] with

F = diag

[
dR1

dQ1

· · · dRnp

dQnp

]
, (9)

V = AT
1 F−1A1. (10)
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The major component of the computational effort required for the GGA is associated127

with the inversion of the negative Jacobian Schur complement V in (7). This is due to the128

fact that G and F are diagonal matrices meaning that all other operations in (7) are simply129

matrix-vector multiplications. The matrix V is nj × nj and for some practical applications130

nj can be as large as nj ≈ 105 implying large computational times for computing (7). Rather131

than actually computing V −1, the approach adopted by most linear solvers for large systems132

is to solve directly for h in133

V h = b (11)

where b is the term in the square brackets on the right hand side of (7). The solution of (11)134

is referred to as the inner step of the GGA, as it arises from the linear inner step within the135

original Newton process. The efficient solution of (11) is the focus of this paper.136

THE ALGEBRAIC MULTIGRID METHOD137

In many current applications there is an increasing demand for more efficient methods to solve138

large sparse and unstructured linear systems of equations. For linear systems of problem sizes139

relevant in practice, classical one-level iterative methods (e.g. Gauss-Seidel) have reached140

their limits. Fortunately, state-of-the-art hierarchical algorithms, such as AMG, allow an141

efficient solution of even larger problems.142

The idea of hierarchical algorithms is to accelerate the convergence of the iterative so-143

lution of large sparse linear systems by creating a hierarchical process. From the original144

system Ax = b defined by the pair (A, b), a sequence of lower dimensional (or coarser)145

systems (A1, b1), . . . , (AN , bN) are constructed, and are used to iteratively approximate the146

solution for the original system. In this process, AMG only directly solves the coarsest level147

system (the lowest dimensional level N system) and the solutions to the finer level systems148

are incrementally approximated from this solution.149

The motivation for such methods arise from the inability of classical one-level iterative150

solvers to efficiently reduce the approximation error from iteration to iteration. Classical one-151
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level iterative solvers often experience a slow convergence as they cannot handle all error152

frequencies effectively (Trottenberg et al. 2001). To be more specific, the high frequency153

components within the errors are dealt with much faster than the low frequency components,154

so by introducing a hierarchy of coarser levels (also termed multi-grids), each error frequency155

can be handled efficiently at an appropriate level.156

In comparison to standard methods, AMG requires only O(N) computational time to157

solve the discretized system up to given precision, where N denotes the dimensionality of the158

system (Trottenberg et al. 2001). AMG can be implemented as a plug-in solver, provided159

that the underlying matrix satisfies certain properties. Theoretically, AMG is applicable to160

M-matrices only, but in practice AMG works for many positive definite matrices (Stüben161

2001b). Although the development of AMG goes back to the early eighties (Stüben 1983;162

Brandt et al. 1984), it still provides one of the most efficient, and notable robust, algebraic163

methods to solve elliptic problems (Stüben 2001a).164

AMG can be seen as a defect-correction method. Broadly speaking, given the problem165

of computing x from Ax = b, AMG starts with an approximate solution x̃ and constructs a166

sequence of lower dimensional (coarser) systems to correct the approximation. The coarser167

levels are defined by the triples (A1, b1, x̃1), . . . , (AN , bN , x̃N) where Al and bl are con-168

structed through the process of restriction, and x̃l is an approximate solution to Al∆xl = bl.169

Each consecutive system (l + 1) is associated with the error residual on the previous level170

l. At the coarsest level N , xN is solved directly from ANxN = bN . This solution is then171

used to compute the sequence of corrections ∆xN−1, . . . ,∆x1 from the coarse level N − 1172

to the finest level 1 through the process of interpolation, where the objective is to achieve a173

reduction in the error residual, namely ||Alxl−bl|| < ||Alx̃l−bl|| where xl = x̃l +∆xl. The174

computational advantage of this process is that only the coarsest system requires a direct175

solution, and the operations at all the other levels are simply matrix-vector multiplications.176

This process is referred to as a V-cycle as the restriction phase follows the downward arc177

reducing the dimensionality of the problem, and the interpolation phase follows the upward178
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arc using the information gained at the coarser level systems to refine the solution for the179

higher dimensional systems. A number of V-cycles may be performed within any AMG180

solution process until an adequately small residual ||Ax − b|| is achieved. This process181

is discussed in greater depth below, but firstly some important preliminary concepts are182

outlined.183

Preliminary Concepts184

Coarse variable selection185

The construction of each coarser level system within AMG involves the selection of the186

variables to be carried over. In other words, in each step l, the variable set N is partitioned187

into the coarse variables Nc and the fine variables Nf . This process is termed C/F-splitting188

(Stüben 2001b). For the next step (step l + 1), the coarse level set Nc becomes the new189

variable set N , and the process is continued.190

The selection of the Nc variables from the variable set N is based entirely on the terms of191

the system matrix within the current step Al. The splitting process utilizes strong negative192

couplings (n-couplings) between variables, where variable i is considered strongly n-coupled193

to variable j if the term −ai,j is large with respect to the other terms within the i−th row.194

The reason why strong n-couplings are important is that they indicate high correlations195

between variables within the solution process.196

The objective in the C/F-splitting (to obtain Nc) is to select a minimally sized set of197

variables that is maximally n-coupled to all the variables in Nf . A variable set Nc defined198

as such can be understood as the smallest set of variables that is most representative of the199

entire variable set N . There exist many different algorithms to undertake the C/F-splitting,200

and the interested reader is referred to (Stüben 2001b).201

The restriction and interpolation operators202

The operations of restriction and interpolation are used to transfer information between203

consecutive levels within the AMG hierarchy. These operators are dependent on the C/F-204

splitting at each level. Consider the consecutive systems (Al, bl, x̃l) and (Al+1, bl+1, x̃l+1) as205
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defined previously. The interactions between these levels consist of (i) the construction of the206

coarser l + 1-th level system from the restriction of the finer l-th level system (the downward207

arc of the V-cycle), and (ii) the improvement of the l-th level solution from the interpolation208

of the l + 1-th level solution (the upward arc of the V-cycle). To explain this further, it is209

more instructive to consider interpolation. Given an initial approximate solution to the l-th210

level system x̃l, an improvement to this approximation is obtained from the l-th level as211

x̃l ← x̃l + ∆xl where212

∆xl = P lx̃l+1 (12)

where x̃l+1 is the solution to the (l + 1)-th level system and P l is the n × nc interpolation213

matrix where n is the number of l-th level variables N and nc is the number of coarse level214

variables Nc (i.e. the (l+1)-th level variables). So from (12) it is seen that the interpolation215

operator serves to interpolate the correction to the higher dimensional (finer level) solution216

from the lower dimensional (coarser level) solution. Ordering ∆xl so that the nc coarser217

level variables are at the top of the vector, P l can be partitioned as218

P l =

 I

W

 (13)

where I is the nc × nc identity matrix, and W is a nf × nc weighting matrix possessing the219

interpolation coefficients used to compute the nf finer level variables Nf form the coarser220

level variables Nc. Different methods exist for constructing the weighting matrix W , and221

the interested reader is referred to (Stüben 2001b).222

In contrast to the interpolation operator, the restriction operator Rl is an nc× n matrix223

that is used to construct the coarser level terms Al+1 and bl+1 from the finer l-level terms.224

Typically, Galerkin’s principle is used, that is Rl = P T
l . The nature of this construction is225

discussed later, but it is summarized in the AMG algorithm in Figure 1.226
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Smoothing227

Geometrically speaking, an error e = x − x̃ can be displayed as a linear combination of228

different (error) frequencies. The nature of classical one level iterative solvers like Gauss229

Seidel or Jacobi is that the high error frequencies vanish after a few iterations where as230

the low error frequencies need many iterations to vanish. AMG accelerates this process of231

broadband error reduction through its hierarchy of coarser level systems. That is, through232

the restriction process, the low frequency errors at level l become the high frequency errors233

at the coarser level l + 1. Therefore, applying a few iterations of a one level iterative solver234

at each level resolves a broad band of error frequencies. This process of applying a few235

iterations of classical one level iterative solvers in the context of AMG methods is called236

smoothing, due to the fact that the high error frequencies are smoothed out.237

Mathematically, given the system (A, b, x̃) as defined above, the smoothing of a candidate238

solution x̃ is given by239

x = S1Ax̃ + S2b (14)

where x is the smoothed candidate solution, and S1 and S2 are real matrices, whose form240

depends on the type of the underlying one level iterative solver implemented (Saad 2003).241

The AMG Algorithm242

The details of the AMG algorithm as outlined in Figure 1 are now discussed. The input to the243

algorithm is the triple (A, b, x̃initial), where the objective is to determine a new approximation244

x̃ such that ‖b − Ax̃final‖ < ε where ε is the desired accuracy. The first phase (Figure245

1, lines 2-7) is the setup phase, which involves the construction of all operators at each246

level. Based on the current matrix Al and the C/F-splitting, the smoother, restriction, and247

interpolation operators are constructed (Figure 1, lines 3 and 4). The coarser stage Al+1248

is then constructed according to the equation on line 5 in Figure 1. These steps are then249

repeated until the dimension of Al is sufficiently small so as to solve the system directly250

(Figure 1, line 17). Typically, the coarsest level matrix lies in the range O(102) to O(103)251
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variables.252

After setting up all the required components, the solution phase starts (Figure 1, lines253

9-23) where a new approximation xk
1 to the system Axk

1 = b is computed within each k-th V-254

cycle (Figure 1, lines 11-22). The V-cycles are applied until the desired accuracy is reached.255

The first loop in the solution phase (Figure 1, lines 11-16) represents the downward arc of256

an AMG V-cycle. In this loop, smoothing is applied to the candidate solution (Figure 1,257

line 12), after which the new defect b̃l is computed (line 13). The smooth defect is restricted258

to the coarser grid (Figure 1, line 14). On the coarser grid, the correction equation is to be259

solved with a zero first guess (Figure 1, line 15). This process is iterated until the coarsest260

level l = N is reached.261

On the coarsest level the exact solution to the correction equation is computed via a262

direct solver (Figure 1, line 17).263

Once the coarsest system is solved, the second loop (the interpolation phase) is performed264

(Figure 1, lines 19-23) which represents the upward arc of the V-cycle. The finer level265

correction is interpolated from the solution at the coarser level (Figure 1, line 19), which is266

used to update the candidate solution (line 20), which is then smoothed to remove the high267

frequency error components (Figure 1, line 21). This process is continued up until the finest268

level l = 1 is reached.269

The entire solution phase loop (Figure 1, lines 9-23) is continued until an approximation270

x̃k
l fulfils ‖b −Axk

1‖ < ε. Once the termination criteria on line 9 is reached, the final k-th271

cycle approximation is returned as x̃final (Figure 1, line 24).272

Accelerators for the AMG process273

A well known approach to accelerate AMG (as well as one-level iterative solvers) is to use274

them as preconditioners for Krylov methods such as the conjugate gradient (CG) method275

(see e.g. Saad (2003)). Krylov methods are well known to accelerate iterative solvers in the276

case that the convergence of the solver is impeded due to eigenvalues that are not clustered277

within the circle including the majority of the systems eigenvalues. The resulting convergence278
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of the overall preconditioned Krylov method is usually far better than the convergence of279

the stand-alone accelerators, multigrid methods or one-level iterative solvers.280

THE APPLICATION OF AMG TO THE WDS SOLUTION281

As discussed previously, the focus of this paper is the employment of AMG for the fast282

solution of the inner step (11) within the GGA. The importance of the fast solution of this283

step is that it represents the majority of the computational expense in the GGA. From a284

theoretical point of view, AMG is only guaranteed to converge for Stieltjes (a sub-class of285

M-matrices) matrices. Therefore, before employing AMG to solve (11), it is demonstrated286

that V is Stieltjes matrix.287

This section discusses the issues associated with applying AMG to the solution of (11).288

First it is demonstrated that the V matrix from (10) is a Stieltjes matrix, and this is shown289

to hold for all cases where the friction factor models are consistent with the Colebrook-White290

formula. Second, a physical interpretation of the hierarchical AMG process is presented, and291

examples given.292

Suitability of AMG for the Global Gradient Algorithm293

Many of the theorems pertaining to the effectiveness of AMG have been so far proven only294

for systems involving Stieltjes matrices (Stüben 2001a) (however, in practice, this restriction295

can generally be relaxed to systems involving positive definite matrices). Todini and Pilati296

(1988) asserted that the V from (10) is a Stieltjes matrix, which is a symmetric sub-class297

of the M-matrix class of matrices. The implication of this is that AMG is ideally suited298

solving systems involving matrices of the form of V . This statement was first proved by299

Piller (1995). An alternative theorem is offered below, where the conditions under which it300

holds are made explicitly dependent on the friction factor f and Reynolds number Re.301

Theorem 1: The matrix V as defined in (10) is a Stieltjes matrix under the condition that302

the friction factor f and Reynolds number Re satisfy the inequality303

f

Re

+
1

2

df

dRe

> 0 (15)
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for every pipe within the network.304

A proof for this theorem is given in Appendix I. The condition (15) can be seen to hold305

for the case of laminar flow (where f = 64/Re) and the case of fully rough turbulent flow306

(where df/dRe = 0). However, given the myriad formulate for the transitional and turbulent307

regions, this condition cannot be demonstrated to uniformly hold, but must be considered on308

a model-by-model basis. An important friction factor model is the Colebrook-White formula309

which is widely considered as the defining formula of f for transitional and turbulent flows310

with Re ≥ 4000, and is given by the implicit equation311

1√
f

= −2 log10 θ, θ =
ε

3.7D
+

2.51

Re

√
f
. (16)

The following theorem demonstrates that (16) satisfies condition (15).312

Theorem 2: For Re ≥ 4000, the Colebrook-White formula (16) for calculating f satisfies313

the Stieltjes condition (15).314

A proof of this theorem is given in Appendix II. The importance of the Colebrook-White315

formula satisfying (15) is that most explicit models for computing f , within the transitional316

and turbulent region, are approximated from (16). Therefore, if they approximate (16) with317

sufficient accuracy, they too will satisfy the requirement guaranteeing that the V matrix318

will be of a Stieltjes type. An important example is the Swamee-Jain formula for the Darcy-319

Weisbach friction factor (Swamee and Jain 1976). It is not included here, but it can be320

demonstrated that the Swamee-Jain formula satisfies (15).321

In conclusion, given Theorems 1 and 2, V from (10) is a Stieltjes matrix, which is322

consistent with the findings of (Piller 1995). Hence, AMG is guaranteed to converge if323

applied to (11).324

Physical interpretation of the AMG process325

An interpretation of the AMG process, based on the physical meaning of the V matrix,326

is outlined below. Firstly a reinterpretation of the V matrix is given, where it is seen to327
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be a first order approximation to the networks admittance matrix. This is followed by a328

discussion of the AMG operations of coarsening and restriction where an example is given.329

Interpretation of the V matrix330

Within the GGA, the V matrix arises as the negative of the Schur complement to the331

Jacobian of the full nonlinear system of network equations (5) (Simpson and Elhay 2011;332

Elhay and Simpson 2011). However, this matrix can also be derived by an alternative means,333

which provides a physically based interpretation of the matrix. This derivation is outlined334

below.335

For any pipe, the hydraulic admittance function is defined as the nonlinear map Y = R−1
336

whereR is the resistance function defined in (1) and the inverse refers the inverse map. Being337

the inverse to the hydraulic resistance, this map defines the steady-state flow rate through a338

pipe that is admitted from a given pressure difference across a pipe, that is Q = Y(∆h). For339

a network, the vector of link pressure drops is given by A1h + A2el, yielding the following340

expression for the network link flow rates341

q = Y (A1h + A2el)

where Y = diag [Y1 · · · Ynl
] (note that each Yj is a nonlinear function of the headloss across342

the pipe, that is Yj = Yj(hi − hk) where hi and hk are the upstream and downstream nodes343

of link j, respectively). Applying the network nodal mass conservation law (4), the nodal344

demands are obtained as345

−dm (h) = AT
1 Y (A1h + A2el) (17)

where the dependence of the nodal demands dm on the nodal pressures is made explicit for346

the purposes of the following discussion. The map AT
1 Y in (17) holds the interpretation as347

the nonlinear network hydraulic admittance map as it maps from the network nodal pressures348
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to the network nodal demands. Taking a Taylor series approximation of (17) about h0 yields349

−dm (h0 + ∆h) = AT
1 Y + AT

1 Y (1)A1∆h +
1

2
AT

1 Y (2) [A1∆h] ◦ [A1∆h] + · · · (18)

where Y (n) = diag
[
Y(n)

1 · · · Y(n)
nl

]
is a diagonal matrix of the n-th derivatives of the ad-350

mittance functions, and ◦ denotes the Hadamard product, where all Y , Y (1), and Y (2) are351

evaluated at A1h0 + A2el. Under the assumption of nonzero first order derivatives, the352

following reciprocity principal holds353

Y(1)
j =

dYj

d∆h
=

(
dRj

dQ

)−1

= F−1
jj

which means that F−1 = Y (1), which, in comparison to V from (10) in the GGA, leads to354

the recognition that355

V = AT
1 Y (1)A1, (19)

that is, V is actually the first order term of a Taylor series expansion (18). The physical356

interpretation of this is that the matrix V is, in fact, a first order approximation to the357

network hydraulic admittance map. That is, the (i, j) element of V is an admittance scaling358

coefficient indicating the contribution that the pressure at node j makes to the demand at359

node i. This issue was explored also in Piller (1995).360

Network admittance matrices of a similar form to (19) are found in many other engineer-361

ing disciplines for other systems, examples of which are node-based descriptions of electrical362

circuit dynamics (Chen 1983), and Laplace-domain representations of transient-state fluid363

line networks (Zecchin et al. 2009). Indeed, the connection between these networks is their364

adherence to the Kirchoff network laws that govern the interactions at the nodal points, and365

relate the link-based relationships to properties held by the wider network.366
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Interpretation of the coarse variable selection process367

A cycle of AMG involves partitioning the variable set into coarse and fine level variables.368

Coarse level variables are carried over into the construction of the restricted system. Fine369

level variables only exist in the non-restricted system. Partitioning of the nodal set N is370

dependent on the relative value of the elements of V . The approximate aim of this is to371

determine a minimal subset of nodes Nc ⊂ N such that they are maximally connected to the372

remaining finer level variables Nf = N /Nc. In this way, the coarse variables Nc are in some373

sense the smallest set of variables with which to interpolate the set of finer level variables374

Nf .375

Within the AMG framework, variable k is considered strongly connected (or n-coupled)376

to variable i if the (i, j) entry within the matrix V is of a relatively large magnitude. Given377

the interpretation of V as outlined in the previous section, k is strongly connected to i if378

the derivative of the admittance value Y(1)
j is large for link j connecting node i to node k.379

High values of Y(1)
j correspond to pipes for which a small change in the pressure difference380

hi − hk induces a large change in the flow rate. Such pipes possess small frictional energy381

losses (i.e. large diameter, small roughness, low flow pipes). Therefore, two nodes i and k382

are considered strongly connected if the headloss between them is small, that is, if the nodal383

heads at either end of the pipe are close in value.384

An illustrative example of the selected coarse level nodes for a small 35-pipe/20-node385

network is depicted in Figure 2(a), where the coarse level nodes are indicated by larger bold386

circles (the network parametric details are given in Zecchin (2010)). For this example, the387

standard coarsening algorithm was used, for which the interested reader is referred to (Stüben388

2001a). Of the 19 variable head nodes within the network, the C/F splitting resulted in the389

five coarse level nodes Nc = {2, 5, 8, 11, 15, 20}. From this diagram, it is clear that all the 14390

fine level nodes are connected to at least one coarse level node, and that no new coarse level391

node can be defined without introducing connections between coarse level nodes.392
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Interpretation of the restriction/interpolation process393

The dual restriction and interpolation processes are the backbone of AMG. Restriction pro-394

vides a way of constructing a smaller dimensional system V 1 that is, in some sense, approx-395

imately representative of the original higher dimensional system V . Interpolation provides396

a way of mapping from the solution of the restricted (smaller dimensional) system to a cor-397

rection for a candidate solution of the higher dimensional system. This section explores the398

structure of a single step restricted system V 1 and its topological relationship to the original399

system V .400

Consider a network with node set N and link set Λ. Partitioning N into coarse level401

nodesNc and fine level nodesNf leads to a corresponding partitioning of Λ into three disjoint402

subsets: Λcc the set of links connecting the coarse level nodes; Λcf the set of links connecting403

the coarse level to the fine level nodes; and Λff the set of links connecting the fine level nodes404

(an example of this, discussed later, is depicted in Figure 2). Ordering the links according405

to these sets, the incidence matrix can be partitioned as406

A1 =


Acc 0

Acf Afc

0 Aff

 ,

where Acc is the incidence matrix associated with the coarse level nodes and the Λcc links,407

Acf is associated with the coarse level nodes and the Λcf links, Afc is associated with the408

fine level nodes and the Λcf links, and Aff is associated with the fine level nodes and the409

Λff links. Similarly, the Y matrix can be partitioned as410

Y =


Ycc 0 0

0 Ycf 0

0 0 Yff


where Ycc, Ycf , and Yff are the matrices of link admittance functions for the Λcc, Λcf , and411
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Λff links respectively. Multiplying these block matrix representations leads to the following412

expression of V413

V =

 V cc V cf

V fc V ff


where V xy holds the interpretation of the first order admittance map from the Ny nodal414

pressures to the Nx nodal demands, where these matrices are given by V cc = AT
ccY (1)

cc Acc +415

AT
cfY

(1)
cf Acf , V cf = AT

cfY
(1)
cf Afc, V ff = AT

ffY
(1)
ff Aff + AT

fcY
(1)
cf Afc, and V fc = V T

cf .416

For such an ordering of the coarse and fine level variables, the restriction operator can be417

partitioned as R =
(
I W T

)
where I is an nc×nc identity matrix, and W is a nc×nf matrix418

of the interpolating weights. The single step restricted system, given by V 1 = RV RT , can419

be expressed as V 1 = V cc + V (1) + V (2) where420

V (1) = W T V fc + V cfW , V (2) = W T V ffW (20)

The matrix V (1) introduces terms in V 1 that are associated with coarse level variables that421

are coincidently connected to the same finer level nodes. That is element (i, j) in V (1)422

possesses a nonzero term if coarse level nodes i and j are connected to the same fine level423

nodes. The matrix V (2) introduces terms in V 1 that are associated with connections between424

finer level nodes. That is, element (i, j) in V (2) possesses a nonzero term if any of the fine425

level nodes connected to coarse level node i are connected to any of the fine level nodes426

connected to coarse level node j.427

To explain this further, expanding out the terms in (20) leads to the realization that the428

interpolation matrix W appears as a post multiplier to the incidence matrices, that is it429

features as AfyW where y = f or c. The post multiplication of the incidence matrix by430

W acts to compresses the columns of Afy from the nf columns (each associated with a fine431

level variable) to nc columns (each associated with a coarse level variable). In this way, the432

column associated with the i-th fine level variable is distributed amongst the nc coarse level433
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variable columns according to the interpolation weights from the interpolation matrix. As a434

result, the columns of AfyW are a weighted sum of the columns of Afy, that is435

[AfyW ]•,i =

nf∑
k=1

wk,i [Afy]•,k ,

where wk,i is the interpolation weight of the i-th coarse level variable for the k-th fine level436

variable.437

From this representation of the restricted system, it is seen that the restriction operation438

serves to create an admittance matrix for a new network that is actually the superposition of439

three separate networks: (i) the links from the original network connecting the coarse level440

nodes; (ii) links involving connections between coarse level nodes coincidently connected to441

the same finer level nodes; and (iii) links based on connections between fine level nodes.442

An example of the link sets Λcc, Λcf and Λff and the associated networks is given in443

Figure 2. The links in Λcf are depicted as bold lines and the links in Λff as dashed lines.444

For this network, an interesting outcome is that Λcc = ∅, meaning that V cc contains only the445

diagonal terms corresponding to the Λcf links. This outcome results from the coarse node446

selection, where the objective of this process is to partition the node set N into disjoint sets447

Nc and Nf , where Nc is a the minimum set that is maximally connected to Nf . A byproduct448

of this process is that the nodes in Nc are typically not connected to each other.449

Given the coarse node partitioning in Figure 2(a), the topology of the coarse level net-450

works associated with the admittance-type matrices V (1) and V (2) are given in Figures 2(b)451

and 2(c), respectively, where the new links from Λcf and Λff connecting the Nc variables452

are listed on the links. The resultant coarse level network associated with V 1 is simply the453

superposition of these two networks.454

NUMERICAL STUDY455

An extensive series of numerical experiments was undertaken in order to test the utility of456

AMG for the fast solution of the linear inner step of the GGA (i.e. the solution of (11)).457
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These experiments involved the comparison of the computational time required by two AMG458

variants against ILU (a standard iterative solver for sparse linear systems of large size),459

PARDISO (a fast and robust direct sparse linear solver) and the direct Cholesky solver from460

EPANET2. For these experiments, the performance of these algorithms in solving systems461

with V matrices from 10 Newton iterations of 10,000 randomly generated networks were462

analysed. The network sizes ranged from 103 up to 105.75 nodes, and 103.5 to 106.4 links.463

Preliminaries464

Linear solver algorithms465

For the purposes of comparison, two AMG variants where tested, namely (i) standard AMG,466

and (ii) AMG preconditioned conjugate gradient (AMG+CG). These variants were com-467

pared to the EPANET2 solver SC+NR, another standard sparse linear solver ILU precon-468

ditioned conjugate gradient method (ILU+CG), and PARDISO, all of which are outlined469

below.470

1. AMG. The variable-based algebraic multi-grid (VAMG) variant (Stüben 2001b) was471

used in the numerical experiments with standard coarsening and interpolation opera-472

tors, Gauss-Seidel relaxation for smoothing, and a sparse Gauss-Seidel solver to solve473

the coarsest level system.474

2. AMG+CG. This method involved the VAMG, as described above, as a preconditioner475

for the CG method.476

3. SC+NR. This method is adopted by the commonly used hydraulic simulation software477

EPANET2 (Rossman 2000). It involves a node reordering process coupled with a478

sparse Cholesky solver. The routines from EPANET2 were directly imported and479

included as a dynamically linked library to our software.480

4. ILU+CG. This method involved the use of ILU as a preconditioner for the CG481

method. ILU is the incomplete LU factorization method for iteratively solving linear482

systems, where a detailed description can be found in Saad (2003).483
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5. PARDISO. A widely recommended fast and reliable direct solver (Gould et al. 2007),484

PARDISO adopts a combination of Level 3 BLAS supernode techniques, with a LU ,485

LDL or a LLT factorization (Schenk et al. 1999). PARDISO is included in the Intel486

Math Kernal Library.487

Algorithms AMG, AMG+CG, and ILU+CG are contained in the linear solver library488

SAMG provided by The Fraunhofer Institute for Algorithms and Scientific Computing489

(SCAI), Germany.490

Outline of Experiments491

For the experiments, 10,000 networks were analyzed, involving 100 different network con-492

figurations at 100 different network sizes with between O (102.7) to O (105.75) nodes. The493

networks were randomly generated within a rectangular grid pattern consisting of nx × ny494

nodes, where 1% of nodes were randomly selected to be reservoirs. The grids were constructed495

by first randomly selecting nx, and then calculating ny based on achieving an overall net-496

work size. The network parameters of each reservoir and pipe were independently sampled497

from uniform distributions as follows: reservoir elevations ∼ U [120, 140] m; nodal demands498

∼ U [0, 10] L/s; pipe lengths ∼ U [100, 1100] m; pipe diameters ∼ U [100, 300] mm (where499

x ∼ U [a, b] symbolizes a random variable x uniformly distributed on the interval [a, b]). All500

pipe roughness heights were set to 0.3 mm.501

The convergence condition for the different iterative linear solvers was based on the502

l2 norm of the residual ||b − V h||2. The numerical experiments were conducted for two503

different tolerance values of this norm, namely ||b−V h||2 = 10−2 simulating a low accuracy504

convergence criteria, and ||b−V h||2 = 10−6 simulating a higher accuracy convergence criteria505

(typical of many applications).506

For each of the 104 networks, exactly 10 Newton iterations were performed, meaning a507

total of 105 different V matrices were tested. As the analysis within this paper is focused on508

the inner linear iterations involving equations of the form (11), it was not necessary to reach509

22 Zecchin et al.



convergence with the outer Newton iterations. Due to the additional overhead associated510

with the node reordering routines in SC+NR as adopted from EPANET2, this procedure511

was only performed once within the first Newton iteration, and the reordering structure was512

retained and reused for the consequent Newton iterations for each network. Consequently,513

the results presented for SC+NR distribute the total setup time of the reordering routines514

equally over the 10 iterations. The numerical experiments were performed on a 64-bit 2.6515

GHz Linux machine, where the procstat routine was used to determine the CPU time for516

each computation.517

Results and Discussion518

The results of the numerical experiments are summarized in Figures 3, 4, and 5. Figure 3519

presents statistics of the computational times, where the subfigure rows (1) and (2) corre-520

spond to the experiments for the tolerances 10−2 and 10−6, respectively, and the subfigures521

(a, 1 and 2), (b, 1 and 2), (c, 1 and 2), (d) and (e) correspond to the algorithms AMG,522

AMG+CG, ILU+CG, PARDISO and SC+NR respectively. Within these plots, the upper523

and lower dotted lines correspond to the maximum and minimum computational times re-524

quired within a network group of the same node size (within each group, 1000 different525

V were used), and the bolded line corresponds to the mean computational time. For the526

smaller network sizes, the individual computational times were occasionally too small to be527

measured by the procstat routine, hence the minimum is not observed here. In a similar528

organization to Figure 3, Figure 4 gives the median of the number of cycles of each of the529

iterative algorithms, where a cycle is defined as a single iteration of the algorithm.530

Figure 5 gives a direct comparison between the average computational times for the AMG531

variants, ILU+CG, PARDISO and SC+NR in both logarithmic and linear computational532

time. The averaged computational times for each algorithm are computed by first averaging533

the computational times for each set of networks with equivalent nodal sizes, and secondly534

applying an 11-point smoother to the averages of the network nodal groupings smoother to535

the resultant data series.536
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As observed in Figure 3, the general trend for AMG, AMG+CG, and PARDISO is that537

the mean is relatively close to both the minimum and maximum times, indicating that the538

computational times were in a relatively small band about the mean (with the exception of539

isolated cases for smaller networks for the pure AMG). ILU+CG demonstrated a greater540

variability in the computational times than most other algorithms. Similarly, SC+NR also541

exhibited a larger variability in computational times, with a significant skewness towards the542

longer times. It is clear from Figure 3 that the computational time for SC+NR increased543

at a significantly greater rate than all other algorithms for an increasing network size. As544

such, the simulations for SC+NR were only undertaken up to a network size of 104.3 nodes.545

In considering the iterative solvers, decreasing the tolerance from 10−2 to 10−6 resulted in546

a significant increase in the computational time for ILU+CG in comparison to AMG and547

AMG+CG.548

To further explore the performance of the iterative solvers, the number of computational549

cycles used by each iterative solver is given in Figure 4. This figure demonstrates the linear550

complexity of the AMG variants investigated. Clearly, the number of iterations does not rise551

considerably despite the increasing sizes of the linear systems. However, the AMG (without552

CG acceleration) demonstrated a slightly less stable behaviour than the AMG+CG, since553

the cycle number fluctuated for different linear systems. In contrast, the ILU+CG method,554

demonstrated a typical performance for these kind of problems, namely, the number of it-555

erations was heavily dependent on the size of the linear system. By implication, ILU+CG’s556

behavior strongly suggests not only a dependence on the network size but also a dependence557

on the specific matrix entries, due to the high bandwidth between maximum and minimum558

computational times. That is, ILU+CG demonstrated an unpredictable and unstable be-559

havior. SC+NR’s computational times also show a high bandwidth between maximum and560

minimum computational times which is caused by different sparsity patterns within the V561

matrix.562

For some smaller network sizes, AMG experienced large computational times, due to563
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the different network properties. Specifically, in a few cases, no hierarchy was created due564

the fact that the system matrix was strongly diagonal dominant and small in size. If no565

hierarchy is created the resulting method is an ordinary Gauss-Seidel iterative solver. As566

no acceleration was used within the AMG, this resulted in long runtimes. This behaviour,567

indicates that AMG+CG is the most stable method considered as it exhibited stable and568

consistently low computational statistics for each network.569

Considering the low accuracy convergence criteria (convergence tolerance of 10−2), no570

significant difference was observed between the iterative algorithms average performance571

as observed in Figures 5(a) and (c), with ILU+CG performing just moderately faster. In572

comparison, PARDISO’s and SC+NR’s computational times were more than 4 times longer573

than the iterative solvers. This is to be expected as both methods are direct solvers which574

are not controlled by a convergence tolerance. Additionally, an important point to note is575

that, being a direct solver, PARDISO and SC+NR typically used between 1.5 to three times576

the memory of the iterative solvers. From these plots it is also clear that the computational577

performance of SC+NR significantly deteriorated for networks greater than 104 nodes in578

size. For the larger networks simulated by SC+NR (104 to 104.3 nodes), AMG+CG was579

approximately 25 times faster than SC+NR, the reason being the nonlinear complexity of580

the reordering and fill-in of SC+NR.581

To further understand the unexpected results of SC+NR, Figure 6 shows the computa-582

tional statistics (minimum, mean and maximum computational times) divided into the time583

used by the sparse Cholesky (SC) solver, and the time used by the node reordering (NR)584

routines. It is observed that for network sizes with nj < 500 there is no significant variation585

in either the SC or NR components, with both components having significantly low com-586

putational times. As nj is increased, the SC component experiences a gradual increase in587

computational time. In contrast, the NR experiences a significant increase in computational588

time, such that at nj ≈ 103.3, the computational time increased over an order of magnitude,589

and over three orders of magnitude for nj ≈ 104. Therefore, for larger networks, the vast590
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majority of the time required by SC+NR is attributed to the the NR routines.591

For the high accuracy convergence criteria (convergence tolerance of 10−6), an entirely592

different relative behavior of the algorithms is observed. The increased computational time593

cost for the increase in accuracy is large for ILU+CG (approximately a 500% increase in594

computational time), and for all networks ILU+CG was slower than PARDISO. Despite595

of the longer computational times for the iterative solvers SC+NR still is far slower than596

the other methods. By comparison, the increase in computational time for an increase in597

accuracy for AMG+CG was relatively small (only an approximately 60% increase). The598

computational time of AMG+CG was similar to that of PARDISO for the small networks599

(i.e. nj ≈ 500). However, for the larger networks, AMG+CG achieved speeds of over three600

times faster than PARDISO for the larger network sizes (i.e. nj > 104.7). The increasing601

computational efficiency of AMG for the large network sizes is consistent with the property602

of AMG approaching a linear complexity for large problem sizes in comparison to non-linear603

complexity of the other algorithms. The AMG+CG was consistently just marginally faster604

than the purely AMG, hence it is not depicted in Figure 5.605

CONCLUSIONS606

This paper explores the application of the algebraic multigrid (AMG) method to the fast607

computation of the linear step within the global gradient algorithm (GGA) (also known608

as the Todini and Pilati method), for the solution of the steady-state behaviour of water609

distribution systems. The linear system in the GGA was demonstrated to be of a Stielt-610

jes’ type, meaning that it is ideal for the application of AMG. Extensive numerical studies611

demonstrated that, for an accurate convergence criteria, the AMG performed consistently612

faster than the conjugate gradient preconditioned incomplete LU factorization (a commonly613

used sparse linear solver) and PARDISO (a fast direct sparse linear solver). It was ob-614

served that the relative computational speed of AMG was up to three times that of the615

other algorithms for larger networks with more than 104.7 nodes. Additionally, AMG was616

also compared to the sparse Cholesky method with nodes reordering (SC+NR), the solver617
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adopted within EPANET2. For systems with more than 104 nodes, AMG was observed to618

be approximately 25 times faster than SC+NR (the main computational cost of SC+NR was619

observed to be attributed to the node reordering routines). Such computational savings have620

important implications for not only large networks, but for computations involving repeated621

network evaluations, such as extended period simulations, or network design optimization.622

In summary, for large networks the authors suggest the use of AMG in combination with the623

conjugate gradient method (termed AMG preconditioned conjugate gradient (AMG+CG))624

as it combines a stable performance together with low computational times.625
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APPENDIX I. PROOF OF THEOREM 1696

A Stieltjes matrix is defined as a real symmetric positive definite matrix with non-positive697

off-diagonal entries. The proof of the theorem requires the demonstration of V holding698

these properties under the assumption that (15) holds. To demonstrate this, consider the699

elementwise expression of V700

[V ]ik =



∑
j∈Λi

F−1
jj if k = i

−F−1
jj if link j connects nodes i and k

0 otherwise

(21)

where Λi = Λui ∪ Λdi. The matrix V is clearly symmetric, and its off-diagonal entries are701

non-positive under the condition that all Fjj are positive. Additionally, this condition was702

also required in Piller (1995) for the proof of the positive definiteness of V . Consequently,703

V is Stieltjes if all Fjj are positive. The differential chain rule applied to (1) leads to704

Fjj =
dRj

dQj

=
16

π2g

Lj

D5
j

|Qj|
Re

[
Refj +

R
2
e

2

dfj

dRe

]
.

Recognising that the term outside the parenthesis is unconditionally positive, the require-705

ment of Fjj > 0 reduces to the condition (15). �706
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APPENDIX II. PROOF OF THEOREM 2707

Theorem 2 is demonstrated to hold by determining a lower bound on df/dRe. From the708

Colebrook-White formula (16), the gradient of the friction factor can be determined as709

df

dRe

=
f

Re

1

log θ

[
1 +

√
f

(
1

log 10
+
Re

5.02

ε/D

3.7

)]−1

. (22)

It holds that the term in the square brackets has a lower bound of 1 implying that710

df

dRe

>
f

Re

1

log θ
.

This inequality leads to the requirement that log−1 θ > −2 for the satisfaction of (15), which711

implies the upper bound on θ of θ < 1/
√
e where e is Eulers coefficient. As 0 ≤ ε/D < 0.5,712

this is satisfied for all Re ≥ 4000. �713
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FIG. 1. Algorithm outline for the algebraic multi-grid method for solving Ax = b.

Require: System parameters A, and b, and current approximation x̃initial

1: Set initial variables: A1 = A; b1 = b; and x̃0
1 = x̃initial, level l = 1

2: while dim Al is large do {setup-phase}
3: Construct the level l smoothing operator: Sl = smoother(Al)
4: Construct the level l restriction Rl and interpolation P l operators:

Rl = restriction(Al); and P l = interpolation(Al)
5: Set coarser level matrix: Al+1 = RlAlP l

6: l← l + 1
7: end while
8: N = l; k = 0
9: while ‖b−Axk

1‖ > ε do {solution-phase}
10: k ← k + 1
11: for l = 1 to N − 1 do
12: Smooth candidate solution: x̃k

l ← Sl(x̃
k
l , bl)

13: Compute the defect: b̃l = bl −Alx
k
l

14: Restrict the defect to determine coarser level corrections: bl+1 = Rlb̃l

15: set coarse level approximation: x̃k
l+1 = 0

16: end for
17: Solve the coarsest system: x̃k

N = solve(AN , bN)
18: for l = N − 1 to 1 do
19: Interpolate to determine finer level corrections: ∆xk

l = P lx̃
k
l+1

20: Update finer level variable: x̃k
l ← x̃k

l + ∆xk
l

21: Smooth candidate solution: x̃k
l = Sl(x̃

k
l , bl)

22: end for
23: end while
24: return Approximate solution: x̃final = x̃k

1

1
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FIG. 2. Example of the topological interpretation of the AMG restriction operation.
Subfigure (a) shows the original 35-pipe network where: larger nodes correspond to the
coarse level nodes in node set Nc and the smaller nodes to the fine level nodes in node
set Nf ; the bold links correspond to links within the Λcf link set; and the dashed links
correspond to links within the Λff link set. Subfigure (b) represents the coarse level
network associated with matrix V (1) comprised of nodes Nc and links Λcf . Subfigure
(c) represents the coarse level network associated with matrix V (2) comprised of nodes
Nc and links Λff .
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FIG. 3. Summary of computational times for numerical experiments. The lines corre-
spond to the maximum (upper · · · ), the sample mean (−) and the minimum (lower
· · · ) of the network nodal groupings. The plots correspond to (a) AMG, (b) AMG+CG,
(c) ILU+CG, (d) PARDISO and (e) SC+NR algorithms for the tolerances (1) 10−2,
and (2) 10−6 (note that only single plots for PARDISO and SC+NR are given as these
are direct solvers and not controlled by tolerance values.
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FIG. 4. Summary of computational cycles within the numerical experiments for the it-
erative algorithms. The lines correspond to the median of the network nodal groupings.
The plots correspond to (a) AMG, (b) AMG+CG, and (c) ILU+CG algorithms for the
tolerances (1) 10−2, and (2) 10−6. Note that the cycles presented only correspond to
the AMG and ILU cycles and do not include the conjugate gradient iterations.
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FIG. 5. Comparison of AMG+CG (−), ILU+CG (−−−), PARDISO (−·−) and SC+NR
(· · · ) in logarithmic and linear computational time (note that AMG is not depicted as
its trend was indistinguishable from that of AMG+CG). The lines depict the averaged
computational times, computed by averaging the computational times of the network
nodal groupings and applying an 11-point smoother to the resultant data series. The
plots correspond to a tolerance of 10−2 for plots (a) and (c), and 10−6 for plots (b)
and (d).
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FIG. 6. Computational times for components of the SC+NR solver. The plots cor-
respond to (a) the sparse Cholesky solver times, and (b) the node reordering times.
The lines depict the minimum (lower · · · ), sample mean (−), and maximum (upper
· · · ) computational times of the network nodal groupings.
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